qemu/hw/arm/smmuv3.c

1902 lines
57 KiB
C
Raw Normal View History

/*
* Copyright (C) 2014-2016 Broadcom Corporation
* Copyright (c) 2017 Red Hat, Inc.
* Written by Prem Mallappa, Eric Auger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/bitops.h"
#include "hw/irq.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-core.h"
#include "hw/pci/pci.h"
#include "cpu.h"
#include "trace.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/arm/smmuv3.h"
#include "smmuv3-internal.h"
#include "smmu-internal.h"
#define PTW_RECORD_FAULT(cfg) (((cfg)->stage == 1) ? (cfg)->record_faults : \
(cfg)->s2cfg.record_faults)
/**
* smmuv3_trigger_irq - pulse @irq if enabled and update
* GERROR register in case of GERROR interrupt
*
* @irq: irq type
* @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
*/
static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
uint32_t gerror_mask)
{
bool pulse = false;
switch (irq) {
case SMMU_IRQ_EVTQ:
pulse = smmuv3_eventq_irq_enabled(s);
break;
case SMMU_IRQ_PRIQ:
qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
break;
case SMMU_IRQ_CMD_SYNC:
pulse = true;
break;
case SMMU_IRQ_GERROR:
{
uint32_t pending = s->gerror ^ s->gerrorn;
uint32_t new_gerrors = ~pending & gerror_mask;
if (!new_gerrors) {
/* only toggle non pending errors */
return;
}
s->gerror ^= new_gerrors;
trace_smmuv3_write_gerror(new_gerrors, s->gerror);
pulse = smmuv3_gerror_irq_enabled(s);
break;
}
}
if (pulse) {
trace_smmuv3_trigger_irq(irq);
qemu_irq_pulse(s->irq[irq]);
}
}
static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
{
uint32_t pending = s->gerror ^ s->gerrorn;
uint32_t toggled = s->gerrorn ^ new_gerrorn;
if (toggled & ~pending) {
qemu_log_mask(LOG_GUEST_ERROR,
"guest toggles non pending errors = 0x%x\n",
toggled & ~pending);
}
/*
* We do not raise any error in case guest toggles bits corresponding
* to not active IRQs (CONSTRAINED UNPREDICTABLE)
*/
s->gerrorn = new_gerrorn;
trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
}
static inline MemTxResult queue_read(SMMUQueue *q, void *data)
{
dma_addr_t addr = Q_CONS_ENTRY(q);
return dma_memory_read(&address_space_memory, addr, data, q->entry_size,
MEMTXATTRS_UNSPECIFIED);
}
static MemTxResult queue_write(SMMUQueue *q, void *data)
{
dma_addr_t addr = Q_PROD_ENTRY(q);
MemTxResult ret;
ret = dma_memory_write(&address_space_memory, addr, data, q->entry_size,
MEMTXATTRS_UNSPECIFIED);
if (ret != MEMTX_OK) {
return ret;
}
queue_prod_incr(q);
return MEMTX_OK;
}
static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
{
SMMUQueue *q = &s->eventq;
MemTxResult r;
if (!smmuv3_eventq_enabled(s)) {
return MEMTX_ERROR;
}
if (smmuv3_q_full(q)) {
return MEMTX_ERROR;
}
r = queue_write(q, evt);
if (r != MEMTX_OK) {
return r;
}
if (!smmuv3_q_empty(q)) {
smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
}
return MEMTX_OK;
}
void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
{
Evt evt = {};
MemTxResult r;
if (!smmuv3_eventq_enabled(s)) {
return;
}
EVT_SET_TYPE(&evt, info->type);
EVT_SET_SID(&evt, info->sid);
switch (info->type) {
case SMMU_EVT_NONE:
return;
case SMMU_EVT_F_UUT:
EVT_SET_SSID(&evt, info->u.f_uut.ssid);
EVT_SET_SSV(&evt, info->u.f_uut.ssv);
EVT_SET_ADDR(&evt, info->u.f_uut.addr);
EVT_SET_RNW(&evt, info->u.f_uut.rnw);
EVT_SET_PNU(&evt, info->u.f_uut.pnu);
EVT_SET_IND(&evt, info->u.f_uut.ind);
break;
case SMMU_EVT_C_BAD_STREAMID:
EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
EVT_SET_SSV(&evt, info->u.c_bad_streamid.ssv);
break;
case SMMU_EVT_F_STE_FETCH:
EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
EVT_SET_SSV(&evt, info->u.f_ste_fetch.ssv);
EVT_SET_ADDR2(&evt, info->u.f_ste_fetch.addr);
break;
case SMMU_EVT_C_BAD_STE:
EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
EVT_SET_SSV(&evt, info->u.c_bad_ste.ssv);
break;
case SMMU_EVT_F_STREAM_DISABLED:
break;
case SMMU_EVT_F_TRANS_FORBIDDEN:
EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
break;
case SMMU_EVT_C_BAD_SUBSTREAMID:
EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
break;
case SMMU_EVT_F_CD_FETCH:
EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
EVT_SET_SSV(&evt, info->u.f_cd_fetch.ssv);
EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
break;
case SMMU_EVT_C_BAD_CD:
EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
EVT_SET_SSV(&evt, info->u.c_bad_cd.ssv);
break;
case SMMU_EVT_F_WALK_EABT:
case SMMU_EVT_F_TRANSLATION:
case SMMU_EVT_F_ADDR_SIZE:
case SMMU_EVT_F_ACCESS:
case SMMU_EVT_F_PERMISSION:
EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
break;
case SMMU_EVT_F_CFG_CONFLICT:
EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
EVT_SET_SSV(&evt, info->u.f_cfg_conflict.ssv);
break;
/* rest is not implemented */
case SMMU_EVT_F_BAD_ATS_TREQ:
case SMMU_EVT_F_TLB_CONFLICT:
case SMMU_EVT_E_PAGE_REQ:
default:
g_assert_not_reached();
}
trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
r = smmuv3_write_eventq(s, &evt);
if (r != MEMTX_OK) {
smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
}
info->recorded = true;
}
static void smmuv3_init_regs(SMMUv3State *s)
{
/* Based on sys property, the stages supported in smmu will be advertised.*/
if (s->stage && !strcmp("2", s->stage)) {
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S2P, 1);
} else {
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1);
}
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, VMID16, 1); /* 16-bit VMID */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
/* terminated transaction will always be aborted/error returned */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
/* 2-level stream table supported */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS, SMMU_CMDQS);
