qemu/hw/arm/smmuv3.c

1181 lines
34 KiB
C
Raw Normal View History

/*
* Copyright (C) 2014-2016 Broadcom Corporation
* Copyright (c) 2017 Red Hat, Inc.
* Written by Prem Mallappa, Eric Auger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "hw/boards.h"
#include "sysemu/sysemu.h"
#include "hw/sysbus.h"
#include "hw/qdev-core.h"
#include "hw/pci/pci.h"
#include "exec/address-spaces.h"
#include "trace.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/arm/smmuv3.h"
#include "smmuv3-internal.h"
/**
* smmuv3_trigger_irq - pulse @irq if enabled and update
* GERROR register in case of GERROR interrupt
*
* @irq: irq type
* @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
*/
static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
uint32_t gerror_mask)
{
bool pulse = false;
switch (irq) {
case SMMU_IRQ_EVTQ:
pulse = smmuv3_eventq_irq_enabled(s);
break;
case SMMU_IRQ_PRIQ:
qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
break;
case SMMU_IRQ_CMD_SYNC:
pulse = true;
break;
case SMMU_IRQ_GERROR:
{
uint32_t pending = s->gerror ^ s->gerrorn;
uint32_t new_gerrors = ~pending & gerror_mask;
if (!new_gerrors) {
/* only toggle non pending errors */
return;
}
s->gerror ^= new_gerrors;
trace_smmuv3_write_gerror(new_gerrors, s->gerror);
pulse = smmuv3_gerror_irq_enabled(s);
break;
}
}
if (pulse) {
trace_smmuv3_trigger_irq(irq);
qemu_irq_pulse(s->irq[irq]);
}
}
static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
{
uint32_t pending = s->gerror ^ s->gerrorn;
uint32_t toggled = s->gerrorn ^ new_gerrorn;
if (toggled & ~pending) {
qemu_log_mask(LOG_GUEST_ERROR,
"guest toggles non pending errors = 0x%x\n",
toggled & ~pending);
}
/*
* We do not raise any error in case guest toggles bits corresponding
* to not active IRQs (CONSTRAINED UNPREDICTABLE)
*/
s->gerrorn = new_gerrorn;
trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
}
static inline MemTxResult queue_read(SMMUQueue *q, void *data)
{
dma_addr_t addr = Q_CONS_ENTRY(q);
return dma_memory_read(&address_space_memory, addr, data, q->entry_size);
}
static MemTxResult queue_write(SMMUQueue *q, void *data)
{
dma_addr_t addr = Q_PROD_ENTRY(q);
MemTxResult ret;
ret = dma_memory_write(&address_space_memory, addr, data, q->entry_size);
if (ret != MEMTX_OK) {
return ret;
}
queue_prod_incr(q);
return MEMTX_OK;
}
static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
{
SMMUQueue *q = &s->eventq;
MemTxResult r;
if (!smmuv3_eventq_enabled(s)) {
return MEMTX_ERROR;
}
if (smmuv3_q_full(q)) {
return MEMTX_ERROR;
}
r = queue_write(q, evt);
if (r != MEMTX_OK) {
return r;
}
if (smmuv3_q_empty(q)) {
smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
}
return MEMTX_OK;
}
void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
{
Evt evt;
MemTxResult r;
if (!smmuv3_eventq_enabled(s)) {
return;
}
EVT_SET_TYPE(&evt, info->type);
EVT_SET_SID(&evt, info->sid);
switch (info->type) {
case SMMU_EVT_OK:
return;
case SMMU_EVT_F_UUT:
EVT_SET_SSID(&evt, info->u.f_uut.ssid);
EVT_SET_SSV(&evt, info->u.f_uut.ssv);
EVT_SET_ADDR(&evt, info->u.f_uut.addr);
EVT_SET_RNW(&evt, info->u.f_uut.rnw);
EVT_SET_PNU(&evt, info->u.f_uut.pnu);
EVT_SET_IND(&evt, info->u.f_uut.ind);
break;
case SMMU_EVT_C_BAD_STREAMID:
EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
EVT_SET_SSV(&evt, info->u.c_bad_streamid.ssv);
break;
case SMMU_EVT_F_STE_FETCH:
EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
EVT_SET_SSV(&evt, info->u.f_ste_fetch.ssv);
EVT_SET_ADDR(&evt, info->u.f_ste_fetch.addr);
break;
case SMMU_EVT_C_BAD_STE:
EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
EVT_SET_SSV(&evt, info->u.c_bad_ste.ssv);
break;
case SMMU_EVT_F_STREAM_DISABLED:
break;
case SMMU_EVT_F_TRANS_FORBIDDEN:
EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
break;
case SMMU_EVT_C_BAD_SUBSTREAMID:
EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
break;
case SMMU_EVT_F_CD_FETCH:
EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
EVT_SET_SSV(&evt, info->u.f_cd_fetch.ssv);
EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
break;
case SMMU_EVT_C_BAD_CD:
EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
EVT_SET_SSV(&evt, info->u.c_bad_cd.ssv);
break;
case SMMU_EVT_F_WALK_EABT:
case SMMU_EVT_F_TRANSLATION:
case SMMU_EVT_F_ADDR_SIZE:
case SMMU_EVT_F_ACCESS:
case SMMU_EVT_F_PERMISSION:
EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
break;
case SMMU_EVT_F_CFG_CONFLICT:
EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
EVT_SET_SSV(&evt, info->u.f_cfg_conflict.ssv);
break;
/* rest is not implemented */
case SMMU_EVT_F_BAD_ATS_TREQ:
case SMMU_EVT_F_TLB_CONFLICT:
case SMMU_EVT_E_PAGE_REQ:
default:
g_assert_not_reached();
}
trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
r = smmuv3_write_eventq(s, &evt);
if (r != MEMTX_OK) {
smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
}
info->recorded = true;
}
static void smmuv3_init_regs(SMMUv3State *s)
{
/**
* IDR0: stage1 only, AArch64 only, coherent access, 16b ASID,
* multi-level stream table
*/
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1); /* stage 1 supported */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
/* terminated transaction will always be aborted/error returned */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
/* 2-level stream table supported */
s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS, SMMU_CMDQS);
/* 4K and 64K granule support */
s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
s->cmdq.prod = 0;
s->cmdq.cons = 0;
s->cmdq.entry_size = sizeof(struct Cmd);
s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
s->eventq.prod = 0;
s->eventq.cons = 0;
s->eventq.entry_size = sizeof(struct Evt);
s->features = 0;
s->sid_split = 0;
}
static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
SMMUEventInfo *event)
{
int ret;
trace_smmuv3_get_ste(addr);
/* TODO: guarantee 64-bit single-copy atomicity */
ret = dma_memory_read(&address_space_memory, addr,
(void *)buf, sizeof(*buf));
if (ret != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR,
"Cannot fetch pte at address=0x%"PRIx64"\n", addr);
event->type = SMMU_EVT_F_STE_FETCH;
event->u.f_ste_fetch.addr = addr;
return -EINVAL;
}
return 0;
}
/* @ssid > 0 not supported yet */
static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid,
CD *buf, SMMUEventInfo *event)
{
dma_addr_t addr = STE_CTXPTR(ste);
int ret;
trace_smmuv3_get_cd(addr);
/* TODO: guarantee 64-bit single-copy atomicity */
