qemu/hw/nvme/ns.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

871 lines
25 KiB
C
Raw Normal View History

/*
* QEMU NVM Express Virtual Namespace
*
* Copyright (c) 2019 CNEX Labs
* Copyright (c) 2020 Samsung Electronics
*
* Authors:
* Klaus Jensen <k.jensen@samsung.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See the
* COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/cutils.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "qemu/bitops.h"
#include "sysemu/sysemu.h"
#include "sysemu/block-backend.h"
#include "nvme.h"
#include "trace.h"
#define MIN_DISCARD_GRANULARITY (4 * KiB)
#define NVME_DEFAULT_ZONE_SIZE (128 * MiB)
void nvme_ns_init_format(NvmeNamespace *ns)
{
NvmeIdNs *id_ns = &ns->id_ns;
BlockDriverInfo bdi;
int npdg, ret;
int64_t nlbas;
ns->lbaf = id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(id_ns->flbas)];
ns->lbasz = 1 << ns->lbaf.ds;
nlbas = ns->size / (ns->lbasz + ns->lbaf.ms);
id_ns->nsze = cpu_to_le64(nlbas);
/* no thin provisioning */
id_ns->ncap = id_ns->nsze;
id_ns->nuse = id_ns->ncap;
ns->moff = nlbas << ns->lbaf.ds;
npdg = ns->blkconf.discard_granularity / ns->lbasz;
ret = bdrv_get_info(blk_bs(ns->blkconf.blk), &bdi);
if (ret >= 0 && bdi.cluster_size > ns->blkconf.discard_granularity) {
npdg = bdi.cluster_size / ns->lbasz;
}
id_ns->npda = id_ns->npdg = npdg - 1;
}
static int nvme_ns_init(NvmeNamespace *ns, Error **errp)
{
static uint64_t ns_count;
NvmeIdNs *id_ns = &ns->id_ns;
NvmeIdNsNvm *id_ns_nvm = &ns->id_ns_nvm;
uint8_t ds;
uint16_t ms;
int i;
ns->csi = NVME_CSI_NVM;
ns->status = 0x0;
ns->id_ns.dlfeat = 0x1;
/* support DULBE and I/O optimization fields */
id_ns->nsfeat |= (0x4 | 0x10);
hw/block/nvme: fix handling of private namespaces Prior to this patch, if a private nvme-ns device (that is, a namespace that is not linked to a subsystem) is wired up to an nvme-subsys linked nvme controller device, the device fails to verify that the namespace id is unique within the subsystem. NVM Express v1.4b, Section 6.1.6 ("NSID and Namespace Usage") states that because the device supports Namespace Management, "NSIDs *shall* be unique within the NVM subsystem". Additionally, prior to this patch, private namespaces are not known to the subsystem and the namespace is considered exclusive to the controller with which it is initially wired up to. However, this is not the definition of a private namespace; per Section 1.6.33 ("private namespace"), a private namespace is just a namespace that does not support multipath I/O or namespace sharing, which means "that it is only able to be attached to one controller at a time". Fix this by always allocating namespaces in the subsystem (if one is linked to the controller), regardless of the shared/private status of the namespace. Whether or not the namespace is shareable is controlled by a new `shared` nvme-ns parameter. Finally, this fix allows the nvme-ns `subsys` parameter to be removed, since the `shared` parameter now serves the purpose of attaching the namespace to all controllers in the subsystem upon device realization. It is invalid to have an nvme-ns namespace device with a linked subsystem without the parent nvme controller device also being linked to one and since the nvme-ns devices will unconditionally be "attached" (in QEMU terms that is) to an nvme controller device through an NvmeBus, the nvme-ns namespace device can always get a reference to the subsystem of the controller it is explicitly (using 'bus=' parameter) or implicitly attaching to. Fixes: e570768566b3 ("hw/block/nvme: support for shared namespace in subsystem") Cc: Minwoo Im <minwoo.im.dev@gmail.com> Signed-off-by: Klaus Jensen <k.jensen@samsung.com> Reviewed-by: Gollu Appalanaidu <anaidu.gollu@samsung.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Reviewed-by: Minwoo Im <minwoo.im.dev@gmail.com>
2021-03-23 14:43:24 +03:00
if (ns->params.shared) {
id_ns->nmic |= NVME_NMIC_NS_SHARED;
}
/* Substitute a missing EUI-64 by an autogenerated one */
++ns_count;
if (!ns->params.eui64 && ns->params.eui64_default) {
ns->params.eui64 = ns_count + NVME_EUI64_DEFAULT;
}
/* simple copy */
id_ns->mssrl = cpu_to_le16(ns->params.mssrl);
id_ns->mcl = cpu_to_le32(ns->params.mcl);
id_ns->msrc = ns->params.msrc;
id_ns->eui64 = cpu_to_be64(ns->params.eui64);
memcpy(&id_ns->nguid, &ns->params.nguid.data, sizeof(id_ns->nguid));
ds = 31 - clz32(ns->blkconf.logical_block_size);
ms = ns->params.ms;
id_ns->mc = NVME_ID_NS_MC_EXTENDED | NVME_ID_NS_MC_SEPARATE;
if (ms && ns->params.mset) {
id_ns->flbas |= NVME_ID_NS_FLBAS_EXTENDED;
}
id_ns->dpc = 0x1f;
id_ns->dps = ns->params.pi;
if (ns->params.pi && ns->params.pil) {
id_ns->dps |= NVME_ID_NS_DPS_FIRST_EIGHT;
}
ns->pif = ns->params.pif;
static const NvmeLBAF defaults[16] = {
[0] = { .ds = 9 },
[1] = { .ds = 9, .ms = 8 },
[2] = { .ds = 9, .ms = 16 },
[3] = { .ds = 9, .ms = 64 },
[4] = { .ds = 12 },
[5] = { .ds = 12, .ms = 8 },
[6] = { .ds = 12, .ms = 16 },
[7] = { .ds = 12, .ms = 64 },
};
ns->nlbaf = 8;
memcpy(&id_ns->lbaf, &defaults, sizeof(defaults));
for (i = 0; i < ns->nlbaf; i++) {
NvmeLBAF *lbaf = &id_ns->lbaf[i];
if (lbaf->ds == ds) {
if (lbaf->ms == ms) {
id_ns->flbas |= i;
goto lbaf_found;
}
}
}
/* add non-standard lba format */
id_ns->lbaf[ns->nlbaf].ds = ds;
