qemu/vl.c

4599 lines
130 KiB
C
Raw Normal View History

/*
* QEMU System Emulator
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <errno.h>
#include <sys/time.h>
#include "config-host.h"
#ifdef CONFIG_SECCOMP
#include "sysemu/seccomp.h"
#endif
#if defined(CONFIG_VDE)
#include <libvdeplug.h>
#endif
#ifdef CONFIG_SDL
#if defined(__APPLE__) || defined(main)
#include <SDL.h>
int qemu_main(int argc, char **argv, char **envp);
int main(int argc, char **argv)
{
return qemu_main(argc, argv, NULL);
}
#undef main
#define main qemu_main
#endif
#endif /* CONFIG_SDL */
#ifdef CONFIG_COCOA
#undef main
#define main qemu_main
#endif /* CONFIG_COCOA */
#include <glib.h>
#include "qemu/sockets.h"
#include "hw/hw.h"
#include "hw/boards.h"
#include "hw/usb.h"
#include "hw/pcmcia.h"
#include "hw/i386/pc.h"
#include "hw/isa/isa.h"
#include "hw/bt.h"
#include "sysemu/watchdog.h"
#include "hw/i386/smbios.h"
#include "hw/xen/xen.h"
#include "hw/qdev.h"
#include "hw/loader.h"
#include "monitor/qdev.h"
#include "sysemu/bt.h"
#include "net/net.h"
#include "net/slirp.h"
#include "monitor/monitor.h"
#include "ui/console.h"
#include "sysemu/sysemu.h"
#include "exec/gdbstub.h"
#include "qemu/timer.h"
#include "sysemu/char.h"
#include "qemu/bitmap.h"
#include "sysemu/blockdev.h"
#include "hw/block/block.h"
#include "migration/block.h"
#include "sysemu/tpm.h"
#include "sysemu/dma.h"
#include "audio/audio.h"
#include "migration/migration.h"
#include "sysemu/kvm.h"
#include "qapi/qmp/qjson.h"
#include "qemu/option.h"
#include "qemu/config-file.h"
#include "qemu-options.h"
#include "qmp-commands.h"
#include "qemu/main-loop.h"
#ifdef CONFIG_VIRTFS
#include "fsdev/qemu-fsdev.h"
#endif
#include "sysemu/qtest.h"
#include "disas/disas.h"
#include "slirp/libslirp.h"
#include "trace.h"
#include "trace/control.h"
#include "qemu/queue.h"
#include "sysemu/cpus.h"
#include "sysemu/arch_init.h"
#include "qemu/osdep.h"
#include "ui/qemu-spice.h"
#include "qapi/string-input-visitor.h"
#include "qapi/opts-visitor.h"
#include "qom/object_interfaces.h"
#include "qapi-event.h"
#define DEFAULT_RAM_SIZE 128
virtio-console: qdev conversion, new virtio-serial-bus This commit converts the virtio-console device to create a new virtio-serial bus that can host console and generic serial ports. The file hosting this code is now called virtio-serial-bus.c. The virtio console is now a very simple qdev device that sits on the virtio-serial-bus and communicates between the bus and qemu's chardevs. This commit also includes a few changes to the virtio backing code for pci and s390 to spawn the virtio-serial bus. As a result of the qdev conversion, we get rid of a lot of legacy code. The old-style way of instantiating a virtio console using -virtioconsole ... is maintained, but the new, preferred way is to use -device virtio-serial -device virtconsole,chardev=... With this commit, multiple devices as well as multiple ports with a single device can be supported. For multiple ports support, each port gets an IO vq pair. Since the guest needs to know in advance how many vqs a particular device will need, we have to set this number as a property of the virtio-serial device and also as a config option. In addition, we also spawn a pair of control IO vqs. This is an internal channel meant for guest-host communication for things like port open/close, sending port properties over to the guest, etc. This commit is a part of a series of other commits to get the full implementation of multiport support. Future commits will add other support as well as ride on the savevm version that we bump up here. Signed-off-by: Amit Shah <amit.shah@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-19 22:06:52 +03:00
#define MAX_VIRTIO_CONSOLES 1
#define MAX_SCLP_CONSOLES 1
virtio-console: qdev conversion, new virtio-serial-bus This commit converts the virtio-console device to create a new virtio-serial bus that can host console and generic serial ports. The file hosting this code is now called virtio-serial-bus.c. The virtio console is now a very simple qdev device that sits on the virtio-serial-bus and communicates between the bus and qemu's chardevs. This commit also includes a few changes to the virtio backing code for pci and s390 to spawn the virtio-serial bus. As a result of the qdev conversion, we get rid of a lot of legacy code. The old-style way of instantiating a virtio console using -virtioconsole ... is maintained, but the new, preferred way is to use -device virtio-serial -device virtconsole,chardev=... With this commit, multiple devices as well as multiple ports with a single device can be supported. For multiple ports support, each port gets an IO vq pair. Since the guest needs to know in advance how many vqs a particular device will need, we have to set this number as a property of the virtio-serial device and also as a config option. In addition, we also spawn a pair of control IO vqs. This is an internal channel meant for guest-host communication for things like port open/close, sending port properties over to the guest, etc. This commit is a part of a series of other commits to get the full implementation of multiport support. Future commits will add other support as well as ride on the savevm version that we bump up here. Signed-off-by: Amit Shah <amit.shah@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-19 22:06:52 +03:00
static const char *data_dir[16];
static int data_dir_idx;
const char *bios_name = NULL;
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
DisplayType display_type = DT_DEFAULT;
static int display_remote;
const char* keyboard_layout = NULL;
ram_addr_t ram_size;
const char *mem_path = NULL;
int mem_prealloc = 0; /* force preallocation of physical target memory */
bool enable_mlock = false;
int nb_nics;
NICInfo nd_table[MAX_NICS];
int autostart;
static int rtc_utc = 1;
static int rtc_date_offset = -1; /* -1 means no change */
QEMUClockType rtc_clock;
int vga_interface_type = VGA_NONE;
static int full_screen = 0;
static int no_frame = 0;
int no_quit = 0;
#ifdef CONFIG_GTK
static bool grab_on_hover;
#endif
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
CharDriverState *sclp_hds[MAX_SCLP_CONSOLES];
int win2k_install_hack = 0;
int singlestep = 0;
int smp_cpus = 1;
int max_cpus = 0;
int smp_cores = 1;
int smp_threads = 1;
#ifdef CONFIG_VNC
const char *vnc_display;
#endif
int acpi_enabled = 1;
int no_hpet = 0;
int fd_bootchk = 1;
static int no_reboot;
int no_shutdown = 0;
int cursor_hide = 1;
int graphic_rotate = 0;
const char *watchdog;
QEMUOptionRom option_rom[MAX_OPTION_ROMS];
int nb_option_roms;
int semihosting_enabled = 0;
int old_param = 0;
const char *qemu_name;
int alt_grab = 0;
int ctrl_grab = 0;
unsigned int nb_prom_envs = 0;
const char *prom_envs[MAX_PROM_ENVS];
int boot_menu;
static bool boot_strict;
uint8_t *boot_splash_filedata;
size_t boot_splash_filedata_size;
uint8_t qemu_extra_params_fw[2];
int icount_align_option;
typedef struct FWBootEntry FWBootEntry;
struct FWBootEntry {
QTAILQ_ENTRY(FWBootEntry) link;
int32_t bootindex;
DeviceState *dev;
char *suffix;
};
static QTAILQ_HEAD(, FWBootEntry) fw_boot_order =
QTAILQ_HEAD_INITIALIZER(fw_boot_order);
int nb_numa_nodes;
int max_numa_nodeid;
NodeInfo numa_info[MAX_NODES];
uint8_t qemu_uuid[16];
bool qemu_uuid_set;
static QEMUBootSetHandler *boot_set_handler;
static void *boot_set_opaque;
static NotifierList exit_notifiers =
NOTIFIER_LIST_INITIALIZER(exit_notifiers);
static NotifierList machine_init_done_notifiers =
NOTIFIER_LIST_INITIALIZER(machine_init_done_notifiers);
static bool tcg_allowed = true;
bool xen_allowed;
uint32_t xen_domid;
enum xen_mode xen_mode = XEN_EMULATE;
static int tcg_tb_size;
static int has_defaults = 1;
static int default_serial = 1;
static int default_parallel = 1;
static int default_virtcon = 1;
static int default_sclp = 1;
static int default_monitor = 1;
static int default_floppy = 1;
static int default_cdrom = 1;
static int default_sdcard = 1;
static int default_vga = 1;
static struct {
const char *driver;
int *flag;
} default_list[] = {
{ .driver = "isa-serial", .flag = &default_serial },
{ .driver = "isa-parallel", .flag = &default_parallel },
{ .driver = "isa-fdc", .flag = &default_floppy },
{ .driver = "ide-cd", .flag = &default_cdrom },
{ .driver = "ide-hd", .flag = &default_cdrom },
{ .driver = "ide-drive", .flag = &default_cdrom },
{ .driver = "scsi-cd", .flag = &default_cdrom },
{ .driver = "virtio-serial-pci", .flag = &default_virtcon },
{ .driver = "virtio-serial-s390", .flag = &default_virtcon },
{ .driver = "virtio-serial", .flag = &default_virtcon },
{ .driver = "VGA", .flag = &default_vga },
{ .driver = "isa-vga", .flag = &default_vga },
{ .driver = "cirrus-vga", .flag = &default_vga },
{ .driver = "isa-cirrus-vga", .flag = &default_vga },
{ .driver = "vmware-svga", .flag = &default_vga },
{ .driver = "qxl-vga", .flag = &default_vga },
};
static QemuOptsList qemu_rtc_opts = {
.name = "rtc",
.head = QTAILQ_HEAD_INITIALIZER(qemu_rtc_opts.head),
.desc = {
{
.name = "base",
.type = QEMU_OPT_STRING,
},{
.name = "clock",
.type = QEMU_OPT_STRING,
},{
.name = "driftfix",
.type = QEMU_OPT_STRING,
},
{ /* end of list */ }
},
};
static QemuOptsList qemu_sandbox_opts = {
.name = "sandbox",
.implied_opt_name = "enable",
.head = QTAILQ_HEAD_INITIALIZER(qemu_sandbox_opts.head),
.desc = {
{
.name = "enable",
.type = QEMU_OPT_BOOL,
},
{ /* end of list */ }
},
};
static QemuOptsList qemu_trace_opts = {
.name = "trace",
.implied_opt_name = "trace",
.head = QTAILQ_HEAD_INITIALIZER(qemu_trace_opts.head),
.desc = {
{
.name = "events",
.type = QEMU_OPT_STRING,
},{
.name = "file",
.type = QEMU_OPT_STRING,
},
{ /* end of list */ }
},
};
static QemuOptsList qemu_option_rom_opts = {
.name = "option-rom",
.implied_opt_name = "romfile",
.head = QTAILQ_HEAD_INITIALIZER(qemu_option_rom_opts.head),
.desc = {
{
.name = "bootindex",
.type = QEMU_OPT_NUMBER,
}, {
.name = "romfile",
.type = QEMU_OPT_STRING,
},
{ /* end of list */ }
},
};
static QemuOptsList qemu_machine_opts = {
.name = "machine",
.implied_opt_name = "type",
.merge_lists = true,
.head = QTAILQ_HEAD_INITIALIZER(qemu_machine_opts.head),
.desc = {
{
.name = "type",
.type = QEMU_OPT_STRING,
.help = "emulated machine"
}, {
.name = "accel",
.type = QEMU_OPT_STRING,
.help = "accelerator list",
}, {
.name = "kernel_irqchip",
.type = QEMU_OPT_BOOL,
.help = "use KVM in-kernel irqchip",
}, {
.name = "kvm_shadow_mem",
.type = QEMU_OPT_SIZE,
.help = "KVM shadow MMU size",
}, {
.name = "kernel",
.type = QEMU_OPT_STRING,
.help = "Linux kernel image file",
}, {
.name = "initrd",
.type = QEMU_OPT_STRING,
.help = "Linux initial ramdisk file",
}, {
.name = "append",
.type = QEMU_OPT_STRING,
.help = "Linux kernel command line",
}, {
.name = "dtb",
.type = QEMU_OPT_STRING,
.help = "Linux kernel device tree file",
}, {
.name = "dumpdtb",
.type = QEMU_OPT_STRING,
.help = "Dump current dtb to a file and quit",
}, {
.name = "phandle_start",
.type = QEMU_OPT_NUMBER,
.help = "The first phandle ID we may generate dynamically",
}, {
.name = "dt_compatible",
.type = QEMU_OPT_STRING,
.help = "Overrides the \"compatible\" property of the dt root node",
}, {
.name = "dump-guest-core",
.type = QEMU_OPT_BOOL,
.help = "Include guest memory in a core dump",
}, {
.name = "mem-merge",
.type = QEMU_OPT_BOOL,
.help = "enable/disable memory merge support",
},{
.name = "usb",
.type = QEMU_OPT_BOOL,
.help = "Set on/off to enable/disable usb",
},{
.name = "firmware",
.type = QEMU_OPT_STRING,
.help = "firmware image",
},{
.name = "kvm-type",
.type = QEMU_OPT_STRING,
.help = "Specifies the KVM virtualization mode (HV, PR)",
},{
.name = PC_MACHINE_MAX_RAM_BELOW_4G,
.type = QEMU_OPT_SIZE,
.help = "maximum ram below the 4G boundary (32bit boundary)",
},{
.name = "iommu",
.type = QEMU_OPT_BOOL,
.help = "Set on/off to enable/disable Intel IOMMU (VT-d)",
},
{ /* End of list */ }
},
};
static QemuOptsList qemu_boot_opts = {
.name = "boot-opts",
.implied_opt_name = "order",
.merge_lists = true,
.head = QTAILQ_HEAD_INITIALIZER(qemu_boot_opts.head),
.desc = {
{
.name = "order",
.type = QEMU_OPT_STRING,
}, {
.name = "once",
.type = QEMU_OPT_STRING,
}, {
.name = "menu",
.type = QEMU_OPT_BOOL,
}, {
.name = "splash",
.type = QEMU_OPT_STRING,
}, {
.name = "splash-time",
.type = QEMU_OPT_STRING,
}, {
.name = "reboot-timeout",
.type = QEMU_OPT_STRING,
}, {
.name = "strict",
.type = QEMU_OPT_BOOL,
},
{ /*End of list */ }
},
};
static QemuOptsList qemu_add_fd_opts = {
.name = "add-fd",
.head = QTAILQ_HEAD_INITIALIZER(qemu_add_fd_opts.head),
.desc = {
{
.name = "fd",
.type = QEMU_OPT_NUMBER,
.help = "file descriptor of which a duplicate is added to fd set",
},{
.name = "set",
.type = QEMU_OPT_NUMBER,
.help = "ID of the fd set to add fd to",
},{
.name = "opaque",
.type = QEMU_OPT_STRING,
.help = "free-form string used to describe fd",
},
{ /* end of list */ }
},
};
static QemuOptsList qemu_object_opts = {
.name = "object",
.implied_opt_name = "qom-type",
.head = QTAILQ_HEAD_INITIALIZER(qemu_object_opts.head),
.desc = {
{ }
},
};
static QemuOptsList qemu_tpmdev_opts = {
.name = "tpmdev",
.implied_opt_name = "type",
.head = QTAILQ_HEAD_INITIALIZER(qemu_tpmdev_opts.head),
.desc = {
/* options are defined in the TPM backends */
{ /* end of list */ }
},
};
static QemuOptsList qemu_realtime_opts = {
.name = "realtime",
.head = QTAILQ_HEAD_INITIALIZER(qemu_realtime_opts.head),
.desc = {
{
.name = "mlock",
.type = QEMU_OPT_BOOL,
},
{ /* end of list */ }
},
};
static QemuOptsList qemu_msg_opts = {
.name = "msg",
.head = QTAILQ_HEAD_INITIALIZER(qemu_msg_opts.head),
.desc = {
{
.name = "timestamp",
.type = QEMU_OPT_BOOL,
},
{ /* end of list */ }
},
};
static QemuOptsList qemu_name_opts = {
.name = "name",
.implied_opt_name = "guest",
.merge_lists = true,
.head = QTAILQ_HEAD_INITIALIZER(qemu_name_opts.head),
.desc = {
{
.name = "guest",
.type = QEMU_OPT_STRING,
.help = "Sets the name of the guest.\n"
"This name will be displayed in the SDL window caption.\n"
"The name will also be used for the VNC server",
}, {
.name = "process",
.type = QEMU_OPT_STRING,
.help = "Sets the name of the QEMU process, as shown in top etc",
}, {
.name = "debug-threads",
.type = QEMU_OPT_BOOL,
.help = "When enabled, name the individual threads; defaults off.\n"
"NOTE: The thread names are for debugging and not a\n"
"stable API.",
},
{ /* End of list */ }
},
};
static QemuOptsList qemu_mem_opts = {
.name = "memory",
.implied_opt_name = "size",
.head = QTAILQ_HEAD_INITIALIZER(qemu_mem_opts.head),
.merge_lists = true,
.desc = {
{
.name = "size",
.type = QEMU_OPT_SIZE,
},
{
.name = "slots",
.type = QEMU_OPT_NUMBER,
},
{
.name = "maxmem",
.type = QEMU_OPT_SIZE,
},
{ /* end of list */ }
},
};
static QemuOptsList qemu_icount_opts = {
.name = "icount",
.implied_opt_name = "shift",
.merge_lists = true,
.head = QTAILQ_HEAD_INITIALIZER(qemu_icount_opts.head),
.desc = {
{
.name = "shift",
.type = QEMU_OPT_STRING,
}, {
.name = "align",
.type = QEMU_OPT_BOOL,
},
{ /* end of list */ }
},
};
/**
* Get machine options
*
* Returns: machine options (never null).
