qemu/hw/ide.c

2475 lines
74 KiB
C
Raw Normal View History

/*
* QEMU IDE disk and CD-ROM Emulator
*
* Copyright (c) 2003 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
/* debug IDE devices */
//#define DEBUG_IDE
//#define DEBUG_IDE_ATAPI
/* Bits of HD_STATUS */
#define ERR_STAT 0x01
#define INDEX_STAT 0x02
#define ECC_STAT 0x04 /* Corrected error */
#define DRQ_STAT 0x08
#define SEEK_STAT 0x10
#define SRV_STAT 0x10
#define WRERR_STAT 0x20
#define READY_STAT 0x40
#define BUSY_STAT 0x80
/* Bits for HD_ERROR */
#define MARK_ERR 0x01 /* Bad address mark */
#define TRK0_ERR 0x02 /* couldn't find track 0 */
#define ABRT_ERR 0x04 /* Command aborted */
#define MCR_ERR 0x08 /* media change request */
#define ID_ERR 0x10 /* ID field not found */
#define MC_ERR 0x20 /* media changed */
#define ECC_ERR 0x40 /* Uncorrectable ECC error */
#define BBD_ERR 0x80 /* pre-EIDE meaning: block marked bad */
#define ICRC_ERR 0x80 /* new meaning: CRC error during transfer */
/* Bits of HD_NSECTOR */
#define CD 0x01
#define IO 0x02
#define REL 0x04
#define TAG_MASK 0xf8
#define IDE_CMD_RESET 0x04
#define IDE_CMD_DISABLE_IRQ 0x02
/* ATA/ATAPI Commands pre T13 Spec */
#define WIN_NOP 0x00
/*
* 0x01->0x02 Reserved
*/
#define CFA_REQ_EXT_ERROR_CODE 0x03 /* CFA Request Extended Error Code */
/*
* 0x04->0x07 Reserved
*/
#define WIN_SRST 0x08 /* ATAPI soft reset command */
#define WIN_DEVICE_RESET 0x08
/*
* 0x09->0x0F Reserved
*/
#define WIN_RECAL 0x10
#define WIN_RESTORE WIN_RECAL
/*
* 0x10->0x1F Reserved
*/
#define WIN_READ 0x20 /* 28-Bit */
#define WIN_READ_ONCE 0x21 /* 28-Bit without retries */
#define WIN_READ_LONG 0x22 /* 28-Bit */
#define WIN_READ_LONG_ONCE 0x23 /* 28-Bit without retries */
#define WIN_READ_EXT 0x24 /* 48-Bit */
#define WIN_READDMA_EXT 0x25 /* 48-Bit */
#define WIN_READDMA_QUEUED_EXT 0x26 /* 48-Bit */
#define WIN_READ_NATIVE_MAX_EXT 0x27 /* 48-Bit */
/*
* 0x28
*/
#define WIN_MULTREAD_EXT 0x29 /* 48-Bit */
/*
* 0x2A->0x2F Reserved
*/
#define WIN_WRITE 0x30 /* 28-Bit */
#define WIN_WRITE_ONCE 0x31 /* 28-Bit without retries */
#define WIN_WRITE_LONG 0x32 /* 28-Bit */
#define WIN_WRITE_LONG_ONCE 0x33 /* 28-Bit without retries */
#define WIN_WRITE_EXT 0x34 /* 48-Bit */
#define WIN_WRITEDMA_EXT 0x35 /* 48-Bit */
#define WIN_WRITEDMA_QUEUED_EXT 0x36 /* 48-Bit */
#define WIN_SET_MAX_EXT 0x37 /* 48-Bit */
#define CFA_WRITE_SECT_WO_ERASE 0x38 /* CFA Write Sectors without erase */
#define WIN_MULTWRITE_EXT 0x39 /* 48-Bit */
/*
* 0x3A->0x3B Reserved
*/
#define WIN_WRITE_VERIFY 0x3C /* 28-Bit */
/*
* 0x3D->0x3F Reserved
*/
#define WIN_VERIFY 0x40 /* 28-Bit - Read Verify Sectors */
