qemu/xen-hvm.c

1430 lines
42 KiB
C
Raw Normal View History

/*
* Copyright (C) 2010 Citrix Ltd.
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "hw/pci/pci.h"
#include "hw/i386/pc.h"
#include "hw/i386/apic-msidef.h"
#include "hw/xen/xen_common.h"
#include "hw/xen/xen_backend.h"
#include "qmp-commands.h"
#include "sysemu/char.h"
#include "qemu/error-report.h"
#include "qemu/range.h"
#include "sysemu/xen-mapcache.h"
#include "trace-root.h"
#include "exec/address-spaces.h"
#include <xen/hvm/ioreq.h>
#include <xen/hvm/params.h>
#include <xen/hvm/e820.h>
//#define DEBUG_XEN_HVM
#ifdef DEBUG_XEN_HVM
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
do { } while (0)
#endif
static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
static MemoryRegion *framebuffer;
static bool xen_in_migration;
/* Compatibility with older version */
/* This allows QEMU to build on a system that has Xen 4.5 or earlier
* installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
* needs to be included before this block and hw/xen/xen_common.h needs to
* be included before xen/hvm/ioreq.h
*/
#ifndef IOREQ_TYPE_VMWARE_PORT
#define IOREQ_TYPE_VMWARE_PORT 3
struct vmware_regs {
uint32_t esi;
uint32_t edi;
uint32_t ebx;
uint32_t ecx;
uint32_t edx;
};
typedef struct vmware_regs vmware_regs_t;
struct shared_vmport_iopage {
struct vmware_regs vcpu_vmport_regs[1];
};
typedef struct shared_vmport_iopage shared_vmport_iopage_t;
#endif
static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
{
return shared_page->vcpu_ioreq[i].vp_eport;
}
static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
{
return &shared_page->vcpu_ioreq[vcpu];
}
#define BUFFER_IO_MAX_DELAY 100
typedef struct XenPhysmap {
hwaddr start_addr;
ram_addr_t size;
const char *name;
hwaddr phys_offset;
QLIST_ENTRY(XenPhysmap) list;
} XenPhysmap;
typedef struct XenIOState {
ioservid_t ioservid;
shared_iopage_t *shared_page;
shared_vmport_iopage_t *shared_vmport_page;
buffered_iopage_t *buffered_io_page;
QEMUTimer *buffered_io_timer;
CPUState **cpu_by_vcpu_id;
/* the evtchn port for polling the notification, */
evtchn_port_t *ioreq_local_port;
/* evtchn local port for buffered io */
evtchn_port_t bufioreq_local_port;
/* the evtchn fd for polling */
xenevtchn_handle *xce_handle;
/* which vcpu we are serving */
int send_vcpu;
struct xs_handle *xenstore;
MemoryListener memory_listener;
MemoryListener io_listener;
DeviceListener device_listener;
QLIST_HEAD(, XenPhysmap) physmap;
hwaddr free_phys_offset;
const XenPhysmap *log_for_dirtybit;
Notifier exit;
Notifier suspend;
Notifier wakeup;
} XenIOState;
/* Xen specific function for piix pci */
int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
{
return irq_num + ((pci_dev->devfn >> 3) << 2);
}
void xen_piix3_set_irq(void *opaque, int irq_num, int level)
{
xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
irq_num & 3, level);
}
void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
{
int i;
/* Scan for updates to PCI link routes (0x60-0x63). */
for (i = 0; i < len; i++) {
uint8_t v = (val >> (8 * i)) & 0xff;
if (v & 0x80) {
v = 0;
}
v &= 0xf;
if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
xen_set_pci_link_route(xen_domid, address + i - 0x60, v);
}
}
}
int xen_is_pirq_msi(uint32_t msi_data)
{
/* If vector is 0, the msi is remapped into a pirq, passed as
* dest_id.
*/
return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
}
void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
{
xen_inject_msi(xen_domid, addr, data);
}
static void xen_suspend_notifier(Notifier *notifier, void *data)
{
xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
}
/* Xen Interrupt Controller */
static void xen_set_irq(void *opaque, int irq, int level)
{
xen_set_isa_irq_level(xen_domid, irq, level);
}
qemu_irq *xen_interrupt_controller_init(void)
{
return qemu_allocate_irqs(xen_set_irq, NULL, 16);
}
/* Memory Ops */
static void xen_ram_init(PCMachineState *pcms,
ram_addr_t ram_size, MemoryRegion **ram_memory_p)
{
MemoryRegion *sysmem = get_system_memory();
ram_addr_t block_len;
uint64_t user_lowmem = object_property_get_int(qdev_get_machine(),
PC_MACHINE_MAX_RAM_BELOW_4G,
&error_abort);
/* Handle the machine opt max-ram-below-4g. It is basically doing
* min(xen limit, user limit).
*/
if (!user_lowmem) {
user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
}
if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
user_lowmem = HVM_BELOW_4G_RAM_END;
}
if (ram_size >= user_lowmem) {
pcms->above_4g_mem_size = ram_size - user_lowmem;
pcms->below_4g_mem_size = user_lowmem;
} else {
pcms->above_4g_mem_size = 0;
pcms->below_4g_mem_size = ram_size;
}
if (!pcms->above_4g_mem_size) {
block_len = ram_size;
} else {
/*
* Xen does not allocate the memory continuously, it keeps a
* hole of the size computed above or passed in.
