qemu/target/avr/translate.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2812 lines
84 KiB
C
Raw Normal View History

/*
* QEMU AVR CPU
*
* Copyright (c) 2019-2020 Michael Rolnik
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see
* <http://www.gnu.org/licenses/lgpl-2.1.html>
*/
#include "qemu/osdep.h"
#include "qemu/qemu-print.h"
#include "tcg/tcg.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "tcg/tcg-op.h"
#include "exec/cpu_ldst.h"
#include "exec/helper-proto.h"
#include "exec/helper-gen.h"
#include "exec/log.h"
#include "exec/translator.h"
#define HELPER_H "helper.h"
#include "exec/helper-info.c.inc"
#undef HELPER_H
/*
* Define if you want a BREAK instruction translated to a breakpoint
* Active debugging connection is assumed
* This is for
* https://github.com/seharris/qemu-avr-tests/tree/master/instruction-tests
* tests
*/
#undef BREAKPOINT_ON_BREAK
static TCGv cpu_pc;
static TCGv cpu_Cf;
static TCGv cpu_Zf;
static TCGv cpu_Nf;
static TCGv cpu_Vf;
static TCGv cpu_Sf;
static TCGv cpu_Hf;
static TCGv cpu_Tf;
static TCGv cpu_If;
static TCGv cpu_rampD;
static TCGv cpu_rampX;
static TCGv cpu_rampY;
static TCGv cpu_rampZ;
static TCGv cpu_r[NUMBER_OF_CPU_REGISTERS];
static TCGv cpu_eind;
static TCGv cpu_sp;
static TCGv cpu_skip;
static const char reg_names[NUMBER_OF_CPU_REGISTERS][8] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
};
#define REG(x) (cpu_r[x])
#define DISAS_EXIT DISAS_TARGET_0 /* We want return to the cpu main loop. */
#define DISAS_LOOKUP DISAS_TARGET_1 /* We have a variable condition exit. */
#define DISAS_CHAIN DISAS_TARGET_2 /* We have a single condition exit. */
typedef struct DisasContext DisasContext;
/* This is the state at translation time. */
struct DisasContext {
DisasContextBase base;
CPUAVRState *env;
CPUState *cs;
target_long npc;
uint32_t opcode;
/* Routine used to access memory */
int memidx;
/*
* some AVR instructions can make the following instruction to be skipped
* Let's name those instructions
* A - instruction that can skip the next one
* B - instruction that can be skipped. this depends on execution of A
* there are two scenarios
* 1. A and B belong to the same translation block
* 2. A is the last instruction in the translation block and B is the last
*
* following variables are used to simplify the skipping logic, they are
* used in the following manner (sketch)
*
* TCGLabel *skip_label = NULL;
* if (ctx->skip_cond != TCG_COND_NEVER) {
* skip_label = gen_new_label();
* tcg_gen_brcond_tl(skip_cond, skip_var0, skip_var1, skip_label);
* }
*
* translate(ctx);
*
* if (skip_label) {
* gen_set_label(skip_label);
* }
*/
TCGv skip_var0;
TCGv skip_var1;
TCGCond skip_cond;
};
void avr_cpu_tcg_init(void)
{
int i;
#define AVR_REG_OFFS(x) offsetof(CPUAVRState, x)
cpu_pc = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(pc_w), "pc");
cpu_Cf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregC), "Cf");
cpu_Zf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregZ), "Zf");
cpu_Nf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregN), "Nf");
cpu_Vf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregV), "Vf");
cpu_Sf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregS), "Sf");
cpu_Hf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregH), "Hf");
cpu_Tf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregT), "Tf");
cpu_If = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregI), "If");
cpu_rampD = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampD), "rampD");
cpu_rampX = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampX), "rampX");
cpu_rampY = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampY), "rampY");
cpu_rampZ = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampZ), "rampZ");
cpu_eind = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(eind), "eind");
cpu_sp = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sp), "sp");
cpu_skip = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(skip), "skip");
for (i = 0; i < NUMBER_OF_CPU_REGISTERS; i++) {
cpu_r[i] = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(r[i]),
reg_names[i]);
}
#undef AVR_REG_OFFS
}
static int to_regs_16_31_by_one(DisasContext *ctx, int indx)
{
return 16 + (indx % 16);
}
static int to_regs_16_23_by_one(DisasContext *ctx, int indx)
{
return 16 + (indx % 8);
}
static int to_regs_24_30_by_two(DisasContext *ctx, int indx)
{
return 24 + (indx % 4) * 2;
}
static int to_regs_00_30_by_two(DisasContext *ctx, int indx)
{
return (indx % 16) * 2;
}
static uint16_t next_word(DisasContext *ctx)
{
return cpu_lduw_code(ctx->env, ctx->npc++ * 2);
}
static int append_16(DisasContext *ctx, int x)
{
return x << 16 | next_word(ctx);
}
static bool avr_have_feature(DisasContext *ctx, int feature)
{
if (!avr_feature(ctx->env, feature)) {
gen_helper_unsupported(tcg_env);
ctx->base.is_jmp = DISAS_NORETURN;
return false;
}
return true;
}
static bool decode_insn(DisasContext *ctx, uint16_t insn);
#include "decode-insn.c.inc"
/*
* Arithmetic Instructions
*/
/*
* Utility functions for updating status registers:
*
* - gen_add_CHf()
* - gen_add_Vf()
* - gen_sub_CHf()
* - gen_sub_Vf()
* - gen_NSf()
* - gen_ZNSf()
*
*/
static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr)
{
TCGv t1 = tcg_temp_new_i32();
TCGv t2 = tcg_temp_new_i32();
TCGv t3 = tcg_temp_new_i32();
tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */
tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */
tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */
tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */
tcg_gen_or_tl(t1, t1, t3);
tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */
tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */
tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
}
static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr)
{
TCGv t1 = tcg_temp_new_i32();
TCGv t2 = tcg_temp_new_i32();
/* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R */
/* = (Rd ^ R) & ~(Rd ^ Rr) */
tcg_gen_xor_tl(t1, Rd, R);
tcg_gen_xor_tl(t2, Rd, Rr);
tcg_gen_andc_tl(t1, t1, t2);
tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
}
static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr)
{
TCGv t1 = tcg_temp_new_i32();
TCGv t2 = tcg_temp_new_i32();
TCGv t3 = tcg_temp_new_i32();
tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */
tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */
tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */
tcg_gen_and_tl(t3, t3, R);
tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */
tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */
tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */
tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
}
static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr)
{
TCGv t1 = tcg_temp_new_i32();
TCGv t2 = tcg_temp_new_i32();
/* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R */
/* = (Rd ^ R) & (Rd ^ R) */
tcg_gen_xor_tl(t1, Rd, R);
tcg_gen_xor_tl(t2, Rd, Rr);
tcg_gen_and_tl(t1, t1, t2);
tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
}
static void gen_NSf(TCGv R)
{
tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
}
static void gen_ZNSf(TCGv R)
{
tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
/* update status register */
tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
}
/*
* Adds two registers without the C Flag and places the result in the
* destination register Rd.
*/
static bool trans_ADD(DisasContext *ctx, arg_ADD *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
TCGv R = tcg_temp_new_i32();
tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */
tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
/* update status register */
gen_add_CHf(R, Rd, Rr);
gen_add_Vf(R, Rd, Rr);
gen_ZNSf(R);
/* update output registers */
tcg_gen_mov_tl(Rd, R);
return true;
}
/*
* Adds two registers and the contents of the C Flag and places the result in
* the destination register Rd.
*/
static bool trans_ADC(DisasContext *ctx, arg_ADC *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
TCGv R = tcg_temp_new_i32();
tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */
tcg_gen_add_tl(R, R, cpu_Cf);
tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
/* update status register */
gen_add_CHf(R, Rd, Rr);
gen_add_Vf(R, Rd, Rr);
gen_ZNSf(R);
/* update output registers */
tcg_gen_mov_tl(Rd, R);
return true;
}
/*
* Adds an immediate value (0 - 63) to a register pair and places the result
* in the register pair. This instruction operates on the upper four register
* pairs, and is well suited for operations on the pointer registers. This
* instruction is not available in all devices. Refer to the device specific
* instruction set summary.
*/
static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) {
return true;
}
TCGv RdL = cpu_r[a->rd];
TCGv RdH = cpu_r[a->rd + 1];
int Imm = (a->imm);
TCGv R = tcg_temp_new_i32();
TCGv Rd = tcg_temp_new_i32();
tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */
tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
/* update status register */
tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);
tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */
tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);
tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */
/* update output registers */
tcg_gen_andi_tl(RdL, R, 0xff);
tcg_gen_shri_tl(RdH, R, 8);
return true;
}
/*
* Subtracts two registers and places the result in the destination
* register Rd.