*/
QemuOpts *qemu_get_machine_opts(void)
{
return qemu_find_opts_singleton("machine");
}
const char *qemu_get_vm_name(void)
{
return qemu_name;
}
static void res_free(void)
{
if (boot_splash_filedata != NULL) {
g_free(boot_splash_filedata);
boot_splash_filedata = NULL;
}
}
static int default_driver_check(QemuOpts *opts, void *opaque)
{
const char *driver = qemu_opt_get(opts, "driver");
int i;
if (!driver)
return 0;
for (i = 0; i < ARRAY_SIZE(default_list); i++) {
if (strcmp(default_list[i].driver, driver) != 0)
continue;
*(default_list[i].flag) = 0;
}
return 0;
}
/***********************************************************/
/* QEMU state */
static RunState current_run_state = RUN_STATE_PRELAUNCH;
/* We use RUN_STATE_MAX but any invalid value will do */
static RunState vmstop_requested = RUN_STATE_MAX;
static QemuMutex vmstop_lock;
typedef struct {
RunState from;
RunState to;
} RunStateTransition;
static const RunStateTransition runstate_transitions_def[] = {
/* from -> to */
{ RUN_STATE_DEBUG, RUN_STATE_RUNNING },
{ RUN_STATE_DEBUG, RUN_STATE_FINISH_MIGRATE },
{ RUN_STATE_INMIGRATE, RUN_STATE_RUNNING },
{ RUN_STATE_INMIGRATE, RUN_STATE_PAUSED },
{ RUN_STATE_INTERNAL_ERROR, RUN_STATE_PAUSED },
{ RUN_STATE_INTERNAL_ERROR, RUN_STATE_FINISH_MIGRATE },
{ RUN_STATE_IO_ERROR, RUN_STATE_RUNNING },
{ RUN_STATE_IO_ERROR, RUN_STATE_FINISH_MIGRATE },
{ RUN_STATE_PAUSED, RUN_STATE_RUNNING },
{ RUN_STATE_PAUSED, RUN_STATE_FINISH_MIGRATE },
{ RUN_STATE_POSTMIGRATE, RUN_STATE_RUNNING },
{ RUN_STATE_POSTMIGRATE, RUN_STATE_FINISH_MIGRATE },
{ RUN_STATE_PRELAUNCH, RUN_STATE_RUNNING },
{ RUN_STATE_PRELAUNCH, RUN_STATE_FINISH_MIGRATE },
{ RUN_STATE_PRELAUNCH, RUN_STATE_INMIGRATE },
{ RUN_STATE_FINISH_MIGRATE, RUN_STATE_RUNNING },
{ RUN_STATE_FINISH_MIGRATE, RUN_STATE_POSTMIGRATE },
{ RUN_STATE_RESTORE_VM, RUN_STATE_RUNNING },
{ RUN_STATE_RUNNING, RUN_STATE_DEBUG },
{ RUN_STATE_RUNNING, RUN_STATE_INTERNAL_ERROR },
{ RUN_STATE_RUNNING, RUN_STATE_IO_ERROR },
{ RUN_STATE_RUNNING, RUN_STATE_PAUSED },
{ RUN_STATE_RUNNING, RUN_STATE_FINISH_MIGRATE },
{ RUN_STATE_RUNNING, RUN_STATE_RESTORE_VM },
{ RUN_STATE_RUNNING, RUN_STATE_SAVE_VM },
{ RUN_STATE_RUNNING, RUN_STATE_SHUTDOWN },
{ RUN_STATE_RUNNING, RUN_STATE_WATCHDOG },
{ RUN_STATE_RUNNING, RUN_STATE_GUEST_PANICKED },
{ RUN_STATE_SAVE_VM, RUN_STATE_RUNNING },
{ RUN_STATE_SHUTDOWN, RUN_STATE_PAUSED },
{ RUN_STATE_SHUTDOWN, RUN_STATE_FINISH_MIGRATE },
{ RUN_STATE_DEBUG, RUN_STATE_SUSPENDED },
{ RUN_STATE_RUNNING, RUN_STATE_SUSPENDED },
{ RUN_STATE_SUSPENDED, RUN_STATE_RUNNING },
{ RUN_STATE_SUSPENDED, RUN_STATE_FINISH_MIGRATE },
{ RUN_STATE_WATCHDOG, RUN_STATE_RUNNING },
{ RUN_STATE_WATCHDOG, RUN_STATE_FINISH_MIGRATE },
vl: allow "cont" from panicked state After reporting the GUEST_PANICKED monitor event, QEMU stops the VM. The reason for this is that events are edge-triggered, and can be lost if management dies at the wrong time. Stopping a panicked VM lets management know of a panic even if it has crashed; management can learn about the panic when it restarts and queries running QEMU processes. The downside is of course that the VM will be paused while management is not running, but that is acceptable if it only happens with explicit "-device pvpanic". Upon learning of a panic, management (if configured to do so) can pick a variety of behaviors: leave the VM paused, reset it, destroy it. In addition to all of these behaviors, it is possible to dump the VM core from the host. However, right now, the panicked state is irreversible, and can only be exited by resetting the machine. This means that any policy decision is entirely in the hands of the host. In particular there is no way to use the "reboot on panic" option together with pvpanic. This patch makes the panicked state reversible (and removes various workarounds that were there because of the state being irreversible). With this change, management has a wider set of possible policies: it can just log the crash and leave policy to the guest, it can leave the VM paused. In particular, the "log the crash and continue" is implemented simply by sending a "cont" as soon as management learns about the panic. Management could also implement the "irreversible paused state" itself. And again, all such actions can be coupled with dumping the VM core. Unfortunately we cannot change the behavior of 1.6.0. Thus, even if it uses "-device pvpanic", management should check for "cont" failures. If "cont" fails, management can then log that the VM remained paused and urge the administrator to update QEMU. Reviewed-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Luiz Capitulino <lcapitulino@redhat.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2013-11-04 17:30:47 +04:00
{ RUN_STATE_GUEST_PANICKED, RUN_STATE_RUNNING },
{ RUN_STATE_GUEST_PANICKED, RUN_STATE_FINISH_MIGRATE },
{ RUN_STATE_MAX, RUN_STATE_MAX },
};
static bool runstate_valid_transitions[RUN_STATE_MAX][RUN_STATE_MAX];
bool runstate_check(RunState state)
{
return current_run_state == state;
}
static void runstate_init(void)
{
const RunStateTransition *p;
memset(&runstate_valid_transitions, 0, sizeof(runstate_valid_transitions));
for (p = &runstate_transitions_def[0]; p->from != RUN_STATE_MAX; p++) {
runstate_valid_transitions[p->from][p->to] = true;
}
qemu_mutex_init(&vmstop_lock);
}
/* This function will abort() on invalid state transitions */
void runstate_set(RunState new_state)
{
assert(new_state < RUN_STATE_MAX);
if (!runstate_valid_transitions[current_run_state][new_state]) {
fprintf(stderr, "ERROR: invalid runstate transition: '%s' -> '%s'\n",
RunState_lookup[current_run_state],
RunState_lookup[new_state]);
abort();
}
trace_runstate_set(new_state);
current_run_state = new_state;
}
int runstate_is_running(void)
{
return runstate_check(RUN_STATE_RUNNING);
}
bool runstate_needs_reset(void)
{
return runstate_check(RUN_STATE_INTERNAL_ERROR) ||
vl: allow "cont" from panicked state After reporting the GUEST_PANICKED monitor event, QEMU stops the VM. The reason for this is that events are edge-triggered, and can be lost if management dies at the wrong time. Stopping a panicked VM lets management know of a panic even if it has crashed; management can learn about the panic when it restarts and queries running QEMU processes. The downside is of course that the VM will be paused while management is not running, but that is acceptable if it only happens with explicit "-device pvpanic". Upon learning of a panic, management (if configured to do so) can pick a variety of behaviors: leave the VM paused, reset it, destroy it. In addition to all of these behaviors, it is possible to dump the VM core from the host. However, right now, the panicked state is irreversible, and can only be exited by resetting the machine. This means that any policy decision is entirely in the hands of the host. In particular there is no way to use the "reboot on panic" option together with pvpanic. This patch makes the panicked state reversible (and removes various workarounds that were there because of the state being irreversible). With this change, management has a wider set of possible policies: it can just log the crash and leave policy to the guest, it can leave the VM paused. In particular, the "log the crash and continue" is implemented simply by sending a "cont" as soon as management learns about the panic. Management could also implement the "irreversible paused state" itself. And again, all such actions can be coupled with dumping the VM core. Unfortunately we cannot change the behavior of 1.6.0. Thus, even if it uses "-device pvpanic", management should check for "cont" failures. If "cont" fails, management can then log that the VM remained paused and urge the administrator to update QEMU. Reviewed-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Luiz Capitulino <lcapitulino@redhat.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2013-11-04 17:30:47 +04:00
runstate_check(RUN_STATE_SHUTDOWN);
}
StatusInfo *qmp_query_status(Error **errp)
{
StatusInfo *info = g_malloc0(sizeof(*info));
info->running = runstate_is_running();
info->singlestep = singlestep;
info->status = current_run_state;
return info;
}
static bool qemu_vmstop_requested(RunState *r)
{
qemu_mutex_lock(&vmstop_lock);
*r = vmstop_requested;
vmstop_requested = RUN_STATE_MAX;
qemu_mutex_unlock(&vmstop_lock);
return *r < RUN_STATE_MAX;
}
void qemu_system_vmstop_request_prepare(void)
{
qemu_mutex_lock(&vmstop_lock);
}
void qemu_system_vmstop_request(RunState state)
{
vmstop_requested = state;
qemu_mutex_unlock(&vmstop_lock);
qemu_notify_event();
}
void vm_start(void)
{
RunState requested;
qemu_vmstop_requested(&requested);
if (runstate_is_running() && requested == RUN_STATE_MAX) {
return;
}
/* Ensure that a STOP/RESUME pair of events is emitted if a
* vmstop request was pending. The BLOCK_IO_ERROR event, for
* example, according to documentation is always followed by
* the STOP event.
*/
if (runstate_is_running()) {
qapi_event_send_stop(&error_abort);
} else {
cpu_enable_ticks();
runstate_set(RUN_STATE_RUNNING);
vm_state_notify(1, RUN_STATE_RUNNING);
resume_all_vcpus();
}
qapi_event_send_resume(&error_abort);
}
/***********************************************************/
/* real time host monotonic timer */
/***********************************************************/
/* host time/date access */
void qemu_get_timedate(struct tm *tm, int offset)
{
time_t ti;
time(&ti);
ti += offset;
if (rtc_date_offset == -1) {
if (rtc_utc)
gmtime_r(&ti, tm);
else
localtime_r(&ti, tm);
} else {
ti -= rtc_date_offset;
gmtime_r(&ti, tm);
}
}
int qemu_timedate_diff(struct tm *tm)
{
time_t seconds;
if (rtc_date_offset == -1)
if (rtc_utc)
seconds = mktimegm(tm);
else {
struct tm tmp = *tm;
tmp.tm_isdst = -1; /* use timezone to figure it out */
seconds = mktime(&tmp);
}
else
seconds = mktimegm(tm) + rtc_date_offset;
return seconds - time(NULL);
}
static void configure_rtc_date_offset(const char *startdate, int legacy)
{
time_t rtc_start_date;
struct tm tm;
if (!strcmp(startdate, "now") && legacy) {
rtc_date_offset = -1;
} else {
if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
&tm.tm_year,
&tm.tm_mon,
&tm.tm_mday,
&tm.tm_hour,
&tm.tm_min,
&tm.tm_sec) == 6) {
/* OK */
} else if (sscanf(startdate, "%d-%d-%d",
&tm.tm_year,
&tm.tm_mon,
&tm.tm_mday) == 3) {
tm.tm_hour = 0;
tm.tm_min = 0;
tm.tm_sec = 0;
} else {
goto date_fail;
}
tm.tm_year -= 1900;
tm.tm_mon--;
rtc_start_date = mktimegm(&tm);
if (rtc_start_date == -1) {
date_fail:
fprintf(stderr, "Invalid date format. Valid formats are:\n"
"'2006-06-17T16:01:21' or '2006-06-17'\n");
exit(1);
}
rtc_date_offset = time(NULL) - rtc_start_date;
}
}
static void configure_rtc(QemuOpts *opts)
{
const char *value;
value = qemu_opt_get(opts, "base");
if (value) {
if (!strcmp(value, "utc")) {
rtc_utc = 1;
} else if (!strcmp(value, "localtime")) {
rtc_utc = 0;
} else {
configure_rtc_date_offset(value, 0);
}
}
value = qemu_opt_get(opts, "clock");
if (value) {
if (!strcmp(value, "host")) {
rtc_clock = QEMU_CLOCK_HOST;
} else if (!strcmp(value, "rt")) {
rtc_clock = QEMU_CLOCK_REALTIME;
} else if (!strcmp(value, "vm")) {
rtc_clock = QEMU_CLOCK_VIRTUAL;
} else {
fprintf(stderr, "qemu: invalid option value '%s'\n", value);
exit(1);
}
}
value = qemu_opt_get(opts, "driftfix");
if (value) {
if (!strcmp(value, "slew")) {
static GlobalProperty slew_lost_ticks[] = {
{
.driver = "mc146818rtc",
.property = "lost_tick_policy",
.value = "slew",
},
{ /* end of list */ }
};
qdev_prop_register_global_list(slew_lost_ticks);
} else if (!strcmp(value, "none")) {
/* discard is default */
} else {
fprintf(stderr, "qemu: invalid option value '%s'\n", value);
exit(1);
}
}
}
/***********************************************************/
/* Bluetooth support */
static int nb_hcis;
static int cur_hci;
static struct HCIInfo *hci_table[MAX_NICS];
struct HCIInfo *qemu_next_hci(void)
{
if (cur_hci == nb_hcis)
return &null_hci;
return hci_table[cur_hci++];
}
static int bt_hci_parse(const char *str)
{
struct HCIInfo *hci;
bdaddr_t bdaddr;
if (nb_hcis >= MAX_NICS) {
fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
return -1;
}
hci = hci_init(str);
if (!hci)
return -1;
bdaddr.b[0] = 0x52;
bdaddr.b[1] = 0x54;
bdaddr.b[2] = 0x00;
bdaddr.b[3] = 0x12;
bdaddr.b[4] = 0x34;
bdaddr.b[5] = 0x56 + nb_hcis;
hci->bdaddr_set(hci, bdaddr.b);
hci_table[nb_hcis++] = hci;
return 0;
}
static void bt_vhci_add(int vlan_id)
{
struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
if (!vlan->slave)
fprintf(stderr, "qemu: warning: adding a VHCI to "
"an empty scatternet %i\n", vlan_id);
bt_vhci_init(bt_new_hci(vlan));
}
static struct bt_device_s *bt_device_add(const char *opt)
{
struct bt_scatternet_s *vlan;
int vlan_id = 0;
char *endp = strstr(opt, ",vlan=");
int len = (endp ? endp - opt : strlen(opt)) + 1;
char devname[10];
pstrcpy(devname, MIN(sizeof(devname), len), opt);
if (endp) {
vlan_id = strtol(endp + 6, &endp, 0);
if (*endp) {
fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
return 0;
}
}
vlan = qemu_find_bt_vlan(vlan_id);
if (!vlan->slave)
fprintf(stderr, "qemu: warning: adding a slave device to "
"an empty scatternet %i\n", vlan_id);
if (!strcmp(devname, "keyboard"))
return bt_keyboard_init(vlan);
fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
return 0;
}
static int bt_parse(const char *opt)
{
const char *endp, *p;
int vlan;
if (strstart(opt, "hci", &endp)) {
if (!*endp || *endp == ',') {
if (*endp)
if (!strstart(endp, ",vlan=", 0))
opt = endp + 1;
return bt_hci_parse(opt);
}
} else if (strstart(opt, "vhci", &endp)) {
if (!*endp || *endp == ',') {
if (*endp) {
if (strstart(endp, ",vlan=", &p)) {
vlan = strtol(p, (char **) &endp, 0);
if (*endp) {
fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
return 1;
}
} else {
fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
return 1;
}
} else
vlan = 0;
bt_vhci_add(vlan);
return 0;
}
} else if (strstart(opt, "device:", &endp))
return !bt_device_add(endp);
fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
return 1;
}
static int parse_sandbox(QemuOpts *opts, void *opaque)
{
/* FIXME: change this to true for 1.3 */
if (qemu_opt_get_bool(opts, "enable", false)) {
#ifdef CONFIG_SECCOMP
if (seccomp_start() < 0) {
qerror_report(ERROR_CLASS_GENERIC_ERROR,
"failed to install seccomp syscall filter in the kernel");
return -1;
}
#else
qerror_report(ERROR_CLASS_GENERIC_ERROR,
"sandboxing request but seccomp is not compiled into this build");
return -1;
#endif
}
return 0;
}
static int parse_name(QemuOpts *opts, void *opaque)
{
const char *proc_name;
if (qemu_opt_get(opts, "debug-threads")) {
qemu_thread_naming(qemu_opt_get_bool(opts, "debug-threads", false));
}
qemu_name = qemu_opt_get(opts, "guest");
proc_name = qemu_opt_get(opts, "process");
if (proc_name) {
os_set_proc_name(proc_name);
}
return 0;
}
bool usb_enabled(bool default_usb)
{
return qemu_opt_get_bool(qemu_get_machine_opts(), "usb",
has_defaults && default_usb);
}
#ifndef _WIN32
static int parse_add_fd(QemuOpts *opts, void *opaque)
{
int fd, dupfd, flags;
int64_t fdset_id;
const char *fd_opaque = NULL;
fd = qemu_opt_get_number(opts, "fd", -1);
fdset_id = qemu_opt_get_number(opts, "set", -1);
fd_opaque = qemu_opt_get(opts, "opaque");
if (fd < 0) {
qerror_report(ERROR_CLASS_GENERIC_ERROR,
"fd option is required and must be non-negative");
return -1;
}
if (fd <= STDERR_FILENO) {
qerror_report(ERROR_CLASS_GENERIC_ERROR,
"fd cannot be a standard I/O stream");
return -1;
}
/*
* All fds inherited across exec() necessarily have FD_CLOEXEC
* clear, while qemu sets FD_CLOEXEC on all other fds used internally.
*/
flags = fcntl(fd, F_GETFD);
if (flags == -1 || (flags & FD_CLOEXEC)) {
qerror_report(ERROR_CLASS_GENERIC_ERROR,
"fd is not valid or already in use");
return -1;
}
if (fdset_id < 0) {
qerror_report(ERROR_CLASS_GENERIC_ERROR,
"set option is required and must be non-negative");
return -1;
}
#ifdef F_DUPFD_CLOEXEC
dupfd = fcntl(fd, F_DUPFD_CLOEXEC, 0);
#else
dupfd = dup(fd);
if (dupfd != -1) {
qemu_set_cloexec(dupfd);
}
#endif
if (dupfd == -1) {
qerror_report(ERROR_CLASS_GENERIC_ERROR,
"Error duplicating fd: %s", strerror(errno));
return -1;
}
/* add the duplicate fd, and optionally the opaque string, to the fd set */
monitor_fdset_add_fd(dupfd, true, fdset_id, fd_opaque ? true : false,
fd_opaque, NULL);
return 0;
}
static int cleanup_add_fd(QemuOpts *opts, void *opaque)
{
int fd;
fd = qemu_opt_get_number(opts, "fd", -1);
close(fd);
return 0;
}
#endif
/***********************************************************/
/* QEMU Block devices */
#define HD_OPTS "media=disk"
#define CDROM_OPTS "media=cdrom"
#define FD_OPTS ""
#define PFLASH_OPTS ""
#define MTD_OPTS ""
#define SD_OPTS ""
static int drive_init_func(QemuOpts *opts, void *opaque)
{
Support default block interfaces per QEMUMachine There are QEMUMachines that have neither IF_IDE nor IF_SCSI as a default/standard interface to their block devices / drives. Therefore, this patch introduces a new field default_block_type per QEMUMachine struct. The prior use_scsi field becomes thereby obsolete and is replaced through .default_block_type = IF_SCSI. This patch also changes the default for s390x to IF_VIRTIO and removes an early hack that converts IF_IDE drives. Other parties have already claimed interest (e.g. IF_SD for exynos) To create a sane default, for machines that dont specify a default_block_type, this patch makes IF_IDE = 0 and IF_NONE = 1. I checked all users of IF_NONE (blockdev.c and ww/device-hotplug.c) as well as IF_IDE and it seems that it is ok to change the defines - in other words, I found no obvious (to me) assumption in the code regarding IF_NONE==0. IF_NONE is only set if there is an explicit if=none. Without if=* the interface becomes IF_DEFAULT. I would suggest to have some additional care, e.g. by letting this patch sit some days in the block tree. Based on an initial patch from Einar Lueck <elelueck@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> CC: Igor Mitsyanko <i.mitsyanko@samsung.com> CC: Markus Armbruster <armbru@redhat.com> CC: Kevin Wolf <kwolf@redhat.com> Reviewed-by: Alexander Graf <agraf@suse.de> Acked-by: Igor Mitsyanko <i.mitsyanko@samsung.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2012-11-20 18:30:34 +04:00
BlockInterfaceType *block_default_type = opaque;
return drive_new(opts, *block_default_type) == NULL;
}
static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
{
if (qemu_opt_get(opts, "snapshot") == NULL) {
qemu_opt_set(opts, "snapshot", "on");
}
return 0;
}
static void default_drive(int enable, int snapshot, BlockInterfaceType type,
int index, const char *optstr)
{
QemuOpts *opts;
DriveInfo *dinfo;
if (!enable || drive_get_by_index(type, index)) {
return;
}
opts = drive_add(type, index, NULL, optstr);
if (snapshot) {
drive_enable_snapshot(opts, NULL);
}
dinfo = drive_new(opts, type);
if (!dinfo) {
exit(1);
}
dinfo->is_default = true;
}
void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
{
boot_set_handler = func;
boot_set_opaque = opaque;
}
int qemu_boot_set(const char *boot_order)
{
if (!boot_set_handler) {
return -EINVAL;
}
return boot_set_handler(boot_set_opaque, boot_order);
}
static void validate_bootdevices(const char *devices)
{
/* We just do some generic consistency checks */
const char *p;
int bitmap = 0;
for (p = devices; *p != '\0'; p++) {
/* Allowed boot devices are:
* a-b: floppy disk drives
* c-f: IDE disk drives
* g-m: machine implementation dependent drives
* n-p: network devices
* It's up to each machine implementation to check if the given boot
* devices match the actual hardware implementation and firmware
* features.
*/
if (*p < 'a' || *p > 'p') {
fprintf(stderr, "Invalid boot device '%c'\n", *p);
exit(1);
}
if (bitmap & (1 << (*p - 'a'))) {
fprintf(stderr, "Boot device '%c' was given twice\n", *p);
exit(1);
}
bitmap |= 1 << (*p - 'a');
}
}
static void restore_boot_order(void *opaque)
{
char *normal_boot_order = opaque;
static int first = 1;
/* Restore boot order and remove ourselves after the first boot */
if (first) {
first = 0;
return;
}
qemu_boot_set(normal_boot_order);
qemu_unregister_reset(restore_boot_order, normal_boot_order);
g_free(normal_boot_order);
}
void add_boot_device_path(int32_t bootindex, DeviceState *dev,
const char *suffix)
{
FWBootEntry *node, *i;
if (bootindex < 0) {
return;
}
assert(dev != NULL || suffix != NULL);
node = g_malloc0(sizeof(FWBootEntry));
node->bootindex = bootindex;
node->suffix = g_strdup(suffix);
node->dev = dev;
QTAILQ_FOREACH(i, &fw_boot_order, link) {
if (i->bootindex == bootindex) {
fprintf(stderr, "Two devices with same boot index %d\n", bootindex);
exit(1);
} else if (i->bootindex < bootindex) {
continue;
}
QTAILQ_INSERT_BEFORE(i, node, link);
return;
}
QTAILQ_INSERT_TAIL(&fw_boot_order, node, link);
}
DeviceState *get_boot_device(uint32_t position)
{
uint32_t counter = 0;
FWBootEntry *i = NULL;
DeviceState *res = NULL;
if (!QTAILQ_EMPTY(&fw_boot_order)) {
QTAILQ_FOREACH(i, &fw_boot_order, link) {
if (counter == position) {
res = i->dev;
break;
}
counter++;
}
}
return res;
}
/*
* This function returns null terminated string that consist of new line
* separated device paths.