*/
block_len = (1ULL << 32) + pcms->above_4g_mem_size;
}
memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
Fix bad error handling after memory_region_init_ram() Symptom: $ qemu-system-x86_64 -m 10000000 Unexpected error in ram_block_add() at /work/armbru/qemu/exec.c:1456: upstream-qemu: cannot set up guest memory 'pc.ram': Cannot allocate memory Aborted (core dumped) Root cause: commit ef701d7 screwed up handling of out-of-memory conditions. Before the commit, we report the error and exit(1), in one place, ram_block_add(). The commit lifts the error handling up the call chain some, to three places. Fine. Except it uses &error_abort in these places, changing the behavior from exit(1) to abort(), and thus undoing the work of commit 3922825 "exec: Don't abort when we can't allocate guest memory". The three places are: * memory_region_init_ram() Commit 4994653 (right after commit ef701d7) lifted the error handling further, through memory_region_init_ram(), multiplying the incorrect use of &error_abort. Later on, imitation of existing (bad) code may have created more. * memory_region_init_ram_ptr() The &error_abort is still there. * memory_region_init_rom_device() Doesn't need fixing, because commit 33e0eb5 (soon after commit ef701d7) lifted the error handling further, and in the process changed it from &error_abort to passing it up the call chain. Correct, because the callers are realize() methods. Fix the error handling after memory_region_init_ram() with a Coccinelle semantic patch: @r@ expression mr, owner, name, size, err; position p; @@ memory_region_init_ram(mr, owner, name, size, ( - &error_abort + &error_fatal | err@p ) ); @script:python@ p << r.p; @@ print "%s:%s:%s" % (p[0].file, p[0].line, p[0].column) When the last argument is &error_abort, it gets replaced by &error_fatal. This is the fix. If the last argument is anything else, its position is reported. This lets us check the fix is complete. Four positions get reported: * ram_backend_memory_alloc() Error is passed up the call chain, ultimately through user_creatable_complete(). As far as I can tell, it's callers all handle the error sanely. * fsl_imx25_realize(), fsl_imx31_realize(), dp8393x_realize() DeviceClass.realize() methods, errors handled sanely further up the call chain. We're good. Test case again behaves: $ qemu-system-x86_64 -m 10000000 qemu-system-x86_64: cannot set up guest memory 'pc.ram': Cannot allocate memory [Exit 1 ] The next commits will repair the rest of commit ef701d7's damage. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1441983105-26376-3-git-send-email-armbru@redhat.com> Reviewed-by: Peter Crosthwaite <crosthwaite.peter@gmail.com>
2015-09-11 17:51:43 +03:00
&error_fatal);
*ram_memory_p = &ram_memory;
vmstate_register_ram_global(&ram_memory);
memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
&ram_memory, 0, 0xa0000);
memory_region_add_subregion(sysmem, 0, &ram_640k);
/* Skip of the VGA IO memory space, it will be registered later by the VGA
* emulated device.
*
* The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
* the Options ROM, so it is registered here as RAM.
*/
memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
&ram_memory, 0xc0000,
pcms->below_4g_mem_size - 0xc0000);
memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
if (pcms->above_4g_mem_size > 0) {
memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
&ram_memory, 0x100000000ULL,
pcms->above_4g_mem_size);
memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
}
}
void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
Error **errp)
{
unsigned long nr_pfn;
xen_pfn_t *pfn_list;
int i;
if (runstate_check(RUN_STATE_INMIGRATE)) {
/* RAM already populated in Xen */
fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
" bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
__func__, size, ram_addr);
return;
}
if (mr == &ram_memory) {
return;
}
trace_xen_ram_alloc(ram_addr, size);
nr_pfn = size >> TARGET_PAGE_BITS;
pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
for (i = 0; i < nr_pfn; i++) {
pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
}
if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
ram_addr);
}
g_free(pfn_list);
}
static XenPhysmap *get_physmapping(XenIOState *state,
hwaddr start_addr, ram_addr_t size)
{
XenPhysmap *physmap = NULL;
start_addr &= TARGET_PAGE_MASK;
QLIST_FOREACH(physmap, &state->physmap, list) {
if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
return physmap;
}
}
return NULL;
}
static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr,
ram_addr_t size, void *opaque)
{
hwaddr addr = start_addr & TARGET_PAGE_MASK;
XenIOState *xen_io_state = opaque;
XenPhysmap *physmap = NULL;
QLIST_FOREACH(physmap, &xen_io_state->physmap, list) {
if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
return physmap->start_addr;
}
}
return start_addr;
}
static int xen_add_to_physmap(XenIOState *state,
hwaddr start_addr,
ram_addr_t size,
MemoryRegion *mr,
hwaddr offset_within_region)
{
unsigned long i = 0;
int rc = 0;
XenPhysmap *physmap = NULL;
hwaddr pfn, start_gpfn;
hwaddr phys_offset = memory_region_get_ram_addr(mr);
char path[80], value[17];
const char *mr_name;
if (get_physmapping(state, start_addr, size)) {
return 0;
}
if (size <= 0) {
return -1;
}
/* Xen can only handle a single dirty log region for now and we want
* the linear framebuffer to be that region.
* Avoid tracking any regions that is not videoram and avoid tracking
* the legacy vga region. */
if (mr == framebuffer && start_addr > 0xbffff) {
goto go_physmap;
}
return -1;
go_physmap:
DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
start_addr, start_addr + size);
pfn = phys_offset >> TARGET_PAGE_BITS;
start_gpfn = start_addr >> TARGET_PAGE_BITS;
for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
unsigned long idx = pfn + i;
xen_pfn_t gpfn = start_gpfn + i;
rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
if (rc) {
DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
return -rc;
}
}
mr_name = memory_region_name(mr);
physmap = g_malloc(sizeof (XenPhysmap));
physmap->start_addr = start_addr;
physmap->size = size;
physmap->name = mr_name;
physmap->phys_offset = phys_offset;
QLIST_INSERT_HEAD(&state->physmap, physmap, list);
xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
start_addr >> TARGET_PAGE_BITS,
(start_addr + size - 1) >> TARGET_PAGE_BITS,
XEN_DOMCTL_MEM_CACHEATTR_WB);
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
xen_domid, (uint64_t)phys_offset);
snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr);
if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
return -1;
}
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
xen_domid, (uint64_t)phys_offset);
snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size);
if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
return -1;
}
if (mr_name) {
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
xen_domid, (uint64_t)phys_offset);
if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) {
return -1;
}
}
return 0;
}
static int xen_remove_from_physmap(XenIOState *state,
hwaddr start_addr,
ram_addr_t size)
{
unsigned long i = 0;
int rc = 0;
XenPhysmap *physmap = NULL;
hwaddr phys_offset = 0;
physmap = get_physmapping(state, start_addr, size);
if (physmap == NULL) {
return -1;
}
phys_offset = physmap->phys_offset;
size = physmap->size;
DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
"%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
size >>= TARGET_PAGE_BITS;
start_addr >>= TARGET_PAGE_BITS;
phys_offset >>= TARGET_PAGE_BITS;
for (i = 0; i < size; i++) {
xen_pfn_t idx = start_addr + i;
xen_pfn_t gpfn = phys_offset + i;
rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
