qemu/hw/net/cadence_gem.c

1829 lines
59 KiB
C
Raw Normal View History

/*
* QEMU Cadence GEM emulation
*
* Copyright (c) 2011 Xilinx, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include <zlib.h> /* For crc32 */
#include "hw/irq.h"
#include "hw/net/cadence_gem.h"
#include "hw/qdev-properties.h"
#include "hw/registerfields.h"
#include "migration/vmstate.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "sysemu/dma.h"
#include "net/checksum.h"
#include "net/eth.h"
#define CADENCE_GEM_ERR_DEBUG 0
#define DB_PRINT(...) do {\
if (CADENCE_GEM_ERR_DEBUG) { \
qemu_log(": %s: ", __func__); \
qemu_log(__VA_ARGS__); \
} \
} while (0)
REG32(NWCTRL, 0x0) /* Network Control reg */
FIELD(NWCTRL, LOOPBACK , 0, 1)
FIELD(NWCTRL, LOOPBACK_LOCAL , 1, 1)
FIELD(NWCTRL, ENABLE_RECEIVE, 2, 1)
FIELD(NWCTRL, ENABLE_TRANSMIT, 3, 1)
FIELD(NWCTRL, MAN_PORT_EN , 4, 1)
FIELD(NWCTRL, CLEAR_ALL_STATS_REGS , 5, 1)
FIELD(NWCTRL, INC_ALL_STATS_REGS, 6, 1)
FIELD(NWCTRL, STATS_WRITE_EN, 7, 1)
FIELD(NWCTRL, BACK_PRESSURE, 8, 1)
FIELD(NWCTRL, TRANSMIT_START , 9, 1)
FIELD(NWCTRL, TRANSMIT_HALT, 10, 1)
FIELD(NWCTRL, TX_PAUSE_FRAME_RE, 11, 1)
FIELD(NWCTRL, TX_PAUSE_FRAME_ZE, 12, 1)
FIELD(NWCTRL, STATS_TAKE_SNAP, 13, 1)
FIELD(NWCTRL, STATS_READ_SNAP, 14, 1)
FIELD(NWCTRL, STORE_RX_TS, 15, 1)
FIELD(NWCTRL, PFC_ENABLE, 16, 1)
FIELD(NWCTRL, PFC_PRIO_BASED, 17, 1)
FIELD(NWCTRL, FLUSH_RX_PKT_PCLK , 18, 1)
FIELD(NWCTRL, TX_LPI_EN, 19, 1)
FIELD(NWCTRL, PTP_UNICAST_ENA, 20, 1)
FIELD(NWCTRL, ALT_SGMII_MODE, 21, 1)
FIELD(NWCTRL, STORE_UDP_OFFSET, 22, 1)
FIELD(NWCTRL, EXT_TSU_PORT_EN, 23, 1)
FIELD(NWCTRL, ONE_STEP_SYNC_MO, 24, 1)
FIELD(NWCTRL, PFC_CTRL , 25, 1)
FIELD(NWCTRL, EXT_RXQ_SEL_EN , 26, 1)
FIELD(NWCTRL, OSS_CORRECTION_FIELD, 27, 1)
FIELD(NWCTRL, SEL_MII_ON_RGMII, 28, 1)
FIELD(NWCTRL, TWO_PT_FIVE_GIG, 29, 1)
FIELD(NWCTRL, IFG_EATS_QAV_CREDIT, 30, 1)
REG32(NWCFG, 0x4) /* Network Config reg */
FIELD(NWCFG, SPEED, 0, 1)
FIELD(NWCFG, FULL_DUPLEX, 1, 1)
FIELD(NWCFG, DISCARD_NON_VLAN_FRAMES, 2, 1)
FIELD(NWCFG, JUMBO_FRAMES, 3, 1)
FIELD(NWCFG, PROMISC, 4, 1)
FIELD(NWCFG, NO_BROADCAST, 5, 1)
FIELD(NWCFG, MULTICAST_HASH_EN, 6, 1)
FIELD(NWCFG, UNICAST_HASH_EN, 7, 1)
FIELD(NWCFG, RECV_1536_BYTE_FRAMES, 8, 1)
FIELD(NWCFG, EXTERNAL_ADDR_MATCH_EN, 9, 1)
FIELD(NWCFG, GIGABIT_MODE_ENABLE, 10, 1)
FIELD(NWCFG, PCS_SELECT, 11, 1)
FIELD(NWCFG, RETRY_TEST, 12, 1)
FIELD(NWCFG, PAUSE_ENABLE, 13, 1)
FIELD(NWCFG, RECV_BUF_OFFSET, 14, 2)
FIELD(NWCFG, LEN_ERR_DISCARD, 16, 1)
FIELD(NWCFG, FCS_REMOVE, 17, 1)
FIELD(NWCFG, MDC_CLOCK_DIV, 18, 3)
FIELD(NWCFG, DATA_BUS_WIDTH, 21, 2)
FIELD(NWCFG, DISABLE_COPY_PAUSE_FRAMES, 23, 1)
FIELD(NWCFG, RECV_CSUM_OFFLOAD_EN, 24, 1)
FIELD(NWCFG, EN_HALF_DUPLEX_RX, 25, 1)
FIELD(NWCFG, IGNORE_RX_FCS, 26, 1)
FIELD(NWCFG, SGMII_MODE_ENABLE, 27, 1)
FIELD(NWCFG, IPG_STRETCH_ENABLE, 28, 1)
FIELD(NWCFG, NSP_ACCEPT, 29, 1)
FIELD(NWCFG, IGNORE_IPG_RX_ER, 30, 1)
FIELD(NWCFG, UNI_DIRECTION_ENABLE, 31, 1)
REG32(NWSTATUS, 0x8) /* Network Status reg */
REG32(USERIO, 0xc) /* User IO reg */
REG32(DMACFG, 0x10) /* DMA Control reg */
FIELD(DMACFG, SEND_BCAST_TO_ALL_QS, 31, 1)
FIELD(DMACFG, DMA_ADDR_BUS_WIDTH, 30, 1)
FIELD(DMACFG, TX_BD_EXT_MODE_EN , 29, 1)
FIELD(DMACFG, RX_BD_EXT_MODE_EN , 28, 1)
FIELD(DMACFG, FORCE_MAX_AMBA_BURST_TX, 26, 1)
FIELD(DMACFG, FORCE_MAX_AMBA_BURST_RX, 25, 1)
FIELD(DMACFG, FORCE_DISCARD_ON_ERR, 24, 1)
FIELD(DMACFG, RX_BUF_SIZE, 16, 8)
FIELD(DMACFG, CRC_ERROR_REPORT, 13, 1)
FIELD(DMACFG, INF_LAST_DBUF_SIZE_EN, 12, 1)
FIELD(DMACFG, TX_PBUF_CSUM_OFFLOAD, 11, 1)
FIELD(DMACFG, TX_PBUF_SIZE, 10, 1)
FIELD(DMACFG, RX_PBUF_SIZE, 8, 2)
FIELD(DMACFG, ENDIAN_SWAP_PACKET, 7, 1)
FIELD(DMACFG, ENDIAN_SWAP_MGNT, 6, 1)
FIELD(DMACFG, HDR_DATA_SPLIT_EN, 5, 1)
FIELD(DMACFG, AMBA_BURST_LEN , 0, 5)
#define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
REG32(TXSTATUS, 0x14) /* TX Status reg */
FIELD(TXSTATUS, TX_USED_BIT_READ_MIDFRAME, 12, 1)
FIELD(TXSTATUS, TX_FRAME_TOO_LARGE, 11, 1)
FIELD(TXSTATUS, TX_DMA_LOCKUP, 10, 1)
FIELD(TXSTATUS, TX_MAC_LOCKUP, 9, 1)
FIELD(TXSTATUS, RESP_NOT_OK, 8, 1)
FIELD(TXSTATUS, LATE_COLLISION, 7, 1)
FIELD(TXSTATUS, TRANSMIT_UNDER_RUN, 6, 1)
FIELD(TXSTATUS, TRANSMIT_COMPLETE, 5, 1)
FIELD(TXSTATUS, AMBA_ERROR, 4, 1)
FIELD(TXSTATUS, TRANSMIT_GO, 3, 1)
FIELD(TXSTATUS, RETRY_LIMIT, 2, 1)
FIELD(TXSTATUS, COLLISION, 1, 1)
FIELD(TXSTATUS, USED_BIT_READ, 0, 1)
REG32(RXQBASE, 0x18) /* RX Q Base address reg */
REG32(TXQBASE, 0x1c) /* TX Q Base address reg */
REG32(RXSTATUS, 0x20) /* RX Status reg */
FIELD(RXSTATUS, RX_DMA_LOCKUP, 5, 1)
FIELD(RXSTATUS, RX_MAC_LOCKUP, 4, 1)
FIELD(RXSTATUS, RESP_NOT_OK, 3, 1)
FIELD(RXSTATUS, RECEIVE_OVERRUN, 2, 1)
FIELD(RXSTATUS, FRAME_RECEIVED, 1, 1)
FIELD(RXSTATUS, BUF_NOT_AVAILABLE, 0, 1)
REG32(ISR, 0x24) /* Interrupt Status reg */
FIELD(ISR, TX_LOCKUP, 31, 1)
FIELD(ISR, RX_LOCKUP, 30, 1)
FIELD(ISR, TSU_TIMER, 29, 1)
FIELD(ISR, WOL, 28, 1)
FIELD(ISR, RECV_LPI, 27, 1)
FIELD(ISR, TSU_SEC_INCR, 26, 1)
FIELD(ISR, PTP_PDELAY_RESP_XMIT, 25, 1)
FIELD(ISR, PTP_PDELAY_REQ_XMIT, 24, 1)
FIELD(ISR, PTP_PDELAY_RESP_RECV, 23, 1)
FIELD(ISR, PTP_PDELAY_REQ_RECV, 22, 1)
FIELD(ISR, PTP_SYNC_XMIT, 21, 1)
FIELD(ISR, PTP_DELAY_REQ_XMIT, 20, 1)
FIELD(ISR, PTP_SYNC_RECV, 19, 1)
FIELD(ISR, PTP_DELAY_REQ_RECV, 18, 1)
FIELD(ISR, PCS_LP_PAGE_RECV, 17, 1)
FIELD(ISR, PCS_AN_COMPLETE, 16, 1)
FIELD(ISR, EXT_IRQ, 15, 1)
