qemu/hw/pxa2xx_lcd.c

1046 lines
29 KiB
C
Raw Normal View History

/*
* Intel XScale PXA255/270 LCDC emulation.
*
* Copyright (c) 2006 Openedhand Ltd.
* Written by Andrzej Zaborowski <balrog@zabor.org>
*
* This code is licensed under the GPLv2.
*/
#include "hw.h"
#include "console.h"
#include "pxa.h"
#include "pixel_ops.h"
/* FIXME: For graphic_rotate. Should probably be done in common code. */
#include "sysemu.h"
typedef void (*drawfn)(uint32_t *, uint8_t *, const uint8_t *, int, int);
struct pxa2xx_lcdc_s {
qemu_irq irq;
int irqlevel;
int invalidated;
DisplayState *ds;
drawfn *line_fn[2];
int dest_width;
int xres, yres;
int pal_for;
int transp;
enum {
pxa_lcdc_2bpp = 1,
pxa_lcdc_4bpp = 2,
pxa_lcdc_8bpp = 3,
pxa_lcdc_16bpp = 4,
pxa_lcdc_18bpp = 5,
pxa_lcdc_18pbpp = 6,
pxa_lcdc_19bpp = 7,
pxa_lcdc_19pbpp = 8,
pxa_lcdc_24bpp = 9,
pxa_lcdc_25bpp = 10,
} bpp;
uint32_t control[6];
uint32_t status[2];
uint32_t ovl1c[2];
uint32_t ovl2c[2];
uint32_t ccr;
uint32_t cmdcr;
uint32_t trgbr;
uint32_t tcr;
uint32_t liidr;
uint8_t bscntr;
struct {
target_phys_addr_t branch;
int up;
uint8_t palette[1024];
uint8_t pbuffer[1024];
void (*redraw)(struct pxa2xx_lcdc_s *s, uint8_t *fb,
int *miny, int *maxy);
target_phys_addr_t descriptor;
target_phys_addr_t source;
uint32_t id;
uint32_t command;
} dma_ch[7];
qemu_irq vsync_cb;
int orientation;
};
struct __attribute__ ((__packed__)) pxa_frame_descriptor_s {
uint32_t fdaddr;
uint32_t fsaddr;
uint32_t fidr;
uint32_t ldcmd;
};
#define LCCR0 0x000 /* LCD Controller Control register 0 */
#define LCCR1 0x004 /* LCD Controller Control register 1 */
#define LCCR2 0x008 /* LCD Controller Control register 2 */
#define LCCR3 0x00c /* LCD Controller Control register 3 */
#define LCCR4 0x010 /* LCD Controller Control register 4 */
#define LCCR5 0x014 /* LCD Controller Control register 5 */
#define FBR0 0x020 /* DMA Channel 0 Frame Branch register */
#define FBR1 0x024 /* DMA Channel 1 Frame Branch register */
#define FBR2 0x028 /* DMA Channel 2 Frame Branch register */
#define FBR3 0x02c /* DMA Channel 3 Frame Branch register */
#define FBR4 0x030 /* DMA Channel 4 Frame Branch register */
#define FBR5 0x110 /* DMA Channel 5 Frame Branch register */
#define FBR6 0x114 /* DMA Channel 6 Frame Branch register */
#define LCSR1 0x034 /* LCD Controller Status register 1 */
#define LCSR0 0x038 /* LCD Controller Status register 0 */
#define LIIDR 0x03c /* LCD Controller Interrupt ID register */
#define TRGBR 0x040 /* TMED RGB Seed register */
#define TCR 0x044 /* TMED Control register */
#define OVL1C1 0x050 /* Overlay 1 Control register 1 */
#define OVL1C2 0x060 /* Overlay 1 Control register 2 */
#define OVL2C1 0x070 /* Overlay 2 Control register 1 */
#define OVL2C2 0x080 /* Overlay 2 Control register 2 */
#define CCR 0x090 /* Cursor Control register */
#define CMDCR 0x100 /* Command Control register */
#define PRSR 0x104 /* Panel Read Status register */
#define PXA_LCDDMA_CHANS 7
#define DMA_FDADR 0x00 /* Frame Descriptor Address register */