#define WIN_VERIFY_ONCE 0x41 /* 28-Bit - without retries */
#define WIN_VERIFY_EXT 0x42 /* 48-Bit */
/*
* 0x43->0x4F Reserved
*/
#define WIN_FORMAT 0x50
/*
* 0x51->0x5F Reserved
*/
#define WIN_INIT 0x60
/*
* 0x61->0x5F Reserved
*/
#define WIN_SEEK 0x70 /* 0x70-0x7F Reserved */
#define CFA_TRANSLATE_SECTOR 0x87 /* CFA Translate Sector */
#define WIN_DIAGNOSE 0x90
#define WIN_SPECIFY 0x91 /* set drive geometry translation */
#define WIN_DOWNLOAD_MICROCODE 0x92
#define WIN_STANDBYNOW2 0x94
#define WIN_STANDBY2 0x96
#define WIN_SETIDLE2 0x97
#define WIN_CHECKPOWERMODE2 0x98
#define WIN_SLEEPNOW2 0x99
/*
* 0x9A VENDOR
*/
#define WIN_PACKETCMD 0xA0 /* Send a packet command. */
#define WIN_PIDENTIFY 0xA1 /* identify ATAPI device */
#define WIN_QUEUED_SERVICE 0xA2
#define WIN_SMART 0xB0 /* self-monitoring and reporting */
#define CFA_ERASE_SECTORS 0xC0
#define WIN_MULTREAD 0xC4 /* read sectors using multiple mode*/
#define WIN_MULTWRITE 0xC5 /* write sectors using multiple mode */
#define WIN_SETMULT 0xC6 /* enable/disable multiple mode */
#define WIN_READDMA_QUEUED 0xC7 /* read sectors using Queued DMA transfers */
#define WIN_READDMA 0xC8 /* read sectors using DMA transfers */
#define WIN_READDMA_ONCE 0xC9 /* 28-Bit - without retries */
#define WIN_WRITEDMA 0xCA /* write sectors using DMA transfers */
#define WIN_WRITEDMA_ONCE 0xCB /* 28-Bit - without retries */
#define WIN_WRITEDMA_QUEUED 0xCC /* write sectors using Queued DMA transfers */
#define CFA_WRITE_MULTI_WO_ERASE 0xCD /* CFA Write multiple without erase */
#define WIN_GETMEDIASTATUS 0xDA
#define WIN_ACKMEDIACHANGE 0xDB /* ATA-1, ATA-2 vendor */
#define WIN_POSTBOOT 0xDC
#define WIN_PREBOOT 0xDD
#define WIN_DOORLOCK 0xDE /* lock door on removable drives */
#define WIN_DOORUNLOCK 0xDF /* unlock door on removable drives */
#define WIN_STANDBYNOW1 0xE0
#define WIN_IDLEIMMEDIATE 0xE1 /* force drive to become "ready" */
#define WIN_STANDBY 0xE2 /* Set device in Standby Mode */
#define WIN_SETIDLE1 0xE3
#define WIN_READ_BUFFER 0xE4 /* force read only 1 sector */
#define WIN_CHECKPOWERMODE1 0xE5
#define WIN_SLEEPNOW1 0xE6
#define WIN_FLUSH_CACHE 0xE7
#define WIN_WRITE_BUFFER 0xE8 /* force write only 1 sector */
#define WIN_WRITE_SAME 0xE9 /* read ata-2 to use */
/* SET_FEATURES 0x22 or 0xDD */
#define WIN_FLUSH_CACHE_EXT 0xEA /* 48-Bit */
#define WIN_IDENTIFY 0xEC /* ask drive to identify itself */
#define WIN_MEDIAEJECT 0xED
#define WIN_IDENTIFY_DMA 0xEE /* same as WIN_IDENTIFY, but DMA */
#define WIN_SETFEATURES 0xEF /* set special drive features */
#define EXABYTE_ENABLE_NEST 0xF0
#define WIN_SECURITY_SET_PASS 0xF1