FIELD(ISR, PAUSE_FRAME_XMIT, 14, 1)
FIELD(ISR, PAUSE_TIME_ELAPSED, 13, 1)
FIELD(ISR, PAUSE_FRAME_RECV, 12, 1)
FIELD(ISR, RESP_NOT_OK, 11, 1)
FIELD(ISR, RECV_OVERRUN, 10, 1)
FIELD(ISR, LINK_CHANGE, 9, 1)
FIELD(ISR, USXGMII_INT, 8, 1)
FIELD(ISR, XMIT_COMPLETE, 7, 1)
FIELD(ISR, AMBA_ERROR, 6, 1)
FIELD(ISR, RETRY_EXCEEDED, 5, 1)
FIELD(ISR, XMIT_UNDER_RUN, 4, 1)
FIELD(ISR, TX_USED, 3, 1)
FIELD(ISR, RX_USED, 2, 1)
FIELD(ISR, RECV_COMPLETE, 1, 1)
FIELD(ISR, MGNT_FRAME_SENT, 0, 1)
REG32(IER, 0x28) /* Interrupt Enable reg */
REG32(IDR, 0x2c) /* Interrupt Disable reg */
REG32(IMR, 0x30) /* Interrupt Mask reg */
REG32(PHYMNTNC, 0x34) /* Phy Maintenance reg */
FIELD(PHYMNTNC, DATA, 0, 16)
FIELD(PHYMNTNC, REG_ADDR, 18, 5)
FIELD(PHYMNTNC, PHY_ADDR, 23, 5)
FIELD(PHYMNTNC, OP, 28, 2)
FIELD(PHYMNTNC, ST, 30, 2)
#define MDIO_OP_READ 0x3
#define MDIO_OP_WRITE 0x2
REG32(RXPAUSE, 0x38) /* RX Pause Time reg */
REG32(TXPAUSE, 0x3c) /* TX Pause Time reg */
REG32(TXPARTIALSF, 0x40) /* TX Partial Store and Forward */
REG32(RXPARTIALSF, 0x44) /* RX Partial Store and Forward */
REG32(JUMBO_MAX_LEN, 0x48) /* Max Jumbo Frame Size */
REG32(HASHLO, 0x80) /* Hash Low address reg */
REG32(HASHHI, 0x84) /* Hash High address reg */
REG32(SPADDR1LO, 0x88) /* Specific addr 1 low reg */
REG32(SPADDR1HI, 0x8c) /* Specific addr 1 high reg */
REG32(SPADDR2LO, 0x90) /* Specific addr 2 low reg */
REG32(SPADDR2HI, 0x94) /* Specific addr 2 high reg */
REG32(SPADDR3LO, 0x98) /* Specific addr 3 low reg */
REG32(SPADDR3HI, 0x9c) /* Specific addr 3 high reg */
REG32(SPADDR4LO, 0xa0) /* Specific addr 4 low reg */
REG32(SPADDR4HI, 0xa4) /* Specific addr 4 high reg */
REG32(TIDMATCH1, 0xa8) /* Type ID1 Match reg */
REG32(TIDMATCH2, 0xac) /* Type ID2 Match reg */
REG32(TIDMATCH3, 0xb0) /* Type ID3 Match reg */
REG32(TIDMATCH4, 0xb4) /* Type ID4 Match reg */
REG32(WOLAN, 0xb8) /* Wake on LAN reg */
REG32(IPGSTRETCH, 0xbc) /* IPG Stretch reg */
REG32(SVLAN, 0xc0) /* Stacked VLAN reg */
REG32(MODID, 0xfc) /* Module ID reg */
REG32(OCTTXLO, 0x100) /* Octets transmitted Low reg */
REG32(OCTTXHI, 0x104) /* Octets transmitted High reg */
REG32(TXCNT, 0x108) /* Error-free Frames transmitted */
REG32(TXBCNT, 0x10c) /* Error-free Broadcast Frames */
REG32(TXMCNT, 0x110) /* Error-free Multicast Frame */
REG32(TXPAUSECNT, 0x114) /* Pause Frames Transmitted */
REG32(TX64CNT, 0x118) /* Error-free 64 TX */
REG32(TX65CNT, 0x11c) /* Error-free 65-127 TX */
REG32(TX128CNT, 0x120) /* Error-free 128-255 TX */
REG32(TX256CNT, 0x124) /* Error-free 256-511 */
REG32(TX512CNT, 0x128) /* Error-free 512-1023 TX */
REG32(TX1024CNT, 0x12c) /* Error-free 1024-1518 TX */
REG32(TX1519CNT, 0x130) /* Error-free larger than 1519 TX */
REG32(TXURUNCNT, 0x134) /* TX under run error counter */
REG32(SINGLECOLLCNT, 0x138) /* Single Collision Frames */
REG32(MULTCOLLCNT, 0x13c) /* Multiple Collision Frames */
REG32(EXCESSCOLLCNT, 0x140) /* Excessive Collision Frames */
REG32(LATECOLLCNT, 0x144) /* Late Collision Frames */
REG32(DEFERTXCNT, 0x148) /* Deferred Transmission Frames */
REG32(CSENSECNT, 0x14c) /* Carrier Sense Error Counter */
REG32(OCTRXLO, 0x150) /* Octets Received register Low */
REG32(OCTRXHI, 0x154) /* Octets Received register High */
REG32(RXCNT, 0x158) /* Error-free Frames Received */
REG32(RXBROADCNT, 0x15c) /* Error-free Broadcast Frames RX */
REG32(RXMULTICNT, 0x160) /* Error-free Multicast Frames RX */
REG32(RXPAUSECNT, 0x164) /* Pause Frames Received Counter */
REG32(RX64CNT, 0x168) /* Error-free 64 byte Frames RX */
REG32(RX65CNT, 0x16c) /* Error-free 65-127B Frames RX */
REG32(RX128CNT, 0x170) /* Error-free 128-255B Frames RX */
REG32(RX256CNT, 0x174) /* Error-free 256-512B Frames RX */
REG32(RX512CNT, 0x178) /* Error-free 512-1023B Frames RX */
REG32(RX1024CNT, 0x17c) /* Error-free 1024-1518B Frames RX */
REG32(RX1519CNT, 0x180) /* Error-free 1519-max Frames RX */
REG32(RXUNDERCNT, 0x184) /* Undersize Frames Received */
REG32(RXOVERCNT, 0x188) /* Oversize Frames Received */
REG32(RXJABCNT, 0x18c) /* Jabbers Received Counter */
REG32(RXFCSCNT, 0x190) /* Frame Check seq. Error Counter */
REG32(RXLENERRCNT, 0x194) /* Length Field Error Counter */
REG32(RXSYMERRCNT, 0x198) /* Symbol Error Counter */
REG32(RXALIGNERRCNT, 0x19c) /* Alignment Error Counter */
REG32(RXRSCERRCNT, 0x1a0) /* Receive Resource Error Counter */
REG32(RXORUNCNT, 0x1a4) /* Receive Overrun Counter */
REG32(RXIPCSERRCNT, 0x1a8) /* IP header Checksum Err Counter */
REG32(RXTCPCCNT, 0x1ac) /* TCP Checksum Error Counter */
REG32(RXUDPCCNT, 0x1b0) /* UDP Checksum Error Counter */
REG32(1588S, 0x1d0) /* 1588 Timer Seconds */
REG32(1588NS, 0x1d4) /* 1588 Timer Nanoseconds */
REG32(1588ADJ, 0x1d8) /* 1588 Timer Adjust */
REG32(1588INC, 0x1dc) /* 1588 Timer Increment */
REG32(PTPETXS, 0x1e0) /* PTP Event Frame Transmitted (s) */
REG32(PTPETXNS, 0x1e4) /* PTP Event Frame Transmitted (ns) */
REG32(PTPERXS, 0x1e8) /* PTP Event Frame Received (s) */
REG32(PTPERXNS, 0x1ec) /* PTP Event Frame Received (ns) */
REG32(PTPPTXS, 0x1e0) /* PTP Peer Frame Transmitted (s) */
REG32(PTPPTXNS, 0x1e4) /* PTP Peer Frame Transmitted (ns) */
REG32(PTPPRXS, 0x1e8) /* PTP Peer Frame Received (s) */
REG32(PTPPRXNS, 0x1ec) /* PTP Peer Frame Received (ns) */
/* Design Configuration Registers */
REG32(DESCONF, 0x280)
REG32(DESCONF2, 0x284)