*
* memory pointed by "size" is assigned total length of the array in bytes
*
*/
char *get_boot_devices_list(size_t *size, bool ignore_suffixes)
{
FWBootEntry *i;
size_t total = 0;
char *list = NULL;
QTAILQ_FOREACH(i, &fw_boot_order, link) {
char *devpath = NULL, *bootpath;
size_t len;
if (i->dev) {
devpath = qdev_get_fw_dev_path(i->dev);
assert(devpath);
}
if (i->suffix && !ignore_suffixes && devpath) {
size_t bootpathlen = strlen(devpath) + strlen(i->suffix) + 1;
bootpath = g_malloc(bootpathlen);
snprintf(bootpath, bootpathlen, "%s%s", devpath, i->suffix);
g_free(devpath);
} else if (devpath) {
bootpath = devpath;
} else if (!ignore_suffixes) {
assert(i->suffix);
bootpath = g_strdup(i->suffix);
} else {
bootpath = g_strdup("");
}
if (total) {
list[total-1] = '\n';
}
len = strlen(bootpath) + 1;
list = g_realloc(list, total + len);
memcpy(&list[total], bootpath, len);
total += len;
g_free(bootpath);
}
*size = total;
if (boot_strict && *size > 0) {
list[total-1] = '\n';
list = g_realloc(list, total + 5);
memcpy(&list[total], "HALT", 5);
*size = total + 5;
}
return list;
}
static QemuOptsList qemu_smp_opts = {
.name = "smp-opts",
.implied_opt_name = "cpus",
.merge_lists = true,
.head = QTAILQ_HEAD_INITIALIZER(qemu_smp_opts.head),
.desc = {
{
.name = "cpus",
.type = QEMU_OPT_NUMBER,
}, {
.name = "sockets",
.type = QEMU_OPT_NUMBER,
}, {
.name = "cores",
.type = QEMU_OPT_NUMBER,
}, {
.name = "threads",
.type = QEMU_OPT_NUMBER,
}, {
.name = "maxcpus",
.type = QEMU_OPT_NUMBER,
},
{ /*End of list */ }
},
};
static void smp_parse(QemuOpts *opts)
{
if (opts) {
unsigned cpus = qemu_opt_get_number(opts, "cpus", 0);
unsigned sockets = qemu_opt_get_number(opts, "sockets", 0);
unsigned cores = qemu_opt_get_number(opts, "cores", 0);
unsigned threads = qemu_opt_get_number(opts, "threads", 0);
/* compute missing values, prefer sockets over cores over threads */
if (cpus == 0 || sockets == 0) {
sockets = sockets > 0 ? sockets : 1;
cores = cores > 0 ? cores : 1;
threads = threads > 0 ? threads : 1;
if (cpus == 0) {
cpus = cores * threads * sockets;
}
} else {
if (cores == 0) {
threads = threads > 0 ? threads : 1;
cores = cpus / (sockets * threads);
} else {
threads = cpus / (cores * sockets);
}
}
max_cpus = qemu_opt_get_number(opts, "maxcpus", 0);
smp_cpus = cpus;
smp_cores = cores > 0 ? cores : 1;
smp_threads = threads > 0 ? threads : 1;
}
if (max_cpus == 0) {
max_cpus = smp_cpus;
}
if (max_cpus > MAX_CPUMASK_BITS) {
fprintf(stderr, "Unsupported number of maxcpus\n");
exit(1);
}
if (max_cpus < smp_cpus) {
fprintf(stderr, "maxcpus must be equal to or greater than smp\n");
exit(1);
}
}
static void realtime_init(void)
{
if (enable_mlock) {
if (os_mlock() < 0) {
fprintf(stderr, "qemu: locking memory failed\n");
exit(1);
}
}
}
static void configure_msg(QemuOpts *opts)
{
enable_timestamp_msg = qemu_opt_get_bool(opts, "timestamp", true);
}
/***********************************************************/
/* USB devices */
static int usb_device_add(const char *devname)
{
USBDevice *dev = NULL;
#ifndef CONFIG_LINUX
const char *p;
#endif
if (!usb_enabled(false)) {
return -1;
}
/* drivers with .usbdevice_name entry in USBDeviceInfo */
dev = usbdevice_create(devname);
if (dev)
goto done;
/* the other ones */
#ifndef CONFIG_LINUX
/* only the linux version is qdev-ified, usb-bsd still needs this */
if (strstart(devname, "host:", &p)) {
dev = usb_host_device_open(usb_bus_find(-1), p);
}
#endif
if (!dev)
return -1;
done:
return 0;
}
static int usb_device_del(const char *devname)
{
int bus_num, addr;
const char *p;
if (strstart(devname, "host:", &p)) {
return -1;
}
if (!usb_enabled(false)) {
return -1;
}
p = strchr(devname, '.');
if (!p)
return -1;
bus_num = strtoul(devname, NULL, 0);
addr = strtoul(p + 1, NULL, 0);
return usb_device_delete_addr(bus_num, addr);
}
static int usb_parse(const char *cmdline)
{
int r;
r = usb_device_add(cmdline);
if (r < 0) {
fprintf(stderr, "qemu: could not add USB device '%s'\n", cmdline);
}
return r;
}
void do_usb_add(Monitor *mon, const QDict *qdict)
{
const char *devname = qdict_get_str(qdict, "devname");
if (usb_device_add(devname) < 0) {
error_report("could not add USB device '%s'", devname);
}
}
void do_usb_del(Monitor *mon, const QDict *qdict)
{
const char *devname = qdict_get_str(qdict, "devname");
if (usb_device_del(devname) < 0) {
error_report("could not delete USB device '%s'", devname);
}
}
/***********************************************************/
/* PCMCIA/Cardbus */
static struct pcmcia_socket_entry_s {
PCMCIASocket *socket;
struct pcmcia_socket_entry_s *next;
} *pcmcia_sockets = 0;
void pcmcia_socket_register(PCMCIASocket *socket)
{
struct pcmcia_socket_entry_s *entry;
entry = g_malloc(sizeof(struct pcmcia_socket_entry_s));
entry->socket = socket;
entry->next = pcmcia_sockets;
pcmcia_sockets = entry;
}
void pcmcia_socket_unregister(PCMCIASocket *socket)
{
struct pcmcia_socket_entry_s *entry, **ptr;
ptr = &pcmcia_sockets;
for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
if (entry->socket == socket) {
*ptr = entry->next;
g_free(entry);
}
}
void pcmcia_info(Monitor *mon, const QDict *qdict)
{
struct pcmcia_socket_entry_s *iter;
if (!pcmcia_sockets)
monitor_printf(mon, "No PCMCIA sockets\n");
for (iter = pcmcia_sockets; iter; iter = iter->next)
monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
iter->socket->attached ? iter->socket->card_string :
"Empty");
}
/***********************************************************/
/* machine registration */
MachineState *current_machine;
static void machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
QEMUMachine *qm = data;
mc->name = qm->name;
mc->alias = qm->alias;
mc->desc = qm->desc;
mc->init = qm->init;
mc->reset = qm->reset;
mc->hot_add_cpu = qm->hot_add_cpu;
mc->kvm_type = qm->kvm_type;
mc->block_default_type = qm->block_default_type;
pc/vl: Add units-per-default-bus property This patch adds the 'units_per_default_bus' property which allows individual boards to declare their desired index => (bus,unit) mapping for their default HBA, so that boards such as Q35 can specify that its default if_ide HBA, AHCI, only accepts one unit per bus. This property only overrides the mapping for drives matching the block_default_type interface. This patch also adds this property to *all* past and present Q35 machine types. This retroactive addition is justified because the previous erroneous index=>(bus,unit) mappings caused by lack of such a property were not utilized due to lack of initialization code in the Q35 init routine. Further, semantically, the Q35 board type has always had the property that its default HBA, AHCI, only accepts one unit per bus. The new code added to add devices to drives relies upon the accuracy of this mapping. Thus, the property is applied retroactively to reduce complexity of allowing IDE HBAs with different units per bus. Examples: Prior to this patch, all IDE HBAs were assumed to use 2 units per bus (Master, Slave). When using Q35 and AHCI, however, we only allow one unit per bus. -hdb foo.qcow2 would become index=1, or bus=0,unit=1. -hdd foo.qcow2 would become index=3, or bus=1,unit=1. -drive file=foo.qcow2,index=5 becomes bus=2,unit=1. These are invalid for AHCI. They now become, under Q35 only: -hdb foo.qcow2 --> index=1, bus=1, unit=0. -hdd foo.qcow2 --> index=3, bus=3, unit=0. -drive file=foo.qcow2,index=5 --> bus=5,unit=0. The mapping is adjusted based on the fact that the default IF for the Q35 machine type is IF_IDE, and units-per-default-bus overrides the IDE mapping from its default of 2 units per bus to just 1 unit per bus. Signed-off-by: John Snow <jsnow@redhat.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Message-id: 1412187569-23452-4-git-send-email-jsnow@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2014-10-01 22:19:26 +04:00
mc->units_per_default_bus = qm->units_per_default_bus;
mc->max_cpus = qm->max_cpus;
mc->no_serial = qm->no_serial;
mc->no_parallel = qm->no_parallel;
mc->use_virtcon = qm->use_virtcon;
mc->use_sclp = qm->use_sclp;
mc->no_floppy = qm->no_floppy;
mc->no_cdrom = qm->no_cdrom;
mc->no_sdcard = qm->no_sdcard;
mc->is_default = qm->is_default;
mc->default_machine_opts = qm->default_machine_opts;
mc->default_boot_order = qm->default_boot_order;
mc->compat_props = qm->compat_props;
mc->hw_version = qm->hw_version;
}
int qemu_register_machine(QEMUMachine *m)
{
char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
TypeInfo ti = {
.name = name,
.parent = TYPE_MACHINE,
.class_init = machine_class_init,
.class_data = (void *)m,
};
type_register(&ti);
g_free(name);
return 0;
}
static MachineClass *find_machine(const char *name)
{
GSList *el, *machines = object_class_get_list(TYPE_MACHINE, false);
MachineClass *mc = NULL;
for (el = machines; el; el = el->next) {
MachineClass *temp = el->data;
if (!strcmp(temp->name, name)) {
mc = temp;
break;
}
if (temp->alias &&
!strcmp(temp->alias, name)) {
mc = temp;
break;
}
}
g_slist_free(machines);
return mc;
}
MachineClass *find_default_machine(void)
{
GSList *el, *machines = object_class_get_list(TYPE_MACHINE, false);
MachineClass *mc = NULL;
for (el = machines; el; el = el->next) {
MachineClass *temp = el->data;
if (temp->is_default) {
mc = temp;
break;
}
}
g_slist_free(machines);
return mc;
}
MachineInfoList *qmp_query_machines(Error **errp)
{
GSList *el, *machines = object_class_get_list(TYPE_MACHINE, false);
MachineInfoList *mach_list = NULL;
for (el = machines; el; el = el->next) {
MachineClass *mc = el->data;
MachineInfoList *entry;
MachineInfo *info;
info = g_malloc0(sizeof(*info));
if (mc->is_default) {
info->has_is_default = true;
info->is_default = true;
}
if (mc->alias) {
info->has_alias = true;
info->alias = g_strdup(mc->alias);
}
info->name = g_strdup(mc->name);
info->cpu_max = !mc->max_cpus ? 1 : mc->max_cpus;
entry = g_malloc0(sizeof(*entry));
entry->value = info;
entry->next = mach_list;
mach_list = entry;
}
g_slist_free(machines);
return mach_list;
}
/***********************************************************/
/* main execution loop */
struct vm_change_state_entry {
VMChangeStateHandler *cb;
void *opaque;
QLIST_ENTRY (vm_change_state_entry) entries;
};
static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
void *opaque)
{
VMChangeStateEntry *e;
e = g_malloc0(sizeof (*e));
e->cb = cb;
e->opaque = opaque;
QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
return e;
}
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
{
QLIST_REMOVE (e, entries);
g_free (e);
}
void vm_state_notify(int running, RunState state)
{
VMChangeStateEntry *e, *next;
trace_vm_state_notify(running, state);
QLIST_FOREACH_SAFE(e, &vm_change_state_head, entries, next) {
e->cb(e->opaque, running, state);
}
}
/* reset/shutdown handler */
typedef struct QEMUResetEntry {
QTAILQ_ENTRY(QEMUResetEntry) entry;
QEMUResetHandler *func;
void *opaque;
} QEMUResetEntry;
static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
QTAILQ_HEAD_INITIALIZER(reset_handlers);
static int reset_requested;
static int shutdown_requested, shutdown_signal = -1;
static pid_t shutdown_pid;
static int powerdown_requested;
static int debug_requested;
static int suspend_requested;
static WakeupReason wakeup_reason;
static NotifierList powerdown_notifiers =
NOTIFIER_LIST_INITIALIZER(powerdown_notifiers);
static NotifierList suspend_notifiers =
NOTIFIER_LIST_INITIALIZER(suspend_notifiers);
static NotifierList wakeup_notifiers =
NOTIFIER_LIST_INITIALIZER(wakeup_notifiers);
static uint32_t wakeup_reason_mask = ~(1 << QEMU_WAKEUP_REASON_NONE);
int qemu_shutdown_requested_get(void)
{
return shutdown_requested;
}
int qemu_reset_requested_get(void)
{
return reset_requested;
}
static int qemu_shutdown_requested(void)
{
int r = shutdown_requested;
shutdown_requested = 0;
return r;
}
static void qemu_kill_report(void)
{
if (!qtest_driver() && shutdown_signal != -1) {
fprintf(stderr, "qemu: terminating on signal %d", shutdown_signal);
if (shutdown_pid == 0) {
/* This happens for eg ^C at the terminal, so it's worth
* avoiding printing an odd message in that case.
*/
fputc('\n', stderr);
} else {
fprintf(stderr, " from pid " FMT_pid "\n", shutdown_pid);
}
shutdown_signal = -1;
}
}
static int qemu_reset_requested(void)
{
int r = reset_requested;
reset_requested = 0;
return r;
}
static int qemu_suspend_requested(void)
{
int r = suspend_requested;
suspend_requested = 0;
return r;
}
static WakeupReason qemu_wakeup_requested(void)
{
return wakeup_reason;
}
static int qemu_powerdown_requested(void)
{
int r = powerdown_requested;
powerdown_requested = 0;
return r;
}
static int qemu_debug_requested(void)
{
int r = debug_requested;
debug_requested = 0;
return r;
}
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
{
QEMUResetEntry *re = g_malloc0(sizeof(QEMUResetEntry));
re->func = func;
re->opaque = opaque;
QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
}
void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
{
QEMUResetEntry *re;
QTAILQ_FOREACH(re, &reset_handlers, entry) {
if (re->func == func && re->opaque == opaque) {
QTAILQ_REMOVE(&reset_handlers, re, entry);
g_free(re);
return;
}
}
}
Allow QEMUMachine to override reset sequencing qemu_system_reset() function always performs the same basic actions on all machines. This includes running all the reset handler hooks, however the order in which these will run is not always easily predictable. This patch splits the core of qemu_system_reset() - the invocation of the reset handlers - out into a new qemu_devices_reset() function. qemu_system_reset() will usually call qemu_devices_reset(), but that can be now overriden by a new reset method in the QEMUMachine structure. Individual machines can use this reset method, if necessary, to perform any extra, machine specific initializations which have to occur before or after the bulk of the reset handlers. It's expected that the method will call qemu_devices_reset() at some point, but if the machine has really strange ordering requirements between devices resets it could even override that with it's own reset sequence (with great care, obviously). For a specific example of when this might be needed: a number of machines (but not PC) load images specified with -kernel or -initrd directly into the machine RAM before booting the guest. This mostly works at the moment, but to make this actually safe requires that this load occurs after peripheral devices are reset - otherwise they could have active DMAs in progress which would clobber the in memory images. Some machines (notably pseries) also have other entry conditions which need to be set up as the last thing before executing in guest space - some of this could be considered "emulated firmware" in the sense that the actions of the firmware are emulated directly by qemu rather than by executing a firmware image within the guest. When the platform's firmware to OS interface is sufficiently well specified, this saves time both in implementing the "firmware" and executing it. aliguori: don't unconditionally dereference current_machine Reviewed-by: Andreas Färber <afaerber@suse.de> Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-08-07 10:41:51 +04:00
void qemu_devices_reset(void)
{
QEMUResetEntry *re, *nre;
/* reset all devices */
QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
re->func(re->opaque);
}
Allow QEMUMachine to override reset sequencing qemu_system_reset() function always performs the same basic actions on all machines. This includes running all the reset handler hooks, however the order in which these will run is not always easily predictable. This patch splits the core of qemu_system_reset() - the invocation of the reset handlers - out into a new qemu_devices_reset() function. qemu_system_reset() will usually call qemu_devices_reset(), but that can be now overriden by a new reset method in the QEMUMachine structure. Individual machines can use this reset method, if necessary, to perform any extra, machine specific initializations which have to occur before or after the bulk of the reset handlers. It's expected that the method will call qemu_devices_reset() at some point, but if the machine has really strange ordering requirements between devices resets it could even override that with it's own reset sequence (with great care, obviously). For a specific example of when this might be needed: a number of machines (but not PC) load images specified with -kernel or -initrd directly into the machine RAM before booting the guest. This mostly works at the moment, but to make this actually safe requires that this load occurs after peripheral devices are reset - otherwise they could have active DMAs in progress which would clobber the in memory images. Some machines (notably pseries) also have other entry conditions which need to be set up as the last thing before executing in guest space - some of this could be considered "emulated firmware" in the sense that the actions of the firmware are emulated directly by qemu rather than by executing a firmware image within the guest. When the platform's firmware to OS interface is sufficiently well specified, this saves time both in implementing the "firmware" and executing it. aliguori: don't unconditionally dereference current_machine Reviewed-by: Andreas Färber <afaerber@suse.de> Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-08-07 10:41:51 +04:00
}