#define WIN_SECURITY_UNLOCK 0xF2
#define WIN_SECURITY_ERASE_PREPARE 0xF3
#define WIN_SECURITY_ERASE_UNIT 0xF4
#define WIN_SECURITY_FREEZE_LOCK 0xF5
#define WIN_SECURITY_DISABLE 0xF6
#define WIN_READ_NATIVE_MAX 0xF8 /* return the native maximum address */
#define WIN_SET_MAX 0xF9
#define DISABLE_SEAGATE 0xFB
/* set to 1 set disable mult support */
#define MAX_MULT_SECTORS 16
/* ATAPI defines */
#define ATAPI_PACKET_SIZE 12
/* The generic packet command opcodes for CD/DVD Logical Units,
* From Table 57 of the SFF8090 Ver. 3 (Mt. Fuji) draft standard. */
#define GPCMD_BLANK 0xa1
#define GPCMD_CLOSE_TRACK 0x5b
#define GPCMD_FLUSH_CACHE 0x35
#define GPCMD_FORMAT_UNIT 0x04
#define GPCMD_GET_CONFIGURATION 0x46
#define GPCMD_GET_EVENT_STATUS_NOTIFICATION 0x4a
#define GPCMD_GET_PERFORMANCE 0xac
#define GPCMD_INQUIRY 0x12
#define GPCMD_LOAD_UNLOAD 0xa6
#define GPCMD_MECHANISM_STATUS 0xbd
#define GPCMD_MODE_SELECT_10 0x55
#define GPCMD_MODE_SENSE_10 0x5a
#define GPCMD_PAUSE_RESUME 0x4b
#define GPCMD_PLAY_AUDIO_10 0x45
#define GPCMD_PLAY_AUDIO_MSF 0x47
#define GPCMD_PLAY_AUDIO_TI 0x48
#define GPCMD_PLAY_CD 0xbc
#define GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL 0x1e
#define GPCMD_READ_10 0x28
#define GPCMD_READ_12 0xa8
#define GPCMD_READ_CDVD_CAPACITY 0x25
#define GPCMD_READ_CD 0xbe
#define GPCMD_READ_CD_MSF 0xb9
#define GPCMD_READ_DISC_INFO 0x51
#define GPCMD_READ_DVD_STRUCTURE 0xad
#define GPCMD_READ_FORMAT_CAPACITIES 0x23
#define GPCMD_READ_HEADER 0x44
#define GPCMD_READ_TRACK_RZONE_INFO 0x52
#define GPCMD_READ_SUBCHANNEL 0x42
#define GPCMD_READ_TOC_PMA_ATIP 0x43
#define GPCMD_REPAIR_RZONE_TRACK 0x58
#define GPCMD_REPORT_KEY 0xa4
#define GPCMD_REQUEST_SENSE 0x03
#define GPCMD_RESERVE_RZONE_TRACK 0x53
#define GPCMD_SCAN 0xba
#define GPCMD_SEEK 0x2b
#define GPCMD_SEND_DVD_STRUCTURE 0xad
#define GPCMD_SEND_EVENT 0xa2
#define GPCMD_SEND_KEY 0xa3
#define GPCMD_SEND_OPC 0x54
#define GPCMD_SET_READ_AHEAD 0xa7
#define GPCMD_SET_STREAMING 0xb6
#define GPCMD_START_STOP_UNIT 0x1b
#define GPCMD_STOP_PLAY_SCAN 0x4e
#define GPCMD_TEST_UNIT_READY 0x00
#define GPCMD_VERIFY_10 0x2f
#define GPCMD_WRITE_10 0x2a
#define GPCMD_WRITE_AND_VERIFY_10 0x2e
/* This is listed as optional in ATAPI 2.6, but is (curiously)
* missing from Mt. Fuji, Table 57. It _is_ mentioned in Mt. Fuji
* Table 377 as an MMC command for SCSi devices though... Most ATAPI
* drives support it. */
#define GPCMD_SET_SPEED 0xbb
/* This seems to be a SCSI specific CD-ROM opcode
* to play data at track/index */
#define GPCMD_PLAYAUDIO_TI 0x48
/*
* From MS Media Status Notification Support Specification. For
* older drives only.