*/
static bool trans_SUB(DisasContext *ctx, arg_SUB *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
TCGv R = tcg_temp_new_i32();
tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
/* update status register */
tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
gen_sub_CHf(R, Rd, Rr);
gen_sub_Vf(R, Rd, Rr);
gen_ZNSf(R);
/* update output registers */
tcg_gen_mov_tl(Rd, R);
return true;
}
/*
* Subtracts a register and a constant and places the result in the
* destination register Rd. This instruction is working on Register R16 to R31
* and is very well suited for operations on the X, Y, and Z-pointers.
*/
static bool trans_SUBI(DisasContext *ctx, arg_SUBI *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv Rr = tcg_constant_i32(a->imm);
TCGv R = tcg_temp_new_i32();
tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Imm */
tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
/* update status register */
gen_sub_CHf(R, Rd, Rr);
gen_sub_Vf(R, Rd, Rr);
gen_ZNSf(R);
/* update output registers */
tcg_gen_mov_tl(Rd, R);
return true;
}
/*
* Subtracts two registers and subtracts with the C Flag and places the
* result in the destination register Rd.
*/
static bool trans_SBC(DisasContext *ctx, arg_SBC *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
TCGv R = tcg_temp_new_i32();
TCGv zero = tcg_constant_i32(0);
tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
tcg_gen_sub_tl(R, R, cpu_Cf);
tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
/* update status register */
gen_sub_CHf(R, Rd, Rr);
gen_sub_Vf(R, Rd, Rr);
gen_NSf(R);
/*
* Previous value remains unchanged when the result is zero;
* cleared otherwise.
*/
tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
/* update output registers */
tcg_gen_mov_tl(Rd, R);
return true;
}
/*
* SBCI -- Subtract Immediate with Carry
*/
static bool trans_SBCI(DisasContext *ctx, arg_SBCI *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv Rr = tcg_constant_i32(a->imm);
TCGv R = tcg_temp_new_i32();
TCGv zero = tcg_constant_i32(0);
tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
tcg_gen_sub_tl(R, R, cpu_Cf);
tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
/* update status register */
gen_sub_CHf(R, Rd, Rr);
gen_sub_Vf(R, Rd, Rr);
gen_NSf(R);
/*
* Previous value remains unchanged when the result is zero;
* cleared otherwise.
*/
tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
/* update output registers */
tcg_gen_mov_tl(Rd, R);
return true;
}
/*
* Subtracts an immediate value (0-63) from a register pair and places the
* result in the register pair. This instruction operates on the upper four
* register pairs, and is well suited for operations on the Pointer Registers.
* This instruction is not available in all devices. Refer to the device
* specific instruction set summary.
*/
static bool trans_SBIW(DisasContext *ctx, arg_SBIW *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) {
return true;
}
TCGv RdL = cpu_r[a->rd];
TCGv RdH = cpu_r[a->rd + 1];
int Imm = (a->imm);
TCGv R = tcg_temp_new_i32();
TCGv Rd = tcg_temp_new_i32();
tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */
tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
/* update status register */
tcg_gen_andc_tl(cpu_Cf, R, Rd);
tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */
tcg_gen_andc_tl(cpu_Vf, Rd, R);
tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */
tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
/* update output registers */
tcg_gen_andi_tl(RdL, R, 0xff);
tcg_gen_shri_tl(RdH, R, 8);
return true;
}
/*
* Performs the logical AND between the contents of register Rd and register
* Rr and places the result in the destination register Rd.
*/
static bool trans_AND(DisasContext *ctx, arg_AND *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
TCGv R = tcg_temp_new_i32();
tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */
/* update status register */
tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
gen_ZNSf(R);
/* update output registers */
tcg_gen_mov_tl(Rd, R);
return true;
}
/*
* Performs the logical AND between the contents of register Rd and a constant
* and places the result in the destination register Rd.
*/
static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a)
{
TCGv Rd = cpu_r[a->rd];
int Imm = (a->imm);
tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */
/* update status register */
tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
gen_ZNSf(Rd);
return true;
}
/*
* Performs the logical OR between the contents of register Rd and register
* Rr and places the result in the destination register Rd.
*/
static bool trans_OR(DisasContext *ctx, arg_OR *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
TCGv R = tcg_temp_new_i32();
tcg_gen_or_tl(R, Rd, Rr);
/* update status register */
tcg_gen_movi_tl(cpu_Vf, 0);
gen_ZNSf(R);
/* update output registers */
tcg_gen_mov_tl(Rd, R);
return true;
}
/*
* Performs the logical OR between the contents of register Rd and a
* constant and places the result in the destination register Rd.
*/
static bool trans_ORI(DisasContext *ctx, arg_ORI *a)
{
TCGv Rd = cpu_r[a->rd];
int Imm = (a->imm);
tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */
/* update status register */
tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
gen_ZNSf(Rd);
return true;
}
/*
* Performs the logical EOR between the contents of register Rd and
* register Rr and places the result in the destination register Rd.
*/
static bool trans_EOR(DisasContext *ctx, arg_EOR *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
tcg_gen_xor_tl(Rd, Rd, Rr);
/* update status register */
tcg_gen_movi_tl(cpu_Vf, 0);
gen_ZNSf(Rd);
return true;
}
/*
* Clears the specified bits in register Rd. Performs the logical AND
* between the contents of register Rd and the complement of the constant mask
* K. The result will be placed in register Rd.
*/
static bool trans_COM(DisasContext *ctx, arg_COM *a)
{
TCGv Rd = cpu_r[a->rd];
tcg_gen_xori_tl(Rd, Rd, 0xff);
/* update status register */
tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */
tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
gen_ZNSf(Rd);
return true;
}
/*
* Replaces the contents of register Rd with its two's complement; the
* value $80 is left unchanged.
*/
static bool trans_NEG(DisasContext *ctx, arg_NEG *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv t0 = tcg_constant_i32(0);
TCGv R = tcg_temp_new_i32();
tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */
tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
/* update status register */
gen_sub_CHf(R, t0, Rd);
gen_sub_Vf(R, t0, Rd);
gen_ZNSf(R);
/* update output registers */
tcg_gen_mov_tl(Rd, R);
return true;
}
/*
* Adds one -1- to the contents of register Rd and places the result in the
* destination register Rd. The C Flag in SREG is not affected by the
* operation, thus allowing the INC instruction to be used on a loop counter in
* multiple-precision computations. When operating on unsigned numbers, only
* BREQ and BRNE branches can be expected to perform consistently. When
* operating on two's complement values, all signed branches are available.
*/
static bool trans_INC(DisasContext *ctx, arg_INC *a)
{
TCGv Rd = cpu_r[a->rd];
tcg_gen_addi_tl(Rd, Rd, 1);
tcg_gen_andi_tl(Rd, Rd, 0xff);
/* update status register */
tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80); /* Vf = Rd == 0x80 */
gen_ZNSf(Rd);
return true;
}
/*
* Subtracts one -1- from the contents of register Rd and places the result
* in the destination register Rd. The C Flag in SREG is not affected by the
* operation, thus allowing the DEC instruction to be used on a loop counter in
* multiple-precision computations. When operating on unsigned values, only
* BREQ and BRNE branches can be expected to perform consistently. When
* operating on two's complement values, all signed branches are available.
*/
static bool trans_DEC(DisasContext *ctx, arg_DEC *a)
{
TCGv Rd = cpu_r[a->rd];
tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */
tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */
/* update status register */
tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f); /* Vf = Rd == 0x7f */
gen_ZNSf(Rd);
return true;
}
/*
* This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication.
*/
static bool trans_MUL(DisasContext *ctx, arg_MUL *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
return true;
}
TCGv R0 = cpu_r[0];
TCGv R1 = cpu_r[1];
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
TCGv R = tcg_temp_new_i32();
tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */
tcg_gen_andi_tl(R0, R, 0xff);
tcg_gen_shri_tl(R1, R, 8);
/* update status register */
tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
return true;
}
/*
* This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication.
*/
static bool trans_MULS(DisasContext *ctx, arg_MULS *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
return true;
}
TCGv R0 = cpu_r[0];
TCGv R1 = cpu_r[1];
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
TCGv R = tcg_temp_new_i32();
TCGv t0 = tcg_temp_new_i32();
TCGv t1 = tcg_temp_new_i32();
tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
tcg_gen_andi_tl(R0, R, 0xff);
tcg_gen_shri_tl(R1, R, 8);
/* update status register */
tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
return true;
}
/*
* This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a
* signed and an unsigned number.