s->idr[3] = FIELD_DP32(s->idr[3], IDR3, RIL, 1);
s->idr[3] = FIELD_DP32(s->idr[3], IDR3, HAD, 1);
hw/arm/smmuv3: Advertise support for SMMUv3.2-BBML2 The Arm SMMUv3 includes an optional feature equivalent to the CPU FEAT_BBM, which permits an OS to switch a range of memory between "covered by a huge page" and "covered by a sequence of normal pages" without having to engage in the traditional 'break-before-make' dance. (This is particularly important for the SMMU, because devices performing I/O through an SMMU are less likely to be able to cope with the window in the sequence where an access results in a translation fault.) The SMMU spec explicitly notes that one of the valid ways to be a BBM level 2 compliant implementation is: * if there are multiple entries in the TLB for an address, choose one of them and use it, ignoring the others Our SMMU TLB implementation (unlike our CPU TLB) does allow multiple TLB entries for an address, because the translation table level is part of the SMMUIOTLBKey, and so our IOTLB hashtable can include entries for the same address where the leaf was at different levels (i.e. both hugepage and normal page). Our TLB lookup implementation in smmu_iotlb_lookup() will always find the entry with the lowest level (i.e. it prefers the hugepage over the normal page) and ignore any others. TLB invalidation correctly removes all TLB entries matching the specified address or address range (unless the guest specifies the leaf level explicitly, in which case it gets what it asked for). So we can validly advertise support for BBML level 2. Note that we still can't yet advertise ourselves as an SMMU v3.2, because v3.2 requires support for the S2FWB feature, which we don't yet implement. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Eric Auger <eric.auger@redhat.com> Message-id: 20220426160422.2353158-4-peter.maydell@linaro.org
2022-04-26 19:04:22 +03:00
s->idr[3] = FIELD_DP32(s->idr[3], IDR3, BBML, 2);
/* 4K, 16K and 64K granule support */
s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN16K, 1);
s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
s->cmdq.prod = 0;
s->cmdq.cons = 0;
s->cmdq.entry_size = sizeof(struct Cmd);
s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
s->eventq.prod = 0;
s->eventq.cons = 0;
s->eventq.entry_size = sizeof(struct Evt);
s->features = 0;
s->sid_split = 0;
s->aidr = 0x1;
s->cr[0] = 0;
s->cr0ack = 0;
s->irq_ctrl = 0;
s->gerror = 0;
s->gerrorn = 0;
s->statusr = 0;
s->gbpa = SMMU_GBPA_RESET_VAL;
}
static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
SMMUEventInfo *event)
{
int ret;
trace_smmuv3_get_ste(addr);
/* TODO: guarantee 64-bit single-copy atomicity */
ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
MEMTXATTRS_UNSPECIFIED);
if (ret != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR,
"Cannot fetch pte at address=0x%"PRIx64"\n", addr);
event->type = SMMU_EVT_F_STE_FETCH;
event->u.f_ste_fetch.addr = addr;
return -EINVAL;
}
return 0;
}
/* @ssid > 0 not supported yet */
static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid,
CD *buf, SMMUEventInfo *event)
{
dma_addr_t addr = STE_CTXPTR(ste);
int ret;
trace_smmuv3_get_cd(addr);
/* TODO: guarantee 64-bit single-copy atomicity */
ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
MEMTXATTRS_UNSPECIFIED);
if (ret != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR,
"Cannot fetch pte at address=0x%"PRIx64"\n", addr);
event->type = SMMU_EVT_F_CD_FETCH;
event->u.f_ste_fetch.addr = addr;
return -EINVAL;
}
return 0;
}
/*
* Max valid value is 39 when SMMU_IDR3.STT == 0.
* In architectures after SMMUv3.0:
* - If STE.S2TG selects a 4KB or 16KB granule, the minimum valid value for this
* field is MAX(16, 64-IAS)
* - If STE.S2TG selects a 64KB granule, the minimum valid value for this field
* is (64-IAS).
* As we only support AA64, IAS = OAS.
*/
static bool s2t0sz_valid(SMMUTransCfg *cfg)
{
if (cfg->s2cfg.tsz > 39) {
return false;
}
if (cfg->s2cfg.granule_sz == 16) {
return (cfg->s2cfg.tsz >= 64 - oas2bits(SMMU_IDR5_OAS));
}
return (cfg->s2cfg.tsz >= MAX(64 - oas2bits(SMMU_IDR5_OAS), 16));
}
/*
* Return true if s2 page table config is valid.
* This checks with the configured start level, ias_bits and granularity we can
* have a valid page table as described in ARM ARM D8.2 Translation process.
* The idea here is to see for the highest possible number of IPA bits, how
* many concatenated tables we would need, if it is more than 16, then this is
* not possible.
*/
static bool s2_pgtable_config_valid(uint8_t sl0, uint8_t t0sz, uint8_t gran)
{
int level = get_start_level(sl0, gran);
uint64_t ipa_bits = 64 - t0sz;
uint64_t max_ipa = (1ULL << ipa_bits) - 1;
int nr_concat = pgd_concat_idx(level, gran, max_ipa) + 1;
return nr_concat <= VMSA_MAX_S2_CONCAT;
}
static int decode_ste_s2_cfg(SMMUTransCfg *cfg, STE *ste)
{
cfg->stage = 2;
if (STE_S2AA64(ste) == 0x0) {
qemu_log_mask(LOG_UNIMP,
"SMMUv3 AArch32 tables not supported\n");
g_assert_not_reached();
}
switch (STE_S2TG(ste)) {
case 0x0: /* 4KB */
cfg->s2cfg.granule_sz = 12;
break;
case 0x1: /* 64KB */
cfg->s2cfg.granule_sz = 16;
break;
case 0x2: /* 16KB */
cfg->s2cfg.granule_sz = 14;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"SMMUv3 bad STE S2TG: %x\n", STE_S2TG(ste));
goto bad_ste;
}
cfg->s2cfg.vttb = STE_S2TTB(ste);
cfg->s2cfg.sl0 = STE_S2SL0(ste);
/* FEAT_TTST not supported. */
if (cfg->s2cfg.sl0 == 0x3) {
qemu_log_mask(LOG_UNIMP, "SMMUv3 S2SL0 = 0x3 has no meaning!\n");
goto bad_ste;
}
/* For AA64, The effective S2PS size is capped to the OAS. */
cfg->s2cfg.eff_ps = oas2bits(MIN(STE_S2PS(ste), SMMU_IDR5_OAS));
/*
* It is ILLEGAL for the address in S2TTB to be outside the range
* described by the effective S2PS value.