ret = dma_memory_read(&address_space_memory, addr,
(void *)buf, sizeof(*buf));
if (ret != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR,
"Cannot fetch pte at address=0x%"PRIx64"\n", addr);
event->type = SMMU_EVT_F_CD_FETCH;
event->u.f_ste_fetch.addr = addr;
return -EINVAL;
}
return 0;
}
/* Returns <0 if the caller has no need to continue the translation */
static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
STE *ste, SMMUEventInfo *event)
{
uint32_t config;
int ret = -EINVAL;
if (!STE_VALID(ste)) {
goto bad_ste;
}
config = STE_CONFIG(ste);
if (STE_CFG_ABORT(config)) {
cfg->aborted = true; /* abort but don't record any event */
return ret;
}
if (STE_CFG_BYPASS(config)) {
cfg->bypassed = true;
return ret;
}
if (STE_CFG_S2_ENABLED(config)) {
qemu_log_mask(LOG_UNIMP, "SMMUv3 does not support stage 2 yet\n");
goto bad_ste;
}
if (STE_S1CDMAX(ste) != 0) {
qemu_log_mask(LOG_UNIMP,
"SMMUv3 does not support multiple context descriptors yet\n");
goto bad_ste;
}
if (STE_S1STALLD(ste)) {
qemu_log_mask(LOG_UNIMP,
"SMMUv3 S1 stalling fault model not allowed yet\n");
goto bad_ste;
}
return 0;
bad_ste:
event->type = SMMU_EVT_C_BAD_STE;
return -EINVAL;
}
/**
* smmu_find_ste - Return the stream table entry associated
* to the sid
*
* @s: smmuv3 handle
* @sid: stream ID
* @ste: returned stream table entry
* @event: handle to an event info
*
* Supports linear and 2-level stream table
* Return 0 on success, -EINVAL otherwise
*/
static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
SMMUEventInfo *event)
{
dma_addr_t addr;
int ret;
trace_smmuv3_find_ste(sid, s->features, s->sid_split);
/* Check SID range */
if (sid > (1 << SMMU_IDR1_SIDSIZE)) {
event->type = SMMU_EVT_C_BAD_STREAMID;
return -EINVAL;
}
if (s->features & SMMU_FEATURE_2LVL_STE) {
int l1_ste_offset, l2_ste_offset, max_l2_ste, span;
dma_addr_t strtab_base, l1ptr, l2ptr;
STEDesc l1std;
strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK;
l1_ste_offset = sid >> s->sid_split;
l2_ste_offset = sid & ((1 << s->sid_split) - 1);
l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
/* TODO: guarantee 64-bit single-copy atomicity */
ret = dma_memory_read(&address_space_memory, l1ptr,
(uint8_t *)&l1std, sizeof(l1std));
if (ret != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR,
"Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
event->type = SMMU_EVT_F_STE_FETCH;
event->u.f_ste_fetch.addr = l1ptr;
return -EINVAL;
}
span = L1STD_SPAN(&l1std);
if (!span) {
/* l2ptr is not valid */
qemu_log_mask(LOG_GUEST_ERROR,
"invalid sid=%d (L1STD span=0)\n", sid);
event->type = SMMU_EVT_C_BAD_STREAMID;
return -EINVAL;
}
max_l2_ste = (1 << span) - 1;
l2ptr = l1std_l2ptr(&l1std);
trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
l2ptr, l2_ste_offset, max_l2_ste);
if (l2_ste_offset > max_l2_ste) {
qemu_log_mask(LOG_GUEST_ERROR,
"l2_ste_offset=%d > max_l2_ste=%d\n",
l2_ste_offset, max_l2_ste);
event->type = SMMU_EVT_C_BAD_STE;
return -EINVAL;
}
addr = l2ptr + l2_ste_offset * sizeof(*ste);
} else {
addr = s->strtab_base + sid * sizeof(*ste);
}
if (smmu_get_ste(s, addr, ste, event)) {
return -EINVAL;
}
return 0;
}
static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event)
{
int ret = -EINVAL;
int i;