*/
#define GPCMD_GET_MEDIA_STATUS 0xda
/* Mode page codes for mode sense/set */
#define GPMODE_R_W_ERROR_PAGE 0x01
#define GPMODE_WRITE_PARMS_PAGE 0x05
#define GPMODE_AUDIO_CTL_PAGE 0x0e
#define GPMODE_POWER_PAGE 0x1a
#define GPMODE_FAULT_FAIL_PAGE 0x1c
#define GPMODE_TO_PROTECT_PAGE 0x1d
#define GPMODE_CAPABILITIES_PAGE 0x2a
#define GPMODE_ALL_PAGES 0x3f
/* Not in Mt. Fuji, but in ATAPI 2.6 -- depricated now in favor
* of MODE_SENSE_POWER_PAGE */
#define GPMODE_CDROM_PAGE 0x0d
#define ATAPI_INT_REASON_CD 0x01 /* 0 = data transfer */
#define ATAPI_INT_REASON_IO 0x02 /* 1 = transfer to the host */
#define ATAPI_INT_REASON_REL 0x04
#define ATAPI_INT_REASON_TAG 0xf8
/* same constants as bochs */
#define ASC_ILLEGAL_OPCODE 0x20
#define ASC_LOGICAL_BLOCK_OOR 0x21
#define ASC_INV_FIELD_IN_CMD_PACKET 0x24
#define ASC_MEDIUM_NOT_PRESENT 0x3a
#define ASC_SAVING_PARAMETERS_NOT_SUPPORTED 0x39
#define SENSE_NONE 0
#define SENSE_NOT_READY 2
#define SENSE_ILLEGAL_REQUEST 5
#define SENSE_UNIT_ATTENTION 6
struct IDEState;
typedef void EndTransferFunc(struct IDEState *);
/* NOTE: IDEState represents in fact one drive */
typedef struct IDEState {
/* ide config */
int is_cdrom;
int cylinders, heads, sectors;
int64_t nb_sectors;
int mult_sectors;
SetIRQFunc *set_irq;
void *irq_opaque;
int irq;
PCIDevice *pci_dev;
struct BMDMAState *bmdma;
int drive_serial;
/* ide regs */
uint8_t feature;
uint8_t error;
uint16_t nsector; /* 0 is 256 to ease computations */
uint8_t sector;
uint8_t lcyl;
uint8_t hcyl;
uint8_t select;
uint8_t status;
/* 0x3f6 command, only meaningful for drive 0 */
uint8_t cmd;
/* depends on bit 4 in select, only meaningful for drive 0 */
struct IDEState *cur_drive;
BlockDriverState *bs;
/* ATAPI specific */
uint8_t sense_key;
uint8_t asc;
int packet_transfer_size;
int elementary_transfer_size;
int io_buffer_index;
int lba;
int cd_sector_size;
int atapi_dma; /* true if dma is requested for the packet cmd */
/* ATA DMA state */
int io_buffer_size;
/* PIO transfer handling */
int req_nb_sectors; /* number of sectors per interrupt */
EndTransferFunc *end_transfer_func;
uint8_t *data_ptr;
uint8_t *data_end;
uint8_t io_buffer[MAX_MULT_SECTORS*512 + 4];
QEMUTimer *sector_write_timer; /* only used for win2k instal hack */
} IDEState;
#define BM_STATUS_DMAING 0x01
#define BM_STATUS_ERROR 0x02
#define BM_STATUS_INT 0x04
#define BM_CMD_START 0x01
#define BM_CMD_READ 0x08
#define IDE_TYPE_PIIX3 0
#define IDE_TYPE_CMD646 1
/* CMD646 specific */
#define MRDMODE 0x71
#define MRDMODE_INTR_CH0 0x04
#define MRDMODE_INTR_CH1 0x08
#define MRDMODE_BLK_CH0 0x10
#define MRDMODE_BLK_CH1 0x20
#define UDIDETCR0 0x73
#define UDIDETCR1 0x7B
typedef int IDEDMAFunc(IDEState *s,
target_phys_addr_t phys_addr,
int transfer_size1);
typedef struct BMDMAState {
uint8_t cmd;
uint8_t status;
uint32_t addr;
struct PCIIDEState *pci_dev;
/* current transfer state */
IDEState *ide_if;
IDEDMAFunc *dma_cb;
} BMDMAState;
typedef struct PCIIDEState {
PCIDevice dev;
IDEState ide_if[4];
BMDMAState bmdma[2];
int type; /* see IDE_TYPE_xxx */