REG32(DESCONF3, 0x288)
REG32(DESCONF4, 0x28c)
REG32(DESCONF5, 0x290)
REG32(DESCONF6, 0x294)
FIELD(DESCONF6, DMA_ADDR_64B, 23, 1)
REG32(DESCONF7, 0x298)
REG32(INT_Q1_STATUS, 0x400)
REG32(INT_Q1_MASK, 0x640)
REG32(TRANSMIT_Q1_PTR, 0x440)
REG32(TRANSMIT_Q7_PTR, 0x458)
REG32(RECEIVE_Q1_PTR, 0x480)
REG32(RECEIVE_Q7_PTR, 0x498)
REG32(TBQPH, 0x4c8)
REG32(RBQPH, 0x4d4)
REG32(INT_Q1_ENABLE, 0x600)
REG32(INT_Q7_ENABLE, 0x618)
REG32(INT_Q1_DISABLE, 0x620)
REG32(INT_Q7_DISABLE, 0x638)
REG32(SCREENING_TYPE1_REG0, 0x500)
FIELD(SCREENING_TYPE1_REG0, QUEUE_NUM, 0, 4)
FIELD(SCREENING_TYPE1_REG0, DSTC_MATCH, 4, 8)
FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH, 12, 16)
FIELD(SCREENING_TYPE1_REG0, DSTC_ENABLE, 28, 1)
FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN, 29, 1)
FIELD(SCREENING_TYPE1_REG0, DROP_ON_MATCH, 30, 1)
REG32(SCREENING_TYPE2_REG0, 0x540)
FIELD(SCREENING_TYPE2_REG0, QUEUE_NUM, 0, 4)
FIELD(SCREENING_TYPE2_REG0, VLAN_PRIORITY, 4, 3)
FIELD(SCREENING_TYPE2_REG0, VLAN_ENABLE, 8, 1)
FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_REG_INDEX, 9, 3)
FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE, 12, 1)
FIELD(SCREENING_TYPE2_REG0, COMPARE_A, 13, 5)
FIELD(SCREENING_TYPE2_REG0, COMPARE_A_ENABLE, 18, 1)
FIELD(SCREENING_TYPE2_REG0, COMPARE_B, 19, 5)
FIELD(SCREENING_TYPE2_REG0, COMPARE_B_ENABLE, 24, 1)
FIELD(SCREENING_TYPE2_REG0, COMPARE_C, 25, 5)
FIELD(SCREENING_TYPE2_REG0, COMPARE_C_ENABLE, 30, 1)
FIELD(SCREENING_TYPE2_REG0, DROP_ON_MATCH, 31, 1)
REG32(SCREENING_TYPE2_ETHERTYPE_REG0, 0x6e0)
REG32(TYPE2_COMPARE_0_WORD_0, 0x700)
FIELD(TYPE2_COMPARE_0_WORD_0, MASK_VALUE, 0, 16)
FIELD(TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE, 16, 16)
REG32(TYPE2_COMPARE_0_WORD_1, 0x704)
FIELD(TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE, 0, 7)
FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET, 7, 2)
FIELD(TYPE2_COMPARE_0_WORD_1, DISABLE_MASK, 9, 1)
FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_VLAN_ID, 10, 1)
/*****************************************/
/* Marvell PHY definitions */
#define BOARD_PHY_ADDRESS 0 /* PHY address we will emulate a device at */
#define PHY_REG_CONTROL 0
#define PHY_REG_STATUS 1
#define PHY_REG_PHYID1 2
#define PHY_REG_PHYID2 3
#define PHY_REG_ANEGADV 4
#define PHY_REG_LINKPABIL 5
#define PHY_REG_ANEGEXP 6
#define PHY_REG_NEXTP 7
#define PHY_REG_LINKPNEXTP 8
#define PHY_REG_100BTCTRL 9
#define PHY_REG_1000BTSTAT 10
#define PHY_REG_EXTSTAT 15
#define PHY_REG_PHYSPCFC_CTL 16
#define PHY_REG_PHYSPCFC_ST 17
#define PHY_REG_INT_EN 18
#define PHY_REG_INT_ST 19
#define PHY_REG_EXT_PHYSPCFC_CTL 20
#define PHY_REG_RXERR 21
#define PHY_REG_EACD 22
#define PHY_REG_LED 24
#define PHY_REG_LED_OVRD 25
#define PHY_REG_EXT_PHYSPCFC_CTL2 26
#define PHY_REG_EXT_PHYSPCFC_ST 27
#define PHY_REG_CABLE_DIAG 28
#define PHY_REG_CONTROL_RST 0x8000
#define PHY_REG_CONTROL_LOOP 0x4000
#define PHY_REG_CONTROL_ANEG 0x1000
#define PHY_REG_CONTROL_ANRESTART 0x0200
#define PHY_REG_STATUS_LINK 0x0004
#define PHY_REG_STATUS_ANEGCMPL 0x0020
#define PHY_REG_INT_ST_ANEGCMPL 0x0800
#define PHY_REG_INT_ST_LINKC 0x0400
#define PHY_REG_INT_ST_ENERGY 0x0010
/***********************************************************************/
#define GEM_RX_REJECT (-1)
#define GEM_RX_PROMISCUOUS_ACCEPT (-2)
#define GEM_RX_BROADCAST_ACCEPT (-3)
#define GEM_RX_MULTICAST_HASH_ACCEPT (-4)
#define GEM_RX_UNICAST_HASH_ACCEPT (-5)
#define GEM_RX_SAR_ACCEPT 0
/***********************************************************************/
#define DESC_1_USED 0x80000000
#define DESC_1_LENGTH 0x00001FFF
#define DESC_1_TX_WRAP 0x40000000
#define DESC_1_TX_LAST 0x00008000
#define DESC_0_RX_WRAP 0x00000002
#define DESC_0_RX_OWNERSHIP 0x00000001
#define R_DESC_1_RX_SAR_SHIFT 25
#define R_DESC_1_RX_SAR_LENGTH 2
#define R_DESC_1_RX_SAR_MATCH (1 << 27)
#define R_DESC_1_RX_UNICAST_HASH (1 << 29)
#define R_DESC_1_RX_MULTICAST_HASH (1 << 30)
#define R_DESC_1_RX_BROADCAST (1 << 31)
#define DESC_1_RX_SOF 0x00004000
#define DESC_1_RX_EOF 0x00008000
#define GEM_MODID_VALUE 0x00020118
static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
{
uint64_t ret = desc[0];
if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
ret |= (uint64_t)desc[2] << 32;
}
return ret;
}
static inline unsigned tx_desc_get_used(uint32_t *desc)
{
return (desc[1] & DESC_1_USED) ? 1 : 0;
}
static inline void tx_desc_set_used(uint32_t *desc)
{
desc[1] |= DESC_1_USED;
}
static inline unsigned tx_desc_get_wrap(uint32_t *desc)
{
return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
}
static inline unsigned tx_desc_get_last(uint32_t *desc)
{
return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
}
static inline unsigned tx_desc_get_length(uint32_t *desc)
{
return desc[1] & DESC_1_LENGTH;
}
static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
{
DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
DB_PRINT("bufaddr: 0x%08x\n", *desc);
DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
DB_PRINT("last: %d\n", tx_desc_get_last(desc));
DB_PRINT("length: %d\n", tx_desc_get_length(desc));
}
static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
{
uint64_t ret = desc[0] & ~0x3UL;
if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
ret |= (uint64_t)desc[2] << 32;
}
return ret;
}
static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
{