*/
if (cfg->s2cfg.vttb & ~(MAKE_64BIT_MASK(0, cfg->s2cfg.eff_ps))) {
qemu_log_mask(LOG_GUEST_ERROR,
"SMMUv3 S2TTB too large 0x%" PRIx64
", effective PS %d bits\n",
cfg->s2cfg.vttb, cfg->s2cfg.eff_ps);
goto bad_ste;
}
cfg->s2cfg.tsz = STE_S2T0SZ(ste);
if (!s2t0sz_valid(cfg)) {
qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 bad STE S2T0SZ = %d\n",
cfg->s2cfg.tsz);
goto bad_ste;
}
if (!s2_pgtable_config_valid(cfg->s2cfg.sl0, cfg->s2cfg.tsz,
cfg->s2cfg.granule_sz)) {
qemu_log_mask(LOG_GUEST_ERROR,
"SMMUv3 STE stage 2 config not valid!\n");
goto bad_ste;
}
/* Only LE supported(IDR0.TTENDIAN). */
if (STE_S2ENDI(ste)) {
qemu_log_mask(LOG_GUEST_ERROR,
"SMMUv3 STE_S2ENDI only supports LE!\n");
goto bad_ste;
}
cfg->s2cfg.affd = STE_S2AFFD(ste);
cfg->s2cfg.record_faults = STE_S2R(ste);
/* As stall is not supported. */
if (STE_S2S(ste)) {
qemu_log_mask(LOG_UNIMP, "SMMUv3 Stall not implemented!\n");
goto bad_ste;
}
return 0;
bad_ste:
return -EINVAL;
}
/* Returns < 0 in case of invalid STE, 0 otherwise */
static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
STE *ste, SMMUEventInfo *event)
{
uint32_t config;
int ret;
if (!STE_VALID(ste)) {
if (!event->inval_ste_allowed) {
qemu_log_mask(LOG_GUEST_ERROR, "invalid STE\n");
}
goto bad_ste;
}
config = STE_CONFIG(ste);
if (STE_CFG_ABORT(config)) {
cfg->aborted = true;
return 0;
}
if (STE_CFG_BYPASS(config)) {
cfg->bypassed = true;
return 0;
}
/*
* If a stage is enabled in SW while not advertised, throw bad ste
* according to user manual(IHI0070E) "5.2 Stream Table Entry".
*/
if (!STAGE1_SUPPORTED(s) && STE_CFG_S1_ENABLED(config)) {
qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S1 used but not supported.\n");
goto bad_ste;
}
if (!STAGE2_SUPPORTED(s) && STE_CFG_S2_ENABLED(config)) {
qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S2 used but not supported.\n");
goto bad_ste;
}
if (STAGE2_SUPPORTED(s)) {
/* VMID is considered even if s2 is disabled. */
cfg->s2cfg.vmid = STE_S2VMID(ste);
} else {
/* Default to -1 */
cfg->s2cfg.vmid = -1;
}
if (STE_CFG_S2_ENABLED(config)) {
/*
* Stage-1 OAS defaults to OAS even if not enabled as it would be used
* in input address check for stage-2.
*/
cfg->oas = oas2bits(SMMU_IDR5_OAS);
ret = decode_ste_s2_cfg(cfg, ste);
if (ret) {
goto bad_ste;
}
}
if (STE_S1CDMAX(ste) != 0) {
qemu_log_mask(LOG_UNIMP,
"SMMUv3 does not support multiple context descriptors yet\n");
goto bad_ste;
}
if (STE_S1STALLD(ste)) {
qemu_log_mask(LOG_UNIMP,
"SMMUv3 S1 stalling fault model not allowed yet\n");
goto bad_ste;
}
return 0;
bad_ste:
event->type = SMMU_EVT_C_BAD_STE;
return -EINVAL;
}
/**
* smmu_find_ste - Return the stream table entry associated
* to the sid
*
* @s: smmuv3 handle
* @sid: stream ID
* @ste: returned stream table entry
* @event: handle to an event info
*
* Supports linear and 2-level stream table
* Return 0 on success, -EINVAL otherwise
*/
static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
SMMUEventInfo *event)
{
dma_addr_t addr, strtab_base;
uint32_t log2size;
int strtab_size_shift;
int ret;
trace_smmuv3_find_ste(sid, s->features, s->sid_split);
log2size = FIELD_EX32(s->strtab_base_cfg, STRTAB_BASE_CFG, LOG2SIZE);
/*
* Check SID range against both guest-configured and implementation limits
*/
if (sid >= (1 << MIN(log2size, SMMU_IDR1_SIDSIZE))) {
event->type = SMMU_EVT_C_BAD_STREAMID;
return -EINVAL;
}
if (s->features & SMMU_FEATURE_2LVL_STE) {
int l1_ste_offset, l2_ste_offset, max_l2_ste, span;
dma_addr_t l1ptr, l2ptr;
STEDesc l1std;
/*
* Align strtab base address to table size. For this purpose, assume it
* is not bounded by SMMU_IDR1_SIDSIZE.
*/
strtab_size_shift = MAX(5, (int)log2size - s->sid_split - 1 + 3);
strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
~MAKE_64BIT_MASK(0, strtab_size_shift);
l1_ste_offset = sid >> s->sid_split;
l2_ste_offset = sid & ((1 << s->sid_split) - 1);
l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
/* TODO: guarantee 64-bit single-copy atomicity */
ret = dma_memory_read(&address_space_memory, l1ptr, &l1std,
sizeof(l1std), MEMTXATTRS_UNSPECIFIED);
if (ret != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR,
"Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
event->type = SMMU_EVT_F_STE_FETCH;
event->u.f_ste_fetch.addr = l1ptr;
return -EINVAL;
}
span = L1STD_SPAN(&l1std);
if (!span) {
/* l2ptr is not valid */
if (!event->inval_ste_allowed) {
qemu_log_mask(LOG_GUEST_ERROR,
"invalid sid=%d (L1STD span=0)\n", sid);
}
event->type = SMMU_EVT_C_BAD_STREAMID;
return -EINVAL;
}
max_l2_ste = (1 << span) - 1;
l2ptr = l1std_l2ptr(&l1std);
trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
l2ptr, l2_ste_offset, max_l2_ste);
if (l2_ste_offset > max_l2_ste) {
qemu_log_mask(LOG_GUEST_ERROR,
"l2_ste_offset=%d > max_l2_ste=%d\n",
l2_ste_offset, max_l2_ste);
event->type = SMMU_EVT_C_BAD_STE;
return -EINVAL;
}
addr = l2ptr + l2_ste_offset * sizeof(*ste);
} else {
strtab_size_shift = log2size + 5;
strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
~MAKE_64BIT_MASK(0, strtab_size_shift);
addr = strtab_base + sid * sizeof(*ste);
}
if (smmu_get_ste(s, addr, ste, event)) {
return -EINVAL;
}
return 0;
}
static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event)
{
int ret = -EINVAL;
int i;
if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
goto bad_cd;
}
if (!CD_A(cd)) {
goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
}
if (CD_S(cd)) {
goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
}
if (CD_HA(cd) || CD_HD(cd)) {
goto bad_cd; /* HTTU = 0 */
}
/* we support only those at the moment */
cfg->aa64 = true;
cfg->stage = 1;
cfg->oas = oas2bits(CD_IPS(cd));
cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
cfg->tbi = CD_TBI(cd);
cfg->asid = CD_ASID(cd);
trace_smmuv3_decode_cd(cfg->oas);
/* decode data dependent on TT */
for (i = 0; i <= 1; i++) {
int tg, tsz;
SMMUTransTableInfo *tt = &cfg->tt[i];
cfg->tt[i].disabled = CD_EPD(cd, i);
if (cfg->tt[i].disabled) {
continue;
}
tsz = CD_TSZ(cd, i);
if (tsz < 16 || tsz > 39) {
goto bad_cd;
}
tg = CD_TG(cd, i);
tt->granule_sz = tg2granule(tg, i);
if ((tt->granule_sz != 12 && tt->granule_sz != 14 &&
tt->granule_sz != 16) || CD_ENDI(cd)) {
goto bad_cd;
}
tt->tsz = tsz;
tt->ttb = CD_TTB(cd, i);
if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
goto bad_cd;
}
tt->had = CD_HAD(cd, i);
trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz, tt->had);
}
cfg->record_faults = CD_R(cd);
return 0;
bad_cd:
event->type = SMMU_EVT_C_BAD_CD;
return ret;
}
/**
* smmuv3_decode_config - Prepare the translation configuration
* for the @mr iommu region
* @mr: iommu memory region the translation config must be prepared for
* @cfg: output translation configuration which is populated through
* the different configuration decoding steps
* @event: must be zero'ed by the caller
*
* return < 0 in case of config decoding error (@event is filled
* accordingly). Return 0 otherwise.