#define DMA_FSADR 0x04 /* Frame Source Address register */
#define DMA_FIDR 0x08 /* Frame ID register */
#define DMA_LDCMD 0x0c /* Command register */
/* LCD Buffer Strength Control register */
#define BSCNTR 0x04000054
/* Bitfield masks */
#define LCCR0_ENB (1 << 0)
#define LCCR0_CMS (1 << 1)
#define LCCR0_SDS (1 << 2)
#define LCCR0_LDM (1 << 3)
#define LCCR0_SOFM0 (1 << 4)
#define LCCR0_IUM (1 << 5)
#define LCCR0_EOFM0 (1 << 6)
#define LCCR0_PAS (1 << 7)
#define LCCR0_DPD (1 << 9)
#define LCCR0_DIS (1 << 10)
#define LCCR0_QDM (1 << 11)
#define LCCR0_PDD (0xff << 12)
#define LCCR0_BSM0 (1 << 20)
#define LCCR0_OUM (1 << 21)
#define LCCR0_LCDT (1 << 22)
#define LCCR0_RDSTM (1 << 23)
#define LCCR0_CMDIM (1 << 24)
#define LCCR0_OUC (1 << 25)
#define LCCR0_LDDALT (1 << 26)
#define LCCR1_PPL(x) ((x) & 0x3ff)
#define LCCR2_LPP(x) ((x) & 0x3ff)
#define LCCR3_API (15 << 16)
#define LCCR3_BPP(x) ((((x) >> 24) & 7) | (((x) >> 26) & 8))
#define LCCR3_PDFOR(x) (((x) >> 30) & 3)
#define LCCR4_K1(x) (((x) >> 0) & 7)
#define LCCR4_K2(x) (((x) >> 3) & 7)
#define LCCR4_K3(x) (((x) >> 6) & 7)
#define LCCR4_PALFOR(x) (((x) >> 15) & 3)
#define LCCR5_SOFM(ch) (1 << (ch - 1))
#define LCCR5_EOFM(ch) (1 << (ch + 7))
#define LCCR5_BSM(ch) (1 << (ch + 15))
#define LCCR5_IUM(ch) (1 << (ch + 23))
#define OVLC1_EN (1 << 31)
#define CCR_CEN (1 << 31)
#define FBR_BRA (1 << 0)
#define FBR_BINT (1 << 1)
#define FBR_SRCADDR (0xfffffff << 4)
#define LCSR0_LDD (1 << 0)
#define LCSR0_SOF0 (1 << 1)
#define LCSR0_BER (1 << 2)
#define LCSR0_ABC (1 << 3)
#define LCSR0_IU0 (1 << 4)
#define LCSR0_IU1 (1 << 5)
#define LCSR0_OU (1 << 6)
#define LCSR0_QD (1 << 7)
#define LCSR0_EOF0 (1 << 8)
#define LCSR0_BS0 (1 << 9)
#define LCSR0_SINT (1 << 10)
#define LCSR0_RDST (1 << 11)
#define LCSR0_CMDINT (1 << 12)
#define LCSR0_BERCH(x) (((x) & 7) << 28)
#define LCSR1_SOF(ch) (1 << (ch - 1))
#define LCSR1_EOF(ch) (1 << (ch + 7))
#define LCSR1_BS(ch) (1 << (ch + 15))
#define LCSR1_IU(ch) (1 << (ch + 23))
#define LDCMD_LENGTH(x) ((x) & 0x001ffffc)
#define LDCMD_EOFINT (1 << 21)
#define LDCMD_SOFINT (1 << 22)
#define LDCMD_PAL (1 << 26)
/* Route internal interrupt lines to the global IC */
static void pxa2xx_lcdc_int_update(struct pxa2xx_lcdc_s *s)
{
int level = 0;
level |= (s->status[0] & LCSR0_LDD) && !(s->control[0] & LCCR0_LDM);
level |= (s->status[0] & LCSR0_SOF0) && !(s->control[0] & LCCR0_SOFM0);
level |= (s->status[0] & LCSR0_IU0) && !(s->control[0] & LCCR0_IUM);
level |= (s->status[0] & LCSR0_IU1) && !(s->control[5] & LCCR5_IUM(1));
level |= (s->status[0] & LCSR0_OU) && !(s->control[0] & LCCR0_OUM);
level |= (s->status[0] & LCSR0_QD) && !(s->control[0] & LCCR0_QDM);
level |= (s->status[0] & LCSR0_EOF0) && !(s->control[0] & LCCR0_EOFM0);
level |= (s->status[0] & LCSR0_BS0) && !(s->control[0] & LCCR0_BSM0);
level |= (s->status[0] & LCSR0_RDST) && !(s->control[0] & LCCR0_RDSTM);
level |= (s->status[0] & LCSR0_CMDINT) && !(s->control[0] & LCCR0_CMDIM);
level |= (s->status[1] & ~s->control[5]);
qemu_set_irq(s->irq, !!level);