*/
static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
return true;
}
TCGv R0 = cpu_r[0];
TCGv R1 = cpu_r[1];
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
TCGv R = tcg_temp_new_i32();
TCGv t0 = tcg_temp_new_i32();
tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */
tcg_gen_andi_tl(R, R, 0xffff); /* make R 16 bits */
tcg_gen_andi_tl(R0, R, 0xff);
tcg_gen_shri_tl(R1, R, 8);
/* update status register */
tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
return true;
}
/*
* This instruction performs 8-bit x 8-bit -> 16-bit unsigned
* multiplication and shifts the result one bit left.
*/
static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
return true;
}
TCGv R0 = cpu_r[0];
TCGv R1 = cpu_r[1];
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
TCGv R = tcg_temp_new_i32();
tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */
/* update status register */
tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
/* update output registers */
tcg_gen_shli_tl(R, R, 1);
tcg_gen_andi_tl(R0, R, 0xff);
tcg_gen_shri_tl(R1, R, 8);
tcg_gen_andi_tl(R1, R1, 0xff);
return true;
}
/*
* This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
* and shifts the result one bit left.
*/
static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
return true;
}
TCGv R0 = cpu_r[0];
TCGv R1 = cpu_r[1];
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
TCGv R = tcg_temp_new_i32();
TCGv t0 = tcg_temp_new_i32();
TCGv t1 = tcg_temp_new_i32();
tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
/* update status register */
tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
/* update output registers */
tcg_gen_shli_tl(R, R, 1);
tcg_gen_andi_tl(R0, R, 0xff);
tcg_gen_shri_tl(R1, R, 8);
tcg_gen_andi_tl(R1, R1, 0xff);
return true;
}
/*
* This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
* and shifts the result one bit left.
*/
static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
return true;
}
TCGv R0 = cpu_r[0];
TCGv R1 = cpu_r[1];
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
TCGv R = tcg_temp_new_i32();
TCGv t0 = tcg_temp_new_i32();
tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */
tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
/* update status register */
tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
/* update output registers */
tcg_gen_shli_tl(R, R, 1);
tcg_gen_andi_tl(R0, R, 0xff);
tcg_gen_shri_tl(R1, R, 8);
tcg_gen_andi_tl(R1, R1, 0xff);
return true;
}
/*
* The module is an instruction set extension to the AVR CPU, performing
* DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in
* the CPU register file, registers R0-R7, where LSB of data is placed in LSB
* of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including
* parity bits) is placed in registers R8- R15, organized in the register file
* with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES
* instruction performs one round in the DES algorithm. Sixteen rounds must be
* executed in increasing order to form the correct DES ciphertext or
* plaintext. Intermediate results are stored in the register file (R0-R15)
* after each DES instruction. The instruction's operand (K) determines which
* round is executed, and the half carry flag (H) determines whether encryption
* or decryption is performed. The DES algorithm is described in
* "Specifications for the Data Encryption Standard" (Federal Information
* Processing Standards Publication 46). Intermediate results in this
* implementation differ from the standard because the initial permutation and
* the inverse initial permutation are performed each iteration. This does not
* affect the result in the final ciphertext or plaintext, but reduces
* execution time.
*/
static bool trans_DES(DisasContext *ctx, arg_DES *a)
{
/* TODO */
if (!avr_have_feature(ctx, AVR_FEATURE_DES)) {
return true;
}
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
return true;
}
/*
* Branch Instructions
*/
static void gen_jmp_ez(DisasContext *ctx)
{
tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind);
ctx->base.is_jmp = DISAS_LOOKUP;
}
static void gen_jmp_z(DisasContext *ctx)
{
tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
ctx->base.is_jmp = DISAS_LOOKUP;
}
static void gen_push_ret(DisasContext *ctx, int ret)
{
if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
TCGv t0 = tcg_constant_i32(ret & 0x0000ff);
tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB);
tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
} else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
TCGv t0 = tcg_constant_i32(ret & 0x00ffff);
tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW);
tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
} else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
TCGv lo = tcg_constant_i32(ret & 0x0000ff);
TCGv hi = tcg_constant_i32((ret & 0xffff00) >> 8);
tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
tcg_gen_subi_tl(cpu_sp, cpu_sp, 2);
tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
}
}
static void gen_pop_ret(DisasContext *ctx, TCGv ret)
{
if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB);
} else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW);
tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
} else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
TCGv lo = tcg_temp_new_i32();
TCGv hi = tcg_temp_new_i32();
tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
tcg_gen_addi_tl(cpu_sp, cpu_sp, 2);
tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
tcg_gen_deposit_tl(ret, lo, hi, 8, 16);
}
}
static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
{
const TranslationBlock *tb = ctx->base.tb;
if (translator_use_goto_tb(&ctx->base, dest)) {
tcg_gen_goto_tb(n);
tcg_gen_movi_i32(cpu_pc, dest);
tcg_gen_exit_tb(tb, n);
} else {
tcg_gen_movi_i32(cpu_pc, dest);
tcg_gen_lookup_and_goto_ptr();
}
ctx->base.is_jmp = DISAS_NORETURN;
}
/*
* Relative jump to an address within PC - 2K +1 and PC + 2K (words). For
* AVR microcontrollers with Program memory not exceeding 4K words (8KB) this
* instruction can address the entire memory from every address location. See
* also JMP.
*/
static bool trans_RJMP(DisasContext *ctx, arg_RJMP *a)
{
int dst = ctx->npc + a->imm;
gen_goto_tb(ctx, 0, dst);
return true;
}
/*
* Indirect jump to the address pointed to by the Z (16 bits) Pointer
* Register in the Register File. The Z-pointer Register is 16 bits wide and
* allows jump within the lowest 64K words (128KB) section of Program memory.
* This instruction is not available in all devices. Refer to the device
* specific instruction set summary.
*/
static bool trans_IJMP(DisasContext *ctx, arg_IJMP *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) {
return true;
}
gen_jmp_z(ctx);
return true;
}
/*
* Indirect jump to the address pointed to by the Z (16 bits) Pointer
* Register in the Register File and the EIND Register in the I/O space. This
* instruction allows for indirect jumps to the entire 4M (words) Program
* memory space. See also IJMP. This instruction is not available in all
* devices. Refer to the device specific instruction set summary.
*/
static bool trans_EIJMP(DisasContext *ctx, arg_EIJMP *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) {
return true;
}
gen_jmp_ez(ctx);
return true;
}
/*
* Jump to an address within the entire 4M (words) Program memory. See also
* RJMP. This instruction is not available in all devices. Refer to the device
* specific instruction set summary.0
*/
static bool trans_JMP(DisasContext *ctx, arg_JMP *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) {
return true;
}
gen_goto_tb(ctx, 0, a->imm);
return true;
}
/*
* Relative call to an address within PC - 2K + 1 and PC + 2K (words). The
* return address (the instruction after the RCALL) is stored onto the Stack.
* See also CALL. For AVR microcontrollers with Program memory not exceeding 4K
* words (8KB) this instruction can address the entire memory from every
* address location. The Stack Pointer uses a post-decrement scheme during
* RCALL.
*/
static bool trans_RCALL(DisasContext *ctx, arg_RCALL *a)
{
int ret = ctx->npc;
int dst = ctx->npc + a->imm;
gen_push_ret(ctx, ret);
gen_goto_tb(ctx, 0, dst);
return true;
}
/*
* Calls to a subroutine within the entire 4M (words) Program memory. The
* return address (to the instruction after the CALL) will be stored onto the
* Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during
* CALL. This instruction is not available in all devices. Refer to the device
* specific instruction set summary.
*/
static bool trans_ICALL(DisasContext *ctx, arg_ICALL *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) {
return true;
}
int ret = ctx->npc;
gen_push_ret(ctx, ret);
gen_jmp_z(ctx);
return true;
}
/*
* Indirect call of a subroutine pointed to by the Z (16 bits) Pointer
* Register in the Register File and the EIND Register in the I/O space. This
* instruction allows for indirect calls to the entire 4M (words) Program
* memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme
* during EICALL. This instruction is not available in all devices. Refer to
* the device specific instruction set summary.
*/
static bool trans_EICALL(DisasContext *ctx, arg_EICALL *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) {
return true;
}
int ret = ctx->npc;
gen_push_ret(ctx, ret);
gen_jmp_ez(ctx);
return true;
}
/*
* Calls to a subroutine within the entire Program memory. The return
* address (to the instruction after the CALL) will be stored onto the Stack.
* (See also RCALL). The Stack Pointer uses a post-decrement scheme during
* CALL. This instruction is not available in all devices. Refer to the device
* specific instruction set summary.
*/
static bool trans_CALL(DisasContext *ctx, arg_CALL *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) {
return true;
}
int Imm = a->imm;
int ret = ctx->npc;
gen_push_ret(ctx, ret);
gen_goto_tb(ctx, 0, Imm);
return true;
}
/*
* Returns from subroutine. The return address is loaded from the STACK.