*/
static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
SMMUEventInfo *event)
{
SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
uint32_t sid = smmu_get_sid(sdev);
SMMUv3State *s = sdev->smmu;
int ret;
STE ste;
CD cd;
/* ASID defaults to -1 (if s1 is not supported). */
cfg->asid = -1;
ret = smmu_find_ste(s, sid, &ste, event);
if (ret) {
return ret;
}
ret = decode_ste(s, cfg, &ste, event);
if (ret) {
return ret;
}
if (cfg->aborted || cfg->bypassed || (cfg->stage == 2)) {
return 0;
}
ret = smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event);
if (ret) {
return ret;
}
return decode_cd(cfg, &cd, event);
}
/**
* smmuv3_get_config - Look up for a cached copy of configuration data for
* @sdev and on cache miss performs a configuration structure decoding from
* guest RAM.
*
* @sdev: SMMUDevice handle
* @event: output event info
*
* The configuration cache contains data resulting from both STE and CD
* decoding under the form of an SMMUTransCfg struct. The hash table is indexed
* by the SMMUDevice handle.
*/
static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
{
SMMUv3State *s = sdev->smmu;
SMMUState *bc = &s->smmu_state;
SMMUTransCfg *cfg;
cfg = g_hash_table_lookup(bc->configs, sdev);
if (cfg) {
sdev->cfg_cache_hits++;
trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
sdev->cfg_cache_hits, sdev->cfg_cache_misses,
100 * sdev->cfg_cache_hits /
(sdev->cfg_cache_hits + sdev->cfg_cache_misses));
} else {
sdev->cfg_cache_misses++;
trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
sdev->cfg_cache_hits, sdev->cfg_cache_misses,
100 * sdev->cfg_cache_hits /
(sdev->cfg_cache_hits + sdev->cfg_cache_misses));
cfg = g_new0(SMMUTransCfg, 1);
if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
g_hash_table_insert(bc->configs, sdev, cfg);
} else {
g_free(cfg);
cfg = NULL;
}
}
return cfg;
}
static void smmuv3_flush_config(SMMUDevice *sdev)
{
SMMUv3State *s = sdev->smmu;
SMMUState *bc = &s->smmu_state;
trace_smmuv3_config_cache_inv(smmu_get_sid(sdev));
g_hash_table_remove(bc->configs, sdev);
}
static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
IOMMUAccessFlags flag, int iommu_idx)
{
SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
SMMUv3State *s = sdev->smmu;
uint32_t sid = smmu_get_sid(sdev);
SMMUEventInfo event = {.type = SMMU_EVT_NONE,
.sid = sid,
.inval_ste_allowed = false};
SMMUPTWEventInfo ptw_info = {};
SMMUTranslationStatus status;
SMMUState *bs = ARM_SMMU(s);
uint64_t page_mask, aligned_addr;
SMMUTLBEntry *cached_entry = NULL;
SMMUTransTableInfo *tt;
SMMUTransCfg *cfg = NULL;
IOMMUTLBEntry entry = {
.target_as = &address_space_memory,
.iova = addr,
.translated_addr = addr,
.addr_mask = ~(hwaddr)0,
.perm = IOMMU_NONE,
};
/*
* Combined attributes used for TLB lookup, as only one stage is supported,
* it will hold attributes based on the enabled stage.
*/
SMMUTransTableInfo tt_combined;
qemu_mutex_lock(&s->mutex);
if (!smmu_enabled(s)) {
if (FIELD_EX32(s->gbpa, GBPA, ABORT)) {
status = SMMU_TRANS_ABORT;
} else {
status = SMMU_TRANS_DISABLE;
}
goto epilogue;
}
cfg = smmuv3_get_config(sdev, &event);
if (!cfg) {
status = SMMU_TRANS_ERROR;
goto epilogue;
}
if (cfg->aborted) {
status = SMMU_TRANS_ABORT;
goto epilogue;
}
if (cfg->bypassed) {
status = SMMU_TRANS_BYPASS;
goto epilogue;
}
if (cfg->stage == 1) {
/* Select stage1 translation table. */
tt = select_tt(cfg, addr);
if (!tt) {
if (cfg->record_faults) {
event.type = SMMU_EVT_F_TRANSLATION;
event.u.f_translation.addr = addr;
event.u.f_translation.rnw = flag & 0x1;
}
status = SMMU_TRANS_ERROR;
goto epilogue;
}
tt_combined.granule_sz = tt->granule_sz;
tt_combined.tsz = tt->tsz;
} else {
/* Stage2. */
tt_combined.granule_sz = cfg->s2cfg.granule_sz;
tt_combined.tsz = cfg->s2cfg.tsz;
}
/*
* TLB lookup looks for granule and input size for a translation stage,
* as only one stage is supported right now, choose the right values
* from the configuration.
*/
page_mask = (1ULL << tt_combined.granule_sz) - 1;
aligned_addr = addr & ~page_mask;
cached_entry = smmu_iotlb_lookup(bs, cfg, &tt_combined, aligned_addr);
if (cached_entry) {
if ((flag & IOMMU_WO) && !(cached_entry->entry.perm & IOMMU_WO)) {
status = SMMU_TRANS_ERROR;
/*
* We know that the TLB only contains either stage-1 or stage-2 as
* nesting is not supported. So it is sufficient to check the
* translation stage to know the TLB stage for now.