} PCIIDEState;
static void ide_dma_start(IDEState *s, IDEDMAFunc *dma_cb);
static void padstr(char *str, const char *src, int len)
{
int i, v;
for(i = 0; i < len; i++) {
if (*src)
v = *src++;
else
v = ' ';
*(char *)((long)str ^ 1) = v;
str++;
}
}
static void padstr8(uint8_t *buf, int buf_size, const char *src)
{
int i;
for(i = 0; i < buf_size; i++) {
if (*src)
buf[i] = *src++;
else
buf[i] = ' ';
}
}
static void put_le16(uint16_t *p, unsigned int v)
{
*p = cpu_to_le16(v);
}
static void ide_identify(IDEState *s)
{
uint16_t *p;
unsigned int oldsize;
char buf[20];
memset(s->io_buffer, 0, 512);
p = (uint16_t *)s->io_buffer;
put_le16(p + 0, 0x0040);
put_le16(p + 1, s->cylinders);
put_le16(p + 3, s->heads);
put_le16(p + 4, 512 * s->sectors); /* XXX: retired, remove ? */
put_le16(p + 5, 512); /* XXX: retired, remove ? */
put_le16(p + 6, s->sectors);
snprintf(buf, sizeof(buf), "QM%05d", s->drive_serial);
padstr((uint8_t *)(p + 10), buf, 20); /* serial number */
put_le16(p + 20, 3); /* XXX: retired, remove ? */
put_le16(p + 21, 512); /* cache size in sectors */
put_le16(p + 22, 4); /* ecc bytes */
padstr((uint8_t *)(p + 23), QEMU_VERSION, 8); /* firmware version */
padstr((uint8_t *)(p + 27), "QEMU HARDDISK", 40); /* model */
#if MAX_MULT_SECTORS > 1
put_le16(p + 47, 0x8000 | MAX_MULT_SECTORS);
#endif
put_le16(p + 48, 1); /* dword I/O */
put_le16(p + 49, 1 << 9 | 1 << 8); /* DMA and LBA supported */
put_le16(p + 51, 0x200); /* PIO transfer cycle */
put_le16(p + 52, 0x200); /* DMA transfer cycle */
put_le16(p + 53, 1 | 1 << 2); /* words 54-58,88 are valid */
put_le16(p + 54, s->cylinders);
put_le16(p + 55, s->heads);
put_le16(p + 56, s->sectors);
oldsize = s->cylinders * s->heads * s->sectors;
put_le16(p + 57, oldsize);
put_le16(p + 58, oldsize >> 16);
if (s->mult_sectors)
put_le16(p + 59, 0x100 | s->mult_sectors);
put_le16(p + 60, s->nb_sectors);
put_le16(p + 61, s->nb_sectors >> 16);
put_le16(p + 80, (1 << 1) | (1 << 2));
put_le16(p + 82, (1 << 14));
put_le16(p + 83, (1 << 14));
put_le16(p + 84, (1 << 14));
put_le16(p + 85, (1 << 14));
put_le16(p + 86, 0);
put_le16(p + 87, (1 << 14));
put_le16(p + 88, 0x1f | (1 << 13));
put_le16(p + 93, 1 | (1 << 14) | 0x2000 | 0x4000);
}
static void ide_atapi_identify(IDEState *s)
{
uint16_t *p;
char buf[20];
memset(s->io_buffer, 0, 512);
p = (uint16_t *)s->io_buffer;
/* Removable CDROM, 50us response, 12 byte packets */
put_le16(p + 0, (2 << 14) | (5 << 8) | (1 << 7) | (2 << 5) | (0 << 0));
snprintf(buf, sizeof(buf), "QM%05d", s->drive_serial);
padstr((uint8_t *)(p + 10), buf, 20); /* serial number */
put_le16(p + 20, 3); /* buffer type */
put_le16(p + 21, 512); /* cache size in sectors */
put_le16(p + 22, 4); /* ecc bytes */
padstr((uint8_t *)(p + 23), QEMU_VERSION, 8); /* firmware version */
padstr((uint8_t *)(p + 27), "QEMU CD-ROM", 40); /* model */
put_le16(p + 48, 1); /* dword I/O (XXX: should not be set on CDROM) */
put_le16(p + 49, 1 << 9); /* LBA supported, no DMA */
put_le16(p + 53, 3); /* words 64-70, 54-58 valid */