if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
goto bad_cd;
}
if (!CD_A(cd)) {
goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
}
if (CD_S(cd)) {
goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
}
if (CD_HA(cd) || CD_HD(cd)) {
goto bad_cd; /* HTTU = 0 */
}
/* we support only those at the moment */
cfg->aa64 = true;
cfg->stage = 1;
cfg->oas = oas2bits(CD_IPS(cd));
cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
cfg->tbi = CD_TBI(cd);
cfg->asid = CD_ASID(cd);
trace_smmuv3_decode_cd(cfg->oas);
/* decode data dependent on TT */
for (i = 0; i <= 1; i++) {
int tg, tsz;
SMMUTransTableInfo *tt = &cfg->tt[i];
cfg->tt[i].disabled = CD_EPD(cd, i);
if (cfg->tt[i].disabled) {
continue;
}
tsz = CD_TSZ(cd, i);
if (tsz < 16 || tsz > 39) {
goto bad_cd;
}
tg = CD_TG(cd, i);
tt->granule_sz = tg2granule(tg, i);
if ((tt->granule_sz != 12 && tt->granule_sz != 16) || CD_ENDI(cd)) {
goto bad_cd;
}
tt->tsz = tsz;
tt->ttb = CD_TTB(cd, i);
if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
goto bad_cd;
}
trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz);
}
event->record_trans_faults = CD_R(cd);
return 0;
bad_cd:
event->type = SMMU_EVT_C_BAD_CD;
return ret;
}
/**
* smmuv3_decode_config - Prepare the translation configuration
* for the @mr iommu region
* @mr: iommu memory region the translation config must be prepared for
* @cfg: output translation configuration which is populated through
* the different configuration decoding steps
* @event: must be zero'ed by the caller
*
* return < 0 if the translation needs to be aborted (@event is filled
* accordingly). Return 0 otherwise.
*/
static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
SMMUEventInfo *event)
{
SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
uint32_t sid = smmu_get_sid(sdev);
SMMUv3State *s = sdev->smmu;
int ret = -EINVAL;
STE ste;
CD cd;
if (smmu_find_ste(s, sid, &ste, event)) {
return ret;
}
if (decode_ste(s, cfg, &ste, event)) {
return ret;
}
if (smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event)) {
return ret;
}
return decode_cd(cfg, &cd, event);
}
static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
IOMMUAccessFlags flag)
{
SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
SMMUv3State *s = sdev->smmu;
uint32_t sid = smmu_get_sid(sdev);
SMMUEventInfo event = {.type = SMMU_EVT_OK, .sid = sid};
SMMUPTWEventInfo ptw_info = {};
SMMUTransCfg cfg = {};
IOMMUTLBEntry entry = {
.target_as = &address_space_memory,
.iova = addr,
.translated_addr = addr,
.addr_mask = ~(hwaddr)0,
.perm = IOMMU_NONE,
};
int ret = 0;
if (!smmu_enabled(s)) {
goto out;
}
ret = smmuv3_decode_config(mr, &cfg, &event);
if (ret) {
goto out;
}
if (cfg.aborted) {
goto out;
}
ret = smmu_ptw(&cfg, addr, flag, &entry, &ptw_info);
if (ret) {
switch (ptw_info.type) {
case SMMU_PTW_ERR_WALK_EABT:
event.type = SMMU_EVT_F_WALK_EABT;
event.u.f_walk_eabt.addr = addr;
event.u.f_walk_eabt.rnw = flag & 0x1;
event.u.f_walk_eabt.class = 0x1;
event.u.f_walk_eabt.addr2 = ptw_info.addr;
break;
case SMMU_PTW_ERR_TRANSLATION:
if (event.record_trans_faults) {
event.type = SMMU_EVT_F_TRANSLATION;
event.u.f_translation.addr = addr;
event.u.f_translation.rnw = flag & 0x1;
}
break;
case SMMU_PTW_ERR_ADDR_SIZE:
if (event.record_trans_faults) {
event.type = SMMU_EVT_F_ADDR_SIZE;
event.u.f_addr_size.addr = addr;
event.u.f_addr_size.rnw = flag & 0x1;
}
break;
case SMMU_PTW_ERR_ACCESS:
if (event.record_trans_faults) {
event.type = SMMU_EVT_F_ACCESS;
event.u.f_access.addr = addr;
event.u.f_access.rnw = flag & 0x1;
}
break;
case SMMU_PTW_ERR_PERMISSION:
if (event.record_trans_faults) {
event.type = SMMU_EVT_F_PERMISSION;
event.u.f_permission.addr = addr;
event.u.f_permission.rnw = flag & 0x1;
}
break;
default:
g_assert_not_reached();
}
}
out:
if (ret) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s translation failed for iova=0x%"PRIx64"(%d)\n",
mr->parent_obj.name, addr, ret);
entry.perm = IOMMU_NONE;
smmuv3_record_event(s, &event);
} else if (!cfg.aborted) {
entry.perm = flag;
trace_smmuv3_translate(mr->parent_obj.name, sid, addr,
entry.translated_addr, entry.perm);
}
return entry;
}
static int smmuv3_cmdq_consume(SMMUv3State *s)
{
SMMUCmdError cmd_error = SMMU_CERROR_NONE;
SMMUQueue *q = &s->cmdq;
SMMUCommandType type = 0;
if (!smmuv3_cmdq_enabled(s)) {
return 0;
}
/*
* some commands depend on register values, typically CR0. In case those
* register values change while handling the command, spec says it
* is UNPREDICTABLE whether the command is interpreted under the new
* or old value.
*/
while (!smmuv3_q_empty(q)) {
uint32_t pending = s->gerror ^ s->gerrorn;
Cmd cmd;
trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
Q_PROD_WRAP(q), Q_CONS_WRAP(q));
if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
break;
}
if (queue_read(q, &cmd) != MEMTX_OK) {
cmd_error = SMMU_CERROR_ABT;
break;
}
type = CMD_TYPE(&cmd);
trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
switch (type) {
case SMMU_CMD_SYNC:
if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
}
break;
case SMMU_CMD_PREFETCH_CONFIG:
case SMMU_CMD_PREFETCH_ADDR:
case SMMU_CMD_CFGI_STE:
case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
case SMMU_CMD_CFGI_CD:
case SMMU_CMD_CFGI_CD_ALL:
case SMMU_CMD_TLBI_NH_ALL:
case SMMU_CMD_TLBI_NH_ASID:
case SMMU_CMD_TLBI_NH_VA:
case SMMU_CMD_TLBI_NH_VAA:
case SMMU_CMD_TLBI_EL3_ALL:
case SMMU_CMD_TLBI_EL3_VA:
case SMMU_CMD_TLBI_EL2_ALL:
case SMMU_CMD_TLBI_EL2_ASID:
case SMMU_CMD_TLBI_EL2_VA:
case SMMU_CMD_TLBI_EL2_VAA:
case SMMU_CMD_TLBI_S12_VMALL:
case SMMU_CMD_TLBI_S2_IPA:
case SMMU_CMD_TLBI_NSNH_ALL:
case SMMU_CMD_ATC_INV:
case SMMU_CMD_PRI_RESP:
case SMMU_CMD_RESUME:
case SMMU_CMD_STALL_TERM:
trace_smmuv3_unhandled_cmd(type);
break;
default:
cmd_error = SMMU_CERROR_ILL;
qemu_log_mask(LOG_GUEST_ERROR,
"Illegal command type: %d\n", CMD_TYPE(&cmd));
break;
}
if (cmd_error) {
break;
}
/*
* We only increment the cons index after the completion of
* the command. We do that because the SYNC returns immediately
* and does not check the completion of previous commands
*/
queue_cons_incr(q);
}
if (cmd_error) {
trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
smmu_write_cmdq_err(s, cmd_error);
smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
}
trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
Q_PROD_WRAP(q), Q_CONS_WRAP(q));
return 0;
}
static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
uint64_t data, MemTxAttrs attrs)