s->irqlevel = level;
}
/* Set Branch Status interrupt high and poke associated registers */
static inline void pxa2xx_dma_bs_set(struct pxa2xx_lcdc_s *s, int ch)
{
int unmasked;
if (ch == 0) {
s->status[0] |= LCSR0_BS0;
unmasked = !(s->control[0] & LCCR0_BSM0);
} else {
s->status[1] |= LCSR1_BS(ch);
unmasked = !(s->control[5] & LCCR5_BSM(ch));
}
if (unmasked) {
if (s->irqlevel)
s->status[0] |= LCSR0_SINT;
else
s->liidr = s->dma_ch[ch].id;
}
}
/* Set Start Of Frame Status interrupt high and poke associated registers */
static inline void pxa2xx_dma_sof_set(struct pxa2xx_lcdc_s *s, int ch)
{
int unmasked;
if (!(s->dma_ch[ch].command & LDCMD_SOFINT))
return;
if (ch == 0) {
s->status[0] |= LCSR0_SOF0;
unmasked = !(s->control[0] & LCCR0_SOFM0);
} else {
s->status[1] |= LCSR1_SOF(ch);
unmasked = !(s->control[5] & LCCR5_SOFM(ch));
}
if (unmasked) {
if (s->irqlevel)
s->status[0] |= LCSR0_SINT;
else
s->liidr = s->dma_ch[ch].id;
}
}
/* Set End Of Frame Status interrupt high and poke associated registers */
static inline void pxa2xx_dma_eof_set(struct pxa2xx_lcdc_s *s, int ch)
{
int unmasked;
if (!(s->dma_ch[ch].command & LDCMD_EOFINT))
return;
if (ch == 0) {
s->status[0] |= LCSR0_EOF0;
unmasked = !(s->control[0] & LCCR0_EOFM0);
} else {
s->status[1] |= LCSR1_EOF(ch);
unmasked = !(s->control[5] & LCCR5_EOFM(ch));
}
if (unmasked) {
if (s->irqlevel)
s->status[0] |= LCSR0_SINT;
else
s->liidr = s->dma_ch[ch].id;
}
}
/* Set Bus Error Status interrupt high and poke associated registers */
static inline void pxa2xx_dma_ber_set(struct pxa2xx_lcdc_s *s, int ch)
{
s->status[0] |= LCSR0_BERCH(ch) | LCSR0_BER;
if (s->irqlevel)
s->status[0] |= LCSR0_SINT;
else
s->liidr = s->dma_ch[ch].id;
}
/* Set Read Status interrupt high and poke associated registers */
static inline void pxa2xx_dma_rdst_set(struct pxa2xx_lcdc_s *s)
{
s->status[0] |= LCSR0_RDST;
if (s->irqlevel && !(s->control[0] & LCCR0_RDSTM))
s->status[0] |= LCSR0_SINT;
}
/* Load new Frame Descriptors from DMA */
static void pxa2xx_descriptor_load(struct pxa2xx_lcdc_s *s)
{
struct pxa_frame_descriptor_s *desc[PXA_LCDDMA_CHANS];
target_phys_addr_t descptr;
int i;
for (i = 0; i < PXA_LCDDMA_CHANS; i ++) {
desc[i] = 0;
s->dma_ch[i].source = 0;
if (!s->dma_ch[i].up)
continue;
if (s->dma_ch[i].branch & FBR_BRA) {
descptr = s->dma_ch[i].branch & FBR_SRCADDR;
if (s->dma_ch[i].branch & FBR_BINT)
pxa2xx_dma_bs_set(s, i);
s->dma_ch[i].branch &= ~FBR_BRA;
} else
descptr = s->dma_ch[i].descriptor;
if (!(descptr >= PXA2XX_SDRAM_BASE && descptr +
sizeof(*desc[i]) <= PXA2XX_SDRAM_BASE + phys_ram_size))
continue;
descptr -= PXA2XX_SDRAM_BASE;
desc[i] = (struct pxa_frame_descriptor_s *) (phys_ram_base + descptr);
s->dma_ch[i].descriptor = desc[i]->fdaddr;
s->dma_ch[i].source = desc[i]->fsaddr;
s->dma_ch[i].id = desc[i]->fidr;
s->dma_ch[i].command = desc[i]->ldcmd;
}
}
static uint32_t pxa2xx_lcdc_read(void *opaque, target_phys_addr_t offset)
{
struct pxa2xx_lcdc_s *s = (struct pxa2xx_lcdc_s *) opaque;
int ch;
switch (offset) {
case LCCR0:
return s->control[0];
case LCCR1:
return s->control[1];
case LCCR2:
return s->control[2];
case LCCR3:
return s->control[3];
case LCCR4:
return s->control[4];
case LCCR5:
return s->control[5];
case OVL1C1:
return s->ovl1c[0];
case OVL1C2:
return s->ovl1c[1];
case OVL2C1:
return s->ovl2c[0];
case OVL2C2:
return s->ovl2c[1];
case CCR:
return s->ccr;
case CMDCR:
return s->cmdcr;
case TRGBR:
return s->trgbr;
case TCR:
return s->tcr;
case 0x200 ... 0x1000: /* DMA per-channel registers */
ch = (offset - 0x200) >> 4;
if (!(ch >= 0 && ch < PXA_LCDDMA_CHANS))
goto fail;
switch (offset & 0xf) {
case DMA_FDADR:
return s->dma_ch[ch].descriptor;
case DMA_FSADR:
return s->dma_ch[ch].source;
case DMA_FIDR:
return s->dma_ch[ch].id;
case DMA_LDCMD:
return s->dma_ch[ch].command;
default:
goto fail;
}
case FBR0:
return s->dma_ch[0].branch;
case FBR1:
return s->dma_ch[1].branch;
case FBR2:
return s->dma_ch[2].branch;
case FBR3:
return s->dma_ch[3].branch;
case FBR4:
return s->dma_ch[4].branch;
case FBR5:
return s->dma_ch[5].branch;
case FBR6:
return s->dma_ch[6].branch;
case BSCNTR:
return s->bscntr;
case PRSR:
return 0;
case LCSR0:
return s->status[0];
case LCSR1:
return s->status[1];
case LIIDR:
return s->liidr;
default:
fail:
cpu_abort(cpu_single_env,
"%s: Bad offset " REG_FMT "\n", __FUNCTION__, offset);
}
return 0;
}
static void pxa2xx_lcdc_write(void *opaque,
target_phys_addr_t offset, uint32_t value)
{
struct pxa2xx_lcdc_s *s = (struct pxa2xx_lcdc_s *) opaque;
int ch;
switch (offset) {
case LCCR0:
/* ACK Quick Disable done */
if ((s->control[0] & LCCR0_ENB) && !(value & LCCR0_ENB))
s->status[0] |= LCSR0_QD;
if (!(s->control[0] & LCCR0_LCDT) && (value & LCCR0_LCDT))
printf("%s: internal frame buffer unsupported\n", __FUNCTION__);
if ((s->control[3] & LCCR3_API) &&
(value & LCCR0_ENB) && !(value & LCCR0_LCDT))
s->status[0] |= LCSR0_ABC;
s->control[0] = value & 0x07ffffff;
pxa2xx_lcdc_int_update(s);
s->dma_ch[0].up = !!(value & LCCR0_ENB);
s->dma_ch[1].up = (s->ovl1c[0] & OVLC1_EN) || (value & LCCR0_SDS);
break;
case LCCR1:
s->control[1] = value;
break;
case LCCR2:
s->control[2] = value;
break;
case LCCR3:
s->control[3] = value & 0xefffffff;
s->bpp = LCCR3_BPP(value);
break;
case LCCR4:
s->control[4] = value & 0x83ff81ff;
break;
case LCCR5:
s->control[5] = value & 0x3f3f3f3f;
break;
case OVL1C1:
if (!(s->ovl1c[0] & OVLC1_EN) && (value & OVLC1_EN))
printf("%s: Overlay 1 not supported\n", __FUNCTION__);
s->ovl1c[0] = value & 0x80ffffff;
s->dma_ch[1].up = (value & OVLC1_EN) || (s->control[0] & LCCR0_SDS);
break;
case OVL1C2:
s->ovl1c[1] = value & 0x000fffff;
break;
case OVL2C1:
if (!(s->ovl2c[0] & OVLC1_EN) && (value & OVLC1_EN))
printf("%s: Overlay 2 not supported\n", __FUNCTION__);
s->ovl2c[0] = value & 0x80ffffff;
s->dma_ch[2].up = !!(value & OVLC1_EN);
s->dma_ch[3].up = !!(value & OVLC1_EN);
s->dma_ch[4].up = !!(value & OVLC1_EN);
break;
case OVL2C2:
s->ovl2c[1] = value & 0x007fffff;
break;
case CCR:
if (!(s->ccr & CCR_CEN) && (value & CCR_CEN))
printf("%s: Hardware cursor unimplemented\n", __FUNCTION__);