if (rc) {
fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
return -rc;
}
}
QLIST_REMOVE(physmap, list);
if (state->log_for_dirtybit == physmap) {
state->log_for_dirtybit = NULL;
}
g_free(physmap);
return 0;
}
static void xen_set_memory(struct MemoryListener *listener,
MemoryRegionSection *section,
bool add)
{
XenIOState *state = container_of(listener, XenIOState, memory_listener);
hwaddr start_addr = section->offset_within_address_space;
ram_addr_t size = int128_get64(section->size);
bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
hvmmem_type_t mem_type;
if (section->mr == &ram_memory) {
return;
} else {
if (add) {
xen_map_memory_section(xen_domid, state->ioservid,
section);
} else {
xen_unmap_memory_section(xen_domid, state->ioservid,
section);
}
}
if (!memory_region_is_ram(section->mr)) {
return;
}
if (log_dirty != add) {
return;
}
trace_xen_client_set_memory(start_addr, size, log_dirty);
start_addr &= TARGET_PAGE_MASK;
size = TARGET_PAGE_ALIGN(size);
if (add) {
if (!memory_region_is_rom(section->mr)) {
xen_add_to_physmap(state, start_addr, size,
section->mr, section->offset_within_region);
} else {
mem_type = HVMMEM_ram_ro;
if (xen_set_mem_type(xen_domid, mem_type,
start_addr >> TARGET_PAGE_BITS,
size >> TARGET_PAGE_BITS)) {
DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
start_addr);
}
}
} else {
if (xen_remove_from_physmap(state, start_addr, size) < 0) {
DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
}
}
}
static void xen_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
memory_region_ref(section->mr);
xen_set_memory(listener, section, true);
}
static void xen_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
xen_set_memory(listener, section, false);
memory_region_unref(section->mr);
}
static void xen_io_add(MemoryListener *listener,
MemoryRegionSection *section)
{
XenIOState *state = container_of(listener, XenIOState, io_listener);
MemoryRegion *mr = section->mr;
if (mr->ops == &unassigned_io_ops) {
return;
}
memory_region_ref(mr);
xen_map_io_section(xen_domid, state->ioservid, section);
}
static void xen_io_del(MemoryListener *listener,
MemoryRegionSection *section)
{
XenIOState *state = container_of(listener, XenIOState, io_listener);
MemoryRegion *mr = section->mr;
if (mr->ops == &unassigned_io_ops) {
return;
}
xen_unmap_io_section(xen_domid, state->ioservid, section);
memory_region_unref(mr);
}
static void xen_device_realize(DeviceListener *listener,
DeviceState *dev)
{
XenIOState *state = container_of(listener, XenIOState, device_listener);
if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
PCIDevice *pci_dev = PCI_DEVICE(dev);
xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
}
}
static void xen_device_unrealize(DeviceListener *listener,
DeviceState *dev)
{
XenIOState *state = container_of(listener, XenIOState, device_listener);
if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
PCIDevice *pci_dev = PCI_DEVICE(dev);
xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
}
}
static void xen_sync_dirty_bitmap(XenIOState *state,
hwaddr start_addr,
ram_addr_t size)
{
hwaddr npages = size >> TARGET_PAGE_BITS;
const int width = sizeof(unsigned long) * 8;
unsigned long bitmap[DIV_ROUND_UP(npages, width)];
int rc, i, j;
const XenPhysmap *physmap = NULL;
physmap = get_physmapping(state, start_addr, size);
if (physmap == NULL) {
/* not handled */
return;
}
if (state->log_for_dirtybit == NULL) {
state->log_for_dirtybit = physmap;
} else if (state->log_for_dirtybit != physmap) {
/* Only one range for dirty bitmap can be tracked. */
return;
}
rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
npages, bitmap);
if (rc < 0) {
#ifndef ENODATA
#define ENODATA ENOENT
#endif
if (errno == ENODATA) {
memory_region_set_dirty(framebuffer, 0, size);
DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
", 0x" TARGET_FMT_plx "): %s\n",
start_addr, start_addr + size, strerror(errno));
}
return;
}
for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
unsigned long map = bitmap[i];
while (map != 0) {
j = ctzl(map);
map &= ~(1ul << j);
memory_region_set_dirty(framebuffer,
(i * width + j) * TARGET_PAGE_SIZE,
TARGET_PAGE_SIZE);
};
}
}
static void xen_log_start(MemoryListener *listener,
MemoryRegionSection *section,
int old, int new)
{
XenIOState *state = container_of(listener, XenIOState, memory_listener);
if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
xen_sync_dirty_bitmap(state, section->offset_within_address_space,
int128_get64(section->size));
}
}
static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
int old, int new)
{
XenIOState *state = container_of(listener, XenIOState, memory_listener);
if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
state->log_for_dirtybit = NULL;
/* Disable dirty bit tracking */
xen_track_dirty_vram(xen_domid, 0, 0, NULL);
}
}
static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
{
XenIOState *state = container_of(listener, XenIOState, memory_listener);
xen_sync_dirty_bitmap(state, section->offset_within_address_space,
int128_get64(section->size));
}
static void xen_log_global_start(MemoryListener *listener)
{
if (xen_enabled()) {
xen_in_migration = true;
}
}
static void xen_log_global_stop(MemoryListener *listener)
{
xen_in_migration = false;
}
static MemoryListener xen_memory_listener = {
.region_add = xen_region_add,
.region_del = xen_region_del,
.log_start = xen_log_start,
.log_stop = xen_log_stop,
.log_sync = xen_log_sync,
.log_global_start = xen_log_global_start,
.log_global_stop = xen_log_global_stop,
.priority = 10,
};
static MemoryListener xen_io_listener = {
.region_add = xen_io_add,
.region_del = xen_io_del,
.priority = 10,
};
static DeviceListener xen_device_listener = {
.realize = xen_device_realize,
.unrealize = xen_device_unrealize,
};
/* get the ioreq packets from share mem */
static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
{
ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
if (req->state != STATE_IOREQ_READY) {
DPRINTF("I/O request not ready: "
"%x, ptr: %x, port: %"PRIx64", "
"data: %"PRIx64", count: %u, size: %u\n",
req->state, req->data_is_ptr, req->addr,
req->data, req->count, req->size);
return NULL;
}
xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
req->state = STATE_IOREQ_INPROCESS;
return req;
}
/* use poll to get the port notification */
/* ioreq_vec--out,the */
/* retval--the number of ioreq packet */
static ioreq_t *cpu_get_ioreq(XenIOState *state)
{
int i;
evtchn_port_t port;
port = xenevtchn_pending(state->xce_handle);
if (port == state->bufioreq_local_port) {
timer_mod(state->buffered_io_timer,
BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
return NULL;
}
if (port != -1) {
for (i = 0; i < max_cpus; i++) {
if (state->ioreq_local_port[i] == port) {
break;
}
}
if (i == max_cpus) {
hw_error("Fatal error while trying to get io event!\n");
}
/* unmask the wanted port again */
xenevtchn_unmask(state->xce_handle, port);
/* get the io packet from shared memory */
state->send_vcpu = i;
return cpu_get_ioreq_from_shared_memory(state, i);
}
/* read error or read nothing */
return NULL;
}
static uint32_t do_inp(uint32_t addr, unsigned long size)
{
switch (size) {
case 1:
return cpu_inb(addr);
case 2:
return cpu_inw(addr);
case 4:
return cpu_inl(addr);
default:
hw_error("inp: bad size: %04x %lx", addr, size);
}
}
static void do_outp(uint32_t addr,
unsigned long size, uint32_t val)
{
switch (size) {
case 1:
return cpu_outb(addr, val);
case 2:
return cpu_outw(addr, val);
case 4:
return cpu_outl(addr, val);
default:
hw_error("outp: bad size: %04x %lx", addr, size);
}
}
/*
* Helper functions which read/write an object from/to physical guest
* memory, as part of the implementation of an ioreq.