{
switch (offset) {
case A_GERROR_IRQ_CFG0:
s->gerror_irq_cfg0 = data;
return MEMTX_OK;
case A_STRTAB_BASE:
s->strtab_base = data;
return MEMTX_OK;
case A_CMDQ_BASE:
s->cmdq.base = data;
s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
if (s->cmdq.log2size > SMMU_CMDQS) {
s->cmdq.log2size = SMMU_CMDQS;
}
return MEMTX_OK;
case A_EVENTQ_BASE:
s->eventq.base = data;
s->eventq.log2size = extract64(s->eventq.base, 0, 5);
if (s->eventq.log2size > SMMU_EVENTQS) {
s->eventq.log2size = SMMU_EVENTQS;
}
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG0:
s->eventq_irq_cfg0 = data;
return MEMTX_OK;
default:
qemu_log_mask(LOG_UNIMP,
"%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
__func__, offset);
return MEMTX_OK;
}
}
static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
uint64_t data, MemTxAttrs attrs)
{
switch (offset) {
case A_CR0:
s->cr[0] = data;
s->cr0ack = data & ~SMMU_CR0_RESERVED;
/* in case the command queue has been enabled */
smmuv3_cmdq_consume(s);
return MEMTX_OK;
case A_CR1:
s->cr[1] = data;
return MEMTX_OK;
case A_CR2:
s->cr[2] = data;
return MEMTX_OK;
case A_IRQ_CTRL:
s->irq_ctrl = data;
return MEMTX_OK;
case A_GERRORN:
smmuv3_write_gerrorn(s, data);
/*
* By acknowledging the CMDQ_ERR, SW may notify cmds can
* be processed again
*/
smmuv3_cmdq_consume(s);
return MEMTX_OK;
case A_GERROR_IRQ_CFG0: /* 64b */
s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
return MEMTX_OK;
case A_GERROR_IRQ_CFG0 + 4:
s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
return MEMTX_OK;
case A_GERROR_IRQ_CFG1:
s->gerror_irq_cfg1 = data;
return MEMTX_OK;
case A_GERROR_IRQ_CFG2:
s->gerror_irq_cfg2 = data;
return MEMTX_OK;
case A_STRTAB_BASE: /* 64b */
s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
return MEMTX_OK;
case A_STRTAB_BASE + 4:
s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
return MEMTX_OK;
case A_STRTAB_BASE_CFG:
s->strtab_base_cfg = data;
if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
s->features |= SMMU_FEATURE_2LVL_STE;
}
return MEMTX_OK;
case A_CMDQ_BASE: /* 64b */
s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
if (s->cmdq.log2size > SMMU_CMDQS) {
s->cmdq.log2size = SMMU_CMDQS;
}
return MEMTX_OK;
case A_CMDQ_BASE + 4: /* 64b */
s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
return MEMTX_OK;
case A_CMDQ_PROD:
s->cmdq.prod = data;
smmuv3_cmdq_consume(s);
return MEMTX_OK;
case A_CMDQ_CONS:
s->cmdq.cons = data;
return MEMTX_OK;
case A_EVENTQ_BASE: /* 64b */
s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
s->eventq.log2size = extract64(s->eventq.base, 0, 5);
if (s->eventq.log2size > SMMU_EVENTQS) {
s->eventq.log2size = SMMU_EVENTQS;
}
return MEMTX_OK;
case A_EVENTQ_BASE + 4:
s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
return MEMTX_OK;
case A_EVENTQ_PROD:
s->eventq.prod = data;
return MEMTX_OK;
case A_EVENTQ_CONS:
s->eventq.cons = data;
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG0: /* 64b */
s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG0 + 4:
s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG1:
s->eventq_irq_cfg1 = data;
return MEMTX_OK;
case A_EVENTQ_IRQ_CFG2:
s->eventq_irq_cfg2 = data;
return MEMTX_OK;
default:
qemu_log_mask(LOG_UNIMP,