put_le16(p + 63, 0x103); /* DMA modes XXX: may be incorrect */
put_le16(p + 64, 1); /* PIO modes */
put_le16(p + 65, 0xb4); /* minimum DMA multiword tx cycle time */
put_le16(p + 66, 0xb4); /* recommended DMA multiword tx cycle time */
put_le16(p + 67, 0x12c); /* minimum PIO cycle time without flow control */
put_le16(p + 68, 0xb4); /* minimum PIO cycle time with IORDY flow control */
put_le16(p + 71, 30); /* in ns */
put_le16(p + 72, 30); /* in ns */
put_le16(p + 80, 0x1e); /* support up to ATA/ATAPI-4 */
}
static void ide_set_signature(IDEState *s)
{
s->select &= 0xf0; /* clear head */
/* put signature */
s->nsector = 1;
s->sector = 1;
if (s->is_cdrom) {
s->lcyl = 0x14;
s->hcyl = 0xeb;
} else if (s->bs) {
s->lcyl = 0;
s->hcyl = 0;
} else {
s->lcyl = 0xff;
s->hcyl = 0xff;
}
}
static inline void ide_abort_command(IDEState *s)
{
s->status = READY_STAT | ERR_STAT;
s->error = ABRT_ERR;
}
static inline void ide_set_irq(IDEState *s)
{
BMDMAState *bm = s->bmdma;
if (!(s->cmd & IDE_CMD_DISABLE_IRQ)) {
if (bm) {
bm->status |= BM_STATUS_INT;
}
s->set_irq(s->irq_opaque, s->irq, 1);
}
}
/* prepare data transfer and tell what to do after */
static void ide_transfer_start(IDEState *s, uint8_t *buf, int size,
EndTransferFunc *end_transfer_func)
{
s->end_transfer_func = end_transfer_func;
s->data_ptr = buf;
s->data_end = buf + size;
s->status |= DRQ_STAT;
}
static void ide_transfer_stop(IDEState *s)
{
s->end_transfer_func = ide_transfer_stop;
s->data_ptr = s->io_buffer;
s->data_end = s->io_buffer;
s->status &= ~DRQ_STAT;
}
static int64_t ide_get_sector(IDEState *s)
{
int64_t sector_num;
if (s->select & 0x40) {
/* lba */
sector_num = ((s->select & 0x0f) << 24) | (s->hcyl << 16) |
(s->lcyl << 8) | s->sector;
} else {
sector_num = ((s->hcyl << 8) | s->lcyl) * s->heads * s->sectors +
(s->select & 0x0f) * s->sectors +
(s->sector - 1);
}
return sector_num;
}
static void ide_set_sector(IDEState *s, int64_t sector_num)
{
unsigned int cyl, r;
if (s->select & 0x40) {
s->select = (s->select & 0xf0) | (sector_num >> 24);
s->hcyl = (sector_num >> 16);
s->lcyl = (sector_num >> 8);
s->sector = (sector_num);
} else {
cyl = sector_num / (s->heads * s->sectors);
r = sector_num % (s->heads * s->sectors);
s->hcyl = cyl >> 8;
s->lcyl = cyl;
s->select = (s->select & 0xf0) | ((r / s->sectors) & 0x0f);
s->sector = (r % s->sectors) + 1;
}
}
static void ide_sector_read(IDEState *s)
{
int64_t sector_num;
int ret, n;
s->status = READY_STAT | SEEK_STAT;
s->error = 0; /* not needed by IDE spec, but needed by Windows */
sector_num = ide_get_sector(s);
n = s->nsector;
if (n == 0) {
/* no more sector to read from disk */
ide_transfer_stop(s);
} else {
#if defined(DEBUG_IDE)
printf("read sector=%Ld\n", sector_num);
#endif
if (n > s->req_nb_sectors)
n = s->req_nb_sectors;
ret = bdrv_read(s->bs, sector_num, s->io_buffer, n);
ide_transfer_start(s, s->io_buffer, 512 * n, ide_sector_read);
ide_set_irq(s);
ide_set_sector(s, sector_num + n);
s->nsector -= n;
}
}
static int ide_read_dma_cb(IDEState *s,
target_phys_addr_t phys_addr,
int transfer_size1)
{
