qemu/hw/arm/armv7m.c

388 lines
12 KiB
C
Raw Normal View History

/*
* ARMV7M System emulation.
*
* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
#include "qemu/osdep.h"
#include "hw/arm/armv7m.h"
2016-03-14 11:01:28 +03:00
#include "qapi/error.h"
#include "cpu.h"
#include "hw/sysbus.h"
#include "hw/arm/boot.h"
#include "hw/loader.h"
#include "hw/qdev-properties.h"
#include "elf.h"
#include "sysemu/qtest.h"
#include "sysemu/reset.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "exec/address-spaces.h"
#include "target/arm/idau.h"
/* Bitbanded IO. Each word corresponds to a single bit. */
/* Get the byte address of the real memory for a bitband access. */
static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset)
{
return s->base | (offset & 0x1ffffff) >> 5;
}
static MemTxResult bitband_read(void *opaque, hwaddr offset,
uint64_t *data, unsigned size, MemTxAttrs attrs)
{
BitBandState *s = opaque;
uint8_t buf[4];
MemTxResult res;
int bitpos, bit;
hwaddr addr;
assert(size <= 4);
/* Find address in underlying memory and round down to multiple of size */
addr = bitband_addr(s, offset) & (-size);
res = address_space_read(&s->source_as, addr, attrs, buf, size);
if (res) {
return res;
}
/* Bit position in the N bytes read... */
bitpos = (offset >> 2) & ((size * 8) - 1);
/* ...converted to byte in buffer and bit in byte */
bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1;
*data = bit;
return MEMTX_OK;
}
static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size, MemTxAttrs attrs)
{
BitBandState *s = opaque;
uint8_t buf[4];
MemTxResult res;
int bitpos, bit;
hwaddr addr;
assert(size <= 4);
/* Find address in underlying memory and round down to multiple of size */
addr = bitband_addr(s, offset) & (-size);
res = address_space_read(&s->source_as, addr, attrs, buf, size);
if (res) {
return res;
}
/* Bit position in the N bytes read... */
bitpos = (offset >> 2) & ((size * 8) - 1);
/* ...converted to byte in buffer and bit in byte */
bit = 1 << (bitpos & 7);
if (value & 1) {
buf[bitpos >> 3] |= bit;
} else {
buf[bitpos >> 3] &= ~bit;
}
return address_space_write(&s->source_as, addr, attrs, buf, size);
}
static const MemoryRegionOps bitband_ops = {
.read_with_attrs = bitband_read,
.write_with_attrs = bitband_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl.min_access_size = 1,
.impl.max_access_size = 4,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
};
static void bitband_init(Object *obj)
{
BitBandState *s = BITBAND(obj);
SysBusDevice *dev = SYS_BUS_DEVICE(obj);
memory_region_init_io(&s->iomem, obj, &bitband_ops, s,
"bitband", 0x02000000);
sysbus_init_mmio(dev, &s->iomem);
}
static void bitband_realize(DeviceState *dev, Error **errp)
{
BitBandState *s = BITBAND(dev);
if (!s->source_memory) {
error_setg(errp, "source-memory property not set");
return;
}
address_space_init(&s->source_as, s->source_memory, "bitband-source");
}
/* Board init. */
static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = {
0x20000000, 0x40000000
};
static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = {
0x22000000, 0x42000000
};
static void armv7m_instance_init(Object *obj)
{
ARMv7MState *s = ARMV7M(obj);
int i;
/* Can't init the cpu here, we don't yet know which model to use */
memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX);
sysbus_init_child_obj(obj, "nvnic", &s->nvic, sizeof(s->nvic), TYPE_NVIC);
object_property_add_alias(obj, "num-irq",
OBJECT(&s->nvic), "num-irq", &error_abort);
for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
sysbus_init_child_obj(obj, "bitband[*]", &s->bitband[i],
sizeof(s->bitband[i]), TYPE_BITBAND);
}
}
static void armv7m_realize(DeviceState *dev, Error **errp)
{
ARMv7MState *s = ARMV7M(dev);
SysBusDevice *sbd;
Error *err = NULL;
int i;
if (!s->board_memory) {
error_setg(errp, "memory property was not set");
return;
}
memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
s->cpu = ARM_CPU(object_new_with_props(s->cpu_type, OBJECT(s), "cpu",
&err, NULL));
if (err != NULL) {
error_propagate(errp, err);
return;
}
object_property_set_link(OBJECT(s->cpu), OBJECT(&s->container), "memory",
&error_abort);
if (object_property_find(OBJECT(s->cpu), "idau", NULL)) {
object_property_set_link(OBJECT(s->cpu), s->idau, "idau", &err);
if (err != NULL) {
error_propagate(errp, err);
return;
}
}
if (object_property_find(OBJECT(s->cpu), "init-svtor", NULL)) {
object_property_set_uint(OBJECT(s->cpu), s->init_svtor,
"init-svtor", &err);
if (err != NULL) {
error_propagate(errp, err);
return;
}
}
if (object_property_find(OBJECT(s->cpu), "start-powered-off", NULL)) {
object_property_set_bool(OBJECT(s->cpu), s->start_powered_off,
"start-powered-off", &err);
if (err != NULL) {
error_propagate(errp, err);
return;
}
}
if (object_property_find(OBJECT(s->cpu), "vfp", NULL)) {
object_property_set_bool(OBJECT(s->cpu), s->vfp,
"vfp", &err);
if (err != NULL) {
error_propagate(errp, err);
return;
}
}
if (object_property_find(OBJECT(s->cpu), "dsp", NULL)) {
object_property_set_bool(OBJECT(s->cpu), s->dsp,
"dsp", &err);
if (err != NULL) {
error_propagate(errp, err);
return;
}
}
/*
* Tell the CPU where the NVIC is; it will fail realize if it doesn't
* have one. Similarly, tell the NVIC where its CPU is.