*
* Equivalent to
* cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
* val, req->size, 0/1)
* except without the integer overflow problems.
*/
static void rw_phys_req_item(hwaddr addr,
ioreq_t *req, uint32_t i, void *val, int rw)
{
/* Do everything unsigned so overflow just results in a truncated result
* and accesses to undesired parts of guest memory, which is up
* to the guest */
hwaddr offset = (hwaddr)req->size * i;
if (req->df) {
addr -= offset;
} else {
addr += offset;
}
cpu_physical_memory_rw(addr, val, req->size, rw);
}
static inline void read_phys_req_item(hwaddr addr,
ioreq_t *req, uint32_t i, void *val)
{
rw_phys_req_item(addr, req, i, val, 0);
}
static inline void write_phys_req_item(hwaddr addr,
ioreq_t *req, uint32_t i, void *val)
{
rw_phys_req_item(addr, req, i, val, 1);
}
static void cpu_ioreq_pio(ioreq_t *req)
{
uint32_t i;
trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
req->data, req->count, req->size);
if (req->size > sizeof(uint32_t)) {
hw_error("PIO: bad size (%u)", req->size);
}
if (req->dir == IOREQ_READ) {
if (!req->data_is_ptr) {
req->data = do_inp(req->addr, req->size);
trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
req->size);
} else {
uint32_t tmp;
for (i = 0; i < req->count; i++) {
tmp = do_inp(req->addr, req->size);
write_phys_req_item(req->data, req, i, &tmp);
}
}
} else if (req->dir == IOREQ_WRITE) {
if (!req->data_is_ptr) {
trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
req->size);
do_outp(req->addr, req->size, req->data);
} else {
for (i = 0; i < req->count; i++) {
uint32_t tmp = 0;
read_phys_req_item(req->data, req, i, &tmp);
do_outp(req->addr, req->size, tmp);
}
}
}
}
static void cpu_ioreq_move(ioreq_t *req)
{
uint32_t i;
trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
req->data, req->count, req->size);
if (req->size > sizeof(req->data)) {
hw_error("MMIO: bad size (%u)", req->size);
}
if (!req->data_is_ptr) {
if (req->dir == IOREQ_READ) {
for (i = 0; i < req->count; i++) {
read_phys_req_item(req->addr, req, i, &req->data);
}
} else if (req->dir == IOREQ_WRITE) {
for (i = 0; i < req->count; i++) {
write_phys_req_item(req->addr, req, i, &req->data);
}
}
} else {
uint64_t tmp;
if (req->dir == IOREQ_READ) {
for (i = 0; i < req->count; i++) {
read_phys_req_item(req->addr, req, i, &tmp);
write_phys_req_item(req->data, req, i, &tmp);
}
} else if (req->dir == IOREQ_WRITE) {
for (i = 0; i < req->count; i++) {
read_phys_req_item(req->data, req, i, &tmp);
write_phys_req_item(req->addr, req, i, &tmp);
}
}
}
}
static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
{
X86CPU *cpu;
CPUX86State *env;
cpu = X86_CPU(current_cpu);
env = &cpu->env;
env->regs[R_EAX] = req->data;
env->regs[R_EBX] = vmport_regs->ebx;
env->regs[R_ECX] = vmport_regs->ecx;
env->regs[R_EDX] = vmport_regs->edx;
env->regs[R_ESI] = vmport_regs->esi;
env->regs[R_EDI] = vmport_regs->edi;
}
static void regs_from_cpu(vmware_regs_t *vmport_regs)
{
X86CPU *cpu = X86_CPU(current_cpu);
CPUX86State *env = &cpu->env;
vmport_regs->ebx = env->regs[R_EBX];
vmport_regs->ecx = env->regs[R_ECX];
vmport_regs->edx = env->regs[R_EDX];
vmport_regs->esi = env->regs[R_ESI];
vmport_regs->edi = env->regs[R_EDI];
}
static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
{
vmware_regs_t *vmport_regs;
assert(state->shared_vmport_page);
vmport_regs =
&state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
regs_to_cpu(vmport_regs, req);
cpu_ioreq_pio(req);
regs_from_cpu(vmport_regs);
current_cpu = NULL;
}
static void handle_ioreq(XenIOState *state, ioreq_t *req)
{
trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
req->addr, req->data, req->count, req->size);
if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
(req->size < sizeof (target_ulong))) {
req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
}
if (req->dir == IOREQ_WRITE)
trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
req->addr, req->data, req->count, req->size);
switch (req->type) {
case IOREQ_TYPE_PIO:
cpu_ioreq_pio(req);
break;
case IOREQ_TYPE_COPY:
cpu_ioreq_move(req);
break;
case IOREQ_TYPE_VMWARE_PORT:
handle_vmport_ioreq(state, req);
break;
case IOREQ_TYPE_TIMEOFFSET:
break;
case IOREQ_TYPE_INVALIDATE:
xen_invalidate_map_cache();
break;
case IOREQ_TYPE_PCI_CONFIG: {
uint32_t sbdf = req->addr >> 32;
uint32_t val;
/* Fake a write to port 0xCF8 so that
* the config space access will target the
* correct device model.