*/
event.u.f_walk_eabt.s2 = (cfg->stage == 2);
if (PTW_RECORD_FAULT(cfg)) {
event.type = SMMU_EVT_F_PERMISSION;
event.u.f_permission.addr = addr;
event.u.f_permission.rnw = flag & 0x1;
}
} else {
status = SMMU_TRANS_SUCCESS;
}
goto epilogue;
}
cached_entry = g_new0(SMMUTLBEntry, 1);
if (smmu_ptw(cfg, aligned_addr, flag, cached_entry, &ptw_info)) {
/* All faults from PTW has S2 field. */
event.u.f_walk_eabt.s2 = (ptw_info.stage == 2);
g_free(cached_entry);
switch (ptw_info.type) {
case SMMU_PTW_ERR_WALK_EABT:
event.type = SMMU_EVT_F_WALK_EABT;
event.u.f_walk_eabt.addr = addr;
event.u.f_walk_eabt.rnw = flag & 0x1;
event.u.f_walk_eabt.class = 0x1;
event.u.f_walk_eabt.addr2 = ptw_info.addr;
break;
case SMMU_PTW_ERR_TRANSLATION:
if (PTW_RECORD_FAULT(cfg)) {
event.type = SMMU_EVT_F_TRANSLATION;
event.u.f_translation.addr = addr;
event.u.f_translation.rnw = flag & 0x1;
}
break;
case SMMU_PTW_ERR_ADDR_SIZE:
if (PTW_RECORD_FAULT(cfg)) {
event.type = SMMU_EVT_F_ADDR_SIZE;
event.u.f_addr_size.addr = addr;
event.u.f_addr_size.rnw = flag & 0x1;
}
break;
case SMMU_PTW_ERR_ACCESS:
if (PTW_RECORD_FAULT(cfg)) {
event.type = SMMU_EVT_F_ACCESS;
event.u.f_access.addr = addr;
event.u.f_access.rnw = flag & 0x1;
}
break;
case SMMU_PTW_ERR_PERMISSION:
if (PTW_RECORD_FAULT(cfg)) {
event.type = SMMU_EVT_F_PERMISSION;
event.u.f_permission.addr = addr;
event.u.f_permission.rnw = flag & 0x1;
}
break;
default:
g_assert_not_reached();
}
status = SMMU_TRANS_ERROR;
} else {
smmu_iotlb_insert(bs, cfg, cached_entry);
status = SMMU_TRANS_SUCCESS;
}
epilogue:
qemu_mutex_unlock(&s->mutex);
switch (status) {
case SMMU_TRANS_SUCCESS:
entry.perm = cached_entry->entry.perm;
entry.translated_addr = cached_entry->entry.translated_addr +
(addr & cached_entry->entry.addr_mask);
entry.addr_mask = cached_entry->entry.addr_mask;
trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
entry.translated_addr, entry.perm);
break;
case SMMU_TRANS_DISABLE:
entry.perm = flag;
entry.addr_mask = ~TARGET_PAGE_MASK;
trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
entry.perm);
break;
case SMMU_TRANS_BYPASS:
entry.perm = flag;
entry.addr_mask = ~TARGET_PAGE_MASK;
trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
entry.perm);
break;
case SMMU_TRANS_ABORT:
/* no event is recorded on abort */
trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
entry.perm);
break;
case SMMU_TRANS_ERROR:
qemu_log_mask(LOG_GUEST_ERROR,
"%s translation failed for iova=0x%"PRIx64" (%s)\n",
mr->parent_obj.name, addr, smmu_event_string(event.type));
smmuv3_record_event(s, &event);
break;
}
return entry;
}
/**
* smmuv3_notify_iova - call the notifier @n for a given
* @asid and @iova tuple.
*
* @mr: IOMMU mr region handle
* @n: notifier to be called
* @asid: address space ID or negative value if we don't care
* @vmid: virtual machine ID or negative value if we don't care
* @iova: iova
* @tg: translation granule (if communicated through range invalidation)
* @num_pages: number of @granule sized pages (if tg != 0), otherwise 1
*/
static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
IOMMUNotifier *n,
int asid, int vmid,
dma_addr_t iova, uint8_t tg,
uint64_t num_pages)
{
SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
IOMMUTLBEvent event;
uint8_t granule;
SMMUv3State *s = sdev->smmu;
if (!tg) {
SMMUEventInfo event = {.inval_ste_allowed = true};
SMMUTransCfg *cfg = smmuv3_get_config(sdev, &event);
SMMUTransTableInfo *tt;
if (!cfg) {
return;
}
if (asid >= 0 && cfg->asid != asid) {
return;
}
if (vmid >= 0 && cfg->s2cfg.vmid != vmid) {
return;
}
if (STAGE1_SUPPORTED(s)) {
tt = select_tt(cfg, iova);
if (!tt) {
return;
}
granule = tt->granule_sz;
} else {
granule = cfg->s2cfg.granule_sz;
}
} else {
granule = tg * 2 + 10;
}
event.type = IOMMU_NOTIFIER_UNMAP;
event.entry.target_as = &address_space_memory;
event.entry.iova = iova;
event.entry.addr_mask = num_pages * (1 << granule) - 1;
event.entry.perm = IOMMU_NONE;
memory_region_notify_iommu_one(n, &event);
}
/* invalidate an asid/vmid/iova range tuple in all mr's */
static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, int vmid,
dma_addr_t iova, uint8_t tg,
uint64_t num_pages)
{
SMMUDevice *sdev;
QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
IOMMUMemoryRegion *mr = &sdev->iommu;
IOMMUNotifier *n;
trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, vmid,
iova, tg, num_pages);
IOMMU_NOTIFIER_FOREACH(n, mr) {
smmuv3_notify_iova(mr, n, asid, vmid, iova, tg, num_pages);
}
}
}
static void smmuv3_range_inval(SMMUState *s, Cmd *cmd)
{
dma_addr_t end, addr = CMD_ADDR(cmd);
uint8_t type = CMD_TYPE(cmd);
int vmid = -1;
uint8_t scale = CMD_SCALE(cmd);
uint8_t num = CMD_NUM(cmd);
uint8_t ttl = CMD_TTL(cmd);
bool leaf = CMD_LEAF(cmd);
uint8_t tg = CMD_TG(cmd);
uint64_t num_pages;
uint8_t granule;
int asid = -1;
SMMUv3State *smmuv3 = ARM_SMMUV3(s);
/* Only consider VMID if stage-2 is supported. */
if (STAGE2_SUPPORTED(smmuv3)) {
vmid = CMD_VMID(cmd);
}
if (type == SMMU_CMD_TLBI_NH_VA) {
asid = CMD_ASID(cmd);
}
if (!tg) {
trace_smmuv3_range_inval(vmid, asid, addr, tg, 1, ttl, leaf);
smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, 1);
smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, 1, ttl);
return;
}
/* RIL in use */
num_pages = (num + 1) * BIT_ULL(scale);
granule = tg * 2 + 10;
/* Split invalidations into ^2 range invalidations */
end = addr + (num_pages << granule) - 1;
while (addr != end + 1) {
uint64_t mask = dma_aligned_pow2_mask(addr, end, 64);
num_pages = (mask + 1) >> granule;
trace_smmuv3_range_inval(vmid, asid, addr, tg, num_pages, ttl, leaf);
smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, num_pages);
smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, num_pages, ttl);
addr += mask + 1;
}
}
static gboolean
smmuv3_invalidate_ste(gpointer key, gpointer value, gpointer user_data)
{
SMMUDevice *sdev = (SMMUDevice *)key;
uint32_t sid = smmu_get_sid(sdev);
SMMUSIDRange *sid_range = (SMMUSIDRange *)user_data;
if (sid < sid_range->start || sid > sid_range->end) {
return false;
}
trace_smmuv3_config_cache_inv(sid);
return true;
}
static int smmuv3_cmdq_consume(SMMUv3State *s)
{
SMMUState *bs = ARM_SMMU(s);
SMMUCmdError cmd_error = SMMU_CERROR_NONE;
SMMUQueue *q = &s->cmdq;
SMMUCommandType type = 0;
if (!smmuv3_cmdq_enabled(s)) {
return 0;
}
/*
* some commands depend on register values, typically CR0. In case those
* register values change while handling the command, spec says it
* is UNPREDICTABLE whether the command is interpreted under the new
* or old value.