void qemu_system_reset(bool report)
{
MachineClass *mc;
mc = current_machine ? MACHINE_GET_CLASS(current_machine) : NULL;
if (mc && mc->reset) {
mc->reset();
Allow QEMUMachine to override reset sequencing qemu_system_reset() function always performs the same basic actions on all machines. This includes running all the reset handler hooks, however the order in which these will run is not always easily predictable. This patch splits the core of qemu_system_reset() - the invocation of the reset handlers - out into a new qemu_devices_reset() function. qemu_system_reset() will usually call qemu_devices_reset(), but that can be now overriden by a new reset method in the QEMUMachine structure. Individual machines can use this reset method, if necessary, to perform any extra, machine specific initializations which have to occur before or after the bulk of the reset handlers. It's expected that the method will call qemu_devices_reset() at some point, but if the machine has really strange ordering requirements between devices resets it could even override that with it's own reset sequence (with great care, obviously). For a specific example of when this might be needed: a number of machines (but not PC) load images specified with -kernel or -initrd directly into the machine RAM before booting the guest. This mostly works at the moment, but to make this actually safe requires that this load occurs after peripheral devices are reset - otherwise they could have active DMAs in progress which would clobber the in memory images. Some machines (notably pseries) also have other entry conditions which need to be set up as the last thing before executing in guest space - some of this could be considered "emulated firmware" in the sense that the actions of the firmware are emulated directly by qemu rather than by executing a firmware image within the guest. When the platform's firmware to OS interface is sufficiently well specified, this saves time both in implementing the "firmware" and executing it. aliguori: don't unconditionally dereference current_machine Reviewed-by: Andreas Färber <afaerber@suse.de> Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-08-07 10:41:51 +04:00
} else {
qemu_devices_reset();
}
if (report) {
qapi_event_send_reset(&error_abort);
}
KVM: Rework VCPU state writeback API This grand cleanup drops all reset and vmsave/load related synchronization points in favor of four(!) generic hooks: - cpu_synchronize_all_states in qemu_savevm_state_complete (initial sync from kernel before vmsave) - cpu_synchronize_all_post_init in qemu_loadvm_state (writeback after vmload) - cpu_synchronize_all_post_init in main after machine init - cpu_synchronize_all_post_reset in qemu_system_reset (writeback after system reset) These writeback points + the existing one of VCPU exec after cpu_synchronize_state map on three levels of writeback: - KVM_PUT_RUNTIME_STATE (during runtime, other VCPUs continue to run) - KVM_PUT_RESET_STATE (on synchronous system reset, all VCPUs stopped) - KVM_PUT_FULL_STATE (on init or vmload, all VCPUs stopped as well) This level is passed to the arch-specific VCPU state writing function that will decide which concrete substates need to be written. That way, no writer of load, save or reset functions that interact with in-kernel KVM states will ever have to worry about synchronization again. That also means that a lot of reasons for races, segfaults and deadlocks are eliminated. cpu_synchronize_state remains untouched, just as Anthony suggested. We continue to need it before reading or writing of VCPU states that are also tracked by in-kernel KVM subsystems. Consequently, this patch removes many cpu_synchronize_state calls that are now redundant, just like remaining explicit register syncs. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-03-01 21:10:30 +03:00
cpu_synchronize_all_post_reset();
}
void qemu_system_reset_request(void)
{
if (no_reboot) {
shutdown_requested = 1;
} else {
reset_requested = 1;
}
cpu_stop_current();
qemu_notify_event();
}
static void qemu_system_suspend(void)
{
pause_all_vcpus();
notifier_list_notify(&suspend_notifiers, NULL);
runstate_set(RUN_STATE_SUSPENDED);
qapi_event_send_suspend(&error_abort);
}
void qemu_system_suspend_request(void)
{
if (runstate_check(RUN_STATE_SUSPENDED)) {
return;
}
suspend_requested = 1;
cpu_stop_current();
qemu_notify_event();
}
void qemu_register_suspend_notifier(Notifier *notifier)
{
notifier_list_add(&suspend_notifiers, notifier);
}
void qemu_system_wakeup_request(WakeupReason reason)
{
trace_system_wakeup_request(reason);
if (!runstate_check(RUN_STATE_SUSPENDED)) {
return;
}
if (!(wakeup_reason_mask & (1 << reason))) {
return;
}
runstate_set(RUN_STATE_RUNNING);
wakeup_reason = reason;
qemu_notify_event();
}
void qemu_system_wakeup_enable(WakeupReason reason, bool enabled)
{
if (enabled) {
wakeup_reason_mask |= (1 << reason);
} else {
wakeup_reason_mask &= ~(1 << reason);
}
}
void qemu_register_wakeup_notifier(Notifier *notifier)
{
notifier_list_add(&wakeup_notifiers, notifier);
}
void qemu_system_killed(int signal, pid_t pid)
{
shutdown_signal = signal;
shutdown_pid = pid;
no_shutdown = 0;
qemu_system_shutdown_request();
}
void qemu_system_shutdown_request(void)
{
2014-06-21 22:43:03 +04:00
trace_qemu_system_shutdown_request();
shutdown_requested = 1;
qemu_notify_event();
}
static void qemu_system_powerdown(void)
{
qapi_event_send_powerdown(&error_abort);
notifier_list_notify(&powerdown_notifiers, NULL);
}
void qemu_system_powerdown_request(void)
{
2014-06-21 22:43:03 +04:00
trace_qemu_system_powerdown_request();
powerdown_requested = 1;
qemu_notify_event();
}
void qemu_register_powerdown_notifier(Notifier *notifier)
{
notifier_list_add(&powerdown_notifiers, notifier);
}
void qemu_system_debug_request(void)
{
debug_requested = 1;
qemu_notify_event();
}
static bool main_loop_should_exit(void)
{
RunState r;
if (qemu_debug_requested()) {
vm_stop(RUN_STATE_DEBUG);
}
if (qemu_suspend_requested()) {
qemu_system_suspend();
}
if (qemu_shutdown_requested()) {
qemu_kill_report();
qapi_event_send_shutdown(&error_abort);
if (no_shutdown) {
vm_stop(RUN_STATE_SHUTDOWN);
} else {
return true;
}
}
if (qemu_reset_requested()) {
pause_all_vcpus();
cpu_synchronize_all_states();
qemu_system_reset(VMRESET_REPORT);
resume_all_vcpus();
if (runstate_needs_reset()) {
runstate_set(RUN_STATE_PAUSED);
}
}
if (qemu_wakeup_requested()) {
pause_all_vcpus();
cpu_synchronize_all_states();
qemu_system_reset(VMRESET_SILENT);
notifier_list_notify(&wakeup_notifiers, &wakeup_reason);
wakeup_reason = QEMU_WAKEUP_REASON_NONE;
resume_all_vcpus();
qapi_event_send_wakeup(&error_abort);
}
if (qemu_powerdown_requested()) {
qemu_system_powerdown();
}
if (qemu_vmstop_requested(&r)) {
vm_stop(r);
}
return false;
}
static void main_loop(void)
{
bool nonblocking;
int last_io = 0;
#ifdef CONFIG_PROFILER
int64_t ti;
#endif
do {
nonblocking = !kvm_enabled() && !xen_enabled() && last_io > 0;
#ifdef CONFIG_PROFILER
ti = profile_getclock();
#endif
last_io = main_loop_wait(nonblocking);
#ifdef CONFIG_PROFILER
dev_time += profile_getclock() - ti;
#endif
} while (!main_loop_should_exit());
}
static void version(void)
{
printf("QEMU emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
}
static void help(int exitcode)
{
version();
printf("usage: %s [options] [disk_image]\n\n"
"'disk_image' is a raw hard disk image for IDE hard disk 0\n\n",
error_get_progname());
#define QEMU_OPTIONS_GENERATE_HELP
#include "qemu-options-wrapper.h"
printf("\nDuring emulation, the following keys are useful:\n"
"ctrl-alt-f toggle full screen\n"
"ctrl-alt-n switch to virtual console 'n'\n"
"ctrl-alt toggle mouse and keyboard grab\n"
"\n"
"When using -nographic, press 'ctrl-a h' to get some help.\n");
exit(exitcode);
}
#define HAS_ARG 0x0001
typedef struct QEMUOption {
const char *name;
int flags;
int index;
uint32_t arch_mask;
} QEMUOption;
static const QEMUOption qemu_options[] = {
{ "h", 0, QEMU_OPTION_h, QEMU_ARCH_ALL },
#define QEMU_OPTIONS_GENERATE_OPTIONS
#include "qemu-options-wrapper.h"
{ NULL },
};
static bool vga_available(void)
{
return object_class_by_name("VGA") || object_class_by_name("isa-vga");
}
static bool cirrus_vga_available(void)
{
return object_class_by_name("cirrus-vga")
|| object_class_by_name("isa-cirrus-vga");
}
static bool vmware_vga_available(void)
{
return object_class_by_name("vmware-svga");
}
static bool qxl_vga_available(void)
{
return object_class_by_name("qxl-vga");
}
static bool tcx_vga_available(void)
{
return object_class_by_name("SUNW,tcx");
}
static bool cg3_vga_available(void)
{
return object_class_by_name("cgthree");
}
static void select_vgahw (const char *p)
{
const char *opts;
assert(vga_interface_type == VGA_NONE);
if (strstart(p, "std", &opts)) {
if (vga_available()) {
vga_interface_type = VGA_STD;
} else {
fprintf(stderr, "Error: standard VGA not available\n");
exit(0);
}
} else if (strstart(p, "cirrus", &opts)) {
if (cirrus_vga_available()) {
vga_interface_type = VGA_CIRRUS;
} else {
fprintf(stderr, "Error: Cirrus VGA not available\n");
exit(0);
}
} else if (strstart(p, "vmware", &opts)) {
if (vmware_vga_available()) {
vga_interface_type = VGA_VMWARE;
} else {
fprintf(stderr, "Error: VMWare SVGA not available\n");
exit(0);
}
} else if (strstart(p, "xenfb", &opts)) {
vga_interface_type = VGA_XENFB;
} else if (strstart(p, "qxl", &opts)) {
if (qxl_vga_available()) {
vga_interface_type = VGA_QXL;
} else {
fprintf(stderr, "Error: QXL VGA not available\n");
exit(0);
}
} else if (strstart(p, "tcx", &opts)) {
if (tcx_vga_available()) {
vga_interface_type = VGA_TCX;
} else {
fprintf(stderr, "Error: TCX framebuffer not available\n");
exit(0);
}
} else if (strstart(p, "cg3", &opts)) {
if (cg3_vga_available()) {
vga_interface_type = VGA_CG3;
} else {
fprintf(stderr, "Error: CG3 framebuffer not available\n");
exit(0);
}
} else if (!strstart(p, "none", &opts)) {
invalid_vga:
fprintf(stderr, "Unknown vga type: %s\n", p);
exit(1);
}
while (*opts) {
const char *nextopt;
if (strstart(opts, ",retrace=", &nextopt)) {
opts = nextopt;
if (strstart(opts, "dumb", &nextopt))
vga_retrace_method = VGA_RETRACE_DUMB;
else if (strstart(opts, "precise", &nextopt))
vga_retrace_method = VGA_RETRACE_PRECISE;
else goto invalid_vga;
} else goto invalid_vga;
opts = nextopt;
}
}
static DisplayType select_display(const char *p)
{
const char *opts;
DisplayType display = DT_DEFAULT;
if (strstart(p, "sdl", &opts)) {
#ifdef CONFIG_SDL
display = DT_SDL;
while (*opts) {
const char *nextopt;
if (strstart(opts, ",frame=", &nextopt)) {
opts = nextopt;
if (strstart(opts, "on", &nextopt)) {
no_frame = 0;
} else if (strstart(opts, "off", &nextopt)) {
no_frame = 1;
} else {
goto invalid_sdl_args;
}
} else if (strstart(opts, ",alt_grab=", &nextopt)) {
opts = nextopt;
if (strstart(opts, "on", &nextopt)) {
alt_grab = 1;
} else if (strstart(opts, "off", &nextopt)) {
alt_grab = 0;
} else {
goto invalid_sdl_args;
}
} else if (strstart(opts, ",ctrl_grab=", &nextopt)) {
opts = nextopt;
if (strstart(opts, "on", &nextopt)) {
ctrl_grab = 1;
} else if (strstart(opts, "off", &nextopt)) {
ctrl_grab = 0;
} else {
goto invalid_sdl_args;
}
} else if (strstart(opts, ",window_close=", &nextopt)) {
opts = nextopt;
if (strstart(opts, "on", &nextopt)) {
no_quit = 0;
} else if (strstart(opts, "off", &nextopt)) {
no_quit = 1;
} else {
goto invalid_sdl_args;
}
} else {
invalid_sdl_args:
fprintf(stderr, "Invalid SDL option string: %s\n", p);
exit(1);
}
opts = nextopt;
}
#else
fprintf(stderr, "SDL support is disabled\n");
exit(1);
#endif
} else if (strstart(p, "vnc", &opts)) {
#ifdef CONFIG_VNC
display_remote++;
if (*opts) {
const char *nextopt;
if (strstart(opts, "=", &nextopt)) {
vnc_display = nextopt;
}
}
if (!vnc_display) {
fprintf(stderr, "VNC requires a display argument vnc=<display>\n");
exit(1);
}
#else
fprintf(stderr, "VNC support is disabled\n");
exit(1);
#endif
} else if (strstart(p, "curses", &opts)) {
#ifdef CONFIG_CURSES
display = DT_CURSES;
#else
fprintf(stderr, "Curses support is disabled\n");
exit(1);
#endif
} else if (strstart(p, "gtk", &opts)) {
#ifdef CONFIG_GTK
display = DT_GTK;
while (*opts) {
const char *nextopt;
if (strstart(opts, ",grab_on_hover=", &nextopt)) {
opts = nextopt;
if (strstart(opts, "on", &nextopt)) {
grab_on_hover = true;
} else if (strstart(opts, "off", &nextopt)) {
grab_on_hover = false;
} else {
goto invalid_gtk_args;
}
} else {
invalid_gtk_args:
fprintf(stderr, "Invalid GTK option string: %s\n", p);
exit(1);
}
opts = nextopt;
}
#else
fprintf(stderr, "GTK support is disabled\n");
exit(1);
#endif
} else if (strstart(p, "none", &opts)) {
display = DT_NONE;
} else {
fprintf(stderr, "Unknown display type: %s\n", p);
exit(1);
}
return display;
}
static int balloon_parse(const char *arg)
{
QemuOpts *opts;
if (strcmp(arg, "none") == 0) {
return 0;
}
if (!strncmp(arg, "virtio", 6)) {
if (arg[6] == ',') {
/* have params -> parse them */
opts = qemu_opts_parse(qemu_find_opts("device"), arg+7, 0);
if (!opts)
return -1;
} else {
/* create empty opts */
opts = qemu_opts_create(qemu_find_opts("device"), NULL, 0,
&error_abort);
}
qemu_opt_set(opts, "driver", "virtio-balloon");
return 0;
}
return -1;
}
char *qemu_find_file(int type, const char *name)
{
int i;
const char *subdir;
char *buf;
/* Try the name as a straight path first */
if (access(name, R_OK) == 0) {
trace_load_file(name, name);
return g_strdup(name);
}
switch (type) {
case QEMU_FILE_TYPE_BIOS:
subdir = "";
break;
case QEMU_FILE_TYPE_KEYMAP:
subdir = "keymaps/";
break;
default:
abort();
}
for (i = 0; i < data_dir_idx; i++) {
buf = g_strdup_printf("%s/%s%s", data_dir[i], subdir, name);
if (access(buf, R_OK) == 0) {
trace_load_file(name, buf);
return buf;
}
g_free(buf);
}
return NULL;
}
static int device_help_func(QemuOpts *opts, void *opaque)
{
return qdev_device_help(opts);
}
static int device_init_func(QemuOpts *opts, void *opaque)
{
DeviceState *dev;
dev = qdev_device_add(opts);
if (!dev)
return -1;
object_unref(OBJECT(dev));
return 0;
}
static int chardev_init_func(QemuOpts *opts, void *opaque)
{
Error *local_err = NULL;
qemu_chr_new_from_opts(opts, NULL, &local_err);
if (local_err) {
error_report("%s", error_get_pretty(local_err));
error_free(local_err);
return -1;
}
return 0;
}
#ifdef CONFIG_VIRTFS
static int fsdev_init_func(QemuOpts *opts, void *opaque)
{
int ret;
ret = qemu_fsdev_add(opts);
return ret;
}
#endif
static int mon_init_func(QemuOpts *opts, void *opaque)
{
CharDriverState *chr;
const char *chardev;
const char *mode;
int flags;
mode = qemu_opt_get(opts, "mode");
if (mode == NULL) {
mode = "readline";
}
if (strcmp(mode, "readline") == 0) {
flags = MONITOR_USE_READLINE;
} else if (strcmp(mode, "control") == 0) {
flags = MONITOR_USE_CONTROL;
} else {
fprintf(stderr, "unknown monitor mode \"%s\"\n", mode);
exit(1);
}
if (qemu_opt_get_bool(opts, "pretty", 0))
flags |= MONITOR_USE_PRETTY;
if (qemu_opt_get_bool(opts, "default", 0))
flags |= MONITOR_IS_DEFAULT;
chardev = qemu_opt_get(opts, "chardev");
chr = qemu_chr_find(chardev);
if (chr == NULL) {
fprintf(stderr, "chardev \"%s\" not found\n", chardev);
exit(1);
}
qemu_chr_fe_claim_no_fail(chr);
monitor_init(chr, flags);
return 0;
}
static void monitor_parse(const char *optarg, const char *mode)
{
static int monitor_device_index = 0;
QemuOpts *opts;
const char *p;
char label[32];
int def = 0;
if (strstart(optarg, "chardev:", &p)) {
snprintf(label, sizeof(label), "%s", p);
} else {
snprintf(label, sizeof(label), "compat_monitor%d",
monitor_device_index);
if (monitor_device_index == 0) {
def = 1;
}
opts = qemu_chr_parse_compat(label, optarg);
if (!opts) {
fprintf(stderr, "parse error: %s\n", optarg);
exit(1);
}
}
opts = qemu_opts_create(qemu_find_opts("mon"), label, 1, NULL);
if (!opts) {
fprintf(stderr, "duplicate chardev: %s\n", label);
exit(1);
}
qemu_opt_set(opts, "mode", mode);
qemu_opt_set(opts, "chardev", label);
if (def)
qemu_opt_set(opts, "default", "on");
monitor_device_index++;
}
struct device_config {
enum {
DEV_USB, /* -usbdevice */
DEV_BT, /* -bt */
DEV_SERIAL, /* -serial */
DEV_PARALLEL, /* -parallel */
DEV_VIRTCON, /* -virtioconsole */
DEV_DEBUGCON, /* -debugcon */
DEV_GDB, /* -gdb, -s */
DEV_SCLP, /* s390 sclp */
} type;
const char *cmdline;
Location loc;
QTAILQ_ENTRY(device_config) next;
};
static QTAILQ_HEAD(, device_config) device_configs =
QTAILQ_HEAD_INITIALIZER(device_configs);
static void add_device_config(int type, const char *cmdline)
{
struct device_config *conf;
conf = g_malloc0(sizeof(*conf));
conf->type = type;
conf->cmdline = cmdline;
loc_save(&conf->loc);
QTAILQ_INSERT_TAIL(&device_configs, conf, next);
}
static int foreach_device_config(int type, int (*func)(const char *cmdline))
{
struct device_config *conf;
int rc;
QTAILQ_FOREACH(conf, &device_configs, next) {
if (conf->type != type)
continue;
loc_push_restore(&conf->loc);
rc = func(conf->cmdline);
loc_pop(&conf->loc);
if (rc) {
return rc;
}
}
return 0;
}
static int serial_parse(const char *devname)
{
static int index = 0;
char label[32];
if (strcmp(devname, "none") == 0)
return 0;
if (index == MAX_SERIAL_PORTS) {
fprintf(stderr, "qemu: too many serial ports\n");
exit(1);
}
snprintf(label, sizeof(label), "serial%d", index);
serial_hds[index] = qemu_chr_new(label, devname, NULL);
if (!serial_hds[index]) {
fprintf(stderr, "qemu: could not connect serial device"
" to character backend '%s'\n", devname);