id_ns->lbaf[ns->nlbaf].ms = ms;
ns->nlbaf++;
id_ns->flbas |= i;
lbaf_found:
id_ns_nvm->elbaf[i] = (ns->pif & 0x3) << 7;
id_ns->nlbaf = ns->nlbaf - 1;
nvme_ns_init_format(ns);
return 0;
}
static int nvme_ns_init_blk(NvmeNamespace *ns, Error **errp)
{
bool read_only;
if (!blkconf_blocksizes(&ns->blkconf, errp)) {
return -1;
}
read_only = !blk_supports_write_perm(ns->blkconf.blk);
if (!blkconf_apply_backend_options(&ns->blkconf, read_only, false, errp)) {
return -1;
}
if (ns->blkconf.discard_granularity == -1) {
ns->blkconf.discard_granularity =
MAX(ns->blkconf.logical_block_size, MIN_DISCARD_GRANULARITY);
}
ns->size = blk_getlength(ns->blkconf.blk);
if (ns->size < 0) {
error_setg_errno(errp, -ns->size, "could not get blockdev size");
return -1;
}
return 0;
}
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
static int nvme_ns_zoned_check_calc_geometry(NvmeNamespace *ns, Error **errp)
{
uint64_t zone_size, zone_cap;
/* Make sure that the values of ZNS properties are sane */
if (ns->params.zone_size_bs) {
zone_size = ns->params.zone_size_bs;
} else {
zone_size = NVME_DEFAULT_ZONE_SIZE;
}
if (ns->params.zone_cap_bs) {
zone_cap = ns->params.zone_cap_bs;
} else {
zone_cap = zone_size;
}
if (zone_cap > zone_size) {
error_setg(errp, "zone capacity %"PRIu64"B exceeds "
"zone size %"PRIu64"B", zone_cap, zone_size);
return -1;
}
if (zone_size < ns->lbasz) {
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
error_setg(errp, "zone size %"PRIu64"B too small, "
"must be at least %zuB", zone_size, ns->lbasz);
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
return -1;
}
if (zone_cap < ns->lbasz) {
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
error_setg(errp, "zone capacity %"PRIu64"B too small, "
"must be at least %zuB", zone_cap, ns->lbasz);
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
return -1;
}
/*
* Save the main zone geometry values to avoid
* calculating them later again.
*/
ns->zone_size = zone_size / ns->lbasz;
ns->zone_capacity = zone_cap / ns->lbasz;
ns->num_zones = le64_to_cpu(ns->id_ns.nsze) / ns->zone_size;
/* Do a few more sanity checks of ZNS properties */
if (!ns->num_zones) {
error_setg(errp,
"insufficient drive capacity, must be at least the size "
"of one zone (%"PRIu64"B)", zone_size);
return -1;
}
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
return 0;
}
static void nvme_ns_zoned_init_state(NvmeNamespace *ns)
{
uint64_t start = 0, zone_size = ns->zone_size;
uint64_t capacity = ns->num_zones * zone_size;
NvmeZone *zone;
int i;
ns->zone_array = g_new0(NvmeZone, ns->num_zones);
if (ns->params.zd_extension_size) {
ns->zd_extensions = g_malloc0(ns->params.zd_extension_size *
ns->num_zones);
}
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
QTAILQ_INIT(&ns->exp_open_zones);
QTAILQ_INIT(&ns->imp_open_zones);
QTAILQ_INIT(&ns->closed_zones);
QTAILQ_INIT(&ns->full_zones);
zone = ns->zone_array;
for (i = 0; i < ns->num_zones; i++, zone++) {
if (start + zone_size > capacity) {
zone_size = capacity - start;
}
zone->d.zt = NVME_ZONE_TYPE_SEQ_WRITE;
nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY);
zone->d.za = 0;
zone->d.zcap = ns->zone_capacity;
zone->d.zslba = start;
zone->d.wp = start;
zone->w_ptr = start;
start += zone_size;
}
ns->zone_size_log2 = 0;
if (is_power_of_2(ns->zone_size)) {
ns->zone_size_log2 = 63 - clz64(ns->zone_size);
}
}
static void nvme_ns_init_zoned(NvmeNamespace *ns)
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
{
NvmeIdNsZoned *id_ns_z;
int i;
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
nvme_ns_zoned_init_state(ns);
id_ns_z = g_new0(NvmeIdNsZoned, 1);
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
/* MAR/MOR are zeroes-based, FFFFFFFFFh means no limit */
id_ns_z->mar = cpu_to_le32(ns->params.max_active_zones - 1);
id_ns_z->mor = cpu_to_le32(ns->params.max_open_zones - 1);
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
id_ns_z->zoc = 0;
id_ns_z->ozcs = ns->params.cross_zone_read ?
NVME_ID_NS_ZONED_OZCS_RAZB : 0x00;
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
for (i = 0; i <= ns->id_ns.nlbaf; i++) {
id_ns_z->lbafe[i].zsze = cpu_to_le64(ns->zone_size);
id_ns_z->lbafe[i].zdes =
ns->params.zd_extension_size >> 6; /* Units of 64B */
}
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
if (ns->params.zrwas) {
ns->zns.numzrwa = ns->params.numzrwa ?
ns->params.numzrwa : ns->num_zones;
ns->zns.zrwas = ns->params.zrwas >> ns->lbaf.ds;
ns->zns.zrwafg = ns->params.zrwafg >> ns->lbaf.ds;
id_ns_z->ozcs |= NVME_ID_NS_ZONED_OZCS_ZRWASUP;
id_ns_z->zrwacap = NVME_ID_NS_ZONED_ZRWACAP_EXPFLUSHSUP;
id_ns_z->numzrwa = cpu_to_le32(ns->params.numzrwa);
id_ns_z->zrwas = cpu_to_le16(ns->zns.zrwas);
id_ns_z->zrwafg = cpu_to_le16(ns->zns.zrwafg);
}
id_ns_z->ozcs = cpu_to_le16(id_ns_z->ozcs);
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
ns->csi = NVME_CSI_ZONED;
ns->id_ns.nsze = cpu_to_le64(ns->num_zones * ns->zone_size);
ns->id_ns.ncap = ns->id_ns.nsze;
ns->id_ns.nuse = ns->id_ns.ncap;
/*
* The device uses the BDRV_BLOCK_ZERO flag to determine the "deallocated"
* status of logical blocks. Since the spec defines that logical blocks
* SHALL be deallocated when then zone is in the Empty or Offline states,
* we can only support DULBE if the zone size is a multiple of the
* calculated NPDG.