int ret = 2;
if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
ret += 2;
}
if (s->regs[R_DMACFG] & (rx_n_tx ? R_DMACFG_RX_BD_EXT_MODE_EN_MASK
: R_DMACFG_TX_BD_EXT_MODE_EN_MASK)) {
ret += 2;
}
assert(ret <= DESC_MAX_NUM_WORDS);
return ret;
}
static inline unsigned rx_desc_get_wrap(uint32_t *desc)
{
return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
}
static inline unsigned rx_desc_get_ownership(uint32_t *desc)
{
return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
}
static inline void rx_desc_set_ownership(uint32_t *desc)
{
desc[0] |= DESC_0_RX_OWNERSHIP;
}
static inline void rx_desc_set_sof(uint32_t *desc)
{
desc[1] |= DESC_1_RX_SOF;
}
static inline void rx_desc_clear_control(uint32_t *desc)
{
desc[1] = 0;
}
static inline void rx_desc_set_eof(uint32_t *desc)
{
desc[1] |= DESC_1_RX_EOF;
}
static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
{
desc[1] &= ~DESC_1_LENGTH;
desc[1] |= len;
}
static inline void rx_desc_set_broadcast(uint32_t *desc)
{
desc[1] |= R_DESC_1_RX_BROADCAST;
}
static inline void rx_desc_set_unicast_hash(uint32_t *desc)
{
desc[1] |= R_DESC_1_RX_UNICAST_HASH;
}
static inline void rx_desc_set_multicast_hash(uint32_t *desc)
{
desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
}
static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
{
desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
sar_idx);
desc[1] |= R_DESC_1_RX_SAR_MATCH;
}
/* The broadcast MAC address: 0xFFFFFFFFFFFF */
static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
static uint32_t gem_get_max_buf_len(CadenceGEMState *s, bool tx)
{
uint32_t size;
if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, JUMBO_FRAMES)) {
size = s->regs[R_JUMBO_MAX_LEN];
if (size > s->jumbo_max_len) {
size = s->jumbo_max_len;
qemu_log_mask(LOG_GUEST_ERROR, "GEM_JUMBO_MAX_LEN reg cannot be"
" greater than 0x%" PRIx32 "\n", s->jumbo_max_len);
}
} else if (tx) {
size = 1518;
} else {
size = FIELD_EX32(s->regs[R_NWCFG],
NWCFG, RECV_1536_BYTE_FRAMES) ? 1538 : 1518;
}
return size;
}
static void gem_set_isr(CadenceGEMState *s, int q, uint32_t flag)
{
if (q == 0) {
s->regs[R_ISR] |= flag & ~(s->regs[R_IMR]);
} else {
s->regs[R_INT_Q1_STATUS + q - 1] |= flag &
~(s->regs[R_INT_Q1_MASK + q - 1]);
}
}
/*
* gem_init_register_masks:
* One time initialization.
* Set masks to identify which register bits have magical clear properties
*/
static void gem_init_register_masks(CadenceGEMState *s)
{
unsigned int i;
/* Mask of register bits which are read only */
memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
s->regs_ro[R_NWCTRL] = 0xFFF80000;
s->regs_ro[R_NWSTATUS] = 0xFFFFFFFF;
s->regs_ro[R_DMACFG] = 0x8E00F000;
s->regs_ro[R_TXSTATUS] = 0xFFFFFE08;
s->regs_ro[R_RXQBASE] = 0x00000003;
s->regs_ro[R_TXQBASE] = 0x00000003;
s->regs_ro[R_RXSTATUS] = 0xFFFFFFF0;
s->regs_ro[R_ISR] = 0xFFFFFFFF;
s->regs_ro[R_IMR] = 0xFFFFFFFF;
s->regs_ro[R_MODID] = 0xFFFFFFFF;
for (i = 0; i < s->num_priority_queues; i++) {
s->regs_ro[R_INT_Q1_STATUS + i] = 0xFFFFFFFF;
s->regs_ro[R_INT_Q1_ENABLE + i] = 0xFFFFF319;
s->regs_ro[R_INT_Q1_DISABLE + i] = 0xFFFFF319;
s->regs_ro[R_INT_Q1_MASK + i] = 0xFFFFFFFF;
}
/* Mask of register bits which are clear on read */
memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
s->regs_rtc[R_ISR] = 0xFFFFFFFF;
for (i = 0; i < s->num_priority_queues; i++) {
s->regs_rtc[R_INT_Q1_STATUS + i] = 0x00000CE6;
}
/* Mask of register bits which are write 1 to clear */
memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
s->regs_w1c[R_TXSTATUS] = 0x000001F7;
s->regs_w1c[R_RXSTATUS] = 0x0000000F;
/* Mask of register bits which are write only */
memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
s->regs_wo[R_NWCTRL] = 0x00073E60;
s->regs_wo[R_IER] = 0x07FFFFFF;
s->regs_wo[R_IDR] = 0x07FFFFFF;
for (i = 0; i < s->num_priority_queues; i++) {
s->regs_wo[R_INT_Q1_ENABLE + i] = 0x00000CE6;
s->regs_wo[R_INT_Q1_DISABLE + i] = 0x00000CE6;
}
}
/*
* phy_update_link:
* Make the emulated PHY link state match the QEMU "interface" state.
*/
static void phy_update_link(CadenceGEMState *s)
{
DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
/* Autonegotiation status mirrors link status. */
if (qemu_get_queue(s->nic)->link_down) {
s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
PHY_REG_STATUS_LINK);
s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
} else {
s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
PHY_REG_STATUS_LINK);
s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
PHY_REG_INT_ST_ANEGCMPL |
PHY_REG_INT_ST_ENERGY);
}
}
static bool gem_can_receive(NetClientState *nc)
{
CadenceGEMState *s;
int i;
s = qemu_get_nic_opaque(nc);
/* Do nothing if receive is not enabled. */
if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_RECEIVE)) {
if (s->can_rx_state != 1) {
s->can_rx_state = 1;
DB_PRINT("can't receive - no enable\n");
}
return false;
}
for (i = 0; i < s->num_priority_queues; i++) {
if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
break;
}
};
if (i == s->num_priority_queues) {
if (s->can_rx_state != 2) {
s->can_rx_state = 2;
DB_PRINT("can't receive - all the buffer descriptors are busy\n");
}
return false;
}
if (s->can_rx_state != 0) {
s->can_rx_state = 0;
DB_PRINT("can receive\n");
}
return true;
}
/*
* gem_update_int_status:
* Raise or lower interrupt based on current status.