*/
while (!smmuv3_q_empty(q)) {
uint32_t pending = s->gerror ^ s->gerrorn;
Cmd cmd;
trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
Q_PROD_WRAP(q), Q_CONS_WRAP(q));
if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
break;
}
if (queue_read(q, &cmd) != MEMTX_OK) {
cmd_error = SMMU_CERROR_ABT;
break;
}
type = CMD_TYPE(&cmd);
trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
qemu_mutex_lock(&s->mutex);
switch (type) {
case SMMU_CMD_SYNC:
if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
}
break;
case SMMU_CMD_PREFETCH_CONFIG:
case SMMU_CMD_PREFETCH_ADDR:
break;
case SMMU_CMD_CFGI_STE:
{
uint32_t sid = CMD_SID(&cmd);
IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
SMMUDevice *sdev;
if (CMD_SSEC(&cmd)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
if (!mr) {
break;
}
trace_smmuv3_cmdq_cfgi_ste(sid);
sdev = container_of(mr, SMMUDevice, iommu);
smmuv3_flush_config(sdev);
break;
}
case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
{
uint32_t sid = CMD_SID(&cmd), mask;
uint8_t range = CMD_STE_RANGE(&cmd);
SMMUSIDRange sid_range;
if (CMD_SSEC(&cmd)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
mask = (1ULL << (range + 1)) - 1;
sid_range.start = sid & ~mask;
sid_range.end = sid_range.start + mask;
trace_smmuv3_cmdq_cfgi_ste_range(sid_range.start, sid_range.end);
g_hash_table_foreach_remove(bs->configs, smmuv3_invalidate_ste,
&sid_range);
break;
}
case SMMU_CMD_CFGI_CD:
case SMMU_CMD_CFGI_CD_ALL:
{
uint32_t sid = CMD_SID(&cmd);
IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
SMMUDevice *sdev;
if (CMD_SSEC(&cmd)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
if (!mr) {
break;
}
trace_smmuv3_cmdq_cfgi_cd(sid);
sdev = container_of(mr, SMMUDevice, iommu);
smmuv3_flush_config(sdev);
break;
}
case SMMU_CMD_TLBI_NH_ASID:
{
uint16_t asid = CMD_ASID(&cmd);
if (!STAGE1_SUPPORTED(s)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
trace_smmuv3_cmdq_tlbi_nh_asid(asid);
smmu_inv_notifiers_all(&s->smmu_state);
smmu_iotlb_inv_asid(bs, asid);
break;
}
case SMMU_CMD_TLBI_NH_ALL:
if (!STAGE1_SUPPORTED(s)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
QEMU_FALLTHROUGH;
case SMMU_CMD_TLBI_NSNH_ALL:
trace_smmuv3_cmdq_tlbi_nh();
smmu_inv_notifiers_all(&s->smmu_state);
smmu_iotlb_inv_all(bs);
break;
case SMMU_CMD_TLBI_NH_VAA:
case SMMU_CMD_TLBI_NH_VA:
if (!STAGE1_SUPPORTED(s)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
smmuv3_range_inval(bs, &cmd);
break;
case SMMU_CMD_TLBI_S12_VMALL:
{
uint16_t vmid = CMD_VMID(&cmd);
if (!STAGE2_SUPPORTED(s)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
trace_smmuv3_cmdq_tlbi_s12_vmid(vmid);
smmu_inv_notifiers_all(&s->smmu_state);
smmu_iotlb_inv_vmid(bs, vmid);
break;
}
case SMMU_CMD_TLBI_S2_IPA:
if (!STAGE2_SUPPORTED(s)) {
cmd_error = SMMU_CERROR_ILL;
break;
}
/*
* As currently only either s1 or s2 are supported
* we can reuse same function for s2.
*/
smmuv3_range_inval(bs, &cmd);
break;
case SMMU_CMD_TLBI_EL3_ALL:
case SMMU_CMD_TLBI_EL3_VA:
case SMMU_CMD_TLBI_EL2_ALL:
case SMMU_CMD_TLBI_EL2_ASID:
case SMMU_CMD_TLBI_EL2_VA:
case SMMU_CMD_TLBI_EL2_VAA:
case SMMU_CMD_ATC_INV:
case SMMU_CMD_PRI_RESP:
case SMMU_CMD_RESUME:
case SMMU_CMD_STALL_TERM:
trace_smmuv3_unhandled_cmd(type);
break;
default:
cmd_error = SMMU_CERROR_ILL;
break;
}
qemu_mutex_unlock(&s->mutex);
if (cmd_error) {
if (cmd_error == SMMU_CERROR_ILL) {
qemu_log_mask(LOG_GUEST_ERROR,
"Illegal command type: %d\n", CMD_TYPE(&cmd));
}
break;
}
/*
* We only increment the cons index after the completion of
* the command. We do that because the SYNC returns immediately
* and does not check the completion of previous commands
*/
queue_cons_incr(q);
}
if (cmd_error) {
trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
smmu_write_cmdq_err(s, cmd_error);
smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
}
trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
Q_PROD_WRAP(q), Q_CONS_WRAP(q));
return 0;
}
static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
uint64_t data, MemTxAttrs attrs)
{
switch (offset) {
case A_GERROR_IRQ_CFG0:
s->gerror_irq_cfg0 = data;
return MEMTX_OK;
case A_STRTAB_BASE:
s->strtab_base = data;
return MEMTX_OK;
case A_CMDQ_BASE:
s->cmdq.base = data;
s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
if (s->cmdq.log2size > SMMU_CMDQS) {
s->cmdq.log2size = SMMU_CMDQS;
}
return MEMTX_OK;
case A_EVENTQ_BASE:
s->eventq.base = data;
s->eventq.log2size = extract64(s->eventq.base, 0, 5);
if (s->eventq.log2size > SMMU_EVENTQS) {
s->eventq.log2size = SMMU_EVENTQS;
}
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG0:
s->eventq_irq_cfg0 = data;
return MEMTX_OK;
default:
qemu_log_mask(LOG_UNIMP,
"%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
__func__, offset);
return MEMTX_OK;
}
}
static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
uint64_t data, MemTxAttrs attrs)
{
switch (offset) {
case A_CR0:
s->cr[0] = data;
s->cr0ack = data & ~SMMU_CR0_RESERVED;
/* in case the command queue has been enabled */
smmuv3_cmdq_consume(s);
return MEMTX_OK;
case A_CR1:
s->cr[1] = data;
return MEMTX_OK;
case A_CR2:
s->cr[2] = data;
return MEMTX_OK;
case A_IRQ_CTRL:
s->irq_ctrl = data;
return MEMTX_OK;
case A_GERRORN:
smmuv3_write_gerrorn(s, data);
/*
* By acknowledging the CMDQ_ERR, SW may notify cmds can
* be processed again
*/
smmuv3_cmdq_consume(s);
return MEMTX_OK;
case A_GERROR_IRQ_CFG0: /* 64b */
s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
return MEMTX_OK;
case A_GERROR_IRQ_CFG0 + 4:
s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
return MEMTX_OK;
case A_GERROR_IRQ_CFG1:
s->gerror_irq_cfg1 = data;
return MEMTX_OK;
case A_GERROR_IRQ_CFG2:
s->gerror_irq_cfg2 = data;
return MEMTX_OK;
case A_GBPA:
/*
* If UPDATE is not set, the write is ignored. This is the only
* permitted behavior in SMMUv3.2 and later.