return -1;
}
index++;
return 0;
}
static int parallel_parse(const char *devname)
{
static int index = 0;
char label[32];
if (strcmp(devname, "none") == 0)
return 0;
if (index == MAX_PARALLEL_PORTS) {
fprintf(stderr, "qemu: too many parallel ports\n");
exit(1);
}
snprintf(label, sizeof(label), "parallel%d", index);
parallel_hds[index] = qemu_chr_new(label, devname, NULL);
if (!parallel_hds[index]) {
fprintf(stderr, "qemu: could not connect parallel device"
" to character backend '%s'\n", devname);
return -1;
}
index++;
return 0;
}
static int virtcon_parse(const char *devname)
{
QemuOptsList *device = qemu_find_opts("device");
static int index = 0;
char label[32];
QemuOpts *bus_opts, *dev_opts;
if (strcmp(devname, "none") == 0)
return 0;
if (index == MAX_VIRTIO_CONSOLES) {
fprintf(stderr, "qemu: too many virtio consoles\n");
exit(1);
}
bus_opts = qemu_opts_create(device, NULL, 0, &error_abort);
if (arch_type == QEMU_ARCH_S390X) {
qemu_opt_set(bus_opts, "driver", "virtio-serial-s390");
} else {
qemu_opt_set(bus_opts, "driver", "virtio-serial-pci");
}
dev_opts = qemu_opts_create(device, NULL, 0, &error_abort);
qemu_opt_set(dev_opts, "driver", "virtconsole");
snprintf(label, sizeof(label), "virtcon%d", index);
virtcon_hds[index] = qemu_chr_new(label, devname, NULL);
if (!virtcon_hds[index]) {
fprintf(stderr, "qemu: could not connect virtio console"
" to character backend '%s'\n", devname);
return -1;
}
qemu_opt_set(dev_opts, "chardev", label);
index++;
return 0;
}
static int sclp_parse(const char *devname)
{
QemuOptsList *device = qemu_find_opts("device");
static int index = 0;
char label[32];
QemuOpts *dev_opts;
if (strcmp(devname, "none") == 0) {
return 0;
}
if (index == MAX_SCLP_CONSOLES) {
fprintf(stderr, "qemu: too many sclp consoles\n");
exit(1);
}
assert(arch_type == QEMU_ARCH_S390X);
dev_opts = qemu_opts_create(device, NULL, 0, NULL);
qemu_opt_set(dev_opts, "driver", "sclpconsole");
snprintf(label, sizeof(label), "sclpcon%d", index);
sclp_hds[index] = qemu_chr_new(label, devname, NULL);
if (!sclp_hds[index]) {
fprintf(stderr, "qemu: could not connect sclp console"
" to character backend '%s'\n", devname);
return -1;
}
qemu_opt_set(dev_opts, "chardev", label);
index++;
return 0;
}
static int debugcon_parse(const char *devname)
{
QemuOpts *opts;
if (!qemu_chr_new("debugcon", devname, NULL)) {
exit(1);
}
opts = qemu_opts_create(qemu_find_opts("device"), "debugcon", 1, NULL);
if (!opts) {
fprintf(stderr, "qemu: already have a debugcon device\n");
exit(1);
}
qemu_opt_set(opts, "driver", "isa-debugcon");
qemu_opt_set(opts, "chardev", "debugcon");
return 0;
}
static MachineClass *machine_parse(const char *name)
{
MachineClass *mc = NULL;
GSList *el, *machines = object_class_get_list(TYPE_MACHINE, false);
if (name) {
mc = find_machine(name);
}
if (mc) {
return mc;
}
if (name && !is_help_option(name)) {
error_report("Unsupported machine type");
error_printf("Use -machine help to list supported machines!\n");
} else {
printf("Supported machines are:\n");
for (el = machines; el; el = el->next) {
MachineClass *mc = el->data;
if (mc->alias) {
printf("%-20s %s (alias of %s)\n", mc->alias, mc->desc, mc->name);
}
printf("%-20s %s%s\n", mc->name, mc->desc,
mc->is_default ? " (default)" : "");
}
}
g_slist_free(machines);
exit(!name || !is_help_option(name));
}
static int tcg_init(MachineClass *mc)
{
tcg_exec_init(tcg_tb_size * 1024 * 1024);
return 0;
}
static struct {
const char *opt_name;
const char *name;
int (*available)(void);
int (*init)(MachineClass *mc);
bool *allowed;
} accel_list[] = {
{ "tcg", "tcg", tcg_available, tcg_init, &tcg_allowed },
{ "xen", "Xen", xen_available, xen_init, &xen_allowed },
{ "kvm", "KVM", kvm_available, kvm_init, &kvm_allowed },
{ "qtest", "QTest", qtest_available, qtest_init_accel, &qtest_allowed },
};
static int configure_accelerator(MachineClass *mc)
{
Fix -machine options accel, kernel_irqchip, kvm_shadow_mem Multiple -machine options with the same ID are merged. All but the one without an ID are to be silently ignored. In most places, we query these options with a null ID. This is correct. In some places, we instead query whatever options come first in the list. This is wrong. When the -machine processed first happens to have an ID, options are taken from that ID, and the ones specified without ID are silently ignored. Example: $ upstream-qemu -nodefaults -S -display none -monitor stdio -machine id=foo -machine accel=kvm,usb=on $ upstream-qemu -nodefaults -S -display none -monitor stdio -machine id=foo,accel=kvm,usb=on -machine accel=xen $ upstream-qemu -nodefaults -S -display none -monitor stdio -machine accel=xen -machine id=foo,accel=kvm,usb=on $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine accel=kvm,usb=on QEMU 1.5.50 monitor - type 'help' for more information (qemu) info kvm kvm support: enabled (qemu) info usb (qemu) q $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine id=foo -machine accel=kvm,usb=on QEMU 1.5.50 monitor - type 'help' for more information (qemu) info kvm kvm support: disabled (qemu) info usb (qemu) q $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine id=foo,accel=kvm,usb=on -machine accel=xen QEMU 1.5.50 monitor - type 'help' for more information (qemu) info kvm kvm support: enabled (qemu) info usb USB support not enabled (qemu) q $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine accel=xen -machine id=foo,accel=kvm,usb=on xc: error: Could not obtain handle on privileged command interface (2 = No such file or directory): Internal error xen be core: can't open xen interface failed to initialize Xen: Operation not permitted Option usb is queried correctly, and the one without an ID wins, regardless of option order. Option accel is queried incorrectly, and which one wins depends on option order and ID. Affected options are accel (and its sugared forms -enable-kvm and -no-kvm), kernel_irqchip, kvm_shadow_mem. Additionally, option kernel_irqchip is normally on by default, except it's off when no -machine options are given. Bug can't bite, because kernel_irqchip is used only when KVM is enabled, KVM is off by default, and enabling always creates -machine options. Downstreams that enable KVM by default do get bitten, though. Use qemu_get_machine_opts() to fix these bugs. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-id: 1372943363-24081-5-git-send-email-armbru@redhat.com Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-04 17:09:20 +04:00
const char *p;
char buf[10];
int i, ret;
bool accel_initialised = false;
bool init_failed = false;
Fix -machine options accel, kernel_irqchip, kvm_shadow_mem Multiple -machine options with the same ID are merged. All but the one without an ID are to be silently ignored. In most places, we query these options with a null ID. This is correct. In some places, we instead query whatever options come first in the list. This is wrong. When the -machine processed first happens to have an ID, options are taken from that ID, and the ones specified without ID are silently ignored. Example: $ upstream-qemu -nodefaults -S -display none -monitor stdio -machine id=foo -machine accel=kvm,usb=on $ upstream-qemu -nodefaults -S -display none -monitor stdio -machine id=foo,accel=kvm,usb=on -machine accel=xen $ upstream-qemu -nodefaults -S -display none -monitor stdio -machine accel=xen -machine id=foo,accel=kvm,usb=on $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine accel=kvm,usb=on QEMU 1.5.50 monitor - type 'help' for more information (qemu) info kvm kvm support: enabled (qemu) info usb (qemu) q $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine id=foo -machine accel=kvm,usb=on QEMU 1.5.50 monitor - type 'help' for more information (qemu) info kvm kvm support: disabled (qemu) info usb (qemu) q $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine id=foo,accel=kvm,usb=on -machine accel=xen QEMU 1.5.50 monitor - type 'help' for more information (qemu) info kvm kvm support: enabled (qemu) info usb USB support not enabled (qemu) q $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine accel=xen -machine id=foo,accel=kvm,usb=on xc: error: Could not obtain handle on privileged command interface (2 = No such file or directory): Internal error xen be core: can't open xen interface failed to initialize Xen: Operation not permitted Option usb is queried correctly, and the one without an ID wins, regardless of option order. Option accel is queried incorrectly, and which one wins depends on option order and ID. Affected options are accel (and its sugared forms -enable-kvm and -no-kvm), kernel_irqchip, kvm_shadow_mem. Additionally, option kernel_irqchip is normally on by default, except it's off when no -machine options are given. Bug can't bite, because kernel_irqchip is used only when KVM is enabled, KVM is off by default, and enabling always creates -machine options. Downstreams that enable KVM by default do get bitten, though. Use qemu_get_machine_opts() to fix these bugs. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-id: 1372943363-24081-5-git-send-email-armbru@redhat.com Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-04 17:09:20 +04:00
p = qemu_opt_get(qemu_get_machine_opts(), "accel");
if (p == NULL) {
/* Use the default "accelerator", tcg */
p = "tcg";
}
while (!accel_initialised && *p != '\0') {
if (*p == ':') {
p++;
}
p = get_opt_name(buf, sizeof (buf), p, ':');
for (i = 0; i < ARRAY_SIZE(accel_list); i++) {
if (strcmp(accel_list[i].opt_name, buf) == 0) {
if (!accel_list[i].available()) {
printf("%s not supported for this target\n",
accel_list[i].name);
break;
}
*(accel_list[i].allowed) = true;
ret = accel_list[i].init(mc);
if (ret < 0) {
init_failed = true;
fprintf(stderr, "failed to initialize %s: %s\n",
accel_list[i].name,
strerror(-ret));
*(accel_list[i].allowed) = false;
} else {
accel_initialised = true;
}
break;
}
}
if (i == ARRAY_SIZE(accel_list)) {
fprintf(stderr, "\"%s\" accelerator does not exist.\n", buf);
}
}
if (!accel_initialised) {
if (!init_failed) {
fprintf(stderr, "No accelerator found!\n");
}
exit(1);
}
if (init_failed) {
fprintf(stderr, "Back to %s accelerator.\n", accel_list[i].name);
}
return !accel_initialised;
}
void qemu_add_exit_notifier(Notifier *notify)
{
notifier_list_add(&exit_notifiers, notify);
}
void qemu_remove_exit_notifier(Notifier *notify)
{
notifier_remove(notify);
}
static void qemu_run_exit_notifiers(void)
{
notifier_list_notify(&exit_notifiers, NULL);
}
void qemu_add_machine_init_done_notifier(Notifier *notify)
{
notifier_list_add(&machine_init_done_notifiers, notify);
}
static void qemu_run_machine_init_done_notifiers(void)
{
notifier_list_notify(&machine_init_done_notifiers, NULL);
}
static const QEMUOption *lookup_opt(int argc, char **argv,
const char **poptarg, int *poptind)
{
const QEMUOption *popt;
int optind = *poptind;
char *r = argv[optind];
const char *optarg;
loc_set_cmdline(argv, optind, 1);
optind++;
/* Treat --foo the same as -foo. */
if (r[1] == '-')
r++;
popt = qemu_options;
for(;;) {
if (!popt->name) {
error_report("invalid option");
exit(1);
}
if (!strcmp(popt->name, r + 1))
break;
popt++;
}
if (popt->flags & HAS_ARG) {
if (optind >= argc) {
error_report("requires an argument");
exit(1);
}
optarg = argv[optind++];
loc_set_cmdline(argv, optind - 2, 2);
} else {
optarg = NULL;
}
*poptarg = optarg;
*poptind = optind;
return popt;
}
static gpointer malloc_and_trace(gsize n_bytes)
{
void *ptr = malloc(n_bytes);
trace_g_malloc(n_bytes, ptr);
return ptr;
}
static gpointer realloc_and_trace(gpointer mem, gsize n_bytes)
{
void *ptr = realloc(mem, n_bytes);
trace_g_realloc(mem, n_bytes, ptr);
return ptr;
}
static void free_and_trace(gpointer mem)
{
trace_g_free(mem);
free(mem);
}
static int machine_set_property(const char *name, const char *value,
void *opaque)
{
Object *obj = OBJECT(opaque);
StringInputVisitor *siv;
Error *local_err = NULL;
char *c, *qom_name;
if (strcmp(name, "type") == 0) {
return 0;
}
qom_name = g_strdup(name);
c = qom_name;
while (*c++) {
if (*c == '_') {
*c = '-';
}
}
siv = string_input_visitor_new(value);
object_property_set(obj, string_input_get_visitor(siv), qom_name, &local_err);
string_input_visitor_cleanup(siv);
g_free(qom_name);
if (local_err) {
qerror_report_err(local_err);
error_free(local_err);
return -1;
}
return 0;
}
static int object_create(QemuOpts *opts, void *opaque)
{
Error *err = NULL;
char *type = NULL;
char *id = NULL;
void *dummy = NULL;
OptsVisitor *ov;
QDict *pdict;
ov = opts_visitor_new(opts);
pdict = qemu_opts_to_qdict(opts, NULL);
visit_start_struct(opts_get_visitor(ov), &dummy, NULL, NULL, 0, &err);
if (err) {
goto out;
}
qdict_del(pdict, "qom-type");
visit_type_str(opts_get_visitor(ov), &type, "qom-type", &err);
if (err) {
goto out;
}
qdict_del(pdict, "id");
visit_type_str(opts_get_visitor(ov), &id, "id", &err);
if (err) {
goto out;
}
object_add(type, id, pdict, opts_get_visitor(ov), &err);
if (err) {
goto out;
}
visit_end_struct(opts_get_visitor(ov), &err);
if (err) {
qmp_object_del(id, NULL);
}
out:
opts_visitor_cleanup(ov);
QDECREF(pdict);
g_free(id);
g_free(type);
g_free(dummy);
if (err) {
qerror_report_err(err);
error_free(err);
return -1;
}
return 0;
}
int main(int argc, char **argv, char **envp)
{
int i;
int snapshot, linux_boot;
const char *initrd_filename;
const char *kernel_filename, *kernel_cmdline;
const char *boot_order;
DisplayState *ds;
int cyls, heads, secs, translation;
QemuOpts *hda_opts = NULL, *opts, *machine_opts, *icount_opts = NULL;
QemuOptsList *olist;
int optind;
const char *optarg;
const char *loadvm = NULL;
MachineClass *machine_class;
const char *cpu_model;
const char *vga_model = NULL;
const char *qtest_chrdev = NULL;
const char *qtest_log = NULL;
const char *pid_file = NULL;
const char *incoming = NULL;
#ifdef CONFIG_VNC
int show_vnc_port = 0;
#endif
bool defconfig = true;
bool userconfig = true;
const char *log_mask = NULL;
const char *log_file = NULL;
GMemVTable mem_trace = {
.malloc = malloc_and_trace,
.realloc = realloc_and_trace,
.free = free_and_trace,
};
const char *trace_events = NULL;
const char *trace_file = NULL;
const ram_addr_t default_ram_size = (ram_addr_t)DEFAULT_RAM_SIZE *
1024 * 1024;
ram_addr_t maxram_size = default_ram_size;
uint64_t ram_slots = 0;
FILE *vmstate_dump_file = NULL;
Error *main_loop_err = NULL;
atexit(qemu_run_exit_notifiers);
error_set_progname(argv[0]);
qemu_init_exec_dir(argv[0]);
g_mem_set_vtable(&mem_trace);
module_call_init(MODULE_INIT_QOM);
qemu_add_opts(&qemu_drive_opts);
qemu_add_drive_opts(&qemu_legacy_drive_opts);
qemu_add_drive_opts(&qemu_common_drive_opts);
qemu_add_drive_opts(&qemu_drive_opts);
qemu_add_opts(&qemu_chardev_opts);
qemu_add_opts(&qemu_device_opts);
qemu_add_opts(&qemu_netdev_opts);
qemu_add_opts(&qemu_net_opts);
qemu_add_opts(&qemu_rtc_opts);
qemu_add_opts(&qemu_global_opts);
qemu_add_opts(&qemu_mon_opts);
qemu_add_opts(&qemu_trace_opts);
qemu_add_opts(&qemu_option_rom_opts);
qemu_add_opts(&qemu_machine_opts);
qemu_add_opts(&qemu_mem_opts);
qemu_add_opts(&qemu_smp_opts);
qemu_add_opts(&qemu_boot_opts);
qemu_add_opts(&qemu_sandbox_opts);
qemu_add_opts(&qemu_add_fd_opts);
qemu_add_opts(&qemu_object_opts);
qemu_add_opts(&qemu_tpmdev_opts);
qemu_add_opts(&qemu_realtime_opts);
qemu_add_opts(&qemu_msg_opts);
qemu_add_opts(&qemu_name_opts);
qemu_add_opts(&qemu_numa_opts);
qemu_add_opts(&qemu_icount_opts);
runstate_init();
rtc_clock = QEMU_CLOCK_HOST;
QLIST_INIT (&vm_change_state_head);
os_setup_early_signal_handling();
module_call_init(MODULE_INIT_MACHINE);
machine_class = find_default_machine();
cpu_model = NULL;
ram_size = default_ram_size;
snapshot = 0;
cyls = heads = secs = 0;
translation = BIOS_ATA_TRANSLATION_AUTO;
for (i = 0; i < MAX_NODES; i++) {
numa_info[i].node_mem = 0;
numa_info[i].present = false;
bitmap_zero(numa_info[i].node_cpu, MAX_CPUMASK_BITS);
}
nb_numa_nodes = 0;
max_numa_nodeid = 0;
nb_nics = 0;
bdrv_init_with_whitelist();
autostart = 1;
/* first pass of option parsing */
optind = 1;
while (optind < argc) {
if (argv[optind][0] != '-') {
/* disk image */
optind++;
} else {
const QEMUOption *popt;
popt = lookup_opt(argc, argv, &optarg, &optind);
switch (popt->index) {
case QEMU_OPTION_nodefconfig:
defconfig = false;
break;
case QEMU_OPTION_nouserconfig:
userconfig = false;
break;
}
}
}
if (defconfig) {
int ret;
ret = qemu_read_default_config_files(userconfig);
if (ret < 0) {
exit(1);
}
}
/* second pass of option parsing */
optind = 1;
for(;;) {
if (optind >= argc)
break;
if (argv[optind][0] != '-') {
hda_opts = drive_add(IF_DEFAULT, 0, argv[optind++], HD_OPTS);
} else {
const QEMUOption *popt;
popt = lookup_opt(argc, argv, &optarg, &optind);
if (!(popt->arch_mask & arch_type)) {
printf("Option %s not supported for this target\n", popt->name);
exit(1);
}
switch(popt->index) {
case QEMU_OPTION_M:
machine_class = machine_parse(optarg);
break;
case QEMU_OPTION_no_kvm_irqchip: {
olist = qemu_find_opts("machine");
qemu_opts_parse(olist, "kernel_irqchip=off", 0);
break;
}
case QEMU_OPTION_cpu:
/* hw initialization will check this */
cpu_model = optarg;
break;
case QEMU_OPTION_hda:
{
char buf[256];
if (cyls == 0)
snprintf(buf, sizeof(buf), "%s", HD_OPTS);
else
snprintf(buf, sizeof(buf),
"%s,cyls=%d,heads=%d,secs=%d%s",
HD_OPTS , cyls, heads, secs,
translation == BIOS_ATA_TRANSLATION_LBA ?
",trans=lba" :
translation == BIOS_ATA_TRANSLATION_NONE ?