*/
static void gem_update_int_status(CadenceGEMState *s)
{
int i;
qemu_set_irq(s->irq[0], !!s->regs[R_ISR]);
for (i = 1; i < s->num_priority_queues; ++i) {
qemu_set_irq(s->irq[i], !!s->regs[R_INT_Q1_STATUS + i - 1]);
}
}
/*
* gem_receive_updatestats:
* Increment receive statistics.
*/
static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
unsigned bytes)
{
uint64_t octets;
/* Total octets (bytes) received */
octets = ((uint64_t)(s->regs[R_OCTRXLO]) << 32) |
s->regs[R_OCTRXHI];
octets += bytes;
s->regs[R_OCTRXLO] = octets >> 32;
s->regs[R_OCTRXHI] = octets;
/* Error-free Frames received */
s->regs[R_RXCNT]++;
/* Error-free Broadcast Frames counter */
if (!memcmp(packet, broadcast_addr, 6)) {
s->regs[R_RXBROADCNT]++;
}
/* Error-free Multicast Frames counter */
if (packet[0] == 0x01) {
s->regs[R_RXMULTICNT]++;
}
if (bytes <= 64) {
s->regs[R_RX64CNT]++;
} else if (bytes <= 127) {
s->regs[R_RX65CNT]++;
} else if (bytes <= 255) {
s->regs[R_RX128CNT]++;
} else if (bytes <= 511) {
s->regs[R_RX256CNT]++;
} else if (bytes <= 1023) {
s->regs[R_RX512CNT]++;
} else if (bytes <= 1518) {
s->regs[R_RX1024CNT]++;
} else {
s->regs[R_RX1519CNT]++;
}
}
/*
* Get the MAC Address bit from the specified position
*/
static unsigned get_bit(const uint8_t *mac, unsigned bit)
{
unsigned byte;
byte = mac[bit / 8];
byte >>= (bit & 0x7);
byte &= 1;
return byte;
}
/*
* Calculate a GEM MAC Address hash index
*/
static unsigned calc_mac_hash(const uint8_t *mac)
{
int index_bit, mac_bit;
unsigned hash_index;
hash_index = 0;
mac_bit = 5;
for (index_bit = 5; index_bit >= 0; index_bit--) {
hash_index |= (get_bit(mac, mac_bit) ^
get_bit(mac, mac_bit + 6) ^
get_bit(mac, mac_bit + 12) ^
get_bit(mac, mac_bit + 18) ^
get_bit(mac, mac_bit + 24) ^
get_bit(mac, mac_bit + 30) ^
get_bit(mac, mac_bit + 36) ^
get_bit(mac, mac_bit + 42)) << index_bit;
mac_bit--;
}
return hash_index;
}
/*
* gem_mac_address_filter:
* Accept or reject this destination address?
* Returns:
* GEM_RX_REJECT: reject
* >= 0: Specific address accept (which matched SAR is returned)
* others for various other modes of accept:
* GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
* GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
*/
static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
{
uint8_t *gem_spaddr;
int i, is_mc;
/* Promiscuous mode? */
if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, PROMISC)) {
return GEM_RX_PROMISCUOUS_ACCEPT;
}
if (!memcmp(packet, broadcast_addr, 6)) {
/* Reject broadcast packets? */
if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, NO_BROADCAST)) {
return GEM_RX_REJECT;
}
return GEM_RX_BROADCAST_ACCEPT;
}
/* Accept packets -w- hash match? */
is_mc = is_multicast_ether_addr(packet);
if ((is_mc && (FIELD_EX32(s->regs[R_NWCFG], NWCFG, MULTICAST_HASH_EN))) ||
(!is_mc && FIELD_EX32(s->regs[R_NWCFG], NWCFG, UNICAST_HASH_EN))) {
uint64_t buckets;
unsigned hash_index;
hash_index = calc_mac_hash(packet);
buckets = ((uint64_t)s->regs[R_HASHHI] << 32) | s->regs[R_HASHLO];
if ((buckets >> hash_index) & 1) {
return is_mc ? GEM_RX_MULTICAST_HASH_ACCEPT
: GEM_RX_UNICAST_HASH_ACCEPT;
}
}
/* Check all 4 specific addresses */
gem_spaddr = (uint8_t *)&(s->regs[R_SPADDR1LO]);
for (i = 3; i >= 0; i--) {
if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
return GEM_RX_SAR_ACCEPT + i;
}
}
/* No address match; reject the packet */
return GEM_RX_REJECT;
}
/* Figure out which queue the received data should be sent to */
static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
unsigned rxbufsize)
{
uint32_t reg;
bool matched, mismatched;
int i, j;
for (i = 0; i < s->num_type1_screeners; i++) {
reg = s->regs[R_SCREENING_TYPE1_REG0 + i];
matched = false;
mismatched = false;
/* Screening is based on UDP Port */
if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN)) {
uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
if (udp_port == FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH)) {
matched = true;
} else {
mismatched = true;
}
}
/* Screening is based on DS/TC */
if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_ENABLE)) {
uint8_t dscp = rxbuf_ptr[14 + 1];
if (dscp == FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_MATCH)) {
matched = true;
} else {
mismatched = true;
}
}
if (matched && !mismatched) {
return FIELD_EX32(reg, SCREENING_TYPE1_REG0, QUEUE_NUM);
}
}
for (i = 0; i < s->num_type2_screeners; i++) {
reg = s->regs[R_SCREENING_TYPE2_REG0 + i];
matched = false;
mismatched = false;
if (FIELD_EX32(reg, SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE)) {
uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
int et_idx = FIELD_EX32(reg, SCREENING_TYPE2_REG0,
ETHERTYPE_REG_INDEX);
if (et_idx > s->num_type2_screeners) {
qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
"register index: %d\n", et_idx);
}
if (type == s->regs[R_SCREENING_TYPE2_ETHERTYPE_REG0 +
et_idx]) {
matched = true;
} else {
mismatched = true;
}
}
/* Compare A, B, C */
for (j = 0; j < 3; j++) {
uint32_t cr0, cr1, mask, compare;
uint16_t rx_cmp;
int offset;
int cr_idx = extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_SHIFT + j * 6,
R_SCREENING_TYPE2_REG0_COMPARE_A_LENGTH);
if (!extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_SHIFT + j * 6,
R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_LENGTH)) {
continue;
}
if (cr_idx > s->num_type2_screeners) {
qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
"register index: %d\n", cr_idx);
}
cr0 = s->regs[R_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
cr1 = s->regs[R_TYPE2_COMPARE_0_WORD_1 + cr_idx * 2];
offset = FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE);
switch (FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET)) {
case 3: /* Skip UDP header */
qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
"unimplemented - assuming UDP\n");
offset += 8;
/* Fallthrough */
case 2: /* skip the IP header */
offset += 20;
/* Fallthrough */
case 1: /* Count from after the ethertype */
offset += 14;
break;
case 0:
/* Offset from start of frame */
break;
}
rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
mask = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, MASK_VALUE);
compare = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE);
if ((rx_cmp & mask) == (compare & mask)) {
matched = true;
} else {
mismatched = true;
}
}
if (matched && !mismatched) {
return FIELD_EX32(reg, SCREENING_TYPE2_REG0, QUEUE_NUM);
}
}
/* We made it here, assume it's queue 0 */
return 0;
}
static uint32_t gem_get_queue_base_addr(CadenceGEMState *s, bool tx, int q)
{
uint32_t base_addr = 0;
switch (q) {
case 0:
base_addr = s->regs[tx ? R_TXQBASE : R_RXQBASE];
break;
case 1 ... (MAX_PRIORITY_QUEUES - 1):
base_addr = s->regs[(tx ? R_TRANSMIT_Q1_PTR :
R_RECEIVE_Q1_PTR) + q - 1];
break;
default:
g_assert_not_reached();
};
return base_addr;
}
static inline uint32_t gem_get_tx_queue_base_addr(CadenceGEMState *s, int q)
{
return gem_get_queue_base_addr(s, true, q);
}
static inline uint32_t gem_get_rx_queue_base_addr(CadenceGEMState *s, int q)
{
return gem_get_queue_base_addr(s, false, q);
}
static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
{
hwaddr desc_addr = 0;
if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
desc_addr = s->regs[tx ? R_TBQPH : R_RBQPH];
}
desc_addr <<= 32;
desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
return desc_addr;
}
static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
{
return gem_get_desc_addr(s, true, q);
}
static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
{
return gem_get_desc_addr(s, false, q);
}
static void gem_get_rx_desc(CadenceGEMState *s, int q)
{
hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
/* read current descriptor */
address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
s->rx_desc[q],
sizeof(uint32_t) * gem_get_desc_len(s, true));
/* Descriptor owned by software ? */
if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
s->regs[R_RXSTATUS] |= R_RXSTATUS_BUF_NOT_AVAILABLE_MASK;
gem_set_isr(s, q, R_ISR_RX_USED_MASK);
/* Handle interrupt consequences */
gem_update_int_status(s);
}
}
/*
* gem_receive:
* Fit a packet handed to us by QEMU into the receive descriptor ring.