* The Stack Pointer uses a preincrement scheme during RET.
*/
static bool trans_RET(DisasContext *ctx, arg_RET *a)
{
gen_pop_ret(ctx, cpu_pc);
ctx->base.is_jmp = DISAS_LOOKUP;
return true;
}
/*
* Returns from interrupt. The return address is loaded from the STACK and
* the Global Interrupt Flag is set. Note that the Status Register is not
* automatically stored when entering an interrupt routine, and it is not
* restored when returning from an interrupt routine. This must be handled by
* the application program. The Stack Pointer uses a pre-increment scheme
* during RETI.
*/
static bool trans_RETI(DisasContext *ctx, arg_RETI *a)
{
gen_pop_ret(ctx, cpu_pc);
tcg_gen_movi_tl(cpu_If, 1);
/* Need to return to main loop to re-evaluate interrupts. */
ctx->base.is_jmp = DISAS_EXIT;
return true;
}
/*
* This instruction performs a compare between two registers Rd and Rr, and
* skips the next instruction if Rd = Rr.
*/
static bool trans_CPSE(DisasContext *ctx, arg_CPSE *a)
{
ctx->skip_cond = TCG_COND_EQ;
ctx->skip_var0 = cpu_r[a->rd];
ctx->skip_var1 = cpu_r[a->rr];
return true;
}
/*
* This instruction performs a compare between two registers Rd and Rr.
* None of the registers are changed. All conditional branches can be used
* after this instruction.
*/
static bool trans_CP(DisasContext *ctx, arg_CP *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
TCGv R = tcg_temp_new_i32();
tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
/* update status register */
gen_sub_CHf(R, Rd, Rr);
gen_sub_Vf(R, Rd, Rr);
gen_ZNSf(R);
return true;
}
/*
* This instruction performs a compare between two registers Rd and Rr and
* also takes into account the previous carry. None of the registers are
* changed. All conditional branches can be used after this instruction.
*/
static bool trans_CPC(DisasContext *ctx, arg_CPC *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
TCGv R = tcg_temp_new_i32();
TCGv zero = tcg_constant_i32(0);
tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
tcg_gen_sub_tl(R, R, cpu_Cf);
tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
/* update status register */
gen_sub_CHf(R, Rd, Rr);
gen_sub_Vf(R, Rd, Rr);
gen_NSf(R);
/*
* Previous value remains unchanged when the result is zero;
* cleared otherwise.
*/
tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
return true;
}
/*
* This instruction performs a compare between register Rd and a constant.
* The register is not changed. All conditional branches can be used after this
* instruction.
*/
static bool trans_CPI(DisasContext *ctx, arg_CPI *a)
{
TCGv Rd = cpu_r[a->rd];
int Imm = a->imm;
TCGv Rr = tcg_constant_i32(Imm);
TCGv R = tcg_temp_new_i32();
tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
/* update status register */
gen_sub_CHf(R, Rd, Rr);
gen_sub_Vf(R, Rd, Rr);
gen_ZNSf(R);
return true;
}
/*
* This instruction tests a single bit in a register and skips the next
* instruction if the bit is cleared.
*/
static bool trans_SBRC(DisasContext *ctx, arg_SBRC *a)
{
TCGv Rr = cpu_r[a->rr];
ctx->skip_cond = TCG_COND_EQ;
ctx->skip_var0 = tcg_temp_new();
tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit);
return true;
}
/*
* This instruction tests a single bit in a register and skips the next
* instruction if the bit is set.
*/
static bool trans_SBRS(DisasContext *ctx, arg_SBRS *a)
{
TCGv Rr = cpu_r[a->rr];
ctx->skip_cond = TCG_COND_NE;
ctx->skip_var0 = tcg_temp_new();
tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit);
return true;
}
/*
* This instruction tests a single bit in an I/O Register and skips the
* next instruction if the bit is cleared. This instruction operates on the
* lower 32 I/O Registers -- addresses 0-31.
*/
static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a)
{
TCGv data = tcg_temp_new_i32();
TCGv port = tcg_constant_i32(a->reg);
gen_helper_inb(data, tcg_env, port);
tcg_gen_andi_tl(data, data, 1 << a->bit);
ctx->skip_cond = TCG_COND_EQ;
ctx->skip_var0 = data;
return true;
}
/*
* This instruction tests a single bit in an I/O Register and skips the
* next instruction if the bit is set. This instruction operates on the lower
* 32 I/O Registers -- addresses 0-31.
*/
static bool trans_SBIS(DisasContext *ctx, arg_SBIS *a)
{
TCGv data = tcg_temp_new_i32();
TCGv port = tcg_constant_i32(a->reg);
gen_helper_inb(data, tcg_env, port);
tcg_gen_andi_tl(data, data, 1 << a->bit);
ctx->skip_cond = TCG_COND_NE;
ctx->skip_var0 = data;
return true;
}
/*
* Conditional relative branch. Tests a single bit in SREG and branches
* relatively to PC if the bit is cleared. This instruction branches relatively
* to PC in either direction (PC - 63 < = destination <= PC + 64). The
* parameter k is the offset from PC and is represented in two's complement
* form.
*/
static bool trans_BRBC(DisasContext *ctx, arg_BRBC *a)
{
TCGLabel *not_taken = gen_new_label();
TCGv var;
switch (a->bit) {
case 0x00:
var = cpu_Cf;
break;
case 0x01:
var = cpu_Zf;
break;
case 0x02:
var = cpu_Nf;
break;
case 0x03:
var = cpu_Vf;
break;
case 0x04:
var = cpu_Sf;
break;
case 0x05:
var = cpu_Hf;
break;
case 0x06:
var = cpu_Tf;
break;
case 0x07:
var = cpu_If;
break;
default:
g_assert_not_reached();
}
tcg_gen_brcondi_i32(TCG_COND_NE, var, 0, not_taken);
gen_goto_tb(ctx, 0, ctx->npc + a->imm);
gen_set_label(not_taken);
ctx->base.is_jmp = DISAS_CHAIN;
return true;
}
/*
* Conditional relative branch. Tests a single bit in SREG and branches
* relatively to PC if the bit is set. This instruction branches relatively to
* PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k
* is the offset from PC and is represented in two's complement form.
*/
static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a)
{
TCGLabel *not_taken = gen_new_label();
TCGv var;
switch (a->bit) {
case 0x00:
var = cpu_Cf;
break;
case 0x01:
var = cpu_Zf;
break;
case 0x02:
var = cpu_Nf;
break;
case 0x03:
var = cpu_Vf;
break;
case 0x04:
var = cpu_Sf;
break;
case 0x05:
var = cpu_Hf;
break;
case 0x06:
var = cpu_Tf;
break;
case 0x07:
var = cpu_If;
break;
default:
g_assert_not_reached();
}
tcg_gen_brcondi_i32(TCG_COND_EQ, var, 0, not_taken);
gen_goto_tb(ctx, 0, ctx->npc + a->imm);
gen_set_label(not_taken);
ctx->base.is_jmp = DISAS_CHAIN;
return true;
}
/*
* Data Transfer Instructions
*/
/*
* in the gen_set_addr & gen_get_addr functions
* H assumed to be in 0x00ff0000 format
* M assumed to be in 0x000000ff format
* L assumed to be in 0x000000ff format
*/
static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L)
{
tcg_gen_andi_tl(L, addr, 0x000000ff);
tcg_gen_andi_tl(M, addr, 0x0000ff00);
tcg_gen_shri_tl(M, M, 8);
tcg_gen_andi_tl(H, addr, 0x00ff0000);
}
static void gen_set_xaddr(TCGv addr)
{
gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]);
}
static void gen_set_yaddr(TCGv addr)
{
gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]);
}
static void gen_set_zaddr(TCGv addr)
{
gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]);
}
static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L)
{
TCGv addr = tcg_temp_new_i32();
tcg_gen_deposit_tl(addr, M, H, 8, 8);
tcg_gen_deposit_tl(addr, L, addr, 8, 16);
return addr;
}
static TCGv gen_get_xaddr(void)
{
return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]);
}
static TCGv gen_get_yaddr(void)
{
return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]);
}
static TCGv gen_get_zaddr(void)
{
return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]);
}
/*
* Load one byte indirect from data space to register and stores an clear
* the bits in data space specified by the register. The instruction can only
* be used towards internal SRAM. The data location is pointed to by the Z (16
* bits) Pointer Register in the Register File. Memory access is limited to the
* current data segment of 64KB. To access another data segment in devices with
* more than 64KB data space, the RAMPZ in register in the I/O area has to be
* changed. The Z-pointer Register is left unchanged by the operation. This
* instruction is especially suited for clearing status bits stored in SRAM.