",trans=none" : "");
drive_add(IF_DEFAULT, 0, optarg, buf);
break;
}
case QEMU_OPTION_hdb:
case QEMU_OPTION_hdc:
case QEMU_OPTION_hdd:
drive_add(IF_DEFAULT, popt->index - QEMU_OPTION_hda, optarg,
HD_OPTS);
break;
case QEMU_OPTION_drive:
if (drive_def(optarg) == NULL) {
exit(1);
}
break;
case QEMU_OPTION_set:
if (qemu_set_option(optarg) != 0)
exit(1);
break;
case QEMU_OPTION_global:
if (qemu_global_option(optarg) != 0)
exit(1);
break;
case QEMU_OPTION_mtdblock:
drive_add(IF_MTD, -1, optarg, MTD_OPTS);
break;
case QEMU_OPTION_sd:
drive_add(IF_SD, -1, optarg, SD_OPTS);
break;
case QEMU_OPTION_pflash:
drive_add(IF_PFLASH, -1, optarg, PFLASH_OPTS);
break;
case QEMU_OPTION_snapshot:
snapshot = 1;
break;
case QEMU_OPTION_hdachs:
{
const char *p;
p = optarg;
cyls = strtol(p, (char **)&p, 0);
if (cyls < 1 || cyls > 16383)
goto chs_fail;
if (*p != ',')
goto chs_fail;
p++;
heads = strtol(p, (char **)&p, 0);
if (heads < 1 || heads > 16)
goto chs_fail;
if (*p != ',')
goto chs_fail;
p++;
secs = strtol(p, (char **)&p, 0);
if (secs < 1 || secs > 63)
goto chs_fail;
if (*p == ',') {
p++;
if (!strcmp(p, "large")) {
translation = BIOS_ATA_TRANSLATION_LARGE;
} else if (!strcmp(p, "rechs")) {
translation = BIOS_ATA_TRANSLATION_RECHS;
} else if (!strcmp(p, "none")) {
translation = BIOS_ATA_TRANSLATION_NONE;
} else if (!strcmp(p, "lba")) {
translation = BIOS_ATA_TRANSLATION_LBA;
} else if (!strcmp(p, "auto")) {
translation = BIOS_ATA_TRANSLATION_AUTO;
} else {
goto chs_fail;
}
} else if (*p != '\0') {
chs_fail:
fprintf(stderr, "qemu: invalid physical CHS format\n");
exit(1);
}
if (hda_opts != NULL) {
char num[16];
snprintf(num, sizeof(num), "%d", cyls);
qemu_opt_set(hda_opts, "cyls", num);
snprintf(num, sizeof(num), "%d", heads);
qemu_opt_set(hda_opts, "heads", num);
snprintf(num, sizeof(num), "%d", secs);
qemu_opt_set(hda_opts, "secs", num);
if (translation == BIOS_ATA_TRANSLATION_LARGE) {
qemu_opt_set(hda_opts, "trans", "large");
} else if (translation == BIOS_ATA_TRANSLATION_RECHS) {
qemu_opt_set(hda_opts, "trans", "rechs");
} else if (translation == BIOS_ATA_TRANSLATION_LBA) {
qemu_opt_set(hda_opts, "trans", "lba");
} else if (translation == BIOS_ATA_TRANSLATION_NONE) {
qemu_opt_set(hda_opts, "trans", "none");
}
}
}
break;
case QEMU_OPTION_numa:
opts = qemu_opts_parse(qemu_find_opts("numa"), optarg, 1);
if (!opts) {
exit(1);
}
break;
case QEMU_OPTION_display:
display_type = select_display(optarg);
break;
case QEMU_OPTION_nographic:
display_type = DT_NOGRAPHIC;
break;
case QEMU_OPTION_curses:
#ifdef CONFIG_CURSES
display_type = DT_CURSES;
#else
fprintf(stderr, "Curses support is disabled\n");
exit(1);
#endif
break;
case QEMU_OPTION_portrait:
graphic_rotate = 90;
break;
case QEMU_OPTION_rotate:
graphic_rotate = strtol(optarg, (char **) &optarg, 10);
if (graphic_rotate != 0 && graphic_rotate != 90 &&
graphic_rotate != 180 && graphic_rotate != 270) {
fprintf(stderr,
"qemu: only 90, 180, 270 deg rotation is available\n");
exit(1);
}
break;
case QEMU_OPTION_kernel:
qemu_opts_set(qemu_find_opts("machine"), 0, "kernel", optarg);
break;
case QEMU_OPTION_initrd:
qemu_opts_set(qemu_find_opts("machine"), 0, "initrd", optarg);
break;
case QEMU_OPTION_append:
qemu_opts_set(qemu_find_opts("machine"), 0, "append", optarg);
break;
case QEMU_OPTION_dtb:
qemu_opts_set(qemu_find_opts("machine"), 0, "dtb", optarg);
break;
case QEMU_OPTION_cdrom:
drive_add(IF_DEFAULT, 2, optarg, CDROM_OPTS);
break;
case QEMU_OPTION_boot:
vl: Fix -boot order and once regressions, and related bugs Option "once" sets up a different boot order just for the initial boot. Boot order reverts back to normal on reset. Option "order" changes the normal boot order. The reversal is implemented by reset handler restore_boot_devices(), which takes the boot order to revert to as argument. restore_boot_devices() does nothing on its first call, because that must be the initial machine reset. On its second call, it changes the boot order back, and unregisters itself. Because we register the handler right when -boot gets parsed, we can revert to an incorrect normal boot order, and multiple -boot can interact in funny ways. Here's how things work without -boot once or order: * boot_devices is "". * main() passes machine->boot_order to to machine->init(), because boot_devices is "". machine->init() configures firmware accordingly. For PC machines, machine->boot_order is "cad", and pc_cmos_init() writes it to RTC CMOS, where SeaBIOS picks it up. Now consider -boot order=: * boot_devices is "". * -boot order= sets boot_devices to "" (no change). * main() passes machine->boot_order to to machine->init(), because boot_devices is "", as above. Bug: -boot order= has no effect. Broken in commit e4ada29e. Next, consider -boot once=a: * boot_devices is "". * -boot once=a registers restore_boot_devices() with argument "", and sets boot_devices to "a". * main() passes boot_devices "a" to machine->init(), which configures firmware accordingly. For PC machines, pc_cmos_init() writes the boot order to RTC CMOS. * main() calls qemu_system_reset(). This runs reset handlers. - restore_boot_devices() gets called with argument "". Does nothing, because it's the first call. * Machine boots, boot order is "a". * Machine resets (e.g. monitor command). Reset handlers run. - restore_boot_devices() gets called with argument "". Calls qemu_boot_set("") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. Bug: boot order reverts to "" instead of machine->boot_order. The actual boot order depends on how firmware interprets "". Broken in commit e4ada29e. Next, consider -boot once=a -boot order=c: * boot_devices is "". * -boot once=a registers restore_boot_devices() with argument "", and sets boot_devices to "a". * -boot order=c sets boot_devices to "c". * main() passes boot_devices "c" to machine->init(), which configures firmware accordingly. For PC machines, pc_cmos_init() writes the boot order to RTC CMOS. * main() calls qemu_system_reset(). This runs reset handlers. - restore_boot_devices() gets called with argument "". Does nothing, because it's the first call. * Machine boots, boot order is "c". Bug: it should be "a". I figure this has always been broken. * Machine resets (e.g. monitor command). Reset handlers run. - restore_boot_devices() gets called with argument "". Calls qemu_boot_set("") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. Bug: boot order reverts to "" instead of "c". I figure this has always been broken, just differently broken before commit e4ada29e. Next, consider -boot once=a -boot once=b -boot once=c: * boot_devices is "". * -boot once=a registers restore_boot_devices() with argument "", and sets boot_devices to "a". * -boot once=b registers restore_boot_devices() with argument "a", and sets boot_devices to "b". * -boot once=c registers restore_boot_devices() with argument "b", and sets boot_devices to "c". * main() passes boot_devices "c" to machine->init(), which configures firmware accordingly. For PC machines, pc_cmos_init() writes the boot order to RTC CMOS. * main() calls qemu_system_reset(). This runs reset handlers. - restore_boot_devices() gets called with argument "". Does nothing, because it's the first call. - restore_boot_devices() gets called with argument "a". Calls qemu_boot_set("a") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. - restore_boot_devices() gets called with argument "b". Calls qemu_boot_set("b") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. * Machine boots, boot order is "b". Bug: should really be "c", because that came last, and for all other -boot options, the last one wins. I figure this was broken some time before commit 37905d6a, and fixed there only for a single occurence of "once". * Machine resets (e.g. monitor command). Reset handlers run. - restore_boot_devices() gets called with argument "". Calls qemu_boot_set("") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. Same bug as above: boot order reverts to "" instead of machine->boot_order. Fix by acting upon -boot options order, once and menu only after option parsing is complete, and the machine is known. This is how the other -boot options work already. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Anthony Liguori <aliguori@us.ibm.com> Message-id: 1371208516-7857-4-git-send-email-armbru@redhat.com Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-06-14 15:15:03 +04:00
opts = qemu_opts_parse(qemu_find_opts("boot-opts"), optarg, 1);
if (!opts) {
exit(1);
}
break;
case QEMU_OPTION_fda:
case QEMU_OPTION_fdb:
drive_add(IF_FLOPPY, popt->index - QEMU_OPTION_fda,
optarg, FD_OPTS);
break;
case QEMU_OPTION_no_fd_bootchk:
fd_bootchk = 0;
break;
case QEMU_OPTION_netdev:
if (net_client_parse(qemu_find_opts("netdev"), optarg) == -1) {
exit(1);
}
break;
case QEMU_OPTION_net:
if (net_client_parse(qemu_find_opts("net"), optarg) == -1) {
exit(1);
}
break;
#ifdef CONFIG_LIBISCSI
case QEMU_OPTION_iscsi:
opts = qemu_opts_parse(qemu_find_opts("iscsi"), optarg, 0);
if (!opts) {
exit(1);
}
break;
#endif
#ifdef CONFIG_SLIRP
case QEMU_OPTION_tftp:
legacy_tftp_prefix = optarg;
break;
case QEMU_OPTION_bootp:
legacy_bootp_filename = optarg;
break;
case QEMU_OPTION_redir:
2009-10-06 15:16:57 +04:00
if (net_slirp_redir(optarg) < 0)
exit(1);
break;
#endif
case QEMU_OPTION_bt:
add_device_config(DEV_BT, optarg);
break;
case QEMU_OPTION_audio_help:
AUD_help ();
exit (0);
break;
case QEMU_OPTION_soundhw:
select_soundhw (optarg);
break;
case QEMU_OPTION_h:
help(0);
break;
case QEMU_OPTION_version:
version();
exit(0);
break;
case QEMU_OPTION_m: {
uint64_t sz;
const char *mem_str;
const char *maxmem_str, *slots_str;
opts = qemu_opts_parse(qemu_find_opts("memory"),
optarg, 1);
if (!opts) {
exit(EXIT_FAILURE);
}
mem_str = qemu_opt_get(opts, "size");
if (!mem_str) {
error_report("invalid -m option, missing 'size' option");
exit(EXIT_FAILURE);
}
if (!*mem_str) {
error_report("missing 'size' option value");
exit(EXIT_FAILURE);
}
sz = qemu_opt_get_size(opts, "size", ram_size);
/* Fix up legacy suffix-less format */
if (g_ascii_isdigit(mem_str[strlen(mem_str) - 1])) {
uint64_t overflow_check = sz;
sz <<= 20;
if ((sz >> 20) != overflow_check) {
error_report("too large 'size' option value");
exit(EXIT_FAILURE);
}
}
/* backward compatibility behaviour for case "-m 0" */
if (sz == 0) {
sz = default_ram_size;
}
sz = QEMU_ALIGN_UP(sz, 8192);
ram_size = sz;
if (ram_size != sz) {
error_report("ram size too large");
exit(EXIT_FAILURE);
}
maxram_size = ram_size;
maxmem_str = qemu_opt_get(opts, "maxmem");
slots_str = qemu_opt_get(opts, "slots");
if (maxmem_str && slots_str) {
uint64_t slots;
sz = qemu_opt_get_size(opts, "maxmem", 0);
if (sz < ram_size) {
error_report("invalid -m option value: maxmem "
"(0x%" PRIx64 ") <= initial memory (0x"
RAM_ADDR_FMT ")", sz, ram_size);
exit(EXIT_FAILURE);
}
slots = qemu_opt_get_number(opts, "slots", 0);
if ((sz > ram_size) && !slots) {
error_report("invalid -m option value: maxmem "
"(0x%" PRIx64 ") more than initial memory (0x"
RAM_ADDR_FMT ") but no hotplug slots where "
"specified", sz, ram_size);
exit(EXIT_FAILURE);
}
if ((sz <= ram_size) && slots) {
error_report("invalid -m option value: %"
PRIu64 " hotplug slots where specified but "
"maxmem (0x%" PRIx64 ") <= initial memory (0x"
RAM_ADDR_FMT ")", slots, sz, ram_size);
exit(EXIT_FAILURE);
}
maxram_size = sz;
ram_slots = slots;
} else if ((!maxmem_str && slots_str) ||
(maxmem_str && !slots_str)) {
error_report("invalid -m option value: missing "
"'%s' option", slots_str ? "maxmem" : "slots");
exit(EXIT_FAILURE);
}
break;
}
#ifdef CONFIG_TPM
case QEMU_OPTION_tpmdev:
if (tpm_config_parse(qemu_find_opts("tpmdev"), optarg) < 0) {
exit(1);
}
break;
#endif
case QEMU_OPTION_mempath:
mem_path = optarg;
break;
case QEMU_OPTION_mem_prealloc:
mem_prealloc = 1;
break;
case QEMU_OPTION_d:
log_mask = optarg;
break;
case QEMU_OPTION_D:
log_file = optarg;
break;
case QEMU_OPTION_s:
add_device_config(DEV_GDB, "tcp::" DEFAULT_GDBSTUB_PORT);
break;
case QEMU_OPTION_gdb:
add_device_config(DEV_GDB, optarg);
break;
case QEMU_OPTION_L:
if (data_dir_idx < ARRAY_SIZE(data_dir)) {
data_dir[data_dir_idx++] = optarg;
}
break;
case QEMU_OPTION_bios:
qemu_opts_set(qemu_find_opts("machine"), 0, "firmware", optarg);
break;
case QEMU_OPTION_singlestep:
singlestep = 1;
break;
case QEMU_OPTION_S:
autostart = 0;
break;
case QEMU_OPTION_k:
keyboard_layout = optarg;
break;
case QEMU_OPTION_localtime:
rtc_utc = 0;
break;
case QEMU_OPTION_vga:
vga_model = optarg;
default_vga = 0;
break;
case QEMU_OPTION_g:
{
const char *p;
int w, h, depth;
p = optarg;
w = strtol(p, (char **)&p, 10);
if (w <= 0) {
graphic_error:
fprintf(stderr, "qemu: invalid resolution or depth\n");
exit(1);
}
if (*p != 'x')
goto graphic_error;
p++;
h = strtol(p, (char **)&p, 10);
if (h <= 0)
goto graphic_error;
if (*p == 'x') {
p++;
depth = strtol(p, (char **)&p, 10);
if (depth != 8 && depth != 15 && depth != 16 &&
depth != 24 && depth != 32)
goto graphic_error;
} else if (*p == '\0') {
depth = graphic_depth;
} else {
goto graphic_error;
}
graphic_width = w;
graphic_height = h;
graphic_depth = depth;
}
break;
case QEMU_OPTION_echr:
{
char *r;
term_escape_char = strtol(optarg, &r, 0);
if (r == optarg)
printf("Bad argument to echr\n");
break;
}
case QEMU_OPTION_monitor:
default_monitor = 0;
if (strncmp(optarg, "none", 4)) {
monitor_parse(optarg, "readline");
}
break;
case QEMU_OPTION_qmp:
monitor_parse(optarg, "control");
default_monitor = 0;
break;
case QEMU_OPTION_mon:
opts = qemu_opts_parse(qemu_find_opts("mon"), optarg, 1);
if (!opts) {
exit(1);
}
default_monitor = 0;
break;
case QEMU_OPTION_chardev:
opts = qemu_opts_parse(qemu_find_opts("chardev"), optarg, 1);
if (!opts) {
exit(1);
}
break;
case QEMU_OPTION_fsdev:
olist = qemu_find_opts("fsdev");
if (!olist) {
fprintf(stderr, "fsdev is not supported by this qemu build.\n");
exit(1);
}
opts = qemu_opts_parse(olist, optarg, 1);
if (!opts) {
exit(1);
}
break;
case QEMU_OPTION_virtfs: {
QemuOpts *fsdev;
QemuOpts *device;
const char *writeout, *sock_fd, *socket;
olist = qemu_find_opts("virtfs");
if (!olist) {
fprintf(stderr, "virtfs is not supported by this qemu build.\n");
exit(1);
}
opts = qemu_opts_parse(olist, optarg, 1);
if (!opts) {
exit(1);
}
if (qemu_opt_get(opts, "fsdriver") == NULL ||
qemu_opt_get(opts, "mount_tag") == NULL) {
fprintf(stderr, "Usage: -virtfs fsdriver,mount_tag=tag.\n");
exit(1);
}
fsdev = qemu_opts_create(qemu_find_opts("fsdev"),
qemu_opt_get(opts, "mount_tag"),
1, NULL);
if (!fsdev) {
fprintf(stderr, "duplicate fsdev id: %s\n",
qemu_opt_get(opts, "mount_tag"));
exit(1);
}
writeout = qemu_opt_get(opts, "writeout");
if (writeout) {
#ifdef CONFIG_SYNC_FILE_RANGE
qemu_opt_set(fsdev, "writeout", writeout);
#else
fprintf(stderr, "writeout=immediate not supported on "
"this platform\n");
exit(1);
#endif
}
qemu_opt_set(fsdev, "fsdriver", qemu_opt_get(opts, "fsdriver"));
qemu_opt_set(fsdev, "path", qemu_opt_get(opts, "path"));
qemu_opt_set(fsdev, "security_model",
qemu_opt_get(opts, "security_model"));
socket = qemu_opt_get(opts, "socket");
if (socket) {
qemu_opt_set(fsdev, "socket", socket);
}
sock_fd = qemu_opt_get(opts, "sock_fd");
if (sock_fd) {
qemu_opt_set(fsdev, "sock_fd", sock_fd);
}
qemu_opt_set_bool(fsdev, "readonly",
qemu_opt_get_bool(opts, "readonly", 0));
device = qemu_opts_create(qemu_find_opts("device"), NULL, 0,
&error_abort);
qemu_opt_set(device, "driver", "virtio-9p-pci");
qemu_opt_set(device, "fsdev",
qemu_opt_get(opts, "mount_tag"));
qemu_opt_set(device, "mount_tag",
qemu_opt_get(opts, "mount_tag"));
break;
}
case QEMU_OPTION_virtfs_synth: {
QemuOpts *fsdev;
QemuOpts *device;
fsdev = qemu_opts_create(qemu_find_opts("fsdev"), "v_synth",
1, NULL);
if (!fsdev) {
fprintf(stderr, "duplicate option: %s\n", "virtfs_synth");
exit(1);
}
qemu_opt_set(fsdev, "fsdriver", "synth");
device = qemu_opts_create(qemu_find_opts("device"), NULL, 0,
&error_abort);
qemu_opt_set(device, "driver", "virtio-9p-pci");
qemu_opt_set(device, "fsdev", "v_synth");
qemu_opt_set(device, "mount_tag", "v_synth");
break;
}
case QEMU_OPTION_serial:
add_device_config(DEV_SERIAL, optarg);
default_serial = 0;
if (strncmp(optarg, "mon:", 4) == 0) {
default_monitor = 0;
}
break;
case QEMU_OPTION_watchdog:
if (watchdog) {
fprintf(stderr,
"qemu: only one watchdog option may be given\n");
return 1;
}
watchdog = optarg;
break;
case QEMU_OPTION_watchdog_action:
if (select_watchdog_action(optarg) == -1) {
fprintf(stderr, "Unknown -watchdog-action parameter\n");
exit(1);
}
break;
case QEMU_OPTION_virtiocon:
add_device_config(DEV_VIRTCON, optarg);
default_virtcon = 0;
if (strncmp(optarg, "mon:", 4) == 0) {
default_monitor = 0;
}
break;
case QEMU_OPTION_parallel:
add_device_config(DEV_PARALLEL, optarg);
default_parallel = 0;
if (strncmp(optarg, "mon:", 4) == 0) {
default_monitor = 0;
}
break;
case QEMU_OPTION_debugcon:
add_device_config(DEV_DEBUGCON, optarg);
break;
case QEMU_OPTION_loadvm:
loadvm = optarg;
break;
case QEMU_OPTION_full_screen:
full_screen = 1;
break;
case QEMU_OPTION_no_frame:
no_frame = 1;
break;
case QEMU_OPTION_alt_grab:
alt_grab = 1;
break;
case QEMU_OPTION_ctrl_grab:
ctrl_grab = 1;
break;
case QEMU_OPTION_no_quit:
no_quit = 1;
break;
DisplayState interface change (Stefano Stabellini) This patch changes the DisplayState interface adding support for multiple frontends at the same time (sdl and vnc) and implements most of the benefit of the shared_buf patch without the added complexity. Currently DisplayState is managed by sdl (or vnc) and sdl (or vnc) is also responsible for allocating the data and setting the depth. Vga.c (or another backend) will do any necessary conversion. The idea is to change it so that is vga.c (or another backend) together with console.c that fully manage the DisplayState interface allocating data and setting the depth (either 16 or 32 bit, if the guest uses a different resolution or is in text mode, vga.c (or another backend) is in charge of doing the conversion seamlessly). The other idea is that DisplayState supports *multiple* frontends like sdl and vnc; each of them can register some callbacks to be called when a display event occurs. The interesting changes are: - the new structures and related functions in console.h and console.c in particular the following functions are very helpful to manage a DisplaySurface: qemu_create_displaysurface qemu_resize_displaysurface qemu_create_displaysurface_from qemu_free_displaysurface - console_select and qemu_console_resize in console.c this two functions manage multiple consoles on a single host display - moving code around in hw/vga.c as for the shared_buf patch this is necessary to be able to handle a dynamic DisplaySurface bpp - changes to vga_draw_graphic in hw/vga.c this is the place where the DisplaySurface buffer is shared with the videoram, when possible; Compared to the last version the only changes are: - do not remove support to dpy_copy in cirrus_vga - change the name of the displaysurface handling functions Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6336 c046a42c-6fe2-441c-8c8c-71466251a162
2009-01-16 01:14:11 +03:00
case QEMU_OPTION_sdl:
#ifdef CONFIG_SDL
display_type = DT_SDL;
DisplayState interface change (Stefano Stabellini) This patch changes the DisplayState interface adding support for multiple frontends at the same time (sdl and vnc) and implements most of the benefit of the shared_buf patch without the added complexity. Currently DisplayState is managed by sdl (or vnc) and sdl (or vnc) is also responsible for allocating the data and setting the depth. Vga.c (or another backend) will do any necessary conversion. The idea is to change it so that is vga.c (or another backend) together with console.c that fully manage the DisplayState interface allocating data and setting the depth (either 16 or 32 bit, if the guest uses a different resolution or is in text mode, vga.c (or another backend) is in charge of doing the conversion seamlessly). The other idea is that DisplayState supports *multiple* frontends like sdl and vnc; each of them can register some callbacks to be called when a display event occurs. The interesting changes are: - the new structures and related functions in console.h and console.c in particular the following functions are very helpful to manage a DisplaySurface: qemu_create_displaysurface qemu_resize_displaysurface qemu_create_displaysurface_from qemu_free_displaysurface - console_select and qemu_console_resize in console.c this two functions manage multiple consoles on a single host display - moving code around in hw/vga.c as for the shared_buf patch this is necessary to be able to handle a dynamic DisplaySurface bpp - changes to vga_draw_graphic in hw/vga.c this is the place where the DisplaySurface buffer is shared with the videoram, when possible; Compared to the last version the only changes are: - do not remove support to dpy_copy in cirrus_vga - change the name of the displaysurface handling functions Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6336 c046a42c-6fe2-441c-8c8c-71466251a162
2009-01-16 01:14:11 +03:00
break;
#else
fprintf(stderr, "SDL support is disabled\n");
exit(1);
#endif
case QEMU_OPTION_pidfile:
pid_file = optarg;
break;
case QEMU_OPTION_win2k_hack:
win2k_install_hack = 1;
break;
case QEMU_OPTION_rtc_td_hack: {
static GlobalProperty slew_lost_ticks[] = {
{
.driver = "mc146818rtc",
.property = "lost_tick_policy",
.value = "slew",
},
{ /* end of list */ }
};
qdev_prop_register_global_list(slew_lost_ticks);
break;
}
case QEMU_OPTION_acpitable:
opts = qemu_opts_parse(qemu_find_opts("acpi"), optarg, 1);
if (!opts) {
exit(1);
}
do_acpitable_option(opts);
break;
case QEMU_OPTION_smbios:
opts = qemu_opts_parse(qemu_find_opts("smbios"), optarg, 0);
if (!opts) {
exit(1);
}
do_smbios_option(opts);
break;
case QEMU_OPTION_enable_kvm:
olist = qemu_find_opts("machine");
qemu_opts_parse(olist, "accel=kvm", 0);
break;
case QEMU_OPTION_machine:
olist = qemu_find_opts("machine");
opts = qemu_opts_parse(olist, optarg, 1);
if (!opts) {
exit(1);
}
optarg = qemu_opt_get(opts, "type");
if (optarg) {
machine_class = machine_parse(optarg);
}
break;
case QEMU_OPTION_no_kvm:
olist = qemu_find_opts("machine");
qemu_opts_parse(olist, "accel=tcg", 0);
break;
case QEMU_OPTION_no_kvm_pit: {
fprintf(stderr, "Warning: KVM PIT can no longer be disabled "
"separately.\n");
break;
}
case QEMU_OPTION_no_kvm_pit_reinjection: {
static GlobalProperty kvm_pit_lost_tick_policy[] = {
{
.driver = "kvm-pit",
.property = "lost_tick_policy",
.value = "discard",
},
{ /* end of list */ }
};
fprintf(stderr, "Warning: option deprecated, use "
"lost_tick_policy property of kvm-pit instead.\n");
qdev_prop_register_global_list(kvm_pit_lost_tick_policy);
break;
}
case QEMU_OPTION_usb:
olist = qemu_find_opts("machine");
qemu_opts_parse(olist, "usb=on", 0);
break;
case QEMU_OPTION_usbdevice:
olist = qemu_find_opts("machine");
qemu_opts_parse(olist, "usb=on", 0);
add_device_config(DEV_USB, optarg);
break;
case QEMU_OPTION_device:
if (!qemu_opts_parse(qemu_find_opts("device"), optarg, 1)) {
exit(1);
}
break;
case QEMU_OPTION_smp:
if (!qemu_opts_parse(qemu_find_opts("smp-opts"), optarg, 1)) {
exit(1);
}
break;
case QEMU_OPTION_vnc:
#ifdef CONFIG_VNC
display_remote++;
vnc_display = optarg;
#else
fprintf(stderr, "VNC support is disabled\n");
exit(1);
#endif
break;
case QEMU_OPTION_no_acpi:
acpi_enabled = 0;
break;
case QEMU_OPTION_no_hpet:
no_hpet = 1;
break;
case QEMU_OPTION_balloon:
if (balloon_parse(optarg) < 0) {
fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
exit(1);
}
break;
case QEMU_OPTION_no_reboot:
no_reboot = 1;
break;
case QEMU_OPTION_no_shutdown:
no_shutdown = 1;
break;
case QEMU_OPTION_show_cursor:
cursor_hide = 0;
break;
case QEMU_OPTION_uuid:
if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
fprintf(stderr, "Fail to parse UUID string."