*/
static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
{
CadenceGEMState *s = qemu_get_nic_opaque(nc);
unsigned rxbufsize, bytes_to_copy;
unsigned rxbuf_offset;
uint8_t *rxbuf_ptr;
bool first_desc = true;
int maf;
int q = 0;
/* Is this destination MAC address "for us" ? */
maf = gem_mac_address_filter(s, buf);
if (maf == GEM_RX_REJECT) {
return size; /* no, drop silently b/c it's not an error */
}
/* Discard packets with receive length error enabled ? */
if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, LEN_ERR_DISCARD)) {
unsigned type_len;
/* Fish the ethertype / length field out of the RX packet */
type_len = buf[12] << 8 | buf[13];
/* It is a length field, not an ethertype */
if (type_len < 0x600) {
if (size < type_len) {
/* discard */
return -1;
}
}
}
/*
* Determine configured receive buffer offset (probably 0)
*/
rxbuf_offset = FIELD_EX32(s->regs[R_NWCFG], NWCFG, RECV_BUF_OFFSET);
/* The configure size of each receive buffer. Determines how many
* buffers needed to hold this packet.
*/
rxbufsize = FIELD_EX32(s->regs[R_DMACFG], DMACFG, RX_BUF_SIZE);
rxbufsize *= GEM_DMACFG_RBUFSZ_MUL;
bytes_to_copy = size;
/* Hardware allows a zero value here but warns against it. To avoid QEMU
* indefinite loops we enforce a minimum value here
*/
if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
}
/* Pad to minimum length. Assume FCS field is stripped, logic
* below will increment it to the real minimum of 64 when
* not FCS stripping
*/
if (size < 60) {
size = 60;
}
/* Strip of FCS field ? (usually yes) */
if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, FCS_REMOVE)) {
rxbuf_ptr = (void *)buf;
} else {
uint32_t crc_val;
if (size > MAX_FRAME_SIZE - sizeof(crc_val)) {
size = MAX_FRAME_SIZE - sizeof(crc_val);
}
bytes_to_copy = size;
/* The application wants the FCS field, which QEMU does not provide.
* We must try and calculate one.
*/
memcpy(s->rx_packet, buf, size);
memset(s->rx_packet + size, 0, MAX_FRAME_SIZE - size);
rxbuf_ptr = s->rx_packet;
crc_val = cpu_to_le32(crc32(0, s->rx_packet, MAX(size, 60)));
memcpy(s->rx_packet + size, &crc_val, sizeof(crc_val));
bytes_to_copy += 4;
size += 4;
}
DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size);
/* Find which queue we are targeting */
q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
if (size > gem_get_max_buf_len(s, false)) {
qemu_log_mask(LOG_GUEST_ERROR, "rx frame too long\n");
gem_set_isr(s, q, R_ISR_AMBA_ERROR_MASK);
return -1;
}
while (bytes_to_copy) {
hwaddr desc_addr;
/* Do nothing if receive is not enabled. */
if (!gem_can_receive(nc)) {
return -1;
}
DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n",
MIN(bytes_to_copy, rxbufsize),
rx_desc_get_buffer(s, s->rx_desc[q]));
/* Copy packet data to emulated DMA buffer */
address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
rxbuf_offset,
MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
MIN(bytes_to_copy, rxbufsize));
rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
rx_desc_clear_control(s->rx_desc[q]);
/* Update the descriptor. */
if (first_desc) {
rx_desc_set_sof(s->rx_desc[q]);
first_desc = false;
}
if (bytes_to_copy == 0) {
rx_desc_set_eof(s->rx_desc[q]);
rx_desc_set_length(s->rx_desc[q], size);
}
rx_desc_set_ownership(s->rx_desc[q]);
switch (maf) {
case GEM_RX_PROMISCUOUS_ACCEPT:
break;
case GEM_RX_BROADCAST_ACCEPT:
rx_desc_set_broadcast(s->rx_desc[q]);
break;
case GEM_RX_UNICAST_HASH_ACCEPT:
rx_desc_set_unicast_hash(s->rx_desc[q]);
break;
case GEM_RX_MULTICAST_HASH_ACCEPT:
rx_desc_set_multicast_hash(s->rx_desc[q]);
break;
case GEM_RX_REJECT:
abort();
default: /* SAR */
rx_desc_set_sar(s->rx_desc[q], maf);
}
/* Descriptor write-back. */
desc_addr = gem_get_rx_desc_addr(s, q);
address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
s->rx_desc[q],
sizeof(uint32_t) * gem_get_desc_len(s, true));
/* Next descriptor */
if (rx_desc_get_wrap(s->rx_desc[q])) {
DB_PRINT("wrapping RX descriptor list\n");
s->rx_desc_addr[q] = gem_get_rx_queue_base_addr(s, q);
} else {
DB_PRINT("incrementing RX descriptor list\n");
s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
}
gem_get_rx_desc(s, q);
}
/* Count it */
gem_receive_updatestats(s, buf, size);
s->regs[R_RXSTATUS] |= R_RXSTATUS_FRAME_RECEIVED_MASK;
gem_set_isr(s, q, R_ISR_RECV_COMPLETE_MASK);
/* Handle interrupt consequences */
gem_update_int_status(s);
return size;
}
/*
* gem_transmit_updatestats:
* Increment transmit statistics.
*/
static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
unsigned bytes)
{
uint64_t octets;
/* Total octets (bytes) transmitted */
octets = ((uint64_t)(s->regs[R_OCTTXLO]) << 32) |
s->regs[R_OCTTXHI];
octets += bytes;
s->regs[R_OCTTXLO] = octets >> 32;
s->regs[R_OCTTXHI] = octets;
/* Error-free Frames transmitted */
s->regs[R_TXCNT]++;
/* Error-free Broadcast Frames counter */
if (!memcmp(packet, broadcast_addr, 6)) {
s->regs[R_TXBCNT]++;
}
/* Error-free Multicast Frames counter */
if (packet[0] == 0x01) {
s->regs[R_TXMCNT]++;
}
if (bytes <= 64) {
s->regs[R_TX64CNT]++;
} else if (bytes <= 127) {
s->regs[R_TX65CNT]++;
} else if (bytes <= 255) {
s->regs[R_TX128CNT]++;
} else if (bytes <= 511) {
s->regs[R_TX256CNT]++;
} else if (bytes <= 1023) {
s->regs[R_TX512CNT]++;
} else if (bytes <= 1518) {
s->regs[R_TX1024CNT]++;
} else {
s->regs[R_TX1519CNT]++;
}
}
/*
* gem_transmit:
* Fish packets out of the descriptor ring and feed them to QEMU
*/
static void gem_transmit(CadenceGEMState *s)
{
uint32_t desc[DESC_MAX_NUM_WORDS];
hwaddr packet_desc_addr;
uint8_t *p;
unsigned total_bytes;
int q = 0;
/* Do nothing if transmit is not enabled. */
if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
return;
}
DB_PRINT("\n");
/* The packet we will hand off to QEMU.
* Packets scattered across multiple descriptors are gathered to this
* one contiguous buffer first.