int len, transfer_size, n;
int64_t sector_num;
transfer_size = transfer_size1;
while (transfer_size > 0) {
len = s->io_buffer_size - s->io_buffer_index;
if (len <= 0) {
/* transfert next data */
n = s->nsector;
if (n == 0)
break;
if (n > MAX_MULT_SECTORS)
n = MAX_MULT_SECTORS;
sector_num = ide_get_sector(s);
bdrv_read(s->bs, sector_num, s->io_buffer, n);
s->io_buffer_index = 0;
s->io_buffer_size = n * 512;
len = s->io_buffer_size;
sector_num += n;
ide_set_sector(s, sector_num);
s->nsector -= n;
}
if (len > transfer_size)
len = transfer_size;
cpu_physical_memory_write(phys_addr,
s->io_buffer + s->io_buffer_index, len);
s->io_buffer_index += len;
transfer_size -= len;
phys_addr += len;
}
if (s->io_buffer_index >= s->io_buffer_size && s->nsector == 0) {
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s);
#ifdef DEBUG_IDE_ATAPI
printf("dma status=0x%x\n", s->status);
#endif
return 0;
}
return transfer_size1 - transfer_size;
}
static void ide_sector_read_dma(IDEState *s)
{
s->status = READY_STAT | SEEK_STAT | DRQ_STAT;
s->io_buffer_index = 0;
s->io_buffer_size = 0;
ide_dma_start(s, ide_read_dma_cb);
}
static void ide_sector_write_timer_cb(void *opaque)
{
IDEState *s = opaque;
ide_set_irq(s);
}
static void ide_sector_write(IDEState *s)
{
int64_t sector_num;
int ret, n, n1;
s->status = READY_STAT | SEEK_STAT;
sector_num = ide_get_sector(s);
#if defined(DEBUG_IDE)
printf("write sector=%Ld\n", sector_num);
#endif
n = s->nsector;
if (n > s->req_nb_sectors)
n = s->req_nb_sectors;
ret = bdrv_write(s->bs, sector_num, s->io_buffer, n);
s->nsector -= n;
if (s->nsector == 0) {
/* no more sector to write */
ide_transfer_stop(s);
} else {
n1 = s->nsector;
if (n1 > s->req_nb_sectors)
n1 = s->req_nb_sectors;
ide_transfer_start(s, s->io_buffer, 512 * n1, ide_sector_write);
}
ide_set_sector(s, sector_num + n);
#ifdef TARGET_I386
if (win2k_install_hack) {
/* It seems there is a bug in the Windows 2000 installer HDD
IDE driver which fills the disk with empty logs when the
IDE write IRQ comes too early. This hack tries to correct
that at the expense of slower write performances. Use this
option _only_ to install Windows 2000. You must disable it
for normal use. */
qemu_mod_timer(s->sector_write_timer,
qemu_get_clock(vm_clock) + (ticks_per_sec / 1000));
} else
#endif
{
ide_set_irq(s);
}
}
static int ide_write_dma_cb(IDEState *s,
target_phys_addr_t phys_addr,
int transfer_size1)
{
int len, transfer_size, n;
int64_t sector_num;
transfer_size = transfer_size1;
for(;;) {
len = s->io_buffer_size - s->io_buffer_index;
if (len == 0) {
n = s->io_buffer_size >> 9;
sector_num = ide_get_sector(s);
bdrv_write(s->bs, sector_num, s->io_buffer,
s->io_buffer_size >> 9);
sector_num += n;
ide_set_sector(s, sector_num);
s->nsector -= n;
n = s->nsector;
if (n == 0) {
/* end of transfer */
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s);
return 0;
}
if (n > MAX_MULT_SECTORS)
n = MAX_MULT_SECTORS;
s->io_buffer_index = 0;
s->io_buffer_size = n * 512;
len = s->io_buffer_size;
}
if (transfer_size <= 0)
break;
if (len > transfer_size)