*/
if (ns->zone_size % (ns->id_ns.npdg + 1)) {
warn_report("the zone size (%"PRIu64" blocks) is not a multiple of "
"the calculated deallocation granularity (%d blocks); "
"DULBE support disabled",
ns->zone_size, ns->id_ns.npdg + 1);
ns->id_ns.nsfeat &= ~0x4;
}
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
ns->id_ns_zoned = id_ns_z;
}
static void nvme_clear_zone(NvmeNamespace *ns, NvmeZone *zone)
{
uint8_t state;
zone->w_ptr = zone->d.wp;
state = nvme_get_zone_state(zone);
if (zone->d.wp != zone->d.zslba ||
(zone->d.za & NVME_ZA_ZD_EXT_VALID)) {
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
if (state != NVME_ZONE_STATE_CLOSED) {
trace_pci_nvme_clear_ns_close(state, zone->d.zslba);
nvme_set_zone_state(zone, NVME_ZONE_STATE_CLOSED);
}
nvme_aor_inc_active(ns);
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
QTAILQ_INSERT_HEAD(&ns->closed_zones, zone, entry);
} else {
trace_pci_nvme_clear_ns_reset(state, zone->d.zslba);
if (zone->d.za & NVME_ZA_ZRWA_VALID) {
zone->d.za &= ~NVME_ZA_ZRWA_VALID;
ns->zns.numzrwa++;
}
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY);
}
}
/*
* Close all the zones that are currently open.
*/
static void nvme_zoned_ns_shutdown(NvmeNamespace *ns)
{
NvmeZone *zone, *next;
QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
nvme_aor_dec_active(ns);
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
nvme_clear_zone(ns, zone);
}
QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
nvme_aor_dec_open(ns);
nvme_aor_dec_active(ns);
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
nvme_clear_zone(ns, zone);
}
QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
nvme_aor_dec_open(ns);
nvme_aor_dec_active(ns);
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
nvme_clear_zone(ns, zone);
}
assert(ns->nr_open_zones == 0);
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
}
static NvmeRuHandle *nvme_find_ruh_by_attr(NvmeEnduranceGroup *endgrp,
uint8_t ruha, uint16_t *ruhid)
{
for (uint16_t i = 0; i < endgrp->fdp.nruh; i++) {
NvmeRuHandle *ruh = &endgrp->fdp.ruhs[i];
if (ruh->ruha == ruha) {
*ruhid = i;
return ruh;
}
}
return NULL;
}
static bool nvme_ns_init_fdp(NvmeNamespace *ns, Error **errp)
{
NvmeEnduranceGroup *endgrp = ns->endgrp;
NvmeRuHandle *ruh;
uint8_t lbafi = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
g_autofree unsigned int *ruhids = NULL;
unsigned int n, m, *ruhid;
const char *endptr, *token;
char *r, *p;
uint16_t *ph;
if (!ns->params.fdp.ruhs) {
ns->fdp.nphs = 1;
ph = ns->fdp.phs = g_new(uint16_t, 1);
ruh = nvme_find_ruh_by_attr(endgrp, NVME_RUHA_CTRL, ph);
if (!ruh) {
ruh = nvme_find_ruh_by_attr(endgrp, NVME_RUHA_UNUSED, ph);
if (!ruh) {
error_setg(errp, "no unused reclaim unit handles left");
return false;
}
ruh->ruha = NVME_RUHA_CTRL;
ruh->lbafi = lbafi;
ruh->ruamw = endgrp->fdp.runs >> ns->lbaf.ds;
for (uint16_t rg = 0; rg < endgrp->fdp.nrg; rg++) {
ruh->rus[rg].ruamw = ruh->ruamw;
}
} else if (ruh->lbafi != lbafi) {
error_setg(errp, "lba format index of controller assigned "
"reclaim unit handle does not match namespace lba "
"format index");
return false;
}
return true;
}
ruhid = ruhids = g_new0(unsigned int, endgrp->fdp.nruh);
r = p = strdup(ns->params.fdp.ruhs);
/* parse the placement handle identifiers */
while ((token = qemu_strsep(&p, ";")) != NULL) {
if (qemu_strtoui(token, &endptr, 0, &n) < 0) {
error_setg(errp, "cannot parse reclaim unit handle identifier");
free(r);
return false;
}
m = n;
/* parse range */
if (*endptr == '-') {
token = endptr + 1;
if (qemu_strtoui(token, NULL, 0, &m) < 0) {
error_setg(errp, "cannot parse reclaim unit handle identifier");
free(r);
return false;
}
if (m < n) {
error_setg(errp, "invalid reclaim unit handle identifier range");
free(r);
return false;
}
}
for (; n <= m; n++) {
if (ns->fdp.nphs++ == endgrp->fdp.nruh) {
error_setg(errp, "too many placement handles");
free(r);
return false;
}
*ruhid++ = n;
}
}
free(r);
/* verify that the ruhids are unique */
for (unsigned int i = 0; i < ns->fdp.nphs; i++) {
for (unsigned int j = i + 1; j < ns->fdp.nphs; j++) {
if (ruhids[i] == ruhids[j]) {
error_setg(errp, "duplicate reclaim unit handle identifier: %u",
ruhids[i]);
return false;
}
}
}
ph = ns->fdp.phs = g_new(uint16_t, ns->fdp.nphs);
ruhid = ruhids;
/* verify the identifiers */
for (unsigned int i = 0; i < ns->fdp.nphs; i++, ruhid++, ph++) {
if (*ruhid >= endgrp->fdp.nruh) {
error_setg(errp, "invalid reclaim unit handle identifier");
return false;
}
ruh = &endgrp->fdp.ruhs[*ruhid];
switch (ruh->ruha) {
case NVME_RUHA_UNUSED:
ruh->ruha = NVME_RUHA_HOST;
ruh->lbafi = lbafi;
ruh->ruamw = endgrp->fdp.runs >> ns->lbaf.ds;