*/
val = (1u << 31) |
((req->addr & 0x0f00) << 16) |
((sbdf & 0xffff) << 8) |
(req->addr & 0xfc);
do_outp(0xcf8, 4, val);
/* Now issue the config space access via
* port 0xCFC
*/
req->addr = 0xcfc | (req->addr & 0x03);
cpu_ioreq_pio(req);
break;
}
default:
hw_error("Invalid ioreq type 0x%x\n", req->type);
}
if (req->dir == IOREQ_READ) {
trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
req->addr, req->data, req->count, req->size);
}
}
static int handle_buffered_iopage(XenIOState *state)
{
buffered_iopage_t *buf_page = state->buffered_io_page;
buf_ioreq_t *buf_req = NULL;
ioreq_t req;
int qw;
if (!buf_page) {
return 0;
}
memset(&req, 0x00, sizeof(req));
req.state = STATE_IOREQ_READY;
req.count = 1;
req.dir = IOREQ_WRITE;
for (;;) {
uint32_t rdptr = buf_page->read_pointer, wrptr;
xen_rmb();
wrptr = buf_page->write_pointer;
xen_rmb();
if (rdptr != buf_page->read_pointer) {
continue;
}
if (rdptr == wrptr) {
break;
}
buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
req.size = 1U << buf_req->size;
req.addr = buf_req->addr;
req.data = buf_req->data;
req.type = buf_req->type;
xen_rmb();
qw = (req.size == 8);
if (qw) {
if (rdptr + 1 == wrptr) {
hw_error("Incomplete quad word buffered ioreq");
}
buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
IOREQ_BUFFER_SLOT_NUM];
req.data |= ((uint64_t)buf_req->data) << 32;
xen_rmb();
}
handle_ioreq(state, &req);
/* Only req.data may get updated by handle_ioreq(), albeit even that
* should not happen as such data would never make it to the guest (we
* can only usefully see writes here after all).
*/
assert(req.state == STATE_IOREQ_READY);
assert(req.count == 1);
assert(req.dir == IOREQ_WRITE);
assert(!req.data_is_ptr);
atomic_add(&buf_page->read_pointer, qw + 1);
}
return req.count;
}
static void handle_buffered_io(void *opaque)
{
XenIOState *state = opaque;
if (handle_buffered_iopage(state)) {
timer_mod(state->buffered_io_timer,
BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
} else {
timer_del(state->buffered_io_timer);
xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
}
}
static void cpu_handle_ioreq(void *opaque)
{
XenIOState *state = opaque;
ioreq_t *req = cpu_get_ioreq(state);
handle_buffered_iopage(state);
if (req) {
ioreq_t copy = *req;
xen_rmb();
handle_ioreq(state, &copy);
req->data = copy.data;
if (req->state != STATE_IOREQ_INPROCESS) {
fprintf(stderr, "Badness in I/O request ... not in service?!: "
"%x, ptr: %x, port: %"PRIx64", "
"data: %"PRIx64", count: %u, size: %u, type: %u\n",
req->state, req->data_is_ptr, req->addr,
req->data, req->count, req->size, req->type);
destroy_hvm_domain(false);
return;
}
xen_wmb(); /* Update ioreq contents /then/ update state. */
/*
* We do this before we send the response so that the tools
* have the opportunity to pick up on the reset before the
* guest resumes and does a hlt with interrupts disabled which
* causes Xen to powerdown the domain.
*/
if (runstate_is_running()) {
if (qemu_shutdown_requested_get()) {
destroy_hvm_domain(false);
}
if (qemu_reset_requested_get()) {
qemu_system_reset(VMRESET_REPORT);
destroy_hvm_domain(true);
}
}
req->state = STATE_IORESP_READY;
xenevtchn_notify(state->xce_handle,
state->ioreq_local_port[state->send_vcpu]);
}
}
static void xen_main_loop_prepare(XenIOState *state)
{
int evtchn_fd = -1;
if (state->xce_handle != NULL) {
evtchn_fd = xenevtchn_fd(state->xce_handle);
}
state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
state);
if (evtchn_fd != -1) {
CPUState *cpu_state;
DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
CPU_FOREACH(cpu_state) {
DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
__func__, cpu_state->cpu_index, cpu_state);
state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
}
qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
}
}
static void xen_hvm_change_state_handler(void *opaque, int running,
RunState rstate)
{
XenIOState *state = opaque;
if (running) {
xen_main_loop_prepare(state);
}
xen_set_ioreq_server_state(xen_domid,
state->ioservid,
(rstate == RUN_STATE_RUNNING));
}
static void xen_exit_notifier(Notifier *n, void *data)
{
XenIOState *state = container_of(n, XenIOState, exit);
xenevtchn_close(state->xce_handle);
xs_daemon_close(state->xenstore);
}
static void xen_read_physmap(XenIOState *state)
{
XenPhysmap *physmap = NULL;
unsigned int len, num, i;
char path[80], *value = NULL;
char **entries = NULL;
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap", xen_domid);
entries = xs_directory(state->xenstore, 0, path, &num);
if (entries == NULL)
return;
for (i = 0; i < num; i++) {
physmap = g_malloc(sizeof (XenPhysmap));
physmap->phys_offset = strtoull(entries[i], NULL, 16);
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%s/start_addr",
xen_domid, entries[i]);
value = xs_read(state->xenstore, 0, path, &len);
if (value == NULL) {
g_free(physmap);
continue;
}
physmap->start_addr = strtoull(value, NULL, 16);
free(value);
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%s/size",
xen_domid, entries[i]);
value = xs_read(state->xenstore, 0, path, &len);
if (value == NULL) {
g_free(physmap);
continue;
}
physmap->size = strtoull(value, NULL, 16);
free(value);
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%s/name",
xen_domid, entries[i]);
physmap->name = xs_read(state->xenstore, 0, path, &len);
QLIST_INSERT_HEAD(&state->physmap, physmap, list);
}
free(entries);
}
static void xen_wakeup_notifier(Notifier *notifier, void *data)
{
xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
}
void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
{
int i, rc;
xen_pfn_t ioreq_pfn;
xen_pfn_t bufioreq_pfn;
evtchn_port_t bufioreq_evtchn;
XenIOState *state;
state = g_malloc0(sizeof (XenIOState));
state->xce_handle = xenevtchn_open(NULL, 0);
if (state->xce_handle == NULL) {
perror("xen: event channel open");
goto err;
}
state->xenstore = xs_daemon_open();
if (state->xenstore == NULL) {
perror("xen: xenstore open");
goto err;
}
if (xen_domid_restrict) {
rc = xen_restrict(xen_domid);
if (rc < 0) {
error_report("failed to restrict: error %d", errno);
goto err;
}
}
xen_create_ioreq_server(xen_domid, &state->ioservid);
state->exit.notify = xen_exit_notifier;
qemu_add_exit_notifier(&state->exit);
state->suspend.notify = xen_suspend_notifier;
qemu_register_suspend_notifier(&state->suspend);
state->wakeup.notify = xen_wakeup_notifier;
qemu_register_wakeup_notifier(&state->wakeup);
rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
&ioreq_pfn, &bufioreq_pfn,
&bufioreq_evtchn);