*/
static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr)
{
if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) {
gen_helper_fullwr(tcg_env, data, addr);
} else {
tcg_gen_qemu_st_tl(data, addr, MMU_DATA_IDX, MO_UB);
}
}
static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr)
{
if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) {
gen_helper_fullrd(data, tcg_env, addr);
} else {
tcg_gen_qemu_ld_tl(data, addr, MMU_DATA_IDX, MO_UB);
}
}
/*
* This instruction makes a copy of one register into another. The source
* register Rr is left unchanged, while the destination register Rd is loaded
* with a copy of Rr.
*/
static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv Rr = cpu_r[a->rr];
tcg_gen_mov_tl(Rd, Rr);
return true;
}
/*
* This instruction makes a copy of one register pair into another register
* pair. The source register pair Rr+1:Rr is left unchanged, while the
* destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This
* instruction is not available in all devices. Refer to the device specific
* instruction set summary.
*/
static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
return true;
}
TCGv RdL = cpu_r[a->rd];
TCGv RdH = cpu_r[a->rd + 1];
TCGv RrL = cpu_r[a->rr];
TCGv RrH = cpu_r[a->rr + 1];
tcg_gen_mov_tl(RdH, RrH);
tcg_gen_mov_tl(RdL, RrL);
return true;
}
/*
* Loads an 8 bit constant directly to register 16 to 31.
*/
static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
{
TCGv Rd = cpu_r[a->rd];
int imm = a->imm;
tcg_gen_movi_tl(Rd, imm);
return true;
}
/*
* Loads one byte from the data space to a register. For parts with SRAM,
* the data space consists of the Register File, I/O memory and internal SRAM
* (and external SRAM if applicable). For parts without SRAM, the data space
* consists of the register file only. The EEPROM has a separate address space.
* A 16-bit address must be supplied. Memory access is limited to the current
* data segment of 64KB. The LDS instruction uses the RAMPD Register to access
* memory above 64KB. To access another data segment in devices with more than
* 64KB data space, the RAMPD in register in the I/O area has to be changed.
* This instruction is not available in all devices. Refer to the device
* specific instruction set summary.
*/
static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = tcg_temp_new_i32();
TCGv H = cpu_rampD;
a->imm = next_word(ctx);
tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
tcg_gen_shli_tl(addr, addr, 16);
tcg_gen_ori_tl(addr, addr, a->imm);
gen_data_load(ctx, Rd, addr);
return true;
}
/*
* Loads one byte indirect from the data space to a register. For parts
* with SRAM, the data space consists of the Register File, I/O memory and
* internal SRAM (and external SRAM if applicable). For parts without SRAM, the
* data space consists of the Register File only. In some parts the Flash
* Memory has been mapped to the data space and can be read using this command.
* The EEPROM has a separate address space. The data location is pointed to by
* the X (16 bits) Pointer Register in the Register File. Memory access is
* limited to the current data segment of 64KB. To access another data segment
* in devices with more than 64KB data space, the RAMPX in register in the I/O
* area has to be changed. The X-pointer Register can either be left unchanged
* by the operation, or it can be post-incremented or predecremented. These
* features are especially suited for accessing arrays, tables, and Stack
* Pointer usage of the X-pointer Register. Note that only the low byte of the
* X-pointer is updated in devices with no more than 256 bytes data space. For
* such devices, the high byte of the pointer is not used by this instruction
* and can be used for other purposes. The RAMPX Register in the I/O area is
* updated in parts with more than 64KB data space or more than 64KB Program
* memory, and the increment/decrement is added to the entire 24-bit address on
* such devices. Not all variants of this instruction is available in all
* devices. Refer to the device specific instruction set summary. In the
* Reduced Core tinyAVR the LD instruction can be used to achieve the same
* operation as LPM since the program memory is mapped to the data memory
* space.
*/
static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_xaddr();
gen_data_load(ctx, Rd, addr);
return true;
}
static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_xaddr();
gen_data_load(ctx, Rd, addr);
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
gen_set_xaddr(addr);
return true;
}
static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_xaddr();
tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
gen_data_load(ctx, Rd, addr);
gen_set_xaddr(addr);
return true;
}
/*
* Loads one byte indirect with or without displacement from the data space
* to a register. For parts with SRAM, the data space consists of the Register
* File, I/O memory and internal SRAM (and external SRAM if applicable). For
* parts without SRAM, the data space consists of the Register File only. In
* some parts the Flash Memory has been mapped to the data space and can be
* read using this command. The EEPROM has a separate address space. The data
* location is pointed to by the Y (16 bits) Pointer Register in the Register
* File. Memory access is limited to the current data segment of 64KB. To
* access another data segment in devices with more than 64KB data space, the
* RAMPY in register in the I/O area has to be changed. The Y-pointer Register
* can either be left unchanged by the operation, or it can be post-incremented
* or predecremented. These features are especially suited for accessing
* arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that
* only the low byte of the Y-pointer is updated in devices with no more than
* 256 bytes data space. For such devices, the high byte of the pointer is not
* used by this instruction and can be used for other purposes. The RAMPY
* Register in the I/O area is updated in parts with more than 64KB data space
* or more than 64KB Program memory, and the increment/decrement/displacement
* is added to the entire 24-bit address on such devices. Not all variants of
* this instruction is available in all devices. Refer to the device specific
* instruction set summary. In the Reduced Core tinyAVR the LD instruction can
* be used to achieve the same operation as LPM since the program memory is
* mapped to the data memory space.
*/
static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_yaddr();
gen_data_load(ctx, Rd, addr);
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
gen_set_yaddr(addr);
return true;
}
static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_yaddr();
tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
gen_data_load(ctx, Rd, addr);
gen_set_yaddr(addr);
return true;
}
static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_yaddr();
tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
gen_data_load(ctx, Rd, addr);
return true;
}
/*
* Loads one byte indirect with or without displacement from the data space
* to a register. For parts with SRAM, the data space consists of the Register
* File, I/O memory and internal SRAM (and external SRAM if applicable). For
* parts without SRAM, the data space consists of the Register File only. In
* some parts the Flash Memory has been mapped to the data space and can be
* read using this command. The EEPROM has a separate address space. The data
* location is pointed to by the Z (16 bits) Pointer Register in the Register
* File. Memory access is limited to the current data segment of 64KB. To
* access another data segment in devices with more than 64KB data space, the
* RAMPZ in register in the I/O area has to be changed. The Z-pointer Register
* can either be left unchanged by the operation, or it can be post-incremented
* or predecremented. These features are especially suited for Stack Pointer
* usage of the Z-pointer Register, however because the Z-pointer Register can
* be used for indirect subroutine calls, indirect jumps and table lookup, it
* is often more convenient to use the X or Y-pointer as a dedicated Stack
* Pointer. Note that only the low byte of the Z-pointer is updated in devices
* with no more than 256 bytes data space. For such devices, the high byte of
* the pointer is not used by this instruction and can be used for other
* purposes. The RAMPZ Register in the I/O area is updated in parts with more
* than 64KB data space or more than 64KB Program memory, and the
* increment/decrement/displacement is added to the entire 24-bit address on
* such devices. Not all variants of this instruction is available in all
* devices. Refer to the device specific instruction set summary. In the
* Reduced Core tinyAVR the LD instruction can be used to achieve the same
* operation as LPM since the program memory is mapped to the data memory
* space. For using the Z-pointer for table lookup in Program memory see the
* LPM and ELPM instructions.
*/
static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_zaddr();
gen_data_load(ctx, Rd, addr);
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
gen_set_zaddr(addr);
return true;
}
static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_zaddr();
tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
gen_data_load(ctx, Rd, addr);
gen_set_zaddr(addr);
return true;
}
static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_zaddr();
tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
gen_data_load(ctx, Rd, addr);
return true;
}
/*
* Stores one byte from a Register to the data space. For parts with SRAM,
* the data space consists of the Register File, I/O memory and internal SRAM
* (and external SRAM if applicable). For parts without SRAM, the data space
* consists of the Register File only. The EEPROM has a separate address space.
* A 16-bit address must be supplied. Memory access is limited to the current
* data segment of 64KB. The STS instruction uses the RAMPD Register to access
* memory above 64KB. To access another data segment in devices with more than
* 64KB data space, the RAMPD in register in the I/O area has to be changed.
* This instruction is not available in all devices. Refer to the device
* specific instruction set summary.
*/
static bool trans_STS(DisasContext *ctx, arg_STS *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = tcg_temp_new_i32();
TCGv H = cpu_rampD;
a->imm = next_word(ctx);
tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
tcg_gen_shli_tl(addr, addr, 16);
tcg_gen_ori_tl(addr, addr, a->imm);
gen_data_store(ctx, Rd, addr);
return true;
}
/*
* Stores one byte indirect from a register to data space. For parts with SRAM,
* the data space consists of the Register File, I/O memory, and internal SRAM
* (and external SRAM if applicable). For parts without SRAM, the data space
* consists of the Register File only. The EEPROM has a separate address space.