for (uint16_t rg = 0; rg < endgrp->fdp.nrg; rg++) {
ruh->rus[rg].ruamw = ruh->ruamw;
}
break;
case NVME_RUHA_HOST:
if (ruh->lbafi != lbafi) {
error_setg(errp, "lba format index of host assigned"
"reclaim unit handle does not match namespace "
"lba format index");
return false;
}
break;
case NVME_RUHA_CTRL:
error_setg(errp, "reclaim unit handle is controller assigned");
return false;
default:
abort();
}
*ph = *ruhid;
}
return true;
}
static int nvme_ns_check_constraints(NvmeNamespace *ns, Error **errp)
{
unsigned int pi_size;
if (!ns->blkconf.blk) {
error_setg(errp, "block backend not configured");
return -1;
}
if (ns->params.pi) {
if (ns->params.pi > NVME_ID_NS_DPS_TYPE_3) {
error_setg(errp, "invalid 'pi' value");
return -1;
}
switch (ns->params.pif) {
case NVME_PI_GUARD_16:
pi_size = 8;
break;
case NVME_PI_GUARD_64:
pi_size = 16;
break;
default:
error_setg(errp, "invalid 'pif'");
return -1;
}
if (ns->params.ms < pi_size) {
error_setg(errp, "at least %u bytes of metadata required to "
"enable protection information", pi_size);
return -1;
}
}
hw/block/nvme: fix handling of private namespaces Prior to this patch, if a private nvme-ns device (that is, a namespace that is not linked to a subsystem) is wired up to an nvme-subsys linked nvme controller device, the device fails to verify that the namespace id is unique within the subsystem. NVM Express v1.4b, Section 6.1.6 ("NSID and Namespace Usage") states that because the device supports Namespace Management, "NSIDs *shall* be unique within the NVM subsystem". Additionally, prior to this patch, private namespaces are not known to the subsystem and the namespace is considered exclusive to the controller with which it is initially wired up to. However, this is not the definition of a private namespace; per Section 1.6.33 ("private namespace"), a private namespace is just a namespace that does not support multipath I/O or namespace sharing, which means "that it is only able to be attached to one controller at a time". Fix this by always allocating namespaces in the subsystem (if one is linked to the controller), regardless of the shared/private status of the namespace. Whether or not the namespace is shareable is controlled by a new `shared` nvme-ns parameter. Finally, this fix allows the nvme-ns `subsys` parameter to be removed, since the `shared` parameter now serves the purpose of attaching the namespace to all controllers in the subsystem upon device realization. It is invalid to have an nvme-ns namespace device with a linked subsystem without the parent nvme controller device also being linked to one and since the nvme-ns devices will unconditionally be "attached" (in QEMU terms that is) to an nvme controller device through an NvmeBus, the nvme-ns namespace device can always get a reference to the subsystem of the controller it is explicitly (using 'bus=' parameter) or implicitly attaching to. Fixes: e570768566b3 ("hw/block/nvme: support for shared namespace in subsystem") Cc: Minwoo Im <minwoo.im.dev@gmail.com> Signed-off-by: Klaus Jensen <k.jensen@samsung.com> Reviewed-by: Gollu Appalanaidu <anaidu.gollu@samsung.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Reviewed-by: Minwoo Im <minwoo.im.dev@gmail.com>
2021-03-23 14:43:24 +03:00
if (ns->params.nsid > NVME_MAX_NAMESPACES) {
error_setg(errp, "invalid namespace id (must be between 0 and %d)",
NVME_MAX_NAMESPACES);
return -1;
}
if (ns->params.zoned && ns->endgrp && ns->endgrp->fdp.enabled) {
error_setg(errp, "cannot be a zoned- in an FDP configuration");
return -1;
}
if (ns->params.zoned) {
if (ns->params.max_active_zones) {
if (ns->params.max_open_zones > ns->params.max_active_zones) {
error_setg(errp, "max_open_zones (%u) exceeds "
"max_active_zones (%u)", ns->params.max_open_zones,
ns->params.max_active_zones);
return -1;
}
if (!ns->params.max_open_zones) {
ns->params.max_open_zones = ns->params.max_active_zones;
}
}
if (ns->params.zd_extension_size) {
if (ns->params.zd_extension_size & 0x3f) {
error_setg(errp, "zone descriptor extension size must be a "
"multiple of 64B");
return -1;
}
if ((ns->params.zd_extension_size >> 6) > 0xff) {
error_setg(errp,
"zone descriptor extension size is too large");
return -1;
}
}
if (ns->params.zrwas) {
if (ns->params.zrwas % ns->blkconf.logical_block_size) {
error_setg(errp, "zone random write area size (zoned.zrwas "
"%"PRIu64") must be a multiple of the logical "
"block size (logical_block_size %"PRIu32")",
ns->params.zrwas, ns->blkconf.logical_block_size);
return -1;
}
if (ns->params.zrwafg == -1) {
ns->params.zrwafg = ns->blkconf.logical_block_size;
}