s->ccr = value & 0x81ffffe7;
s->dma_ch[5].up = !!(value & CCR_CEN);
break;
case CMDCR:
s->cmdcr = value & 0xff;
break;
case TRGBR:
s->trgbr = value & 0x00ffffff;
break;
case TCR:
s->tcr = value & 0x7fff;
break;
case 0x200 ... 0x1000: /* DMA per-channel registers */
ch = (offset - 0x200) >> 4;
if (!(ch >= 0 && ch < PXA_LCDDMA_CHANS))
goto fail;
switch (offset & 0xf) {
case DMA_FDADR:
s->dma_ch[ch].descriptor = value & 0xfffffff0;
break;
default:
goto fail;
}
break;
case FBR0:
s->dma_ch[0].branch = value & 0xfffffff3;
break;
case FBR1:
s->dma_ch[1].branch = value & 0xfffffff3;
break;
case FBR2:
s->dma_ch[2].branch = value & 0xfffffff3;
break;
case FBR3:
s->dma_ch[3].branch = value & 0xfffffff3;
break;
case FBR4:
s->dma_ch[4].branch = value & 0xfffffff3;
break;
case FBR5:
s->dma_ch[5].branch = value & 0xfffffff3;
break;
case FBR6:
s->dma_ch[6].branch = value & 0xfffffff3;
break;
case BSCNTR:
s->bscntr = value & 0xf;
break;
case PRSR:
break;
case LCSR0:
s->status[0] &= ~(value & 0xfff);
if (value & LCSR0_BER)
s->status[0] &= ~LCSR0_BERCH(7);
break;
case LCSR1:
s->status[1] &= ~(value & 0x3e3f3f);
break;
default:
fail:
cpu_abort(cpu_single_env,
"%s: Bad offset " REG_FMT "\n", __FUNCTION__, offset);
}
}
static CPUReadMemoryFunc *pxa2xx_lcdc_readfn[] = {
pxa2xx_lcdc_read,
pxa2xx_lcdc_read,
pxa2xx_lcdc_read
};
static CPUWriteMemoryFunc *pxa2xx_lcdc_writefn[] = {
pxa2xx_lcdc_write,
pxa2xx_lcdc_write,
pxa2xx_lcdc_write
};
/* Load new palette for a given DMA channel, convert to internal format */
static void pxa2xx_palette_parse(struct pxa2xx_lcdc_s *s, int ch, int bpp)
{
int i, n, format, r, g, b, alpha;
uint32_t *dest, *src;
s->pal_for = LCCR4_PALFOR(s->control[4]);
format = s->pal_for;
switch (bpp) {
case pxa_lcdc_2bpp:
n = 4;
break;
case pxa_lcdc_4bpp:
n = 16;
break;
case pxa_lcdc_8bpp:
n = 256;
break;
default:
format = 0;
return;
}
src = (uint32_t *) s->dma_ch[ch].pbuffer;
dest = (uint32_t *) s->dma_ch[ch].palette;
alpha = r = g = b = 0;
for (i = 0; i < n; i ++) {
switch (format) {
case 0: /* 16 bpp, no transparency */
alpha = 0;
if (s->control[0] & LCCR0_CMS)
r = g = b = *src & 0xff;
else {
r = (*src & 0xf800) >> 8;
g = (*src & 0x07e0) >> 3;
b = (*src & 0x001f) << 3;
}
break;
case 1: /* 16 bpp plus transparency */
alpha = *src & (1 << 24);
if (s->control[0] & LCCR0_CMS)
r = g = b = *src & 0xff;
else {
r = (*src & 0xf800) >> 8;
g = (*src & 0x07e0) >> 3;
b = (*src & 0x001f) << 3;
}
break;
case 2: /* 18 bpp plus transparency */
alpha = *src & (1 << 24);
if (s->control[0] & LCCR0_CMS)
r = g = b = *src & 0xff;
else {
r = (*src & 0xf80000) >> 16;
g = (*src & 0x00fc00) >> 8;
b = (*src & 0x0000f8);
}
break;
case 3: /* 24 bpp plus transparency */
alpha = *src & (1 << 24);
if (s->control[0] & LCCR0_CMS)
r = g = b = *src & 0xff;
else {
r = (*src & 0xff0000) >> 16;
g = (*src & 0x00ff00) >> 8;
b = (*src & 0x0000ff);
}
break;
}
switch (ds_get_bits_per_pixel(s->ds)) {
case 8:
*dest = rgb_to_pixel8(r, g, b) | alpha;
break;
case 15:
*dest = rgb_to_pixel15(r, g, b) | alpha;
break;
case 16:
*dest = rgb_to_pixel16(r, g, b) | alpha;
break;
case 24:
*dest = rgb_to_pixel24(r, g, b) | alpha;
break;
case 32:
*dest = rgb_to_pixel32(r, g, b) | alpha;
break;
}
src ++;
dest ++;
}
}
static void pxa2xx_lcdc_dma0_redraw_horiz(struct pxa2xx_lcdc_s *s,
uint8_t *fb, int *miny, int *maxy)
{
int y, src_width, dest_width, dirty[2];
uint8_t *src, *dest;
ram_addr_t x, addr, new_addr, start, end;
drawfn fn = 0;
if (s->dest_width)
fn = s->line_fn[s->transp][s->bpp];
if (!fn)
return;
src = fb;
src_width = (s->xres + 3) & ~3; /* Pad to a 4 pixels multiple */
if (s->bpp == pxa_lcdc_19pbpp || s->bpp == pxa_lcdc_18pbpp)
src_width *= 3;
else if (s->bpp > pxa_lcdc_16bpp)
src_width *= 4;
else if (s->bpp > pxa_lcdc_8bpp)
src_width *= 2;
dest = ds_get_data(s->ds);
dest_width = s->xres * s->dest_width;
addr = (ram_addr_t) (fb - phys_ram_base);
start = addr + s->yres * src_width;
end = addr;
dirty[0] = dirty[1] = cpu_physical_memory_get_dirty(addr, VGA_DIRTY_FLAG);
for (y = 0; y < s->yres; y ++) {
new_addr = addr + src_width;
for (x = addr + TARGET_PAGE_SIZE; x < new_addr;
x += TARGET_PAGE_SIZE) {
dirty[1] = cpu_physical_memory_get_dirty(x, VGA_DIRTY_FLAG);
dirty[0] |= dirty[1];
}
if (dirty[0] || s->invalidated) {
fn((uint32_t *) s->dma_ch[0].palette,
dest, src, s->xres, s->dest_width);
if (addr < start)
start = addr;
end = new_addr;
if (y < *miny)
*miny = y;
if (y >= *maxy)
*maxy = y + 1;
}
addr = new_addr;
dirty[0] = dirty[1];
src += src_width;
dest += dest_width;
}
if (end > start)
cpu_physical_memory_reset_dirty(start, end, VGA_DIRTY_FLAG);
}
static void pxa2xx_lcdc_dma0_redraw_vert(struct pxa2xx_lcdc_s *s,
uint8_t *fb, int *miny, int *maxy)
{
int y, src_width, dest_width, dirty[2];
uint8_t *src, *dest;
ram_addr_t x, addr, new_addr, start, end;
drawfn fn = 0;
if (s->dest_width)
fn = s->line_fn[s->transp][s->bpp];
if (!fn)
return;
src = fb;
src_width = (s->xres + 3) & ~3; /* Pad to a 4 pixels multiple */
if (s->bpp == pxa_lcdc_19pbpp || s->bpp == pxa_lcdc_18pbpp)
src_width *= 3;
else if (s->bpp > pxa_lcdc_16bpp)
src_width *= 4;
else if (s->bpp > pxa_lcdc_8bpp)
src_width *= 2;
dest_width = s->yres * s->dest_width;
dest = ds_get_data(s->ds) + dest_width * (s->xres - 1);
addr = (ram_addr_t) (fb - phys_ram_base);
start = addr + s->yres * src_width;
end = addr;
x = addr + TARGET_PAGE_SIZE;
dirty[0] = dirty[1] = cpu_physical_memory_get_dirty(start, VGA_DIRTY_FLAG);
for (y = 0; y < s->yres; y ++) {
new_addr = addr + src_width;
for (; x < new_addr; x += TARGET_PAGE_SIZE) {
dirty[1] = cpu_physical_memory_get_dirty(x, VGA_DIRTY_FLAG);
dirty[0] |= dirty[1];
}
if (dirty[0] || s->invalidated) {
fn((uint32_t *) s->dma_ch[0].palette,
dest, src, s->xres, -dest_width);
if (addr < start)
start = addr;
end = new_addr;
if (y < *miny)
*miny = y;
if (y >= *maxy)
*maxy = y + 1;
}
addr = new_addr;
dirty[0] = dirty[1];
src += src_width;
dest += s->dest_width;
}
if (end > start)
cpu_physical_memory_reset_dirty(start, end, VGA_DIRTY_FLAG);
}