if (rc < 0) {
error_report("failed to get ioreq server info: error %d handle=%p",
errno, xen_xc);
goto err;
}
DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
xen: Switch uses of xc_map_foreign_{pages,bulk} to use libxenforeignmemory API. In Xen 4.7 we are refactoring parts libxenctrl into a number of separate libraries which will provide backward and forward API and ABI compatiblity. One such library will be libxenforeignmemory which provides access to privileged foreign mappings and which will provide an interface equivalent to xc_map_foreign_{pages,bulk}. The new xenforeignmemory_map() function behaves like xc_map_foreign_pages() when the err argument is NULL and like xc_map_foreign_bulk() when err is non-NULL, which maps into the shim here onto checking err == NULL and calling the appropriate old function. Note that xenforeignmemory_map() takes the number of pages before the arrays themselves, in order to support potentially future use of variable-length-arrays in the prototype (in the future, when Xen's baseline toolchain requirements are new enough to ensure VLAs are supported). In preparation for adding support for libxenforeignmemory add support to the <=4.0 and <=4.6 compat code in xen_common.h to allow us to switch to using the new API. These shims will disappear for versions of Xen which include libxenforeignmemory. Since libxenforeignmemory will have its own handle type but for <= 4.6 the functionality is provided by using a libxenctrl handle we introduce a new global xen_fmem alongside the existing xen_xc. In fact we make xen_fmem a pointer to the existing xen_xc, which then works correctly with both <=4.0 (xc handle is an int) and <=4.6 (xc handle is a pointer). In the latter case xen_fmem is actually a double indirect pointer, but it all falls out in the wash. Unlike libxenctrl libxenforeignmemory has an explicit unmap function, rather than just specifying that munmap should be used, so the unmap paths are updated to use xenforeignmemory_unmap, which is a shim for munmap on these versions of xen. The mappings in xen-hvm.c do not appear to be unmapped (which makes sense for a qemu-dm process) In fb_disconnect this results in a change from simply mmap over the existing mapping (with an implicit munmap) to expliclty unmapping with xenforeignmemory_unmap and then mapping the required anonymous memory in the same hole. I don't think this is a problem since any other thread which was racily touching this region would already be running the risk of hitting the mapping halfway through the call. If this is thought to be a problem then we could consider adding an extra API to the libxenforeignmemory interface to replace a foreign mapping with anonymous shared memory, but I'd prefer not to. Signed-off-by: Ian Campbell <ian.campbell@citrix.com> Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
2016-01-15 16:23:41 +03:00
state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
xen: Switch uses of xc_map_foreign_range into xc_map_foreign_pages In Xen 4.7 we are refactoring parts libxenctrl into a number of separate libraries which will provide backward and forward API and ABI compatiblity. One such library will be libxenforeignmemory which provides access to privileged foreign mappings and which will provide an interface equivalent to xc_map_foreign_{pages,bulk}. In preparation for this switch all uses of xc_map_foreign_range to xc_map_foreign_pages. This is trivial because size was always XC_PAGE_SIZE so the necessary adjustments are trivial: * Pass &mfn (an array of length 1) instead of mfn. The function takes a pointer to const, so there is no possibily of mfn changing due to this change. * Pass nr_pages=1 instead of size=XC_PAGE_SIZE There is one wrinkle in xen_console.c:con_initialise() where con->ring_ref is an int but can in some code paths (when !xendev->dev) be treated as an mfn. I think this is an existing latent truncation hazard on platforms where xen_pfn_t is 64-bit and int is 32-bit (e.g. amd64, both arm* variants). I'm unsure under what circumstances xendev->dev can be NULL or if anything elsewhere ensures the value fits into an int. For now I just use a temporary xen_pfn_t to in effect upcast the pointer from int* to xen_pfn_t*. In xenfb.c:common_bind we now explicitly launder the mfn into a xen_pfn_t, so it has the correct type to be passed to xc_map_foreign_pages and doesn't provoke warnings on 32-bit x86. Signed-off-by: Ian Campbell <ian.campbell@citrix.com> Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
2016-01-15 16:23:40 +03:00
PROT_READ|PROT_WRITE,
xen: Switch uses of xc_map_foreign_{pages,bulk} to use libxenforeignmemory API. In Xen 4.7 we are refactoring parts libxenctrl into a number of separate libraries which will provide backward and forward API and ABI compatiblity. One such library will be libxenforeignmemory which provides access to privileged foreign mappings and which will provide an interface equivalent to xc_map_foreign_{pages,bulk}. The new xenforeignmemory_map() function behaves like xc_map_foreign_pages() when the err argument is NULL and like xc_map_foreign_bulk() when err is non-NULL, which maps into the shim here onto checking err == NULL and calling the appropriate old function. Note that xenforeignmemory_map() takes the number of pages before the arrays themselves, in order to support potentially future use of variable-length-arrays in the prototype (in the future, when Xen's baseline toolchain requirements are new enough to ensure VLAs are supported). In preparation for adding support for libxenforeignmemory add support to the <=4.0 and <=4.6 compat code in xen_common.h to allow us to switch to using the new API. These shims will disappear for versions of Xen which include libxenforeignmemory. Since libxenforeignmemory will have its own handle type but for <= 4.6 the functionality is provided by using a libxenctrl handle we introduce a new global xen_fmem alongside the existing xen_xc. In fact we make xen_fmem a pointer to the existing xen_xc, which then works correctly with both <=4.0 (xc handle is an int) and <=4.6 (xc handle is a pointer). In the latter case xen_fmem is actually a double indirect pointer, but it all falls out in the wash. Unlike libxenctrl libxenforeignmemory has an explicit unmap function, rather than just specifying that munmap should be used, so the unmap paths are updated to use xenforeignmemory_unmap, which is a shim for munmap on these versions of xen. The mappings in xen-hvm.c do not appear to be unmapped (which makes sense for a qemu-dm process) In fb_disconnect this results in a change from simply mmap over the existing mapping (with an implicit munmap) to expliclty unmapping with xenforeignmemory_unmap and then mapping the required anonymous memory in the same hole. I don't think this is a problem since any other thread which was racily touching this region would already be running the risk of hitting the mapping halfway through the call. If this is thought to be a problem then we could consider adding an extra API to the libxenforeignmemory interface to replace a foreign mapping with anonymous shared memory, but I'd prefer not to. Signed-off-by: Ian Campbell <ian.campbell@citrix.com> Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