if (ns->params.zrwas % ns->params.zrwafg) {
error_setg(errp, "zone random write area size (zoned.zrwas "
"%"PRIu64") must be a multiple of the zone random "
"write area flush granularity (zoned.zrwafg, "
"%"PRIu64")", ns->params.zrwas, ns->params.zrwafg);
return -1;
}
if (ns->params.max_active_zones) {
if (ns->params.numzrwa > ns->params.max_active_zones) {
error_setg(errp, "number of zone random write area "
"resources (zoned.numzrwa, %d) must be less "
"than or equal to maximum active resources "
"(zoned.max_active_zones, %d)",
ns->params.numzrwa,
ns->params.max_active_zones);
return -1;
}
}
}
}
return 0;
}
int nvme_ns_setup(NvmeNamespace *ns, Error **errp)
{
if (nvme_ns_check_constraints(ns, errp)) {
return -1;
}
if (nvme_ns_init_blk(ns, errp)) {
return -1;
}
if (nvme_ns_init(ns, errp)) {
return -1;
}
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
if (ns->params.zoned) {
if (nvme_ns_zoned_check_calc_geometry(ns, errp) != 0) {
return -1;
}
nvme_ns_init_zoned(ns);
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
}
if (ns->endgrp && ns->endgrp->fdp.enabled) {
if (!nvme_ns_init_fdp(ns, errp)) {
return -1;
}
}
return 0;
}
void nvme_ns_drain(NvmeNamespace *ns)
{
blk_drain(ns->blkconf.blk);
}
void nvme_ns_shutdown(NvmeNamespace *ns)
{
blk_flush(ns->blkconf.blk);
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
if (ns->params.zoned) {
nvme_zoned_ns_shutdown(ns);
}
}
void nvme_ns_cleanup(NvmeNamespace *ns)
{
if (ns->params.zoned) {
g_free(ns->id_ns_zoned);
g_free(ns->zone_array);
g_free(ns->zd_extensions);
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
}
if (ns->endgrp && ns->endgrp->fdp.enabled) {
g_free(ns->fdp.phs);
}
}
static void nvme_ns_unrealize(DeviceState *dev)
{
NvmeNamespace *ns = NVME_NS(dev);
nvme_ns_drain(ns);
nvme_ns_shutdown(ns);
nvme_ns_cleanup(ns);
}
static void nvme_ns_realize(DeviceState *dev, Error **errp)
{
NvmeNamespace *ns = NVME_NS(dev);
BusState *s = qdev_get_parent_bus(dev);
NvmeCtrl *n = NVME(s->parent);
hw/block/nvme: fix handling of private namespaces Prior to this patch, if a private nvme-ns device (that is, a namespace that is not linked to a subsystem) is wired up to an nvme-subsys linked nvme controller device, the device fails to verify that the namespace id is unique within the subsystem. NVM Express v1.4b, Section 6.1.6 ("NSID and Namespace Usage") states that because the device supports Namespace Management, "NSIDs *shall* be unique within the NVM subsystem". Additionally, prior to this patch, private namespaces are not known to the subsystem and the namespace is considered exclusive to the controller with which it is initially wired up to. However, this is not the definition of a private namespace; per Section 1.6.33 ("private namespace"), a private namespace is just a namespace that does not support multipath I/O or namespace sharing, which means "that it is only able to be attached to one controller at a time". Fix this by always allocating namespaces in the subsystem (if one is linked to the controller), regardless of the shared/private status of the namespace. Whether or not the namespace is shareable is controlled by a new `shared` nvme-ns parameter. Finally, this fix allows the nvme-ns `subsys` parameter to be removed, since the `shared` parameter now serves the purpose of attaching the namespace to all controllers in the subsystem upon device realization. It is invalid to have an nvme-ns namespace device with a linked subsystem without the parent nvme controller device also being linked to one and since the nvme-ns devices will unconditionally be "attached" (in QEMU terms that is) to an nvme controller device through an NvmeBus, the nvme-ns namespace device can always get a reference to the subsystem of the controller it is explicitly (using 'bus=' parameter) or implicitly attaching to. Fixes: e570768566b3 ("hw/block/nvme: support for shared namespace in subsystem") Cc: Minwoo Im <minwoo.im.dev@gmail.com> Signed-off-by: Klaus Jensen <k.jensen@samsung.com> Reviewed-by: Gollu Appalanaidu <anaidu.gollu@samsung.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Reviewed-by: Minwoo Im <minwoo.im.dev@gmail.com>
2021-03-23 14:43:24 +03:00
NvmeSubsystem *subsys = n->subsys;
uint32_t nsid = ns->params.nsid;
int i;
if (!n->subsys) {
/* If no subsys, the ns cannot be attached to more than one ctrl. */
ns->params.shared = false;
if (ns->params.detached) {
error_setg(errp, "detached requires that the nvme device is "
"linked to an nvme-subsys device");
return;
}
} else {
/*
* If this namespace belongs to a subsystem (through a link on the
* controller device), reparent the device.