static void pxa2xx_lcdc_resize(struct pxa2xx_lcdc_s *s)
{
int width, height;
if (!(s->control[0] & LCCR0_ENB))
return;
width = LCCR1_PPL(s->control[1]) + 1;
height = LCCR2_LPP(s->control[2]) + 1;
if (width != s->xres || height != s->yres) {
if (s->orientation)
qemu_console_resize(s->ds, height, width);
else
qemu_console_resize(s->ds, width, height);
s->invalidated = 1;
s->xres = width;
s->yres = height;
}
}
static void pxa2xx_update_display(void *opaque)
{
struct pxa2xx_lcdc_s *s = (struct pxa2xx_lcdc_s *) opaque;
uint8_t *fb;
target_phys_addr_t fbptr;
int miny, maxy;
int ch;
if (!(s->control[0] & LCCR0_ENB))
return;
pxa2xx_descriptor_load(s);
pxa2xx_lcdc_resize(s);
miny = s->yres;
maxy = 0;
s->transp = s->dma_ch[2].up || s->dma_ch[3].up;
/* Note: With overlay planes the order depends on LCCR0 bit 25. */
for (ch = 0; ch < PXA_LCDDMA_CHANS; ch ++)
if (s->dma_ch[ch].up) {
if (!s->dma_ch[ch].source) {
pxa2xx_dma_ber_set(s, ch);
continue;
}
fbptr = s->dma_ch[ch].source;
if (!(fbptr >= PXA2XX_SDRAM_BASE &&
fbptr <= PXA2XX_SDRAM_BASE + phys_ram_size)) {
pxa2xx_dma_ber_set(s, ch);
continue;
}
fbptr -= PXA2XX_SDRAM_BASE;
fb = phys_ram_base + fbptr;
if (s->dma_ch[ch].command & LDCMD_PAL) {
memcpy(s->dma_ch[ch].pbuffer, fb,
MAX(LDCMD_LENGTH(s->dma_ch[ch].command),
sizeof(s->dma_ch[ch].pbuffer)));
pxa2xx_palette_parse(s, ch, s->bpp);
} else {
/* Do we need to reparse palette */
if (LCCR4_PALFOR(s->control[4]) != s->pal_for)
pxa2xx_palette_parse(s, ch, s->bpp);
/* ACK frame start */
pxa2xx_dma_sof_set(s, ch);
s->dma_ch[ch].redraw(s, fb, &miny, &maxy);
s->invalidated = 0;
/* ACK frame completed */
pxa2xx_dma_eof_set(s, ch);
}
}
if (s->control[0] & LCCR0_DIS) {
/* ACK last frame completed */
s->control[0] &= ~LCCR0_ENB;
s->status[0] |= LCSR0_LDD;
}
if (s->orientation)
dpy_update(s->ds, miny, 0, maxy, s->xres);
else
dpy_update(s->ds, 0, miny, s->xres, maxy);
pxa2xx_lcdc_int_update(s);
qemu_irq_raise(s->vsync_cb);
}
static void pxa2xx_invalidate_display(void *opaque)
{
struct pxa2xx_lcdc_s *s = (struct pxa2xx_lcdc_s *) opaque;
s->invalidated = 1;
}
static void pxa2xx_screen_dump(void *opaque, const char *filename)
{
/* TODO */
}
static void pxa2xx_lcdc_orientation(void *opaque, int angle)
{
struct pxa2xx_lcdc_s *s = (struct pxa2xx_lcdc_s *) opaque;
if (angle) {
s->dma_ch[0].redraw = pxa2xx_lcdc_dma0_redraw_vert;
} else {
s->dma_ch[0].redraw = pxa2xx_lcdc_dma0_redraw_horiz;
}
s->orientation = angle;
s->xres = s->yres = -1;
pxa2xx_lcdc_resize(s);
}
static void pxa2xx_lcdc_save(QEMUFile *f, void *opaque)
{
struct pxa2xx_lcdc_s *s = (struct pxa2xx_lcdc_s *) opaque;
int i;
qemu_put_be32(f, s->irqlevel);
qemu_put_be32(f, s->transp);
for (i = 0; i < 6; i ++)
qemu_put_be32s(f, &s->control[i]);
for (i = 0; i < 2; i ++)
qemu_put_be32s(f, &s->status[i]);
for (i = 0; i < 2; i ++)
qemu_put_be32s(f, &s->ovl1c[i]);
for (i = 0; i < 2; i ++)
qemu_put_be32s(f, &s->ovl2c[i]);
qemu_put_be32s(f, &s->ccr);
qemu_put_be32s(f, &s->cmdcr);
qemu_put_be32s(f, &s->trgbr);
qemu_put_be32s(f, &s->tcr);
qemu_put_be32s(f, &s->liidr);