*/
s->cpu->env.nvic = &s->nvic;
s->nvic.cpu = s->cpu;
object_property_set_bool(OBJECT(s->cpu), true, "realized", &err);
if (err != NULL) {
error_propagate(errp, err);
return;
}
/* Note that we must realize the NVIC after the CPU */
object_property_set_bool(OBJECT(&s->nvic), true, "realized", &err);
if (err != NULL) {
error_propagate(errp, err);
return;
}
/* Alias the NVIC's input and output GPIOs as our own so the board
* code can wire them up. (We do this in realize because the
* NVIC doesn't create the input GPIO array until realize.)
*/
qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL);
qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ");
qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI");
/* Wire the NVIC up to the CPU */
sbd = SYS_BUS_DEVICE(&s->nvic);
sysbus_connect_irq(sbd, 0,
qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
memory_region_add_subregion(&s->container, 0xe000e000,
sysbus_mmio_get_region(sbd, 0));
if (s->enable_bitband) {
for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
Object *obj = OBJECT(&s->bitband[i]);
SysBusDevice *sbd = SYS_BUS_DEVICE(&s->bitband[i]);
object_property_set_int(obj, bitband_input_addr[i], "base", &err);
if (err != NULL) {
error_propagate(errp, err);
return;
}
object_property_set_link(obj, OBJECT(s->board_memory),
"source-memory", &error_abort);
object_property_set_bool(obj, true, "realized", &err);
if (err != NULL) {
error_propagate(errp, err);
return;
}
memory_region_add_subregion(&s->container, bitband_output_addr[i],
sysbus_mmio_get_region(sbd, 0));
}
}
}
static Property armv7m_properties[] = {
arm: drop intermediate cpu_model -> cpu type parsing and use cpu type directly there are 2 use cases to deal with: 1: fixed CPU models per board/soc 2: boards with user configurable cpu_model and fallback to default cpu_model if user hasn't specified one explicitly For the 1st drop intermediate cpu_model parsing and use const cpu type directly, which replaces: typename = object_class_get_name( cpu_class_by_name(TYPE_ARM_CPU, cpu_model)) object_new(typename) with object_new(FOO_CPU_TYPE_NAME) or cpu_generic_init(BASE_CPU_TYPE, "my cpu model") with cpu_create(FOO_CPU_TYPE_NAME) as result 1st use case doesn't have to invoke not necessary translation and not needed code is removed. For the 2nd 1: set default cpu type with MachineClass::default_cpu_type and 2: use generic cpu_model parsing that done before machine_init() is run and: 2.1: drop custom cpu_model parsing where pattern is: typename = object_class_get_name( cpu_class_by_name(TYPE_ARM_CPU, cpu_model)) [parse_features(typename, cpu_model, &err) ] 2.2: or replace cpu_generic_init() which does what 2.1 does + create_cpu(typename) with just create_cpu(machine->cpu_type) as result cpu_name -> cpu_type translation is done using generic machine code one including parsing optional features if supported/present (removes a bunch of duplicated cpu_model parsing code) and default cpu type is defined in an uniform way within machine_class_init callbacks instead of adhoc places in boadr's machine_init code. Signed-off-by: Igor Mammedov <imammedo@redhat.com> Reviewed-by: Eduardo Habkost <ehabkost@redhat.com> Message-Id: <1505318697-77161-6-git-send-email-imammedo@redhat.com> Reviewed-by: Alistair Francis <alistair.francis@xilinx.com> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2017-09-13 19:04:57 +03:00
DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type),
DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *),
DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0),
DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false),
DEFINE_PROP_BOOL("start-powered-off", ARMv7MState, start_powered_off,
false),
DEFINE_PROP_BOOL("vfp", ARMv7MState, vfp, true),
DEFINE_PROP_BOOL("dsp", ARMv7MState, dsp, true),
DEFINE_PROP_END_OF_LIST(),
};
static void armv7m_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = armv7m_realize;
device_class_set_props(dc, armv7m_properties);
}
static const TypeInfo armv7m_info = {