*/
p = s->tx_packet;
total_bytes = 0;
for (q = s->num_priority_queues - 1; q >= 0; q--) {
/* read current descriptor */
packet_desc_addr = gem_get_tx_desc_addr(s, q);
DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
address_space_read(&s->dma_as, packet_desc_addr,
MEMTXATTRS_UNSPECIFIED, desc,
sizeof(uint32_t) * gem_get_desc_len(s, false));
/* Handle all descriptors owned by hardware */
while (tx_desc_get_used(desc) == 0) {
/* Do nothing if transmit is not enabled. */
if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
return;
}
print_gem_tx_desc(desc, q);
/* The real hardware would eat this (and possibly crash).
* For QEMU let's lend a helping hand.
*/
if ((tx_desc_get_buffer(s, desc) == 0) ||
(tx_desc_get_length(desc) == 0)) {
DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n",
packet_desc_addr);
break;
}
if (tx_desc_get_length(desc) > gem_get_max_buf_len(s, true) -
(p - s->tx_packet)) {
qemu_log_mask(LOG_GUEST_ERROR, "TX descriptor @ 0x%" \
HWADDR_PRIx " too large: size 0x%x space 0x%zx\n",
packet_desc_addr, tx_desc_get_length(desc),
gem_get_max_buf_len(s, true) - (p - s->tx_packet));
gem_set_isr(s, q, R_ISR_AMBA_ERROR_MASK);
break;
}
/* Gather this fragment of the packet from "dma memory" to our
* contig buffer.
*/
address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
MEMTXATTRS_UNSPECIFIED,
p, tx_desc_get_length(desc));
p += tx_desc_get_length(desc);
total_bytes += tx_desc_get_length(desc);
/* Last descriptor for this packet; hand the whole thing off */
if (tx_desc_get_last(desc)) {
uint32_t desc_first[DESC_MAX_NUM_WORDS];
hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
/* Modify the 1st descriptor of this packet to be owned by
* the processor.
*/
address_space_read(&s->dma_as, desc_addr,
MEMTXATTRS_UNSPECIFIED, desc_first,
sizeof(desc_first));
tx_desc_set_used(desc_first);
address_space_write(&s->dma_as, desc_addr,
MEMTXATTRS_UNSPECIFIED, desc_first,
sizeof(desc_first));
/* Advance the hardware current descriptor past this packet */
if (tx_desc_get_wrap(desc)) {
s->tx_desc_addr[q] = gem_get_tx_queue_base_addr(s, q);
} else {
s->tx_desc_addr[q] = packet_desc_addr +
4 * gem_get_desc_len(s, false);
}
DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
s->regs[R_TXSTATUS] |= R_TXSTATUS_TRANSMIT_COMPLETE_MASK;
gem_set_isr(s, q, R_ISR_XMIT_COMPLETE_MASK);
/* Handle interrupt consequences */
gem_update_int_status(s);
/* Is checksum offload enabled? */
if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, TX_PBUF_CSUM_OFFLOAD)) {
net_checksum_calculate(s->tx_packet, total_bytes, CSUM_ALL);
}
/* Update MAC statistics */
gem_transmit_updatestats(s, s->tx_packet, total_bytes);
/* Send the packet somewhere */
if (s->phy_loop || FIELD_EX32(s->regs[R_NWCTRL], NWCTRL,
LOOPBACK_LOCAL)) {
qemu_receive_packet(qemu_get_queue(s->nic), s->tx_packet,
total_bytes);
} else {
qemu_send_packet(qemu_get_queue(s->nic), s->tx_packet,
total_bytes);
}
/* Prepare for next packet */
p = s->tx_packet;
total_bytes = 0;
}
/* read next descriptor */
if (tx_desc_get_wrap(desc)) {
if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
packet_desc_addr = s->regs[R_TBQPH];
packet_desc_addr <<= 32;
} else {
packet_desc_addr = 0;
}
packet_desc_addr |= gem_get_tx_queue_base_addr(s, q);
} else {
packet_desc_addr += 4 * gem_get_desc_len(s, false);
}
DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
address_space_read(&s->dma_as, packet_desc_addr,
MEMTXATTRS_UNSPECIFIED, desc,
sizeof(uint32_t) * gem_get_desc_len(s, false));
}
if (tx_desc_get_used(desc)) {
s->regs[R_TXSTATUS] |= R_TXSTATUS_USED_BIT_READ_MASK;
/* IRQ TXUSED is defined only for queue 0 */
if (q == 0) {
gem_set_isr(s, 0, R_ISR_TX_USED_MASK);
}
gem_update_int_status(s);
}
}
}
static void gem_phy_reset(CadenceGEMState *s)
{
memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
s->phy_regs[PHY_REG_CONTROL] = 0x1140;
s->phy_regs[PHY_REG_STATUS] = 0x7969;
s->phy_regs[PHY_REG_PHYID1] = 0x0141;
s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
s->phy_regs[PHY_REG_NEXTP] = 0x2001;
s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
s->phy_regs[PHY_REG_LED] = 0x4100;
s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
phy_update_link(s);
}
static void gem_reset(DeviceState *d)
{
int i;
CadenceGEMState *s = CADENCE_GEM(d);
const uint8_t *a;
uint32_t queues_mask = 0;
DB_PRINT("\n");
/* Set post reset register values */
memset(&s->regs[0], 0, sizeof(s->regs));
s->regs[R_NWCFG] = 0x00080000;
s->regs[R_NWSTATUS] = 0x00000006;
s->regs[R_DMACFG] = 0x00020784;
s->regs[R_IMR] = 0x07ffffff;
s->regs[R_TXPAUSE] = 0x0000ffff;
s->regs[R_TXPARTIALSF] = 0x000003ff;
s->regs[R_RXPARTIALSF] = 0x000003ff;
s->regs[R_MODID] = s->revision;
s->regs[R_DESCONF] = 0x02D00111;
s->regs[R_DESCONF2] = 0x2ab10000 | s->jumbo_max_len;
s->regs[R_DESCONF5] = 0x002f2045;
s->regs[R_DESCONF6] = R_DESCONF6_DMA_ADDR_64B_MASK;
s->regs[R_INT_Q1_MASK] = 0x00000CE6;
s->regs[R_JUMBO_MAX_LEN] = s->jumbo_max_len;
if (s->num_priority_queues > 1) {
queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
s->regs[R_DESCONF6] |= queues_mask;
}
/* Set MAC address */
a = &s->conf.macaddr.a[0];
s->regs[R_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
s->regs[R_SPADDR1HI] = a[4] | (a[5] << 8);
for (i = 0; i < 4; i++) {
s->sar_active[i] = false;
}
gem_phy_reset(s);
gem_update_int_status(s);
}
static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
{
DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
return s->phy_regs[reg_num];
}
static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
{
DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
switch (reg_num) {
case PHY_REG_CONTROL:
if (val & PHY_REG_CONTROL_RST) {
/* Phy reset */
gem_phy_reset(s);
val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
s->phy_loop = 0;
}
if (val & PHY_REG_CONTROL_ANEG) {
/* Complete autonegotiation immediately */
val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART);
s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
}
if (val & PHY_REG_CONTROL_LOOP) {
DB_PRINT("PHY placed in loopback\n");
s->phy_loop = 1;
} else {
s->phy_loop = 0;
}
break;
}
s->phy_regs[reg_num] = val;
}
static void gem_handle_phy_access(CadenceGEMState *s)
{
uint32_t val = s->regs[R_PHYMNTNC];
uint32_t phy_addr, reg_num;
phy_addr = FIELD_EX32(val, PHYMNTNC, PHY_ADDR);
if (phy_addr != s->phy_addr) {
/* no phy at this address */
if (FIELD_EX32(val, PHYMNTNC, OP) == MDIO_OP_READ) {
s->regs[R_PHYMNTNC] = FIELD_DP32(val, PHYMNTNC, DATA, 0xffff);
}
return;
}
reg_num = FIELD_EX32(val, PHYMNTNC, REG_ADDR);
switch (FIELD_EX32(val, PHYMNTNC, OP)) {
case MDIO_OP_READ:
s->regs[R_PHYMNTNC] = FIELD_DP32(val, PHYMNTNC, DATA,
gem_phy_read(s, reg_num));
break;
case MDIO_OP_WRITE:
gem_phy_write(s, reg_num, val);
break;
default:
break; /* only clause 22 operations are supported */
}
}
/*
* gem_read32:
* Read a GEM register.