*
* The data location is pointed to by the X (16 bits) Pointer Register in the
* Register File. Memory access is limited to the current data segment of 64KB.
* To access another data segment in devices with more than 64KB data space, the
* RAMPX in register in the I/O area has to be changed.
*
* The X-pointer Register can either be left unchanged by the operation, or it
* can be post-incremented or pre-decremented. These features are especially
* suited for accessing arrays, tables, and Stack Pointer usage of the
* X-pointer Register. Note that only the low byte of the X-pointer is updated
* in devices with no more than 256 bytes data space. For such devices, the high
* byte of the pointer is not used by this instruction and can be used for other
* purposes. The RAMPX Register in the I/O area is updated in parts with more
* than 64KB data space or more than 64KB Program memory, and the increment /
* decrement is added to the entire 24-bit address on such devices.
*/
static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
{
TCGv Rd = cpu_r[a->rr];
TCGv addr = gen_get_xaddr();
gen_data_store(ctx, Rd, addr);
return true;
}
static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
{
TCGv Rd = cpu_r[a->rr];
TCGv addr = gen_get_xaddr();
gen_data_store(ctx, Rd, addr);
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
gen_set_xaddr(addr);
return true;
}
static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
{
TCGv Rd = cpu_r[a->rr];
TCGv addr = gen_get_xaddr();
tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
gen_data_store(ctx, Rd, addr);
gen_set_xaddr(addr);
return true;
}
/*
* Stores one byte indirect with or without displacement from a register to data
* space. For parts with SRAM, the data space consists of the Register File, I/O
* memory, and internal SRAM (and external SRAM if applicable). For parts
* without SRAM, the data space consists of the Register File only. The EEPROM
* has a separate address space.
*
* The data location is pointed to by the Y (16 bits) Pointer Register in the
* Register File. Memory access is limited to the current data segment of 64KB.
* To access another data segment in devices with more than 64KB data space, the
* RAMPY in register in the I/O area has to be changed.
*
* The Y-pointer Register can either be left unchanged by the operation, or it
* can be post-incremented or pre-decremented. These features are especially
* suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer
* Register. Note that only the low byte of the Y-pointer is updated in devices
* with no more than 256 bytes data space. For such devices, the high byte of
* the pointer is not used by this instruction and can be used for other
* purposes. The RAMPY Register in the I/O area is updated in parts with more
* than 64KB data space or more than 64KB Program memory, and the increment /
* decrement / displacement is added to the entire 24-bit address on such
* devices.
*/
static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_yaddr();
gen_data_store(ctx, Rd, addr);
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
gen_set_yaddr(addr);
return true;
}
static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_yaddr();
tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
gen_data_store(ctx, Rd, addr);
gen_set_yaddr(addr);
return true;
}
static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_yaddr();
tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
gen_data_store(ctx, Rd, addr);
return true;
}
/*
* Stores one byte indirect with or without displacement from a register to data
* space. For parts with SRAM, the data space consists of the Register File, I/O
* memory, and internal SRAM (and external SRAM if applicable). For parts
* without SRAM, the data space consists of the Register File only. The EEPROM
* has a separate address space.
*
* The data location is pointed to by the Y (16 bits) Pointer Register in the
* Register File. Memory access is limited to the current data segment of 64KB.
* To access another data segment in devices with more than 64KB data space, the
* RAMPY in register in the I/O area has to be changed.
*
* The Y-pointer Register can either be left unchanged by the operation, or it
* can be post-incremented or pre-decremented. These features are especially
* suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer
* Register. Note that only the low byte of the Y-pointer is updated in devices
* with no more than 256 bytes data space. For such devices, the high byte of
* the pointer is not used by this instruction and can be used for other
* purposes. The RAMPY Register in the I/O area is updated in parts with more
* than 64KB data space or more than 64KB Program memory, and the increment /
* decrement / displacement is added to the entire 24-bit address on such
* devices.
*/
static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_zaddr();
gen_data_store(ctx, Rd, addr);
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
gen_set_zaddr(addr);
return true;
}
static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_zaddr();
tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
gen_data_store(ctx, Rd, addr);
gen_set_zaddr(addr);
return true;
}
static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_zaddr();
tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
gen_data_store(ctx, Rd, addr);
return true;
}
/*
* Loads one byte pointed to by the Z-register into the destination
* register Rd. This instruction features a 100% space effective constant
* initialization or constant data fetch. The Program memory is organized in
* 16-bit words while the Z-pointer is a byte address. Thus, the least
* significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high
* byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of
* Program memory. The Zpointer Register can either be left unchanged by the
* operation, or it can be incremented. The incrementation does not apply to
* the RAMPZ Register.
*
* Devices with Self-Programming capability can use the LPM instruction to read
* the Fuse and Lock bit values.
*/
static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
return true;
}
TCGv Rd = cpu_r[0];
TCGv addr = tcg_temp_new_i32();
TCGv H = cpu_r[31];
TCGv L = cpu_r[30];
tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
tcg_gen_or_tl(addr, addr, L);
tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB);
return true;
}
static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
return true;
}
TCGv Rd = cpu_r[a->rd];
TCGv addr = tcg_temp_new_i32();
TCGv H = cpu_r[31];
TCGv L = cpu_r[30];
tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
tcg_gen_or_tl(addr, addr, L);
tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB);
return true;
}
static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
return true;
}
TCGv Rd = cpu_r[a->rd];
TCGv addr = tcg_temp_new_i32();
TCGv H = cpu_r[31];
TCGv L = cpu_r[30];
tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
tcg_gen_or_tl(addr, addr, L);
tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB);
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
tcg_gen_andi_tl(L, addr, 0xff);
tcg_gen_shri_tl(addr, addr, 8);
tcg_gen_andi_tl(H, addr, 0xff);
return true;
}
/*
* Loads one byte pointed to by the Z-register and the RAMPZ Register in
* the I/O space, and places this byte in the destination register Rd. This
* instruction features a 100% space effective constant initialization or
* constant data fetch. The Program memory is organized in 16-bit words while
* the Z-pointer is a byte address. Thus, the least significant bit of the
* Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This
* instruction can address the entire Program memory space. The Z-pointer
* Register can either be left unchanged by the operation, or it can be
* incremented. The incrementation applies to the entire 24-bit concatenation
* of the RAMPZ and Z-pointer Registers.
*
* Devices with Self-Programming capability can use the ELPM instruction to
* read the Fuse and Lock bit value.
*/
static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
return true;
}
TCGv Rd = cpu_r[0];
TCGv addr = gen_get_zaddr();
tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB);
return true;
}
static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
return true;
}
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_zaddr();
tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB);
return true;
}
static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
return true;
}
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_zaddr();
tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB);
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
gen_set_zaddr(addr);
return true;
}
/*
* SPM can be used to erase a page in the Program memory, to write a page
* in the Program memory (that is already erased), and to set Boot Loader Lock
* bits. In some devices, the Program memory can be written one word at a time,
* in other devices an entire page can be programmed simultaneously after first
* filling a temporary page buffer. In all cases, the Program memory must be
* erased one page at a time. When erasing the Program memory, the RAMPZ and
* Z-register are used as page address. When writing the Program memory, the
* RAMPZ and Z-register are used as page or word address, and the R1:R0
* register pair is used as data(1). When setting the Boot Loader Lock bits,
* the R1:R0 register pair is used as data. Refer to the device documentation
* for detailed description of SPM usage. This instruction can address the
* entire Program memory.
*
* The SPM instruction is not available in all devices. Refer to the device
* specific instruction set summary.
*
* Note: 1. R1 determines the instruction high byte, and R0 determines the
* instruction low byte.
*/
static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
{
/* TODO */
if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) {
return true;
}
return true;
}
static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
{
/* TODO */
if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) {
return true;
}
return true;
}
/*
* Loads data from the I/O Space (Ports, Timers, Configuration Registers,
* etc.) into register Rd in the Register File.
*/
static bool trans_IN(DisasContext *ctx, arg_IN *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv port = tcg_constant_i32(a->imm);
gen_helper_inb(Rd, tcg_env, port);
return true;
}
/*
* Stores data from register Rr in the Register File to I/O Space (Ports,
* Timers, Configuration Registers, etc.).
*/
static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv port = tcg_constant_i32(a->imm);
gen_helper_outb(tcg_env, port, Rd);
return true;
}
/*
* This instruction stores the contents of register Rr on the STACK. The
* Stack Pointer is post-decremented by 1 after the PUSH. This instruction is
* not available in all devices. Refer to the device specific instruction set
* summary.