"%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
__func__, offset);
return MEMTX_OK;
}
}
static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
unsigned size, MemTxAttrs attrs)
{
SMMUState *sys = opaque;
SMMUv3State *s = ARM_SMMUV3(sys);
MemTxResult r;
/* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
offset &= ~0x10000;
switch (size) {
case 8:
r = smmu_writell(s, offset, data, attrs);
break;
case 4:
r = smmu_writel(s, offset, data, attrs);
break;
default:
r = MEMTX_ERROR;
break;
}
trace_smmuv3_write_mmio(offset, data, size, r);
return r;
}
static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
switch (offset) {
case A_GERROR_IRQ_CFG0:
*data = s->gerror_irq_cfg0;
return MEMTX_OK;
case A_STRTAB_BASE:
*data = s->strtab_base;
return MEMTX_OK;
case A_CMDQ_BASE:
*data = s->cmdq.base;
return MEMTX_OK;
case A_EVENTQ_BASE:
*data = s->eventq.base;
return MEMTX_OK;
default:
*data = 0;
qemu_log_mask(LOG_UNIMP,
"%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
__func__, offset);
return MEMTX_OK;
}
}
static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
switch (offset) {
case A_IDREGS ... A_IDREGS + 0x1f:
*data = smmuv3_idreg(offset - A_IDREGS);
return MEMTX_OK;
case A_IDR0 ... A_IDR5:
*data = s->idr[(offset - A_IDR0) / 4];
return MEMTX_OK;
case A_IIDR:
*data = s->iidr;
return MEMTX_OK;
case A_CR0:
*data = s->cr[0];
return MEMTX_OK;
case A_CR0ACK:
*data = s->cr0ack;
return MEMTX_OK;
case A_CR1:
*data = s->cr[1];
return MEMTX_OK;
case A_CR2:
*data = s->cr[2];
return MEMTX_OK;
case A_STATUSR:
*data = s->statusr;
return MEMTX_OK;
case A_IRQ_CTRL:
case A_IRQ_CTRL_ACK:
*data = s->irq_ctrl;
return MEMTX_OK;
case A_GERROR:
*data = s->gerror;
return MEMTX_OK;
case A_GERRORN:
*data = s->gerrorn;
return MEMTX_OK;
case A_GERROR_IRQ_CFG0: /* 64b */
*data = extract64(s->gerror_irq_cfg0, 0, 32);
return MEMTX_OK;
case A_GERROR_IRQ_CFG0 + 4:
*data = extract64(s->gerror_irq_cfg0, 32, 32);
return MEMTX_OK;
case A_GERROR_IRQ_CFG1:
*data = s->gerror_irq_cfg1;
return MEMTX_OK;
case A_GERROR_IRQ_CFG2:
*data = s->gerror_irq_cfg2;
return MEMTX_OK;
case A_STRTAB_BASE: /* 64b */
*data = extract64(s->strtab_base, 0, 32);
return MEMTX_OK;
case A_STRTAB_BASE + 4: /* 64b */
*data = extract64(s->strtab_base, 32, 32);
return MEMTX_OK;
case A_STRTAB_BASE_CFG:
*data = s->strtab_base_cfg;
return MEMTX_OK;
case A_CMDQ_BASE: /* 64b */
*data = extract64(s->cmdq.base, 0, 32);
return MEMTX_OK;
case A_CMDQ_BASE + 4:
*data = extract64(s->cmdq.base, 32, 32);
return MEMTX_OK;
case A_CMDQ_PROD:
*data = s->cmdq.prod;
return MEMTX_OK;
case A_CMDQ_CONS:
*data = s->cmdq.cons;
return MEMTX_OK;
case A_EVENTQ_BASE: /* 64b */
*data = extract64(s->eventq.base, 0, 32);
return MEMTX_OK;
case A_EVENTQ_BASE + 4: /* 64b */
*data = extract64(s->eventq.base, 32, 32);
return MEMTX_OK;
case A_EVENTQ_PROD:
*data = s->eventq.prod;
return MEMTX_OK;
case A_EVENTQ_CONS:
*data = s->eventq.cons;
return MEMTX_OK;
default:
*data = 0;
qemu_log_mask(LOG_UNIMP,
"%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
__func__, offset);
return MEMTX_OK;
}
}
static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
SMMUState *sys = opaque;
SMMUv3State *s = ARM_SMMUV3(sys);
MemTxResult r;
/* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
offset &= ~0x10000;
switch (size) {
case 8:
r = smmu_readll(s, offset, data, attrs);
break;
case 4:
r = smmu_readl(s, offset, data, attrs);
break;
default:
r = MEMTX_ERROR;
break;
}
trace_smmuv3_read_mmio(offset, *data, size, r);
return r;
}
static const MemoryRegionOps smmu_mem_ops = {
.read_with_attrs = smmu_read_mmio,
.write_with_attrs = smmu_write_mmio,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 8,
},
.impl = {
.min_access_size = 4,
.max_access_size = 8,
},
};
static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
sysbus_init_irq(dev, &s->irq[i]);
}
}
static void smmu_reset(DeviceState *dev)
{
SMMUv3State *s = ARM_SMMUV3(dev);
SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
c->parent_reset(dev);
smmuv3_init_regs(s);
}
static void smmu_realize(DeviceState *d, Error **errp)
{
SMMUState *sys = ARM_SMMU(d);
SMMUv3State *s = ARM_SMMUV3(sys);
SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
SysBusDevice *dev = SYS_BUS_DEVICE(d);
Error *local_err = NULL;
c->parent_realize(d, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
memory_region_init_io(&sys->iomem, OBJECT(s),
&smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
sysbus_init_mmio(dev, &sys->iomem);
smmu_init_irq(s, dev);
}
static const VMStateDescription vmstate_smmuv3_queue = {
.name = "smmuv3_queue",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(base, SMMUQueue),
VMSTATE_UINT32(prod, SMMUQueue),
VMSTATE_UINT32(cons, SMMUQueue),
VMSTATE_UINT8(log2size, SMMUQueue),
},
};
static const VMStateDescription vmstate_smmuv3 = {
.name = "smmuv3",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(features, SMMUv3State),
VMSTATE_UINT8(sid_size, SMMUv3State),
VMSTATE_UINT8(sid_split, SMMUv3State),
VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
VMSTATE_UINT32(cr0ack, SMMUv3State),
VMSTATE_UINT32(statusr, SMMUv3State),
VMSTATE_UINT32(irq_ctrl, SMMUv3State),
VMSTATE_UINT32(gerror, SMMUv3State),
VMSTATE_UINT32(gerrorn, SMMUv3State),
VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
VMSTATE_UINT64(strtab_base, SMMUv3State),
VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
VMSTATE_END_OF_LIST(),
},
};
static void smmuv3_instance_init(Object *obj)
{
/* Nothing much to do here as of now */
}
static void smmuv3_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
dc->vmsd = &vmstate_smmuv3;
device_class_set_parent_reset(dc, smmu_reset, &c->parent_reset);
c->parent_realize = dc->realize;
dc->realize = smmu_realize;
}
static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
imrc->translate = smmuv3_translate;
}
static const TypeInfo smmuv3_type_info = {
.name = TYPE_ARM_SMMUV3,
.parent = TYPE_ARM_SMMU,
.instance_size = sizeof(SMMUv3State),
.instance_init = smmuv3_instance_init,
.class_size = sizeof(SMMUv3Class),
.class_init = smmuv3_class_init,
};
static const TypeInfo smmuv3_iommu_memory_region_info = {
.parent = TYPE_IOMMU_MEMORY_REGION,
.name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
.class_init = smmuv3_iommu_memory_region_class_init,
};
static void smmuv3_register_types(void)
{
type_register(&smmuv3_type_info);
type_register(&smmuv3_iommu_memory_region_info);
}
type_init(smmuv3_register_types)