*/
if (!qdev_set_parent_bus(dev, &subsys->bus.parent_bus, errp)) {
return;
}
ns->subsys = subsys;
ns->endgrp = &subsys->endgrp;
}
if (nvme_ns_setup(ns, errp)) {
return;
}
hw/block/nvme: fix handling of private namespaces Prior to this patch, if a private nvme-ns device (that is, a namespace that is not linked to a subsystem) is wired up to an nvme-subsys linked nvme controller device, the device fails to verify that the namespace id is unique within the subsystem. NVM Express v1.4b, Section 6.1.6 ("NSID and Namespace Usage") states that because the device supports Namespace Management, "NSIDs *shall* be unique within the NVM subsystem". Additionally, prior to this patch, private namespaces are not known to the subsystem and the namespace is considered exclusive to the controller with which it is initially wired up to. However, this is not the definition of a private namespace; per Section 1.6.33 ("private namespace"), a private namespace is just a namespace that does not support multipath I/O or namespace sharing, which means "that it is only able to be attached to one controller at a time". Fix this by always allocating namespaces in the subsystem (if one is linked to the controller), regardless of the shared/private status of the namespace. Whether or not the namespace is shareable is controlled by a new `shared` nvme-ns parameter. Finally, this fix allows the nvme-ns `subsys` parameter to be removed, since the `shared` parameter now serves the purpose of attaching the namespace to all controllers in the subsystem upon device realization. It is invalid to have an nvme-ns namespace device with a linked subsystem without the parent nvme controller device also being linked to one and since the nvme-ns devices will unconditionally be "attached" (in QEMU terms that is) to an nvme controller device through an NvmeBus, the nvme-ns namespace device can always get a reference to the subsystem of the controller it is explicitly (using 'bus=' parameter) or implicitly attaching to. Fixes: e570768566b3 ("hw/block/nvme: support for shared namespace in subsystem") Cc: Minwoo Im <minwoo.im.dev@gmail.com> Signed-off-by: Klaus Jensen <k.jensen@samsung.com> Reviewed-by: Gollu Appalanaidu <anaidu.gollu@samsung.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Reviewed-by: Minwoo Im <minwoo.im.dev@gmail.com>
2021-03-23 14:43:24 +03:00
if (!nsid) {
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
if (nvme_ns(n, i) || nvme_subsys_ns(subsys, i)) {
continue;
}
nsid = ns->params.nsid = i;
break;
}
if (!nsid) {
error_setg(errp, "no free namespace id");
hw/block/nvme: support for shared namespace in subsystem nvme-ns device is registered to a nvme controller device during the initialization in nvme_register_namespace() in case that 'bus' property is given which means it's mapped to a single controller. This patch introduced a new property 'subsys' just like the controller device instance did to map a namespace to a NVMe subsystem. If 'subsys' property is given to the nvme-ns device, it will belong to the specified subsystem and will be attached to all controllers in that subsystem by enabling shared namespace capability in NMIC(Namespace Multi-path I/O and Namespace Capabilities) in Identify Namespace. Usage: -device nvme-subsys,id=subsys0 -device nvme,serial=foo,id=nvme0,subsys=subsys0 -device nvme,serial=bar,id=nvme1,subsys=subsys0 -device nvme,serial=baz,id=nvme2,subsys=subsys0 -device nvme-ns,id=ns1,drive=<drv>,nsid=1,subsys=subsys0 # Shared -device nvme-ns,id=ns2,drive=<drv>,nsid=2,bus=nvme2 # Non-shared In the above example, 'ns1' will be shared to 'nvme0' and 'nvme1' in the same subsystem. On the other hand, 'ns2' will be attached to the 'nvme2' only as a private namespace in that subsystem. All the namespace with 'subsys' parameter will attach all controllers in the subsystem to the namespace by default. Signed-off-by: Minwoo Im <minwoo.im.dev@gmail.com> Tested-by: Klaus Jensen <k.jensen@samsung.com> Reviewed-by: Klaus Jensen <k.jensen@samsung.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2021-01-24 05:54:50 +03:00
return;
}
} else {
hw/block/nvme: fix handling of private namespaces Prior to this patch, if a private nvme-ns device (that is, a namespace that is not linked to a subsystem) is wired up to an nvme-subsys linked nvme controller device, the device fails to verify that the namespace id is unique within the subsystem. NVM Express v1.4b, Section 6.1.6 ("NSID and Namespace Usage") states that because the device supports Namespace Management, "NSIDs *shall* be unique within the NVM subsystem". Additionally, prior to this patch, private namespaces are not known to the subsystem and the namespace is considered exclusive to the controller with which it is initially wired up to. However, this is not the definition of a private namespace; per Section 1.6.33 ("private namespace"), a private namespace is just a namespace that does not support multipath I/O or namespace sharing, which means "that it is only able to be attached to one controller at a time". Fix this by always allocating namespaces in the subsystem (if one is linked to the controller), regardless of the shared/private status of the namespace. Whether or not the namespace is shareable is controlled by a new `shared` nvme-ns parameter. Finally, this fix allows the nvme-ns `subsys` parameter to be removed, since the `shared` parameter now serves the purpose of attaching the namespace to all controllers in the subsystem upon device realization. It is invalid to have an nvme-ns namespace device with a linked subsystem without the parent nvme controller device also being linked to one and since the nvme-ns devices will unconditionally be "attached" (in QEMU terms that is) to an nvme controller device through an NvmeBus, the nvme-ns namespace device can always get a reference to the subsystem of the controller it is explicitly (using 'bus=' parameter) or implicitly attaching to. Fixes: e570768566b3 ("hw/block/nvme: support for shared namespace in subsystem") Cc: Minwoo Im <minwoo.im.dev@gmail.com> Signed-off-by: Klaus Jensen <k.jensen@samsung.com> Reviewed-by: Gollu Appalanaidu <anaidu.gollu@samsung.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Reviewed-by: Minwoo Im <minwoo.im.dev@gmail.com>
2021-03-23 14:43:24 +03:00
if (nvme_ns(n, nsid) || nvme_subsys_ns(subsys, nsid)) {
error_setg(errp, "namespace id '%d' already allocated", nsid);