*/
if (data & R_GBPA_UPDATE_MASK) {
/* Ignore update bit as write is synchronous. */
s->gbpa = data & ~R_GBPA_UPDATE_MASK;
}
return MEMTX_OK;
case A_STRTAB_BASE: /* 64b */
s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
return MEMTX_OK;
case A_STRTAB_BASE + 4:
s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
return MEMTX_OK;
case A_STRTAB_BASE_CFG:
s->strtab_base_cfg = data;
if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
s->features |= SMMU_FEATURE_2LVL_STE;
}
return MEMTX_OK;
case A_CMDQ_BASE: /* 64b */
s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
if (s->cmdq.log2size > SMMU_CMDQS) {
s->cmdq.log2size = SMMU_CMDQS;
}
return MEMTX_OK;
case A_CMDQ_BASE + 4: /* 64b */
s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
return MEMTX_OK;
case A_CMDQ_PROD:
s->cmdq.prod = data;
smmuv3_cmdq_consume(s);
return MEMTX_OK;
case A_CMDQ_CONS:
s->cmdq.cons = data;
return MEMTX_OK;
case A_EVENTQ_BASE: /* 64b */
s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
s->eventq.log2size = extract64(s->eventq.base, 0, 5);
if (s->eventq.log2size > SMMU_EVENTQS) {
s->eventq.log2size = SMMU_EVENTQS;
}
return MEMTX_OK;
case A_EVENTQ_BASE + 4:
s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
return MEMTX_OK;
case A_EVENTQ_PROD:
s->eventq.prod = data;
return MEMTX_OK;
case A_EVENTQ_CONS:
s->eventq.cons = data;
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG0: /* 64b */
s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG0 + 4:
s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG1:
s->eventq_irq_cfg1 = data;
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG2:
s->eventq_irq_cfg2 = data;
return MEMTX_OK;
default:
qemu_log_mask(LOG_UNIMP,
"%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
__func__, offset);
return MEMTX_OK;
}
}
static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
unsigned size, MemTxAttrs attrs)
{
SMMUState *sys = opaque;
SMMUv3State *s = ARM_SMMUV3(sys);
MemTxResult r;
/* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
offset &= ~0x10000;
switch (size) {
case 8:
r = smmu_writell(s, offset, data, attrs);
break;
case 4:
r = smmu_writel(s, offset, data, attrs);
break;
default:
r = MEMTX_ERROR;
break;
}
trace_smmuv3_write_mmio(offset, data, size, r);
return r;
}
static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
switch (offset) {
case A_GERROR_IRQ_CFG0:
*data = s->gerror_irq_cfg0;
return MEMTX_OK;
case A_STRTAB_BASE:
*data = s->strtab_base;
return MEMTX_OK;
case A_CMDQ_BASE:
*data = s->cmdq.base;
return MEMTX_OK;
case A_EVENTQ_BASE:
*data = s->eventq.base;
return MEMTX_OK;
default:
*data = 0;
qemu_log_mask(LOG_UNIMP,
"%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
__func__, offset);
return MEMTX_OK;
}
}
static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
switch (offset) {
case A_IDREGS ... A_IDREGS + 0x2f:
*data = smmuv3_idreg(offset - A_IDREGS);
return MEMTX_OK;
case A_IDR0 ... A_IDR5:
*data = s->idr[(offset - A_IDR0) / 4];
return MEMTX_OK;
case A_IIDR:
*data = s->iidr;
return MEMTX_OK;
case A_AIDR:
*data = s->aidr;
return MEMTX_OK;
case A_CR0:
*data = s->cr[0];
return MEMTX_OK;
case A_CR0ACK:
*data = s->cr0ack;
return MEMTX_OK;
case A_CR1:
*data = s->cr[1];
return MEMTX_OK;
case A_CR2:
*data = s->cr[2];
return MEMTX_OK;
case A_STATUSR:
*data = s->statusr;
return MEMTX_OK;
case A_GBPA:
*data = s->gbpa;
return MEMTX_OK;
case A_IRQ_CTRL:
case A_IRQ_CTRL_ACK:
*data = s->irq_ctrl;
return MEMTX_OK;
case A_GERROR:
*data = s->gerror;
return MEMTX_OK;
case A_GERRORN:
*data = s->gerrorn;
return MEMTX_OK;
case A_GERROR_IRQ_CFG0: /* 64b */
*data = extract64(s->gerror_irq_cfg0, 0, 32);
return MEMTX_OK;
case A_GERROR_IRQ_CFG0 + 4:
*data = extract64(s->gerror_irq_cfg0, 32, 32);
return MEMTX_OK;
case A_GERROR_IRQ_CFG1:
*data = s->gerror_irq_cfg1;
return MEMTX_OK;
case A_GERROR_IRQ_CFG2:
*data = s->gerror_irq_cfg2;
return MEMTX_OK;
case A_STRTAB_BASE: /* 64b */
*data = extract64(s->strtab_base, 0, 32);
return MEMTX_OK;
case A_STRTAB_BASE + 4: /* 64b */
*data = extract64(s->strtab_base, 32, 32);
return MEMTX_OK;
case A_STRTAB_BASE_CFG:
*data = s->strtab_base_cfg;
return MEMTX_OK;
case A_CMDQ_BASE: /* 64b */
*data = extract64(s->cmdq.base, 0, 32);
return MEMTX_OK;
case A_CMDQ_BASE + 4:
*data = extract64(s->cmdq.base, 32, 32);
return MEMTX_OK;
case A_CMDQ_PROD:
*data = s->cmdq.prod;
return MEMTX_OK;
case A_CMDQ_CONS:
*data = s->cmdq.cons;
return MEMTX_OK;
case A_EVENTQ_BASE: /* 64b */
*data = extract64(s->eventq.base, 0, 32);
return MEMTX_OK;
case A_EVENTQ_BASE + 4: /* 64b */
*data = extract64(s->eventq.base, 32, 32);
return MEMTX_OK;
case A_EVENTQ_PROD:
*data = s->eventq.prod;
return MEMTX_OK;
case A_EVENTQ_CONS:
*data = s->eventq.cons;
return MEMTX_OK;
default:
*data = 0;
qemu_log_mask(LOG_UNIMP,
"%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
__func__, offset);
return MEMTX_OK;
}
}
static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
SMMUState *sys = opaque;
SMMUv3State *s = ARM_SMMUV3(sys);
MemTxResult r;
/* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
offset &= ~0x10000;
switch (size) {
case 8:
r = smmu_readll(s, offset, data, attrs);
break;
case 4:
r = smmu_readl(s, offset, data, attrs);
break;
default:
r = MEMTX_ERROR;
break;
}
trace_smmuv3_read_mmio(offset, *data, size, r);
return r;
}
static const MemoryRegionOps smmu_mem_ops = {
.read_with_attrs = smmu_read_mmio,
.write_with_attrs = smmu_write_mmio,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 8,
},
.impl = {
.min_access_size = 4,
.max_access_size = 8,
},
};
static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
sysbus_init_irq(dev, &s->irq[i]);
}
}
static void smmu_reset_hold(Object *obj)
{
SMMUv3State *s = ARM_SMMUV3(obj);
SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