qemu_put_8s(f, &s->bscntr);
for (i = 0; i < 7; i ++) {
qemu_put_betl(f, s->dma_ch[i].branch);
qemu_put_byte(f, s->dma_ch[i].up);
qemu_put_buffer(f, s->dma_ch[i].pbuffer, sizeof(s->dma_ch[i].pbuffer));
qemu_put_betl(f, s->dma_ch[i].descriptor);
qemu_put_betl(f, s->dma_ch[i].source);
qemu_put_be32s(f, &s->dma_ch[i].id);
qemu_put_be32s(f, &s->dma_ch[i].command);
}
}
static int pxa2xx_lcdc_load(QEMUFile *f, void *opaque, int version_id)
{
struct pxa2xx_lcdc_s *s = (struct pxa2xx_lcdc_s *) opaque;
int i;
s->irqlevel = qemu_get_be32(f);
s->transp = qemu_get_be32(f);
for (i = 0; i < 6; i ++)
qemu_get_be32s(f, &s->control[i]);
for (i = 0; i < 2; i ++)
qemu_get_be32s(f, &s->status[i]);
for (i = 0; i < 2; i ++)
qemu_get_be32s(f, &s->ovl1c[i]);
for (i = 0; i < 2; i ++)
qemu_get_be32s(f, &s->ovl2c[i]);
qemu_get_be32s(f, &s->ccr);
qemu_get_be32s(f, &s->cmdcr);
qemu_get_be32s(f, &s->trgbr);
qemu_get_be32s(f, &s->tcr);
qemu_get_be32s(f, &s->liidr);
qemu_get_8s(f, &s->bscntr);
for (i = 0; i < 7; i ++) {
s->dma_ch[i].branch = qemu_get_betl(f);
s->dma_ch[i].up = qemu_get_byte(f);
qemu_get_buffer(f, s->dma_ch[i].pbuffer, sizeof(s->dma_ch[i].pbuffer));
s->dma_ch[i].descriptor = qemu_get_betl(f);
s->dma_ch[i].source = qemu_get_betl(f);
qemu_get_be32s(f, &s->dma_ch[i].id);
qemu_get_be32s(f, &s->dma_ch[i].command);
}
s->bpp = LCCR3_BPP(s->control[3]);
s->xres = s->yres = s->pal_for = -1;
return 0;
}
#define BITS 8
#include "pxa2xx_template.h"
#define BITS 15
#include "pxa2xx_template.h"
#define BITS 16
#include "pxa2xx_template.h"
#define BITS 24
#include "pxa2xx_template.h"
#define BITS 32
#include "pxa2xx_template.h"
struct pxa2xx_lcdc_s *pxa2xx_lcdc_init(target_phys_addr_t base, qemu_irq irq)
{
int iomemtype;
struct pxa2xx_lcdc_s *s;
s = (struct pxa2xx_lcdc_s *) qemu_mallocz(sizeof(struct pxa2xx_lcdc_s));
s->invalidated = 1;
s->irq = irq;
pxa2xx_lcdc_orientation(s, graphic_rotate);
iomemtype = cpu_register_io_memory(0, pxa2xx_lcdc_readfn,
pxa2xx_lcdc_writefn, s);
cpu_register_physical_memory(base, 0x00100000, iomemtype);
s->ds = graphic_console_init(pxa2xx_update_display,
pxa2xx_invalidate_display,
pxa2xx_screen_dump, NULL, s);
switch (ds_get_bits_per_pixel(s->ds)) {
case 0:
s->dest_width = 0;
break;
case 8:
s->line_fn[0] = pxa2xx_draw_fn_8;
s->line_fn[1] = pxa2xx_draw_fn_8t;
s->dest_width = 1;
break;
case 15:
s->line_fn[0] = pxa2xx_draw_fn_15;
s->line_fn[1] = pxa2xx_draw_fn_15t;
s->dest_width = 2;
break;
case 16:
s->line_fn[0] = pxa2xx_draw_fn_16;
s->line_fn[1] = pxa2xx_draw_fn_16t;
s->dest_width = 2;
break;
case 24:
s->line_fn[0] = pxa2xx_draw_fn_24;
s->line_fn[1] = pxa2xx_draw_fn_24t;
s->dest_width = 3;
break;
case 32:
s->line_fn[0] = pxa2xx_draw_fn_32;
s->line_fn[1] = pxa2xx_draw_fn_32t;
s->dest_width = 4;
break;
default:
fprintf(stderr, "%s: Bad color depth\n", __FUNCTION__);
exit(1);
}
register_savevm("pxa2xx_lcdc", 0, 0,
pxa2xx_lcdc_save, pxa2xx_lcdc_load, s);
return s;
}
void pxa2xx_lcd_vsync_notifier(struct pxa2xx_lcdc_s *s, qemu_irq handler)
{
s->vsync_cb = handler;
}