hw/block/nvme: support for shared namespace in subsystem nvme-ns device is registered to a nvme controller device during the initialization in nvme_register_namespace() in case that 'bus' property is given which means it's mapped to a single controller. This patch introduced a new property 'subsys' just like the controller device instance did to map a namespace to a NVMe subsystem. If 'subsys' property is given to the nvme-ns device, it will belong to the specified subsystem and will be attached to all controllers in that subsystem by enabling shared namespace capability in NMIC(Namespace Multi-path I/O and Namespace Capabilities) in Identify Namespace. Usage: -device nvme-subsys,id=subsys0 -device nvme,serial=foo,id=nvme0,subsys=subsys0 -device nvme,serial=bar,id=nvme1,subsys=subsys0 -device nvme,serial=baz,id=nvme2,subsys=subsys0 -device nvme-ns,id=ns1,drive=<drv>,nsid=1,subsys=subsys0 # Shared -device nvme-ns,id=ns2,drive=<drv>,nsid=2,bus=nvme2 # Non-shared In the above example, 'ns1' will be shared to 'nvme0' and 'nvme1' in the same subsystem. On the other hand, 'ns2' will be attached to the 'nvme2' only as a private namespace in that subsystem. All the namespace with 'subsys' parameter will attach all controllers in the subsystem to the namespace by default. Signed-off-by: Minwoo Im <minwoo.im.dev@gmail.com> Tested-by: Klaus Jensen <k.jensen@samsung.com> Reviewed-by: Klaus Jensen <k.jensen@samsung.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2021-01-24 05:54:50 +03:00
return;
}
}
hw/block/nvme: fix handling of private namespaces Prior to this patch, if a private nvme-ns device (that is, a namespace that is not linked to a subsystem) is wired up to an nvme-subsys linked nvme controller device, the device fails to verify that the namespace id is unique within the subsystem. NVM Express v1.4b, Section 6.1.6 ("NSID and Namespace Usage") states that because the device supports Namespace Management, "NSIDs *shall* be unique within the NVM subsystem". Additionally, prior to this patch, private namespaces are not known to the subsystem and the namespace is considered exclusive to the controller with which it is initially wired up to. However, this is not the definition of a private namespace; per Section 1.6.33 ("private namespace"), a private namespace is just a namespace that does not support multipath I/O or namespace sharing, which means "that it is only able to be attached to one controller at a time". Fix this by always allocating namespaces in the subsystem (if one is linked to the controller), regardless of the shared/private status of the namespace. Whether or not the namespace is shareable is controlled by a new `shared` nvme-ns parameter. Finally, this fix allows the nvme-ns `subsys` parameter to be removed, since the `shared` parameter now serves the purpose of attaching the namespace to all controllers in the subsystem upon device realization. It is invalid to have an nvme-ns namespace device with a linked subsystem without the parent nvme controller device also being linked to one and since the nvme-ns devices will unconditionally be "attached" (in QEMU terms that is) to an nvme controller device through an NvmeBus, the nvme-ns namespace device can always get a reference to the subsystem of the controller it is explicitly (using 'bus=' parameter) or implicitly attaching to. Fixes: e570768566b3 ("hw/block/nvme: support for shared namespace in subsystem") Cc: Minwoo Im <minwoo.im.dev@gmail.com> Signed-off-by: Klaus Jensen <k.jensen@samsung.com> Reviewed-by: Gollu Appalanaidu <anaidu.gollu@samsung.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Reviewed-by: Minwoo Im <minwoo.im.dev@gmail.com>
2021-03-23 14:43:24 +03:00
if (subsys) {
subsys->namespaces[nsid] = ns;
ns->id_ns.endgid = cpu_to_le16(0x1);
hw/block/nvme: fix handling of private namespaces Prior to this patch, if a private nvme-ns device (that is, a namespace that is not linked to a subsystem) is wired up to an nvme-subsys linked nvme controller device, the device fails to verify that the namespace id is unique within the subsystem. NVM Express v1.4b, Section 6.1.6 ("NSID and Namespace Usage") states that because the device supports Namespace Management, "NSIDs *shall* be unique within the NVM subsystem". Additionally, prior to this patch, private namespaces are not known to the subsystem and the namespace is considered exclusive to the controller with which it is initially wired up to. However, this is not the definition of a private namespace; per Section 1.6.33 ("private namespace"), a private namespace is just a namespace that does not support multipath I/O or namespace sharing, which means "that it is only able to be attached to one controller at a time". Fix this by always allocating namespaces in the subsystem (if one is linked to the controller), regardless of the shared/private status of the namespace. Whether or not the namespace is shareable is controlled by a new `shared` nvme-ns parameter. Finally, this fix allows the nvme-ns `subsys` parameter to be removed, since the `shared` parameter now serves the purpose of attaching the namespace to all controllers in the subsystem upon device realization. It is invalid to have an nvme-ns namespace device with a linked subsystem without the parent nvme controller device also being linked to one and since the nvme-ns devices will unconditionally be "attached" (in QEMU terms that is) to an nvme controller device through an NvmeBus, the nvme-ns namespace device can always get a reference to the subsystem of the controller it is explicitly (using 'bus=' parameter) or implicitly attaching to. Fixes: e570768566b3 ("hw/block/nvme: support for shared namespace in subsystem") Cc: Minwoo Im <minwoo.im.dev@gmail.com> Signed-off-by: Klaus Jensen <k.jensen@samsung.com> Reviewed-by: Gollu Appalanaidu <anaidu.gollu@samsung.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Reviewed-by: Minwoo Im <minwoo.im.dev@gmail.com>
2021-03-23 14:43:24 +03:00
if (ns->params.detached) {
return;
}
if (ns->params.shared) {
for (i = 0; i < ARRAY_SIZE(subsys->ctrls); i++) {
NvmeCtrl *ctrl = subsys->ctrls[i];
if (ctrl && ctrl != SUBSYS_SLOT_RSVD) {