*/
static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
{
TCGv Rd = cpu_r[a->rd];
gen_data_store(ctx, Rd, cpu_sp);
tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
return true;
}
/*
* This instruction loads register Rd with a byte from the STACK. The Stack
* Pointer is pre-incremented by 1 before the POP. This instruction is not
* available in all devices. Refer to the device specific instruction set
* summary.
*/
static bool trans_POP(DisasContext *ctx, arg_POP *a)
{
/*
* Using a temp to work around some strange behaviour:
* tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
* gen_data_load(ctx, Rd, cpu_sp);
* seems to cause the add to happen twice.
* This doesn't happen if either the add or the load is removed.
*/
TCGv t1 = tcg_temp_new_i32();
TCGv Rd = cpu_r[a->rd];
tcg_gen_addi_tl(t1, cpu_sp, 1);
gen_data_load(ctx, Rd, t1);
tcg_gen_mov_tl(cpu_sp, t1);
return true;
}
/*
* Exchanges one byte indirect between register and data space. The data
* location is pointed to by the Z (16 bits) Pointer Register in the Register
* File. Memory access is limited to the current data segment of 64KB. To
* access another data segment in devices with more than 64KB data space, the
* RAMPZ in register in the I/O area has to be changed.
*
* The Z-pointer Register is left unchanged by the operation. This instruction
* is especially suited for writing/reading status bits stored in SRAM.
*/
static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
return true;
}
TCGv Rd = cpu_r[a->rd];
TCGv t0 = tcg_temp_new_i32();
TCGv addr = gen_get_zaddr();
gen_data_load(ctx, t0, addr);
gen_data_store(ctx, Rd, addr);
tcg_gen_mov_tl(Rd, t0);
return true;
}
/*
* Load one byte indirect from data space to register and set bits in data
* space specified by the register. The instruction can only be used towards
* internal SRAM. The data location is pointed to by the Z (16 bits) Pointer
* Register in the Register File. Memory access is limited to the current data
* segment of 64KB. To access another data segment in devices with more than
* 64KB data space, the RAMPZ in register in the I/O area has to be changed.
*
* The Z-pointer Register is left unchanged by the operation. This instruction
* is especially suited for setting status bits stored in SRAM.
*/
static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
return true;
}
TCGv Rr = cpu_r[a->rd];
TCGv addr = gen_get_zaddr();
TCGv t0 = tcg_temp_new_i32();
TCGv t1 = tcg_temp_new_i32();
gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
tcg_gen_or_tl(t1, t0, Rr);
tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
return true;
}
/*
* Load one byte indirect from data space to register and stores and clear
* the bits in data space specified by the register. The instruction can
* only be used towards internal SRAM. The data location is pointed to by
* the Z (16 bits) Pointer Register in the Register File. Memory access is
* limited to the current data segment of 64KB. To access another data
* segment in devices with more than 64KB data space, the RAMPZ in register
* in the I/O area has to be changed.
*
* The Z-pointer Register is left unchanged by the operation. This instruction
* is especially suited for clearing status bits stored in SRAM.
*/
static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
return true;
}
TCGv Rr = cpu_r[a->rd];
TCGv addr = gen_get_zaddr();
TCGv t0 = tcg_temp_new_i32();
TCGv t1 = tcg_temp_new_i32();
gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
tcg_gen_andc_tl(t1, t0, Rr); /* t1 = t0 & (0xff - Rr) = t0 & ~Rr */
tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
return true;
}
/*
* Load one byte indirect from data space to register and toggles bits in
* the data space specified by the register. The instruction can only be used
* towards SRAM. The data location is pointed to by the Z (16 bits) Pointer
* Register in the Register File. Memory access is limited to the current data
* segment of 64KB. To access another data segment in devices with more than
* 64KB data space, the RAMPZ in register in the I/O area has to be changed.
*
* The Z-pointer Register is left unchanged by the operation. This instruction
* is especially suited for changing status bits stored in SRAM.
*/
static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
return true;
}
TCGv Rd = cpu_r[a->rd];
TCGv addr = gen_get_zaddr();
TCGv t0 = tcg_temp_new_i32();
TCGv t1 = tcg_temp_new_i32();
gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
tcg_gen_xor_tl(t1, t0, Rd);
tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
return true;
}
/*
* Bit and Bit-test Instructions
*/
static void gen_rshift_ZNVSf(TCGv R)
{
tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
}
/*
* Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is
* loaded into the C Flag of the SREG. This operation effectively divides an
* unsigned value by two. The C Flag can be used to round the result.
*/
static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
{
TCGv Rd = cpu_r[a->rd];
tcg_gen_andi_tl(cpu_Cf, Rd, 1);
tcg_gen_shri_tl(Rd, Rd, 1);
/* update status register */
tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */
tcg_gen_movi_tl(cpu_Nf, 0);
tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
return true;
}
/*
* Shifts all bits in Rd one place to the right. The C Flag is shifted into
* bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, combined
* with ASR, effectively divides multi-byte signed values by two. Combined with
* LSR it effectively divides multi-byte unsigned values by two. The Carry Flag
* can be used to round the result.
*/
static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv t0 = tcg_temp_new_i32();
tcg_gen_shli_tl(t0, cpu_Cf, 7);
/* update status register */
tcg_gen_andi_tl(cpu_Cf, Rd, 1);
/* update output register */
tcg_gen_shri_tl(Rd, Rd, 1);
tcg_gen_or_tl(Rd, Rd, t0);
/* update status register */
gen_rshift_ZNVSf(Rd);
return true;
}
/*
* Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0
* is loaded into the C Flag of the SREG. This operation effectively divides a
* signed value by two without changing its sign. The Carry Flag can be used to
* round the result.
*/
static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv t0 = tcg_temp_new_i32();
/* update status register */
tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
/* update output register */
tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
tcg_gen_shri_tl(Rd, Rd, 1);
tcg_gen_or_tl(Rd, Rd, t0);
/* update status register */
gen_rshift_ZNVSf(Rd);
return true;
}
/*
* Swaps high and low nibbles in a register.
*/
static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv t0 = tcg_temp_new_i32();
TCGv t1 = tcg_temp_new_i32();
tcg_gen_andi_tl(t0, Rd, 0x0f);
tcg_gen_shli_tl(t0, t0, 4);
tcg_gen_andi_tl(t1, Rd, 0xf0);
tcg_gen_shri_tl(t1, t1, 4);
tcg_gen_or_tl(Rd, t0, t1);
return true;
}
/*
* Sets a specified bit in an I/O Register. This instruction operates on
* the lower 32 I/O Registers -- addresses 0-31.
*/
static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
{
TCGv data = tcg_temp_new_i32();
TCGv port = tcg_constant_i32(a->reg);
gen_helper_inb(data, tcg_env, port);
tcg_gen_ori_tl(data, data, 1 << a->bit);
gen_helper_outb(tcg_env, port, data);
return true;
}
/*
* Clears a specified bit in an I/O Register. This instruction operates on
* the lower 32 I/O Registers -- addresses 0-31.
*/
static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
{
TCGv data = tcg_temp_new_i32();
TCGv port = tcg_constant_i32(a->reg);
gen_helper_inb(data, tcg_env, port);
tcg_gen_andi_tl(data, data, ~(1 << a->bit));
gen_helper_outb(tcg_env, port, data);
return true;
}
/*
* Stores bit b from Rd to the T Flag in SREG (Status Register).
*/
static bool trans_BST(DisasContext *ctx, arg_BST *a)
{
TCGv Rd = cpu_r[a->rd];
tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
return true;
}
/*
* Copies the T Flag in the SREG (Status Register) to bit b in register Rd.
*/
static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv t1 = tcg_temp_new_i32();
tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
tcg_gen_or_tl(Rd, Rd, t1);
return true;
}
/*
* Sets a single Flag or bit in SREG.
*/
static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
{
switch (a->bit) {
case 0x00:
tcg_gen_movi_tl(cpu_Cf, 0x01);
break;
case 0x01:
tcg_gen_movi_tl(cpu_Zf, 0x01);
break;
case 0x02:
tcg_gen_movi_tl(cpu_Nf, 0x01);
break;
case 0x03:
tcg_gen_movi_tl(cpu_Vf, 0x01);
break;
case 0x04:
tcg_gen_movi_tl(cpu_Sf, 0x01);
break;
case 0x05:
tcg_gen_movi_tl(cpu_Hf, 0x01);
break;
case 0x06:
tcg_gen_movi_tl(cpu_Tf, 0x01);
break;
case 0x07:
tcg_gen_movi_tl(cpu_If, 0x01);
break;
}
return true;
}
/*
* Clears a single Flag in SREG.