2016-01-15 16:23:41 +03:00
1, &ioreq_pfn, NULL);
if (state->shared_page == NULL) {
error_report("map shared IO page returned error %d handle=%p",
errno, xen_xc);
goto err;
}
rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
if (!rc) {
DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
state->shared_vmport_page =
xen: Switch uses of xc_map_foreign_{pages,bulk} to use libxenforeignmemory API. In Xen 4.7 we are refactoring parts libxenctrl into a number of separate libraries which will provide backward and forward API and ABI compatiblity. One such library will be libxenforeignmemory which provides access to privileged foreign mappings and which will provide an interface equivalent to xc_map_foreign_{pages,bulk}. The new xenforeignmemory_map() function behaves like xc_map_foreign_pages() when the err argument is NULL and like xc_map_foreign_bulk() when err is non-NULL, which maps into the shim here onto checking err == NULL and calling the appropriate old function. Note that xenforeignmemory_map() takes the number of pages before the arrays themselves, in order to support potentially future use of variable-length-arrays in the prototype (in the future, when Xen's baseline toolchain requirements are new enough to ensure VLAs are supported). In preparation for adding support for libxenforeignmemory add support to the <=4.0 and <=4.6 compat code in xen_common.h to allow us to switch to using the new API. These shims will disappear for versions of Xen which include libxenforeignmemory. Since libxenforeignmemory will have its own handle type but for <= 4.6 the functionality is provided by using a libxenctrl handle we introduce a new global xen_fmem alongside the existing xen_xc. In fact we make xen_fmem a pointer to the existing xen_xc, which then works correctly with both <=4.0 (xc handle is an int) and <=4.6 (xc handle is a pointer). In the latter case xen_fmem is actually a double indirect pointer, but it all falls out in the wash. Unlike libxenctrl libxenforeignmemory has an explicit unmap function, rather than just specifying that munmap should be used, so the unmap paths are updated to use xenforeignmemory_unmap, which is a shim for munmap on these versions of xen. The mappings in xen-hvm.c do not appear to be unmapped (which makes sense for a qemu-dm process) In fb_disconnect this results in a change from simply mmap over the existing mapping (with an implicit munmap) to expliclty unmapping with xenforeignmemory_unmap and then mapping the required anonymous memory in the same hole. I don't think this is a problem since any other thread which was racily touching this region would already be running the risk of hitting the mapping halfway through the call. If this is thought to be a problem then we could consider adding an extra API to the libxenforeignmemory interface to replace a foreign mapping with anonymous shared memory, but I'd prefer not to. Signed-off-by: Ian Campbell <ian.campbell@citrix.com> Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
2016-01-15 16:23:41 +03:00
xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1, &ioreq_pfn, NULL);
if (state->shared_vmport_page == NULL) {
error_report("map shared vmport IO page returned error %d handle=%p",
errno, xen_xc);
goto err;
}
} else if (rc != -ENOSYS) {
error_report("get vmport regs pfn returned error %d, rc=%d",
errno, rc);
goto err;
}
xen: Switch uses of xc_map_foreign_{pages,bulk} to use libxenforeignmemory API. In Xen 4.7 we are refactoring parts libxenctrl into a number of separate libraries which will provide backward and forward API and ABI compatiblity. One such library will be libxenforeignmemory which provides access to privileged foreign mappings and which will provide an interface equivalent to xc_map_foreign_{pages,bulk}. The new xenforeignmemory_map() function behaves like xc_map_foreign_pages() when the err argument is NULL and like xc_map_foreign_bulk() when err is non-NULL, which maps into the shim here onto checking err == NULL and calling the appropriate old function. Note that xenforeignmemory_map() takes the number of pages before the arrays themselves, in order to support potentially future use of variable-length-arrays in the prototype (in the future, when Xen's baseline toolchain requirements are new enough to ensure VLAs are supported). In preparation for adding support for libxenforeignmemory add support to the <=4.0 and <=4.6 compat code in xen_common.h to allow us to switch to using the new API. These shims will disappear for versions of Xen which include libxenforeignmemory. Since libxenforeignmemory will have its own handle type but for <= 4.6 the functionality is provided by using a libxenctrl handle we introduce a new global xen_fmem alongside the existing xen_xc. In fact we make xen_fmem a pointer to the existing xen_xc, which then works correctly with both <=4.0 (xc handle is an int) and <=4.6 (xc handle is a pointer). In the latter case xen_fmem is actually a double indirect pointer, but it all falls out in the wash. Unlike libxenctrl libxenforeignmemory has an explicit unmap function, rather than just specifying that munmap should be used, so the unmap paths are updated to use xenforeignmemory_unmap, which is a shim for munmap on these versions of xen. The mappings in xen-hvm.c do not appear to be unmapped (which makes sense for a qemu-dm process) In fb_disconnect this results in a change from simply mmap over the existing mapping (with an implicit munmap) to expliclty unmapping with xenforeignmemory_unmap and then mapping the required anonymous memory in the same hole. I don't think this is a problem since any other thread which was racily touching this region would already be running the risk of hitting the mapping halfway through the call. If this is thought to be a problem then we could consider adding an extra API to the libxenforeignmemory interface to replace a foreign mapping with anonymous shared memory, but I'd prefer not to. Signed-off-by: Ian Campbell <ian.campbell@citrix.com> Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