hw/block/nvme: fix handling of private namespaces Prior to this patch, if a private nvme-ns device (that is, a namespace that is not linked to a subsystem) is wired up to an nvme-subsys linked nvme controller device, the device fails to verify that the namespace id is unique within the subsystem. NVM Express v1.4b, Section 6.1.6 ("NSID and Namespace Usage") states that because the device supports Namespace Management, "NSIDs *shall* be unique within the NVM subsystem". Additionally, prior to this patch, private namespaces are not known to the subsystem and the namespace is considered exclusive to the controller with which it is initially wired up to. However, this is not the definition of a private namespace; per Section 1.6.33 ("private namespace"), a private namespace is just a namespace that does not support multipath I/O or namespace sharing, which means "that it is only able to be attached to one controller at a time". Fix this by always allocating namespaces in the subsystem (if one is linked to the controller), regardless of the shared/private status of the namespace. Whether or not the namespace is shareable is controlled by a new `shared` nvme-ns parameter. Finally, this fix allows the nvme-ns `subsys` parameter to be removed, since the `shared` parameter now serves the purpose of attaching the namespace to all controllers in the subsystem upon device realization. It is invalid to have an nvme-ns namespace device with a linked subsystem without the parent nvme controller device also being linked to one and since the nvme-ns devices will unconditionally be "attached" (in QEMU terms that is) to an nvme controller device through an NvmeBus, the nvme-ns namespace device can always get a reference to the subsystem of the controller it is explicitly (using 'bus=' parameter) or implicitly attaching to. Fixes: e570768566b3 ("hw/block/nvme: support for shared namespace in subsystem") Cc: Minwoo Im <minwoo.im.dev@gmail.com> Signed-off-by: Klaus Jensen <k.jensen@samsung.com> Reviewed-by: Gollu Appalanaidu <anaidu.gollu@samsung.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Reviewed-by: Minwoo Im <minwoo.im.dev@gmail.com>
2021-03-23 14:43:24 +03:00
nvme_attach_ns(ctrl, ns);
}
}
return;
}
hw/block/nvme: fix handling of private namespaces Prior to this patch, if a private nvme-ns device (that is, a namespace that is not linked to a subsystem) is wired up to an nvme-subsys linked nvme controller device, the device fails to verify that the namespace id is unique within the subsystem. NVM Express v1.4b, Section 6.1.6 ("NSID and Namespace Usage") states that because the device supports Namespace Management, "NSIDs *shall* be unique within the NVM subsystem". Additionally, prior to this patch, private namespaces are not known to the subsystem and the namespace is considered exclusive to the controller with which it is initially wired up to. However, this is not the definition of a private namespace; per Section 1.6.33 ("private namespace"), a private namespace is just a namespace that does not support multipath I/O or namespace sharing, which means "that it is only able to be attached to one controller at a time". Fix this by always allocating namespaces in the subsystem (if one is linked to the controller), regardless of the shared/private status of the namespace. Whether or not the namespace is shareable is controlled by a new `shared` nvme-ns parameter. Finally, this fix allows the nvme-ns `subsys` parameter to be removed, since the `shared` parameter now serves the purpose of attaching the namespace to all controllers in the subsystem upon device realization. It is invalid to have an nvme-ns namespace device with a linked subsystem without the parent nvme controller device also being linked to one and since the nvme-ns devices will unconditionally be "attached" (in QEMU terms that is) to an nvme controller device through an NvmeBus, the nvme-ns namespace device can always get a reference to the subsystem of the controller it is explicitly (using 'bus=' parameter) or implicitly attaching to. Fixes: e570768566b3 ("hw/block/nvme: support for shared namespace in subsystem") Cc: Minwoo Im <minwoo.im.dev@gmail.com> Signed-off-by: Klaus Jensen <k.jensen@samsung.com> Reviewed-by: Gollu Appalanaidu <anaidu.gollu@samsung.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Reviewed-by: Minwoo Im <minwoo.im.dev@gmail.com>
2021-03-23 14:43:24 +03:00
}
nvme_attach_ns(n, ns);
}
static Property nvme_ns_props[] = {
DEFINE_BLOCK_PROPERTIES(NvmeNamespace, blkconf),
DEFINE_PROP_BOOL("detached", NvmeNamespace, params.detached, false),
DEFINE_PROP_BOOL("shared", NvmeNamespace, params.shared, true),
DEFINE_PROP_UINT32("nsid", NvmeNamespace, params.nsid, 0),
DEFINE_PROP_UUID_NODEFAULT("uuid", NvmeNamespace, params.uuid),
DEFINE_PROP_NGUID_NODEFAULT("nguid", NvmeNamespace, params.nguid),
DEFINE_PROP_UINT64("eui64", NvmeNamespace, params.eui64, 0),
DEFINE_PROP_UINT16("ms", NvmeNamespace, params.ms, 0),
DEFINE_PROP_UINT8("mset", NvmeNamespace, params.mset, 0),
DEFINE_PROP_UINT8("pi", NvmeNamespace, params.pi, 0),
DEFINE_PROP_UINT8("pil", NvmeNamespace, params.pil, 0),
DEFINE_PROP_UINT8("pif", NvmeNamespace, params.pif, 0),
DEFINE_PROP_UINT16("mssrl", NvmeNamespace, params.mssrl, 128),
DEFINE_PROP_UINT32("mcl", NvmeNamespace, params.mcl, 128),
DEFINE_PROP_UINT8("msrc", NvmeNamespace, params.msrc, 127),
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
DEFINE_PROP_BOOL("zoned", NvmeNamespace, params.zoned, false),
DEFINE_PROP_SIZE("zoned.zone_size", NvmeNamespace, params.zone_size_bs,
NVME_DEFAULT_ZONE_SIZE),
DEFINE_PROP_SIZE("zoned.zone_capacity", NvmeNamespace, params.zone_cap_bs,
0),
DEFINE_PROP_BOOL("zoned.cross_read", NvmeNamespace,
params.cross_zone_read, false),
DEFINE_PROP_UINT32("zoned.max_active", NvmeNamespace,
params.max_active_zones, 0),
DEFINE_PROP_UINT32("zoned.max_open", NvmeNamespace,
params.max_open_zones, 0),
DEFINE_PROP_UINT32("zoned.descr_ext_size", NvmeNamespace,
params.zd_extension_size, 0),
DEFINE_PROP_UINT32("zoned.numzrwa", NvmeNamespace, params.numzrwa, 0),
DEFINE_PROP_SIZE("zoned.zrwas", NvmeNamespace, params.zrwas, 0),
DEFINE_PROP_SIZE("zoned.zrwafg", NvmeNamespace, params.zrwafg, -1),
DEFINE_PROP_BOOL("eui64-default", NvmeNamespace, params.eui64_default,
false),
DEFINE_PROP_STRING("fdp.ruhs", NvmeNamespace, params.fdp.ruhs),
DEFINE_PROP_END_OF_LIST(),
};
static void nvme_ns_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->bus_type = TYPE_NVME_BUS;
dc->realize = nvme_ns_realize;
dc->unrealize = nvme_ns_unrealize;
device_class_set_props(dc, nvme_ns_props);
dc->desc = "Virtual NVMe namespace";
}
static void nvme_ns_instance_init(Object *obj)
{
NvmeNamespace *ns = NVME_NS(obj);
char *bootindex = g_strdup_printf("/namespace@%d,0", ns->params.nsid);
device_add_bootindex_property(obj, &ns->bootindex, "bootindex",
bootindex, DEVICE(obj));
g_free(bootindex);
}
static const TypeInfo nvme_ns_info = {
.name = TYPE_NVME_NS,
.parent = TYPE_DEVICE,
.class_init = nvme_ns_class_init,
.instance_size = sizeof(NvmeNamespace),
.instance_init = nvme_ns_instance_init,
};
static void nvme_ns_register_types(void)
{
type_register_static(&nvme_ns_info);
}
type_init(nvme_ns_register_types)