" Wrong format.\n");
exit(1);
}
qemu_uuid_set = true;
break;
case QEMU_OPTION_option_rom:
if (nb_option_roms >= MAX_OPTION_ROMS) {
fprintf(stderr, "Too many option ROMs\n");
exit(1);
}
opts = qemu_opts_parse(qemu_find_opts("option-rom"), optarg, 1);
if (!opts) {
exit(1);
}
option_rom[nb_option_roms].name = qemu_opt_get(opts, "romfile");
option_rom[nb_option_roms].bootindex =
qemu_opt_get_number(opts, "bootindex", -1);
if (!option_rom[nb_option_roms].name) {
fprintf(stderr, "Option ROM file is not specified\n");
exit(1);
}
nb_option_roms++;
break;
case QEMU_OPTION_semihosting:
semihosting_enabled = 1;
break;
case QEMU_OPTION_tdf:
fprintf(stderr, "Warning: user space PIT time drift fix "
"is no longer supported.\n");
break;
case QEMU_OPTION_name:
opts = qemu_opts_parse(qemu_find_opts("name"), optarg, 1);
if (!opts) {
exit(1);
}
break;
case QEMU_OPTION_prom_env:
if (nb_prom_envs >= MAX_PROM_ENVS) {
fprintf(stderr, "Too many prom variables\n");
exit(1);
}
prom_envs[nb_prom_envs] = optarg;
nb_prom_envs++;
break;
case QEMU_OPTION_old_param:
old_param = 1;
break;
case QEMU_OPTION_clock:
/* Clock options no longer exist. Keep this option for
* backward compatibility.
*/
break;
case QEMU_OPTION_startdate:
configure_rtc_date_offset(optarg, 1);
break;
case QEMU_OPTION_rtc:
opts = qemu_opts_parse(qemu_find_opts("rtc"), optarg, 0);
if (!opts) {
exit(1);
}
configure_rtc(opts);
break;
case QEMU_OPTION_tb_size:
tcg_tb_size = strtol(optarg, NULL, 0);
if (tcg_tb_size < 0) {
tcg_tb_size = 0;
}
break;
case QEMU_OPTION_icount:
icount_opts = qemu_opts_parse(qemu_find_opts("icount"),
optarg, 1);
if (!icount_opts) {
exit(1);
}
break;
case QEMU_OPTION_incoming:
incoming = optarg;
runstate_set(RUN_STATE_INMIGRATE);
break;
case QEMU_OPTION_nodefaults:
has_defaults = 0;
break;
case QEMU_OPTION_xen_domid:
if (!(xen_available())) {
printf("Option %s not supported for this target\n", popt->name);
exit(1);
}
xen_domid = atoi(optarg);
break;
case QEMU_OPTION_xen_create:
if (!(xen_available())) {
printf("Option %s not supported for this target\n", popt->name);
exit(1);
}
xen_mode = XEN_CREATE;
break;
case QEMU_OPTION_xen_attach:
if (!(xen_available())) {
printf("Option %s not supported for this target\n", popt->name);
exit(1);
}
xen_mode = XEN_ATTACH;
break;
case QEMU_OPTION_trace:
{
opts = qemu_opts_parse(qemu_find_opts("trace"), optarg, 0);
if (!opts) {
exit(1);
}
trace_events = qemu_opt_get(opts, "events");
trace_file = qemu_opt_get(opts, "file");
break;
}
case QEMU_OPTION_readconfig:
{
int ret = qemu_read_config_file(optarg);
if (ret < 0) {
fprintf(stderr, "read config %s: %s\n", optarg,
strerror(-ret));
exit(1);
}
break;
}
case QEMU_OPTION_spice:
olist = qemu_find_opts("spice");
if (!olist) {
fprintf(stderr, "spice is not supported by this qemu build.\n");
exit(1);
}
opts = qemu_opts_parse(olist, optarg, 0);
if (!opts) {
exit(1);
}
display_remote++;
break;
case QEMU_OPTION_writeconfig:
{
FILE *fp;
if (strcmp(optarg, "-") == 0) {
fp = stdout;
} else {
fp = fopen(optarg, "w");
if (fp == NULL) {
fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
exit(1);
}
}
qemu_config_write(fp);
if (fp != stdout) {
fclose(fp);
}
break;
}
case QEMU_OPTION_qtest:
qtest_chrdev = optarg;
break;
case QEMU_OPTION_qtest_log:
qtest_log = optarg;
break;
case QEMU_OPTION_sandbox:
opts = qemu_opts_parse(qemu_find_opts("sandbox"), optarg, 1);
if (!opts) {
exit(1);
}
break;
case QEMU_OPTION_add_fd:
#ifndef _WIN32
opts = qemu_opts_parse(qemu_find_opts("add-fd"), optarg, 0);
if (!opts) {
exit(1);
}
#else
error_report("File descriptor passing is disabled on this "
"platform");
exit(1);
#endif
break;
case QEMU_OPTION_object:
opts = qemu_opts_parse(qemu_find_opts("object"), optarg, 1);
if (!opts) {
exit(1);
}
break;
case QEMU_OPTION_realtime:
opts = qemu_opts_parse(qemu_find_opts("realtime"), optarg, 0);
if (!opts) {
exit(1);
}
enable_mlock = qemu_opt_get_bool(opts, "mlock", true);
break;
case QEMU_OPTION_msg:
opts = qemu_opts_parse(qemu_find_opts("msg"), optarg, 0);
if (!opts) {
exit(1);
}
configure_msg(opts);
break;
case QEMU_OPTION_dump_vmstate:
vmstate_dump_file = fopen(optarg, "w");
if (vmstate_dump_file == NULL) {
fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
exit(1);
}
break;
default:
os_parse_cmd_args(popt->index, optarg);
}
}
}
loc_set_none();
os_daemonize();
if (qemu_init_main_loop(&main_loop_err)) {
error_report("%s", error_get_pretty(main_loop_err));
exit(1);
}
if (qemu_opts_foreach(qemu_find_opts("sandbox"), parse_sandbox, NULL, 0)) {
exit(1);
}
if (qemu_opts_foreach(qemu_find_opts("name"), parse_name, NULL, 1)) {
exit(1);
}
#ifndef _WIN32
if (qemu_opts_foreach(qemu_find_opts("add-fd"), parse_add_fd, NULL, 1)) {
exit(1);
}
if (qemu_opts_foreach(qemu_find_opts("add-fd"), cleanup_add_fd, NULL, 1)) {
exit(1);
}
#endif
if (machine_class == NULL) {
fprintf(stderr, "No machine specified, and there is no default.\n"
"Use -machine help to list supported machines!\n");
exit(1);
}
current_machine = MACHINE(object_new(object_class_get_name(
OBJECT_CLASS(machine_class))));
object_property_add_child(object_get_root(), "machine",
OBJECT(current_machine), &error_abort);
cpu_exec_init_all();
if (machine_class->hw_version) {
qemu_set_version(machine_class->hw_version);
}
/* Init CPU def lists, based on config
* - Must be called after all the qemu_read_config_file() calls
* - Must be called before list_cpus()
* - Must be called before machine->init()
*/
cpudef_init();
if (cpu_model && is_help_option(cpu_model)) {
list_cpus(stdout, &fprintf, cpu_model);
exit(0);
}
/* Open the logfile at this point, if necessary. We can't open the logfile
* when encountering either of the logging options (-d or -D) because the
* other one may be encountered later on the command line, changing the
* location or level of logging.
*/
if (log_mask) {
int mask;
if (log_file) {
qemu_set_log_filename(log_file);
}
mask = qemu_str_to_log_mask(log_mask);
if (!mask) {
qemu_print_log_usage(stdout);
exit(1);
}
qemu_set_log(mask);
}
if (!is_daemonized()) {
if (!trace_init_backends(trace_events, trace_file)) {
exit(1);
}
}
/* If no data_dir is specified then try to find it relative to the
executable path. */
if (data_dir_idx < ARRAY_SIZE(data_dir)) {
data_dir[data_dir_idx] = os_find_datadir();
if (data_dir[data_dir_idx] != NULL) {
data_dir_idx++;
}
}
/* If all else fails use the install path specified when building. */
if (data_dir_idx < ARRAY_SIZE(data_dir)) {
data_dir[data_dir_idx++] = CONFIG_QEMU_DATADIR;
}
smp_parse(qemu_opts_find(qemu_find_opts("smp-opts"), NULL));
machine_class->max_cpus = machine_class->max_cpus ?: 1; /* Default to UP */
if (smp_cpus > machine_class->max_cpus) {
fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
"supported by machine `%s' (%d)\n", smp_cpus,
machine_class->name, machine_class->max_cpus);
exit(1);
}
/*
* Get the default machine options from the machine if it is not already
* specified either by the configuration file or by the command line.
*/
if (machine_class->default_machine_opts) {
qemu_opts_set_defaults(qemu_find_opts("machine"),
machine_class->default_machine_opts, 0);
}
qemu_opts_foreach(qemu_find_opts("device"), default_driver_check, NULL, 0);
qemu_opts_foreach(qemu_find_opts("global"), default_driver_check, NULL, 0);
if (!vga_model && !default_vga) {
vga_interface_type = VGA_DEVICE;
}
if (!has_defaults || machine_class->no_serial) {
default_serial = 0;
}
if (!has_defaults || machine_class->no_parallel) {
default_parallel = 0;
}
if (!has_defaults || !machine_class->use_virtcon) {
default_virtcon = 0;
}
if (!has_defaults || !machine_class->use_sclp) {
default_sclp = 0;
}
if (!has_defaults || machine_class->no_floppy) {
default_floppy = 0;
}
if (!has_defaults || machine_class->no_cdrom) {
default_cdrom = 0;
}
if (!has_defaults || machine_class->no_sdcard) {
default_sdcard = 0;
}
if (!has_defaults) {
default_monitor = 0;
default_net = 0;
default_vga = 0;
}
if (is_daemonized()) {
/* According to documentation and historically, -nographic redirects
* serial port, parallel port and monitor to stdio, which does not work
* with -daemonize. We can redirect these to null instead, but since
* -nographic is legacy, let's just error out.
* We disallow -nographic only if all other ports are not redirected
* explicitly, to not break existing legacy setups which uses
* -nographic _and_ redirects all ports explicitly - this is valid
* usage, -nographic is just a no-op in this case.
*/
if (display_type == DT_NOGRAPHIC
&& (default_parallel || default_serial
|| default_monitor || default_virtcon)) {
fprintf(stderr, "-nographic can not be used with -daemonize\n");
exit(1);
}
#ifdef CONFIG_CURSES
if (display_type == DT_CURSES) {
fprintf(stderr, "curses display can not be used with -daemonize\n");
exit(1);
}
#endif
}
if (display_type == DT_NOGRAPHIC) {
if (default_parallel)
add_device_config(DEV_PARALLEL, "null");
if (default_serial && default_monitor) {
add_device_config(DEV_SERIAL, "mon:stdio");
} else if (default_virtcon && default_monitor) {
add_device_config(DEV_VIRTCON, "mon:stdio");
} else if (default_sclp && default_monitor) {
add_device_config(DEV_SCLP, "mon:stdio");
} else {
if (default_serial)
add_device_config(DEV_SERIAL, "stdio");
if (default_virtcon)
add_device_config(DEV_VIRTCON, "stdio");
if (default_sclp) {
add_device_config(DEV_SCLP, "stdio");
}
if (default_monitor)
monitor_parse("stdio", "readline");
}
} else {
if (default_serial)
add_device_config(DEV_SERIAL, "vc:80Cx24C");
if (default_parallel)
add_device_config(DEV_PARALLEL, "vc:80Cx24C");
if (default_monitor)
monitor_parse("vc:80Cx24C", "readline");
if (default_virtcon)
add_device_config(DEV_VIRTCON, "vc:80Cx24C");
if (default_sclp) {
add_device_config(DEV_SCLP, "vc:80Cx24C");
}
}
if (display_type == DT_DEFAULT && !display_remote) {
#if defined(CONFIG_GTK)
display_type = DT_GTK;
#elif defined(CONFIG_SDL) || defined(CONFIG_COCOA)
display_type = DT_SDL;
#elif defined(CONFIG_VNC)
vnc_display = "localhost:0,to=99";
show_vnc_port = 1;
#else
display_type = DT_NONE;
#endif
}
if ((no_frame || alt_grab || ctrl_grab) && display_type != DT_SDL) {
fprintf(stderr, "-no-frame, -alt-grab and -ctrl-grab are only valid "
"for SDL, ignoring option\n");
}
if (no_quit && (display_type != DT_GTK && display_type != DT_SDL)) {
fprintf(stderr, "-no-quit is only valid for GTK and SDL, "
"ignoring option\n");
}
#if defined(CONFIG_GTK)
if (display_type == DT_GTK) {
early_gtk_display_init();
}
#endif
socket_init();
if (qemu_opts_foreach(qemu_find_opts("chardev"), chardev_init_func, NULL, 1) != 0)
exit(1);
#ifdef CONFIG_VIRTFS
if (qemu_opts_foreach(qemu_find_opts("fsdev"), fsdev_init_func, NULL, 1) != 0) {
exit(1);
}
#endif
if (pid_file && qemu_create_pidfile(pid_file) != 0) {
os_pidfile_error();
exit(1);
}
/* store value for the future use */
qemu_opt_set_number(qemu_find_opts_singleton("memory"), "size", ram_size);
if (qemu_opts_foreach(qemu_find_opts("device"), device_help_func, NULL, 0)
!= 0) {
exit(0);
}
if (qemu_opts_foreach(qemu_find_opts("object"),
object_create, NULL, 0) != 0) {
exit(1);
}
machine_opts = qemu_get_machine_opts();
if (qemu_opt_foreach(machine_opts, machine_set_property, current_machine,
1) < 0) {
object_unref(OBJECT(current_machine));
exit(1);
}
configure_accelerator(machine_class);
if (qtest_chrdev) {
Error *local_err = NULL;
qtest_init(qtest_chrdev, qtest_log, &local_err);
if (local_err) {
error_report("%s", error_get_pretty(local_err));
error_free(local_err);
exit(1);
}
}
machine_opts = qemu_get_machine_opts();
kernel_filename = qemu_opt_get(machine_opts, "kernel");
initrd_filename = qemu_opt_get(machine_opts, "initrd");
kernel_cmdline = qemu_opt_get(machine_opts, "append");
bios_name = qemu_opt_get(machine_opts, "firmware");
boot_order = machine_class->default_boot_order;
vl: Fix -boot order and once regressions, and related bugs Option "once" sets up a different boot order just for the initial boot. Boot order reverts back to normal on reset. Option "order" changes the normal boot order. The reversal is implemented by reset handler restore_boot_devices(), which takes the boot order to revert to as argument. restore_boot_devices() does nothing on its first call, because that must be the initial machine reset. On its second call, it changes the boot order back, and unregisters itself. Because we register the handler right when -boot gets parsed, we can revert to an incorrect normal boot order, and multiple -boot can interact in funny ways. Here's how things work without -boot once or order: * boot_devices is "". * main() passes machine->boot_order to to machine->init(), because boot_devices is "". machine->init() configures firmware accordingly. For PC machines, machine->boot_order is "cad", and pc_cmos_init() writes it to RTC CMOS, where SeaBIOS picks it up. Now consider -boot order=: * boot_devices is "". * -boot order= sets boot_devices to "" (no change). * main() passes machine->boot_order to to machine->init(), because boot_devices is "", as above. Bug: -boot order= has no effect. Broken in commit e4ada29e. Next, consider -boot once=a: * boot_devices is "". * -boot once=a registers restore_boot_devices() with argument "", and sets boot_devices to "a". * main() passes boot_devices "a" to machine->init(), which configures firmware accordingly. For PC machines, pc_cmos_init() writes the boot order to RTC CMOS. * main() calls qemu_system_reset(). This runs reset handlers. - restore_boot_devices() gets called with argument "". Does nothing, because it's the first call. * Machine boots, boot order is "a". * Machine resets (e.g. monitor command). Reset handlers run. - restore_boot_devices() gets called with argument "". Calls qemu_boot_set("") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. Bug: boot order reverts to "" instead of machine->boot_order. The actual boot order depends on how firmware interprets "". Broken in commit e4ada29e. Next, consider -boot once=a -boot order=c: * boot_devices is "". * -boot once=a registers restore_boot_devices() with argument "", and sets boot_devices to "a". * -boot order=c sets boot_devices to "c". * main() passes boot_devices "c" to machine->init(), which configures firmware accordingly. For PC machines, pc_cmos_init() writes the boot order to RTC CMOS. * main() calls qemu_system_reset(). This runs reset handlers. - restore_boot_devices() gets called with argument "". Does nothing, because it's the first call. * Machine boots, boot order is "c". Bug: it should be "a". I figure this has always been broken. * Machine resets (e.g. monitor command). Reset handlers run. - restore_boot_devices() gets called with argument "". Calls qemu_boot_set("") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. Bug: boot order reverts to "" instead of "c". I figure this has always been broken, just differently broken before commit e4ada29e. Next, consider -boot once=a -boot once=b -boot once=c: * boot_devices is "". * -boot once=a registers restore_boot_devices() with argument "", and sets boot_devices to "a". * -boot once=b registers restore_boot_devices() with argument "a", and sets boot_devices to "b". * -boot once=c registers restore_boot_devices() with argument "b", and sets boot_devices to "c". * main() passes boot_devices "c" to machine->init(), which configures firmware accordingly. For PC machines, pc_cmos_init() writes the boot order to RTC CMOS. * main() calls qemu_system_reset(). This runs reset handlers. - restore_boot_devices() gets called with argument "". Does nothing, because it's the first call. - restore_boot_devices() gets called with argument "a". Calls qemu_boot_set("a") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. - restore_boot_devices() gets called with argument "b". Calls qemu_boot_set("b") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. * Machine boots, boot order is "b". Bug: should really be "c", because that came last, and for all other -boot options, the last one wins. I figure this was broken some time before commit 37905d6a, and fixed there only for a single occurence of "once". * Machine resets (e.g. monitor command). Reset handlers run. - restore_boot_devices() gets called with argument "". Calls qemu_boot_set("") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. Same bug as above: boot order reverts to "" instead of machine->boot_order. Fix by acting upon -boot options order, once and menu only after option parsing is complete, and the machine is known. This is how the other -boot options work already. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Anthony Liguori <aliguori@us.ibm.com> Message-id: 1371208516-7857-4-git-send-email-armbru@redhat.com Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-06-14 15:15:03 +04:00
opts = qemu_opts_find(qemu_find_opts("boot-opts"), NULL);
if (opts) {
char *normal_boot_order;
const char *order, *once;
order = qemu_opt_get(opts, "order");
if (order) {
validate_bootdevices(order);
boot_order = order;
}
once = qemu_opt_get(opts, "once");
if (once) {
validate_bootdevices(once);
normal_boot_order = g_strdup(boot_order);
boot_order = once;
qemu_register_reset(restore_boot_order, normal_boot_order);
vl: Fix -boot order and once regressions, and related bugs Option "once" sets up a different boot order just for the initial boot. Boot order reverts back to normal on reset. Option "order" changes the normal boot order. The reversal is implemented by reset handler restore_boot_devices(), which takes the boot order to revert to as argument. restore_boot_devices() does nothing on its first call, because that must be the initial machine reset. On its second call, it changes the boot order back, and unregisters itself. Because we register the handler right when -boot gets parsed, we can revert to an incorrect normal boot order, and multiple -boot can interact in funny ways. Here's how things work without -boot once or order: * boot_devices is "". * main() passes machine->boot_order to to machine->init(), because boot_devices is "". machine->init() configures firmware accordingly. For PC machines, machine->boot_order is "cad", and pc_cmos_init() writes it to RTC CMOS, where SeaBIOS picks it up. Now consider -boot order=: * boot_devices is "". * -boot order= sets boot_devices to "" (no change). * main() passes machine->boot_order to to machine->init(), because boot_devices is "", as above. Bug: -boot order= has no effect. Broken in commit e4ada29e. Next, consider -boot once=a: * boot_devices is "". * -boot once=a registers restore_boot_devices() with argument "", and sets boot_devices to "a". * main() passes boot_devices "a" to machine->init(), which configures firmware accordingly. For PC machines, pc_cmos_init() writes the boot order to RTC CMOS. * main() calls qemu_system_reset(). This runs reset handlers. - restore_boot_devices() gets called with argument "". Does nothing, because it's the first call. * Machine boots, boot order is "a". * Machine resets (e.g. monitor command). Reset handlers run. - restore_boot_devices() gets called with argument "". Calls qemu_boot_set("") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. Bug: boot order reverts to "" instead of machine->boot_order. The actual boot order depends on how firmware interprets "". Broken in commit e4ada29e. Next, consider -boot once=a -boot order=c: * boot_devices is "". * -boot once=a registers restore_boot_devices() with argument "", and sets boot_devices to "a". * -boot order=c sets boot_devices to "c". * main() passes boot_devices "c" to machine->init(), which configures firmware accordingly. For PC machines, pc_cmos_init() writes the boot order to RTC CMOS. * main() calls qemu_system_reset(). This runs reset handlers. - restore_boot_devices() gets called with argument "". Does nothing, because it's the first call. * Machine boots, boot order is "c". Bug: it should be "a". I figure this has always been broken. * Machine resets (e.g. monitor command). Reset handlers run. - restore_boot_devices() gets called with argument "". Calls qemu_boot_set("") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. Bug: boot order reverts to "" instead of "c". I figure this has always been broken, just differently broken before commit e4ada29e. Next, consider -boot once=a -boot once=b -boot once=c: * boot_devices is "". * -boot once=a registers restore_boot_devices() with argument "", and sets boot_devices to "a". * -boot once=b registers restore_boot_devices() with argument "a", and sets boot_devices to "b". * -boot once=c registers restore_boot_devices() with argument "b", and sets boot_devices to "c". * main() passes boot_devices "c" to machine->init(), which configures firmware accordingly. For PC machines, pc_cmos_init() writes the boot order to RTC CMOS. * main() calls qemu_system_reset(). This runs reset handlers. - restore_boot_devices() gets called with argument "". Does nothing, because it's the first call. - restore_boot_devices() gets called with argument "a". Calls qemu_boot_set("a") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. - restore_boot_devices() gets called with argument "b". Calls qemu_boot_set("b") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. * Machine boots, boot order is "b". Bug: should really be "c", because that came last, and for all other -boot options, the last one wins. I figure this was broken some time before commit 37905d6a, and fixed there only for a single occurence of "once". * Machine resets (e.g. monitor command). Reset handlers run. - restore_boot_devices() gets called with argument "". Calls qemu_boot_set("") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. Same bug as above: boot order reverts to "" instead of machine->boot_order. Fix by acting upon -boot options order, once and menu only after option parsing is complete, and the machine is known. This is how the other -boot options work already. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Anthony Liguori <aliguori@us.ibm.com> Message-id: 1371208516-7857-4-git-send-email-armbru@redhat.com Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-06-14 15:15:03 +04:00