2016-01-15 16:23:41 +03:00
state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
PROT_READ|PROT_WRITE,
xen: Switch uses of xc_map_foreign_{pages,bulk} to use libxenforeignmemory API. In Xen 4.7 we are refactoring parts libxenctrl into a number of separate libraries which will provide backward and forward API and ABI compatiblity. One such library will be libxenforeignmemory which provides access to privileged foreign mappings and which will provide an interface equivalent to xc_map_foreign_{pages,bulk}. The new xenforeignmemory_map() function behaves like xc_map_foreign_pages() when the err argument is NULL and like xc_map_foreign_bulk() when err is non-NULL, which maps into the shim here onto checking err == NULL and calling the appropriate old function. Note that xenforeignmemory_map() takes the number of pages before the arrays themselves, in order to support potentially future use of variable-length-arrays in the prototype (in the future, when Xen's baseline toolchain requirements are new enough to ensure VLAs are supported). In preparation for adding support for libxenforeignmemory add support to the <=4.0 and <=4.6 compat code in xen_common.h to allow us to switch to using the new API. These shims will disappear for versions of Xen which include libxenforeignmemory. Since libxenforeignmemory will have its own handle type but for <= 4.6 the functionality is provided by using a libxenctrl handle we introduce a new global xen_fmem alongside the existing xen_xc. In fact we make xen_fmem a pointer to the existing xen_xc, which then works correctly with both <=4.0 (xc handle is an int) and <=4.6 (xc handle is a pointer). In the latter case xen_fmem is actually a double indirect pointer, but it all falls out in the wash. Unlike libxenctrl libxenforeignmemory has an explicit unmap function, rather than just specifying that munmap should be used, so the unmap paths are updated to use xenforeignmemory_unmap, which is a shim for munmap on these versions of xen. The mappings in xen-hvm.c do not appear to be unmapped (which makes sense for a qemu-dm process) In fb_disconnect this results in a change from simply mmap over the existing mapping (with an implicit munmap) to expliclty unmapping with xenforeignmemory_unmap and then mapping the required anonymous memory in the same hole. I don't think this is a problem since any other thread which was racily touching this region would already be running the risk of hitting the mapping halfway through the call. If this is thought to be a problem then we could consider adding an extra API to the libxenforeignmemory interface to replace a foreign mapping with anonymous shared memory, but I'd prefer not to. Signed-off-by: Ian Campbell <ian.campbell@citrix.com> Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
2016-01-15 16:23:41 +03:00
1, &bufioreq_pfn, NULL);
if (state->buffered_io_page == NULL) {
error_report("map buffered IO page returned error %d", errno);
goto err;
}
/* Note: cpus is empty at this point in init */
state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
if (rc < 0) {
error_report("failed to enable ioreq server info: error %d handle=%p",
errno, xen_xc);
goto err;
}
state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
/* FIXME: how about if we overflow the page here? */
for (i = 0; i < max_cpus; i++) {
rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
xen_vcpu_eport(state->shared_page, i));
if (rc == -1) {
error_report("shared evtchn %d bind error %d", i, errno);
goto err;
}
state->ioreq_local_port[i] = rc;
}
rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
bufioreq_evtchn);
if (rc == -1) {
error_report("buffered evtchn bind error %d", errno);
goto err;
}
state->bufioreq_local_port = rc;
/* Init RAM management */
xen_map_cache_init(xen_phys_offset_to_gaddr, state);
xen_ram_init(pcms, ram_size, ram_memory);
qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
state->memory_listener = xen_memory_listener;
QLIST_INIT(&state->physmap);
memory_listener_register(&state->memory_listener, &address_space_memory);
state->log_for_dirtybit = NULL;
state->io_listener = xen_io_listener;
memory_listener_register(&state->io_listener, &address_space_io);
state->device_listener = xen_device_listener;
device_listener_register(&state->device_listener);
/* Initialize backend core & drivers */
if (xen_be_init() != 0) {
error_report("xen backend core setup failed");
goto err;
}
xen_be_register_common();
xen_read_physmap(state);
/* Disable ACPI build because Xen handles it */
pcms->acpi_build_enabled = false;
return;
err:
error_report("xen hardware virtual machine initialisation failed");
exit(1);
}
void destroy_hvm_domain(bool reboot)
{
xc_interface *xc_handle;
int sts;
xc_handle = xc_interface_open(0, 0, 0);
if (xc_handle == NULL) {
fprintf(stderr, "Cannot acquire xenctrl handle\n");
} else {
sts = xc_domain_shutdown(xc_handle, xen_domid,
reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff);
if (sts != 0) {
fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
"sts %d, %s\n", reboot ? "reboot" : "poweroff",
sts, strerror(errno));
} else {
fprintf(stderr, "Issued domain %d %s\n", xen_domid,
reboot ? "reboot" : "poweroff");
}
xc_interface_close(xc_handle);
}
}
void xen_register_framebuffer(MemoryRegion *mr)
{
framebuffer = mr;
}
void xen_shutdown_fatal_error(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "Will destroy the domain.\n");
/* destroy the domain */
qemu_system_shutdown_request();
}
void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
{
if (unlikely(xen_in_migration)) {
int rc;
ram_addr_t start_pfn, nb_pages;
if (length == 0) {
length = TARGET_PAGE_SIZE;
}
start_pfn = start >> TARGET_PAGE_BITS;
nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
- start_pfn;
rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
if (rc) {
fprintf(stderr,
"%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
__func__, start, nb_pages, rc, strerror(-rc));
}
}
}
void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
{
if (enable) {
memory_global_dirty_log_start();
} else {
memory_global_dirty_log_stop();
}
}