.name = TYPE_ARMV7M,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ARMv7MState),
.instance_init = armv7m_instance_init,
.class_init = armv7m_class_init,
};
static void armv7m_reset(void *opaque)
{
ARMCPU *cpu = opaque;
cpu_reset(CPU(cpu));
}
void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename, int mem_size)
{
int image_size;
uint64_t entry;
uint64_t lowaddr;
int big_endian;
AddressSpace *as;
int asidx;
CPUState *cs = CPU(cpu);
#ifdef TARGET_WORDS_BIGENDIAN
big_endian = 1;
#else
big_endian = 0;
#endif
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
asidx = ARMASIdx_S;
} else {
asidx = ARMASIdx_NS;
}
as = cpu_get_address_space(cs, asidx);
if (kernel_filename) {
image_size = load_elf_as(kernel_filename, NULL, NULL, NULL,
hw/core/loader: Let load_elf() populate a field with CPU-specific flags While loading the executable, some platforms (like AVR) need to detect CPU type that executable is built for - and, with this patch, this is enabled by reading the field 'e_flags' of the ELF header of the executable in question. The change expands functionality of the following functions: - load_elf() - load_elf_as() - load_elf_ram() - load_elf_ram_sym() The argument added to these functions is called 'pflags' and is of type 'uint32_t*' (that matches 'pointer to 'elf_word'', 'elf_word' being the type of the field 'e_flags', in both 32-bit and 64-bit variants of ELF header). Callers are allowed to pass NULL as that argument, and in such case no lookup to the field 'e_flags' will happen, and no information will be returned, of course. CC: Richard Henderson <rth@twiddle.net> CC: Peter Maydell <peter.maydell@linaro.org> CC: Edgar E. Iglesias <edgar.iglesias@gmail.com> CC: Michael Walle <michael@walle.cc> CC: Thomas Huth <huth@tuxfamily.org> CC: Laurent Vivier <laurent@vivier.eu> CC: Philippe Mathieu-Daudé <f4bug@amsat.org> CC: Aleksandar Rikalo <aleksandar.rikalo@rt-rk.com> CC: Aurelien Jarno <aurelien@aurel32.net> CC: Jia Liu <proljc@gmail.com> CC: David Gibson <david@gibson.dropbear.id.au> CC: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk> CC: BALATON Zoltan <balaton@eik.bme.hu> CC: Christian Borntraeger <borntraeger@de.ibm.com> CC: Thomas Huth <thuth@redhat.com> CC: Artyom Tarasenko <atar4qemu@gmail.com> CC: Fabien Chouteau <chouteau@adacore.com> CC: KONRAD Frederic <frederic.konrad@adacore.com> CC: Max Filippov <jcmvbkbc@gmail.com> Reviewed-by: Aleksandar Rikalo <aleksandar.rikalo@rt-rk.com> Signed-off-by: Michael Rolnik <mrolnik@gmail.com> Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com> Message-Id: <1580079311-20447-24-git-send-email-aleksandar.markovic@rt-rk.com>
2020-01-27 01:55:04 +03:00
&entry, &lowaddr, NULL,
NULL, big_endian, EM_ARM, 1, 0, as);
if (image_size < 0) {
image_size = load_image_targphys_as(kernel_filename, 0,
mem_size, as);
lowaddr = 0;
}
if (image_size < 0) {
error_report("Could not load kernel '%s'", kernel_filename);
exit(1);
}
}
/* CPU objects (unlike devices) are not automatically reset on system
* reset, so we must always register a handler to do so. Unlike
* A-profile CPUs, we don't need to do anything special in the
* handler to arrange that it starts correctly.
* This is arguably the wrong place to do this, but it matches the
* way A-profile does it. Note that this means that every M profile
* board must call this function!
*/
qemu_register_reset(armv7m_reset, cpu);
}
static Property bitband_properties[] = {
DEFINE_PROP_UINT32("base", BitBandState, base, 0),
DEFINE_PROP_LINK("source-memory", BitBandState, source_memory,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void bitband_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = bitband_realize;
device_class_set_props(dc, bitband_properties);
}
static const TypeInfo bitband_info = {
.name = TYPE_BITBAND,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(BitBandState),
.instance_init = bitband_init,
.class_init = bitband_class_init,
};
static void armv7m_register_types(void)
{
type_register_static(&bitband_info);
type_register_static(&armv7m_info);
}
type_init(armv7m_register_types)