*/
static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
{
switch (a->bit) {
case 0x00:
tcg_gen_movi_tl(cpu_Cf, 0x00);
break;
case 0x01:
tcg_gen_movi_tl(cpu_Zf, 0x00);
break;
case 0x02:
tcg_gen_movi_tl(cpu_Nf, 0x00);
break;
case 0x03:
tcg_gen_movi_tl(cpu_Vf, 0x00);
break;
case 0x04:
tcg_gen_movi_tl(cpu_Sf, 0x00);
break;
case 0x05:
tcg_gen_movi_tl(cpu_Hf, 0x00);
break;
case 0x06:
tcg_gen_movi_tl(cpu_Tf, 0x00);
break;
case 0x07:
tcg_gen_movi_tl(cpu_If, 0x00);
break;
}
return true;
}
/*
* MCU Control Instructions
*/
/*
* The BREAK instruction is used by the On-chip Debug system, and is
* normally not used in the application software. When the BREAK instruction is
* executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip
* Debugger access to internal resources. If any Lock bits are set, or either
* the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK
* instruction as a NOP and will not enter the Stopped mode. This instruction
* is not available in all devices. Refer to the device specific instruction
* set summary.
*/
static bool trans_BREAK(DisasContext *ctx, arg_BREAK *a)
{
if (!avr_have_feature(ctx, AVR_FEATURE_BREAK)) {
return true;
}
#ifdef BREAKPOINT_ON_BREAK
tcg_gen_movi_tl(cpu_pc, ctx->npc - 1);
gen_helper_debug(tcg_env);
ctx->base.is_jmp = DISAS_EXIT;
#else
/* NOP */
#endif
return true;
}
/*
* This instruction performs a single cycle No Operation.
*/
static bool trans_NOP(DisasContext *ctx, arg_NOP *a)
{
/* NOP */
return true;
}
/*
* This instruction sets the circuit in sleep mode defined by the MCU
* Control Register.
*/
static bool trans_SLEEP(DisasContext *ctx, arg_SLEEP *a)
{
gen_helper_sleep(tcg_env);
ctx->base.is_jmp = DISAS_NORETURN;
return true;
}
/*
* This instruction resets the Watchdog Timer. This instruction must be
* executed within a limited time given by the WD prescaler. See the Watchdog
* Timer hardware specification.
*/
static bool trans_WDR(DisasContext *ctx, arg_WDR *a)
{
gen_helper_wdr(tcg_env);
return true;
}
/*
* Core translation mechanism functions:
*
* - translate()
* - canonicalize_skip()
* - gen_intermediate_code()
* - restore_state_to_opc()
*
*/
static void translate(DisasContext *ctx)
{
uint32_t opcode = next_word(ctx);
if (!decode_insn(ctx, opcode)) {
gen_helper_unsupported(tcg_env);
ctx->base.is_jmp = DISAS_NORETURN;
}
}
/* Standardize the cpu_skip condition to NE. */
static bool canonicalize_skip(DisasContext *ctx)
{
switch (ctx->skip_cond) {
case TCG_COND_NEVER:
/* Normal case: cpu_skip is known to be false. */
return false;
case TCG_COND_ALWAYS:
/*
* Breakpoint case: cpu_skip is known to be true, via TB_FLAGS_SKIP.
* The breakpoint is on the instruction being skipped, at the start
* of the TranslationBlock. No need to update.
*/
return false;
case TCG_COND_NE:
if (ctx->skip_var1 == NULL) {
tcg_gen_mov_tl(cpu_skip, ctx->skip_var0);
} else {
tcg_gen_xor_tl(cpu_skip, ctx->skip_var0, ctx->skip_var1);
ctx->skip_var1 = NULL;
}
break;
default:
/* Convert to a NE condition vs 0. */
if (ctx->skip_var1 == NULL) {
tcg_gen_setcondi_tl(ctx->skip_cond, cpu_skip, ctx->skip_var0, 0);
} else {
tcg_gen_setcond_tl(ctx->skip_cond, cpu_skip,
ctx->skip_var0, ctx->skip_var1);
ctx->skip_var1 = NULL;
}
ctx->skip_cond = TCG_COND_NE;
break;
}
ctx->skip_var0 = cpu_skip;
return true;
}
static void avr_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
uint32_t tb_flags = ctx->base.tb->flags;
ctx->cs = cs;
ctx->env = cpu_env(cs);
ctx->npc = ctx->base.pc_first / 2;
ctx->skip_cond = TCG_COND_NEVER;
if (tb_flags & TB_FLAGS_SKIP) {
ctx->skip_cond = TCG_COND_ALWAYS;
ctx->skip_var0 = cpu_skip;
}
if (tb_flags & TB_FLAGS_FULL_ACCESS) {
/*
* This flag is set by ST/LD instruction we will regenerate it ONLY
* with mem/cpu memory access instead of mem access
*/
ctx->base.max_insns = 1;
}
}
static void avr_tr_tb_start(DisasContextBase *db, CPUState *cs)
{
}
static void avr_tr_insn_start(DisasContextBase *dcbase, CPUState *cs)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
tcg_gen_insn_start(ctx->npc);
}
static void avr_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
TCGLabel *skip_label = NULL;
/* Conditionally skip the next instruction, if indicated. */
if (ctx->skip_cond != TCG_COND_NEVER) {
skip_label = gen_new_label();
if (ctx->skip_var0 == cpu_skip) {
/*
* Copy cpu_skip so that we may zero it before the branch.
* This ensures that cpu_skip is non-zero after the label
* if and only if the skipped insn itself sets a skip.
*/
ctx->skip_var0 = tcg_temp_new();
tcg_gen_mov_tl(ctx->skip_var0, cpu_skip);
tcg_gen_movi_tl(cpu_skip, 0);
}
if (ctx->skip_var1 == NULL) {
tcg_gen_brcondi_tl(ctx->skip_cond, ctx->skip_var0, 0, skip_label);
} else {
tcg_gen_brcond_tl(ctx->skip_cond, ctx->skip_var0,
ctx->skip_var1, skip_label);
ctx->skip_var1 = NULL;
}
ctx->skip_cond = TCG_COND_NEVER;
ctx->skip_var0 = NULL;
}
translate(ctx);
ctx->base.pc_next = ctx->npc * 2;
if (skip_label) {
canonicalize_skip(ctx);
gen_set_label(skip_label);
switch (ctx->base.is_jmp) {
case DISAS_NORETURN:
ctx->base.is_jmp = DISAS_CHAIN;
break;
case DISAS_NEXT:
if (ctx->base.tb->flags & TB_FLAGS_SKIP) {
ctx->base.is_jmp = DISAS_TOO_MANY;
}
break;
default:
break;
}
}
if (ctx->base.is_jmp == DISAS_NEXT) {
target_ulong page_first = ctx->base.pc_first & TARGET_PAGE_MASK;
if ((ctx->base.pc_next - page_first) >= TARGET_PAGE_SIZE - 4) {
ctx->base.is_jmp = DISAS_TOO_MANY;
}
}
}
static void avr_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
bool nonconst_skip = canonicalize_skip(ctx);
/*
* Because we disable interrupts while env->skip is set,
* we must return to the main loop to re-evaluate afterward.
*/
bool force_exit = ctx->base.tb->flags & TB_FLAGS_SKIP;
switch (ctx->base.is_jmp) {
case DISAS_NORETURN:
assert(!nonconst_skip);
break;
case DISAS_NEXT:
case DISAS_TOO_MANY:
case DISAS_CHAIN:
if (!nonconst_skip && !force_exit) {
/* Note gen_goto_tb checks singlestep. */
gen_goto_tb(ctx, 1, ctx->npc);
break;
}
tcg_gen_movi_tl(cpu_pc, ctx->npc);
/* fall through */
case DISAS_LOOKUP:
if (!force_exit) {
tcg_gen_lookup_and_goto_ptr();
break;
}
/* fall through */
case DISAS_EXIT:
tcg_gen_exit_tb(NULL, 0);
break;
default:
g_assert_not_reached();
}
}
static void avr_tr_disas_log(const DisasContextBase *dcbase,
CPUState *cs, FILE *logfile)
{
fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first));
target_disas(logfile, cs, dcbase->pc_first, dcbase->tb->size);
}
static const TranslatorOps avr_tr_ops = {
.init_disas_context = avr_tr_init_disas_context,
.tb_start = avr_tr_tb_start,
.insn_start = avr_tr_insn_start,
.translate_insn = avr_tr_translate_insn,
.tb_stop = avr_tr_tb_stop,
.disas_log = avr_tr_disas_log,
};
void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns,
vaddr pc, void *host_pc)
{
DisasContext dc = { };
translator_loop(cs, tb, max_insns, pc, host_pc, &avr_tr_ops, &dc.base);
}