}
boot_menu = qemu_opt_get_bool(opts, "menu", boot_menu);
boot_strict = qemu_opt_get_bool(opts, "strict", false);
vl: Fix -boot order and once regressions, and related bugs Option "once" sets up a different boot order just for the initial boot. Boot order reverts back to normal on reset. Option "order" changes the normal boot order. The reversal is implemented by reset handler restore_boot_devices(), which takes the boot order to revert to as argument. restore_boot_devices() does nothing on its first call, because that must be the initial machine reset. On its second call, it changes the boot order back, and unregisters itself. Because we register the handler right when -boot gets parsed, we can revert to an incorrect normal boot order, and multiple -boot can interact in funny ways. Here's how things work without -boot once or order: * boot_devices is "". * main() passes machine->boot_order to to machine->init(), because boot_devices is "". machine->init() configures firmware accordingly. For PC machines, machine->boot_order is "cad", and pc_cmos_init() writes it to RTC CMOS, where SeaBIOS picks it up. Now consider -boot order=: * boot_devices is "". * -boot order= sets boot_devices to "" (no change). * main() passes machine->boot_order to to machine->init(), because boot_devices is "", as above. Bug: -boot order= has no effect. Broken in commit e4ada29e. Next, consider -boot once=a: * boot_devices is "". * -boot once=a registers restore_boot_devices() with argument "", and sets boot_devices to "a". * main() passes boot_devices "a" to machine->init(), which configures firmware accordingly. For PC machines, pc_cmos_init() writes the boot order to RTC CMOS. * main() calls qemu_system_reset(). This runs reset handlers. - restore_boot_devices() gets called with argument "". Does nothing, because it's the first call. * Machine boots, boot order is "a". * Machine resets (e.g. monitor command). Reset handlers run. - restore_boot_devices() gets called with argument "". Calls qemu_boot_set("") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. Bug: boot order reverts to "" instead of machine->boot_order. The actual boot order depends on how firmware interprets "". Broken in commit e4ada29e. Next, consider -boot once=a -boot order=c: * boot_devices is "". * -boot once=a registers restore_boot_devices() with argument "", and sets boot_devices to "a". * -boot order=c sets boot_devices to "c". * main() passes boot_devices "c" to machine->init(), which configures firmware accordingly. For PC machines, pc_cmos_init() writes the boot order to RTC CMOS. * main() calls qemu_system_reset(). This runs reset handlers. - restore_boot_devices() gets called with argument "". Does nothing, because it's the first call. * Machine boots, boot order is "c". Bug: it should be "a". I figure this has always been broken. * Machine resets (e.g. monitor command). Reset handlers run. - restore_boot_devices() gets called with argument "". Calls qemu_boot_set("") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. Bug: boot order reverts to "" instead of "c". I figure this has always been broken, just differently broken before commit e4ada29e. Next, consider -boot once=a -boot once=b -boot once=c: * boot_devices is "". * -boot once=a registers restore_boot_devices() with argument "", and sets boot_devices to "a". * -boot once=b registers restore_boot_devices() with argument "a", and sets boot_devices to "b". * -boot once=c registers restore_boot_devices() with argument "b", and sets boot_devices to "c". * main() passes boot_devices "c" to machine->init(), which configures firmware accordingly. For PC machines, pc_cmos_init() writes the boot order to RTC CMOS. * main() calls qemu_system_reset(). This runs reset handlers. - restore_boot_devices() gets called with argument "". Does nothing, because it's the first call. - restore_boot_devices() gets called with argument "a". Calls qemu_boot_set("a") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. - restore_boot_devices() gets called with argument "b". Calls qemu_boot_set("b") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. * Machine boots, boot order is "b". Bug: should really be "c", because that came last, and for all other -boot options, the last one wins. I figure this was broken some time before commit 37905d6a, and fixed there only for a single occurence of "once". * Machine resets (e.g. monitor command). Reset handlers run. - restore_boot_devices() gets called with argument "". Calls qemu_boot_set("") to reconfigure firmware. For PC machines, pc_boot_set() writes it into RTC CMOS. Reset handler unregistered. Same bug as above: boot order reverts to "" instead of machine->boot_order. Fix by acting upon -boot options order, once and menu only after option parsing is complete, and the machine is known. This is how the other -boot options work already. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Anthony Liguori <aliguori@us.ibm.com> Message-id: 1371208516-7857-4-git-send-email-armbru@redhat.com Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-06-14 15:15:03 +04:00
}
if (!kernel_cmdline) {
kernel_cmdline = "";
current_machine->kernel_cmdline = (char *)kernel_cmdline;
}
linux_boot = (kernel_filename != NULL);
if (!linux_boot && *kernel_cmdline != '\0') {
fprintf(stderr, "-append only allowed with -kernel option\n");
exit(1);
}
if (!linux_boot && initrd_filename != NULL) {
fprintf(stderr, "-initrd only allowed with -kernel option\n");
exit(1);
}
if (!linux_boot && qemu_opt_get(machine_opts, "dtb")) {
fprintf(stderr, "-dtb only allowed with -kernel option\n");
exit(1);
}
os_set_line_buffering();
qemu_init_cpu_loop();
qemu_mutex_lock_iothread();
#ifdef CONFIG_SPICE
/* spice needs the timers to be initialized by this point */
qemu_spice_init();
#endif
cpu_ticks_init();
if (icount_opts) {
if (kvm_enabled() || xen_enabled()) {
fprintf(stderr, "-icount is not allowed with kvm or xen\n");
exit(1);
}
configure_icount(icount_opts, &error_abort);
qemu_opts_del(icount_opts);
}
/* clean up network at qemu process termination */
atexit(&net_cleanup);
if (net_init_clients() < 0) {
exit(1);
}
#ifdef CONFIG_TPM
if (tpm_init() < 0) {
exit(1);
}
#endif
/* init the bluetooth world */
if (foreach_device_config(DEV_BT, bt_parse))
exit(1);
if (!xen_enabled()) {
/* On 32-bit hosts, QEMU is limited by virtual address space */
if (ram_size > (2047 << 20) && HOST_LONG_BITS == 32) {
fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
exit(1);
}
}
blk_mig_init();
ram_mig_init();
pc/vl: Add units-per-default-bus property This patch adds the 'units_per_default_bus' property which allows individual boards to declare their desired index => (bus,unit) mapping for their default HBA, so that boards such as Q35 can specify that its default if_ide HBA, AHCI, only accepts one unit per bus. This property only overrides the mapping for drives matching the block_default_type interface. This patch also adds this property to *all* past and present Q35 machine types. This retroactive addition is justified because the previous erroneous index=>(bus,unit) mappings caused by lack of such a property were not utilized due to lack of initialization code in the Q35 init routine. Further, semantically, the Q35 board type has always had the property that its default HBA, AHCI, only accepts one unit per bus. The new code added to add devices to drives relies upon the accuracy of this mapping. Thus, the property is applied retroactively to reduce complexity of allowing IDE HBAs with different units per bus. Examples: Prior to this patch, all IDE HBAs were assumed to use 2 units per bus (Master, Slave). When using Q35 and AHCI, however, we only allow one unit per bus. -hdb foo.qcow2 would become index=1, or bus=0,unit=1. -hdd foo.qcow2 would become index=3, or bus=1,unit=1. -drive file=foo.qcow2,index=5 becomes bus=2,unit=1. These are invalid for AHCI. They now become, under Q35 only: -hdb foo.qcow2 --> index=1, bus=1, unit=0. -hdd foo.qcow2 --> index=3, bus=3, unit=0. -drive file=foo.qcow2,index=5 --> bus=5,unit=0. The mapping is adjusted based on the fact that the default IF for the Q35 machine type is IF_IDE, and units-per-default-bus overrides the IDE mapping from its default of 2 units per bus to just 1 unit per bus. Signed-off-by: John Snow <jsnow@redhat.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Message-id: 1412187569-23452-4-git-send-email-jsnow@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2014-10-01 22:19:26 +04:00
/* If the currently selected machine wishes to override the units-per-bus
* property of its default HBA interface type, do so now. */
if (machine_class->units_per_default_bus) {
override_max_devs(machine_class->block_default_type,
machine_class->units_per_default_bus);
}
/* open the virtual block devices */
if (snapshot)
qemu_opts_foreach(qemu_find_opts("drive"), drive_enable_snapshot, NULL, 0);
Support default block interfaces per QEMUMachine There are QEMUMachines that have neither IF_IDE nor IF_SCSI as a default/standard interface to their block devices / drives. Therefore, this patch introduces a new field default_block_type per QEMUMachine struct. The prior use_scsi field becomes thereby obsolete and is replaced through .default_block_type = IF_SCSI. This patch also changes the default for s390x to IF_VIRTIO and removes an early hack that converts IF_IDE drives. Other parties have already claimed interest (e.g. IF_SD for exynos) To create a sane default, for machines that dont specify a default_block_type, this patch makes IF_IDE = 0 and IF_NONE = 1. I checked all users of IF_NONE (blockdev.c and ww/device-hotplug.c) as well as IF_IDE and it seems that it is ok to change the defines - in other words, I found no obvious (to me) assumption in the code regarding IF_NONE==0. IF_NONE is only set if there is an explicit if=none. Without if=* the interface becomes IF_DEFAULT. I would suggest to have some additional care, e.g. by letting this patch sit some days in the block tree. Based on an initial patch from Einar Lueck <elelueck@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> CC: Igor Mitsyanko <i.mitsyanko@samsung.com> CC: Markus Armbruster <armbru@redhat.com> CC: Kevin Wolf <kwolf@redhat.com> Reviewed-by: Alexander Graf <agraf@suse.de> Acked-by: Igor Mitsyanko <i.mitsyanko@samsung.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2012-11-20 18:30:34 +04:00
if (qemu_opts_foreach(qemu_find_opts("drive"), drive_init_func,
&machine_class->block_default_type, 1) != 0) {
exit(1);
Support default block interfaces per QEMUMachine There are QEMUMachines that have neither IF_IDE nor IF_SCSI as a default/standard interface to their block devices / drives. Therefore, this patch introduces a new field default_block_type per QEMUMachine struct. The prior use_scsi field becomes thereby obsolete and is replaced through .default_block_type = IF_SCSI. This patch also changes the default for s390x to IF_VIRTIO and removes an early hack that converts IF_IDE drives. Other parties have already claimed interest (e.g. IF_SD for exynos) To create a sane default, for machines that dont specify a default_block_type, this patch makes IF_IDE = 0 and IF_NONE = 1. I checked all users of IF_NONE (blockdev.c and ww/device-hotplug.c) as well as IF_IDE and it seems that it is ok to change the defines - in other words, I found no obvious (to me) assumption in the code regarding IF_NONE==0. IF_NONE is only set if there is an explicit if=none. Without if=* the interface becomes IF_DEFAULT. I would suggest to have some additional care, e.g. by letting this patch sit some days in the block tree. Based on an initial patch from Einar Lueck <elelueck@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> CC: Igor Mitsyanko <i.mitsyanko@samsung.com> CC: Markus Armbruster <armbru@redhat.com> CC: Kevin Wolf <kwolf@redhat.com> Reviewed-by: Alexander Graf <agraf@suse.de> Acked-by: Igor Mitsyanko <i.mitsyanko@samsung.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2012-11-20 18:30:34 +04:00
}
default_drive(default_cdrom, snapshot, machine_class->block_default_type, 2,
CDROM_OPTS);
default_drive(default_floppy, snapshot, IF_FLOPPY, 0, FD_OPTS);
default_drive(default_sdcard, snapshot, IF_SD, 0, SD_OPTS);
if (qemu_opts_foreach(qemu_find_opts("numa"), numa_init_func,
NULL, 1) != 0) {
exit(1);
}
set_numa_nodes();
if (qemu_opts_foreach(qemu_find_opts("mon"), mon_init_func, NULL, 1) != 0) {
exit(1);
}
if (foreach_device_config(DEV_SERIAL, serial_parse) < 0)
exit(1);
if (foreach_device_config(DEV_PARALLEL, parallel_parse) < 0)
exit(1);
if (foreach_device_config(DEV_VIRTCON, virtcon_parse) < 0)
exit(1);
if (foreach_device_config(DEV_SCLP, sclp_parse) < 0) {
exit(1);
}
if (foreach_device_config(DEV_DEBUGCON, debugcon_parse) < 0)
exit(1);
/* If no default VGA is requested, the default is "none". */
if (default_vga) {
if (cirrus_vga_available()) {
vga_model = "cirrus";
} else if (vga_available()) {
vga_model = "std";
}
}
if (vga_model) {
select_vgahw(vga_model);
}
if (watchdog) {
i = select_watchdog(watchdog);
if (i > 0)
exit (i == 1 ? 1 : 0);
}
if (machine_class->compat_props) {
qdev_prop_register_global_list(machine_class->compat_props);
}
qemu_add_globals();
qdev_machine_init();
current_machine->ram_size = ram_size;
current_machine->maxram_size = maxram_size;
current_machine->ram_slots = ram_slots;
current_machine->boot_order = boot_order;
current_machine->cpu_model = cpu_model;
machine_class->init(current_machine);
realtime_init();
audio_init();
KVM: Rework VCPU state writeback API This grand cleanup drops all reset and vmsave/load related synchronization points in favor of four(!) generic hooks: - cpu_synchronize_all_states in qemu_savevm_state_complete (initial sync from kernel before vmsave) - cpu_synchronize_all_post_init in qemu_loadvm_state (writeback after vmload) - cpu_synchronize_all_post_init in main after machine init - cpu_synchronize_all_post_reset in qemu_system_reset (writeback after system reset) These writeback points + the existing one of VCPU exec after cpu_synchronize_state map on three levels of writeback: - KVM_PUT_RUNTIME_STATE (during runtime, other VCPUs continue to run) - KVM_PUT_RESET_STATE (on synchronous system reset, all VCPUs stopped) - KVM_PUT_FULL_STATE (on init or vmload, all VCPUs stopped as well) This level is passed to the arch-specific VCPU state writing function that will decide which concrete substates need to be written. That way, no writer of load, save or reset functions that interact with in-kernel KVM states will ever have to worry about synchronization again. That also means that a lot of reasons for races, segfaults and deadlocks are eliminated. cpu_synchronize_state remains untouched, just as Anthony suggested. We continue to need it before reading or writing of VCPU states that are also tracked by in-kernel KVM subsystems. Consequently, this patch removes many cpu_synchronize_state calls that are now redundant, just like remaining explicit register syncs. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-03-01 21:10:30 +03:00
cpu_synchronize_all_post_init();
set_numa_modes();
/* init USB devices */
if (usb_enabled(false)) {
2009-10-06 15:16:57 +04:00
if (foreach_device_config(DEV_USB, usb_parse) < 0)
exit(1);
}
/* init generic devices */
if (qemu_opts_foreach(qemu_find_opts("device"), device_init_func, NULL, 1) != 0)
exit(1);
/* Did we create any drives that we failed to create a device for? */
drive_check_orphaned();
net_check_clients();
ds = init_displaystate();
/* init local displays */
switch (display_type) {
case DT_NOGRAPHIC:
(void)ds; /* avoid warning if no display is configured */
break;
#if defined(CONFIG_CURSES)
case DT_CURSES:
curses_display_init(ds, full_screen);
break;
#endif
#if defined(CONFIG_SDL)
case DT_SDL:
sdl_display_init(ds, full_screen, no_frame);
break;
#elif defined(CONFIG_COCOA)
case DT_SDL:
cocoa_display_init(ds, full_screen);
break;
#endif
#if defined(CONFIG_GTK)
case DT_GTK:
gtk_display_init(ds, full_screen, grab_on_hover);
break;
#endif
default:
break;
}
/* must be after terminal init, SDL library changes signal handlers */
os_setup_signal_handling();
#ifdef CONFIG_VNC
/* init remote displays */
if (vnc_display) {
Error *local_err = NULL;
vnc_display_init(ds);
vnc_display_open(ds, vnc_display, &local_err);
if (local_err != NULL) {
error_report("Failed to start VNC server on `%s': %s",
vnc_display, error_get_pretty(local_err));
error_free(local_err);
exit(1);
}
if (show_vnc_port) {
printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
}
}
#endif
#ifdef CONFIG_SPICE
if (using_spice) {
qemu_spice_display_init();
}
#endif
if (foreach_device_config(DEV_GDB, gdbserver_start) < 0) {
exit(1);
}
qdev_machine_creation_done();
if (rom_load_all() != 0) {
fprintf(stderr, "rom loading failed\n");
exit(1);
}
/* TODO: once all bus devices are qdevified, this should be done
* when bus is created by qdev.c */
qemu_register_reset(qbus_reset_all_fn, sysbus_get_default());
qemu_run_machine_init_done_notifiers();
/* Done notifiers can load ROMs */
rom_load_done();
qemu_system_reset(VMRESET_SILENT);
if (loadvm) {
if (load_vmstate(loadvm) < 0) {
autostart = 0;
}
}
qdev_prop_check_globals();
if (vmstate_dump_file) {
/* dump and exit */
dump_vmstate_json_to_file(vmstate_dump_file);
return 0;
}
if (incoming) {
Error *local_err = NULL;
qemu_start_incoming_migration(incoming, &local_err);
if (local_err) {
error_report("-incoming %s: %s", incoming,
error_get_pretty(local_err));
error_free(local_err);
exit(1);
}
} else if (autostart) {
vm_start();
}
os_setup_post();
if (is_daemonized()) {
if (!trace_init_backends(trace_events, trace_file)) {
exit(1);
}
}
main_loop();
bdrv_close_all();
pause_all_vcpus();
res_free();
#ifdef CONFIG_TPM
tpm_cleanup();
#endif
return 0;
}