*/
static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
{
CadenceGEMState *s;
uint32_t retval;
s = opaque;
offset >>= 2;
retval = s->regs[offset];
DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
switch (offset) {
case R_ISR:
DB_PRINT("lowering irqs on ISR read\n");
/* The interrupts get updated at the end of the function. */
break;
}
/* Squash read to clear bits */
s->regs[offset] &= ~(s->regs_rtc[offset]);
/* Do not provide write only bits */
retval &= ~(s->regs_wo[offset]);
DB_PRINT("0x%08x\n", retval);
gem_update_int_status(s);
return retval;
}
/*
* gem_write32:
* Write a GEM register.
*/
static void gem_write(void *opaque, hwaddr offset, uint64_t val,
unsigned size)
{
CadenceGEMState *s = (CadenceGEMState *)opaque;
uint32_t readonly;
int i;
DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
offset >>= 2;
/* Squash bits which are read only in write value */
val &= ~(s->regs_ro[offset]);
/* Preserve (only) bits which are read only and wtc in register */
readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
/* Copy register write to backing store */
s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
/* do w1c */
s->regs[offset] &= ~(s->regs_w1c[offset] & val);
/* Handle register write side effects */
switch (offset) {
case R_NWCTRL:
if (FIELD_EX32(val, NWCTRL, ENABLE_RECEIVE)) {
for (i = 0; i < s->num_priority_queues; ++i) {
gem_get_rx_desc(s, i);
}
}
if (FIELD_EX32(val, NWCTRL, TRANSMIT_START)) {
gem_transmit(s);
}
if (!(FIELD_EX32(val, NWCTRL, ENABLE_TRANSMIT))) {
/* Reset to start of Q when transmit disabled. */
for (i = 0; i < s->num_priority_queues; i++) {
s->tx_desc_addr[i] = gem_get_tx_queue_base_addr(s, i);
}
}
if (gem_can_receive(qemu_get_queue(s->nic))) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
break;
case R_TXSTATUS:
gem_update_int_status(s);
break;
case R_RXQBASE:
s->rx_desc_addr[0] = val;
break;
case R_RECEIVE_Q1_PTR ... R_RECEIVE_Q7_PTR:
s->rx_desc_addr[offset - R_RECEIVE_Q1_PTR + 1] = val;
break;
case R_TXQBASE:
s->tx_desc_addr[0] = val;
break;
case R_TRANSMIT_Q1_PTR ... R_TRANSMIT_Q7_PTR:
s->tx_desc_addr[offset - R_TRANSMIT_Q1_PTR + 1] = val;
break;
case R_RXSTATUS:
gem_update_int_status(s);
break;
case R_IER:
s->regs[R_IMR] &= ~val;
gem_update_int_status(s);
break;
case R_JUMBO_MAX_LEN:
s->regs[R_JUMBO_MAX_LEN] = val & MAX_JUMBO_FRAME_SIZE_MASK;
break;
case R_INT_Q1_ENABLE ... R_INT_Q7_ENABLE:
s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_ENABLE] &= ~val;
gem_update_int_status(s);
break;
case R_IDR:
s->regs[R_IMR] |= val;
gem_update_int_status(s);
break;
case R_INT_Q1_DISABLE ... R_INT_Q7_DISABLE:
s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_DISABLE] |= val;
gem_update_int_status(s);
break;
case R_SPADDR1LO:
case R_SPADDR2LO:
case R_SPADDR3LO:
case R_SPADDR4LO:
s->sar_active[(offset - R_SPADDR1LO) / 2] = false;
break;
case R_SPADDR1HI:
case R_SPADDR2HI:
case R_SPADDR3HI:
case R_SPADDR4HI:
s->sar_active[(offset - R_SPADDR1HI) / 2] = true;
break;
case R_PHYMNTNC:
gem_handle_phy_access(s);
break;
}
DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
}
static const MemoryRegionOps gem_ops = {
.read = gem_read,
.write = gem_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void gem_set_link(NetClientState *nc)
{
CadenceGEMState *s = qemu_get_nic_opaque(nc);
DB_PRINT("\n");
phy_update_link(s);
gem_update_int_status(s);
}
static NetClientInfo net_gem_info = {
qapi: Change Netdev into a flat union This is a mostly-mechanical conversion that creates a new flat union 'Netdev' QAPI type that covers all the branches of the former 'NetClientOptions' simple union, where the branches are now listed in a new 'NetClientDriver' enum rather than generated from the simple union. The existence of a flat union has no change to the command line syntax accepted for new code, and will make it possible for a future patch to switch the QMP command to parse a boxed union for no change to valid QMP; but it does have some ripple effect on the C code when dealing with the new types. While making the conversion, note that the 'NetLegacy' type remains unchanged: it applies only to legacy command line options, and will not be ported to QMP, so it should remain a wrapper around a simple union; to avoid confusion, the type named 'NetClientOptions' is now gone, and we introduce 'NetLegacyOptions' in its place. Then, in the C code, we convert from NetLegacy to Netdev as soon as possible, so that the bulk of the net stack only has to deal with one QAPI type, not two. Note that since the old legacy code always rejected 'hubport', we can just omit that branch from the new 'NetLegacyOptions' simple union. Based on an idea originally by Zoltán Kővágó <DirtY.iCE.hu@gmail.com>: Message-Id: <01a527fbf1a5de880091f98cf011616a78adeeee.1441627176.git.DirtY.iCE.hu@gmail.com> although the sed script in that patch no longer applies due to other changes in the tree since then, and I also did some manual cleanups (such as fixing whitespace to keep checkpatch happy). Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1468468228-27827-13-git-send-email-eblake@redhat.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> [Fixup from Eric squashed in] Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-07-14 06:50:23 +03:00
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = gem_can_receive,
.receive = gem_receive,
.link_status_changed = gem_set_link,
};
static void gem_realize(DeviceState *dev, Error **errp)
{
CadenceGEMState *s = CADENCE_GEM(dev);
int i;
address_space_init(&s->dma_as,
s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
if (s->num_priority_queues == 0 ||
s->num_priority_queues > MAX_PRIORITY_QUEUES) {
error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
s->num_priority_queues);
return;
} else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
s->num_type1_screeners);
return;
} else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
s->num_type2_screeners);
return;
}
for (i = 0; i < s->num_priority_queues; ++i) {
sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
}
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_gem_info, &s->conf,
object_get_typename(OBJECT(dev)), dev->id,
&dev->mem_reentrancy_guard, s);
if (s->jumbo_max_len > MAX_FRAME_SIZE) {
error_setg(errp, "jumbo-max-len is greater than %d",
MAX_FRAME_SIZE);
return;
}
}
static void gem_init(Object *obj)
{
CadenceGEMState *s = CADENCE_GEM(obj);
DeviceState *dev = DEVICE(obj);
DB_PRINT("\n");
gem_init_register_masks(s);
memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
"enet", sizeof(s->regs));
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
}
static const VMStateDescription vmstate_cadence_gem = {
.name = "cadence_gem",
.version_id = 4,
.minimum_version_id = 4,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
VMSTATE_UINT8(phy_loop, CadenceGEMState),
VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
MAX_PRIORITY_QUEUES),
VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
MAX_PRIORITY_QUEUES),
VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
VMSTATE_END_OF_LIST(),
}
};
static Property gem_properties[] = {
DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
GEM_MODID_VALUE),
DEFINE_PROP_UINT8("phy-addr", CadenceGEMState, phy_addr, BOARD_PHY_ADDRESS),
DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
num_priority_queues, 1),
DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
num_type1_screeners, 4),
DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
num_type2_screeners, 4),
DEFINE_PROP_UINT16("jumbo-max-len", CadenceGEMState,
jumbo_max_len, 10240),
DEFINE_PROP_LINK("dma", CadenceGEMState, dma_mr,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void gem_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = gem_realize;
device_class_set_props(dc, gem_properties);
dc->vmsd = &vmstate_cadence_gem;
dc->reset = gem_reset;
}
static const TypeInfo gem_info = {
.name = TYPE_CADENCE_GEM,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(CadenceGEMState),
.instance_init = gem_init,
.class_init = gem_class_init,
};
static void gem_register_types(void)
{
type_register_static(&gem_info);
}
type_init(gem_register_types)