if (c->parent_phases.hold) {
c->parent_phases.hold(obj);
}
smmuv3_init_regs(s);
}
static void smmu_realize(DeviceState *d, Error **errp)
{
SMMUState *sys = ARM_SMMU(d);
SMMUv3State *s = ARM_SMMUV3(sys);
SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
SysBusDevice *dev = SYS_BUS_DEVICE(d);
Error *local_err = NULL;
c->parent_realize(d, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
qemu_mutex_init(&s->mutex);
memory_region_init_io(&sys->iomem, OBJECT(s),
&smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
sysbus_init_mmio(dev, &sys->iomem);
smmu_init_irq(s, dev);
}
static const VMStateDescription vmstate_smmuv3_queue = {
.name = "smmuv3_queue",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(base, SMMUQueue),
VMSTATE_UINT32(prod, SMMUQueue),
VMSTATE_UINT32(cons, SMMUQueue),
VMSTATE_UINT8(log2size, SMMUQueue),
VMSTATE_END_OF_LIST(),
},
};
static bool smmuv3_gbpa_needed(void *opaque)
{
SMMUv3State *s = opaque;
/* Only migrate GBPA if it has different reset value. */
return s->gbpa != SMMU_GBPA_RESET_VAL;
}
static const VMStateDescription vmstate_gbpa = {
.name = "smmuv3/gbpa",
.version_id = 1,
.minimum_version_id = 1,
.needed = smmuv3_gbpa_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(gbpa, SMMUv3State),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_smmuv3 = {
.name = "smmuv3",
.version_id = 1,
.minimum_version_id = 1,
.priority = MIG_PRI_IOMMU,
.fields = (VMStateField[]) {
VMSTATE_UINT32(features, SMMUv3State),
VMSTATE_UINT8(sid_size, SMMUv3State),
VMSTATE_UINT8(sid_split, SMMUv3State),
VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
VMSTATE_UINT32(cr0ack, SMMUv3State),
VMSTATE_UINT32(statusr, SMMUv3State),
VMSTATE_UINT32(irq_ctrl, SMMUv3State),
VMSTATE_UINT32(gerror, SMMUv3State),
VMSTATE_UINT32(gerrorn, SMMUv3State),
VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
VMSTATE_UINT64(strtab_base, SMMUv3State),
VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
VMSTATE_END_OF_LIST(),
},
.subsections = (const VMStateDescription * []) {
&vmstate_gbpa,
NULL
}
};
static Property smmuv3_properties[] = {
/*
* Stages of translation advertised.
* "1": Stage 1
* "2": Stage 2
* Defaults to stage 1
*/
DEFINE_PROP_STRING("stage", SMMUv3State, stage),
DEFINE_PROP_END_OF_LIST()
};
static void smmuv3_instance_init(Object *obj)
{
/* Nothing much to do here as of now */
}
static void smmuv3_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
dc->vmsd = &vmstate_smmuv3;
resettable_class_set_parent_phases(rc, NULL, smmu_reset_hold, NULL,
&c->parent_phases);
c->parent_realize = dc->realize;
dc->realize = smmu_realize;
device_class_set_props(dc, smmuv3_properties);
}
static int smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
IOMMUNotifierFlag old,
IOMMUNotifierFlag new,
Error **errp)
{
SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
SMMUv3State *s3 = sdev->smmu;
SMMUState *s = &(s3->smmu_state);
vhost: Unbreak SMMU and virtio-iommu on dev-iotlb support Previous work on dev-iotlb message broke vhost on either SMMU or virtio-iommu since dev-iotlb (or PCIe ATS) is not yet supported for those archs. An initial idea is that we can let IOMMU to export this information to vhost so that vhost would know whether the vIOMMU would support dev-iotlb, then vhost can conditionally register to dev-iotlb or the old iotlb way. We can work based on some previous patch to introduce PCIIOMMUOps as Yi Liu proposed [1]. However it's not as easy as I thought since vhost_iommu_region_add() does not have a PCIDevice context at all since it's completely a backend. It seems non-trivial to pass over a PCI device to the backend during init. E.g. when the IOMMU notifier registered hdev->vdev is still NULL. To make the fix smaller and easier, this patch goes the other way to leverage the flag_changed() hook of vIOMMUs so that SMMU and virtio-iommu can trap the dev-iotlb registration and fail it. Then vhost could try the fallback solution as using UNMAP invalidation for it's translations. [1] https://lore.kernel.org/qemu-devel/1599735398-6829-4-git-send-email-yi.l.liu@intel.com/ Reported-by: Eric Auger <eric.auger@redhat.com> Fixes: b68ba1ca57677acf870d5ab10579e6105c1f5338 Reviewed-by: Eric Auger <eric.auger@redhat.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Message-Id: <20210204191228.187550-1-peterx@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2021-02-04 22:12:28 +03:00
if (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
error_setg(errp, "SMMUv3 does not support dev-iotlb yet");
return -EINVAL;
}
if (new & IOMMU_NOTIFIER_MAP) {
error_setg(errp,
"device %02x.%02x.%x requires iommu MAP notifier which is "
"not currently supported", pci_bus_num(sdev->bus),
PCI_SLOT(sdev->devfn), PCI_FUNC(sdev->devfn));
return -EINVAL;
}
if (old == IOMMU_NOTIFIER_NONE) {
trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
} else if (new == IOMMU_NOTIFIER_NONE) {
trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
QLIST_REMOVE(sdev, next);
}
return 0;
}
static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
imrc->translate = smmuv3_translate;
imrc->notify_flag_changed = smmuv3_notify_flag_changed;
}
static const TypeInfo smmuv3_type_info = {
.name = TYPE_ARM_SMMUV3,
.parent = TYPE_ARM_SMMU,
.instance_size = sizeof(SMMUv3State),
.instance_init = smmuv3_instance_init,
.class_size = sizeof(SMMUv3Class),
.class_init = smmuv3_class_init,
};
static const TypeInfo smmuv3_iommu_memory_region_info = {
.parent = TYPE_IOMMU_MEMORY_REGION,
.name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
.class_init = smmuv3_iommu_memory_region_class_init,
};
static void smmuv3_register_types(void)
{
type_register(&smmuv3_type_info);
type_register(&smmuv3_iommu_memory_region_info);
}
type_init(smmuv3_register_types)