len = transfer_size;
cpu_physical_memory_read(phys_addr,
s->io_buffer + s->io_buffer_index, len);
s->io_buffer_index += len;
transfer_size -= len;
phys_addr += len;
}
return transfer_size1 - transfer_size;
}
static void ide_sector_write_dma(IDEState *s)
{
int n;
s->status = READY_STAT | SEEK_STAT | DRQ_STAT;
n = s->nsector;
if (n > MAX_MULT_SECTORS)
n = MAX_MULT_SECTORS;
s->io_buffer_index = 0;
s->io_buffer_size = n * 512;
ide_dma_start(s, ide_write_dma_cb);
}
static void ide_atapi_cmd_ok(IDEState *s)
{
s->error = 0;
s->status = READY_STAT;
s->nsector = (s->nsector & ~7) | ATAPI_INT_REASON_IO | ATAPI_INT_REASON_CD;
ide_set_irq(s);
}
static void ide_atapi_cmd_error(IDEState *s, int sense_key, int asc)
{
#ifdef DEBUG_IDE_ATAPI
printf("atapi_cmd_error: sense=0x%x asc=0x%x\n", sense_key, asc);
#endif
s->error = sense_key << 4;
s->status = READY_STAT | ERR_STAT;
s->nsector = (s->nsector & ~7) | ATAPI_INT_REASON_IO | ATAPI_INT_REASON_CD;
s->sense_key = sense_key;
s->asc = asc;
ide_set_irq(s);
}
static inline void cpu_to_ube16(uint8_t *buf, int val)
{
buf[0] = val >> 8;
buf[1] = val;
}
static inline void cpu_to_ube32(uint8_t *buf, unsigned int val)
{
buf[0] = val >> 24;
buf[1] = val >> 16;
buf[2] = val >> 8;
buf[3] = val;
}
static inline int ube16_to_cpu(const uint8_t *buf)
{
return (buf[0] << 8) | buf[1];
}
static inline int ube32_to_cpu(const uint8_t *buf)
{
return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
}
static void lba_to_msf(uint8_t *buf, int lba)
{
lba += 150;
buf[0] = (lba / 75) / 60;
buf[1] = (lba / 75) % 60;
buf[2] = lba % 75;
}
static void cd_read_sector(BlockDriverState *bs, int lba, uint8_t *buf,
int sector_size)
{
switch(sector_size) {
case 2048:
bdrv_read(bs, (int64_t)lba << 2, buf, 4);
break;
case 2352:
/* sync bytes */
buf[0] = 0x00;
memset(buf + 1, 0xff, 10);
buf[11] = 0x00;
buf += 12;
/* MSF */
lba_to_msf(buf, lba);
buf[3] = 0x01; /* mode 1 data */
buf += 4;
/* data */
bdrv_read(bs, (int64_t)lba << 2, buf, 4);
buf += 2048;
/* ECC */
memset(buf, 0, 288);
break;
default:
break;
}
}
/* The whole ATAPI transfer logic is handled in this function */
static void ide_atapi_cmd_reply_end(IDEState *s)
{
int byte_count_limit, size;
#ifdef DEBUG_IDE_ATAPI
printf("reply: tx_size=%d elem_tx_size=%d index=%d\n",
s->packet_transfer_size,
s->elementary_transfer_size,
s->io_buffer_index);
#endif
if (s->packet_transfer_size <= 0) {
/* end of transfer */
ide_transfer_stop(s);
s->status = READY_STAT;
s->nsector = (s->nsector & ~7) | ATAPI_INT_REASON_IO | ATAPI_INT_REASON_CD;
ide_set_irq(s);
#ifdef DEBUG_IDE_ATAPI
printf("status=0x%x\n", s->status);
#endif
} else {
/* see if a new sector must be read */
if (s->lba != -1 && s->io_buffer_index >= s->cd_sector_size) {
cd_read_sector(s->bs, s->lba, s->io_buffer, s->cd_sector_size);
s->lba++;
s->io_buffer_index = 0;
}
if (s->elementary_transfer_size > 0) {
/* there are some data left to transmit in this elementary
transfer */
size = s->cd_sector_size - s->io_buffer_index;
if (size > s->elementary_transfer_size)
size = s->elementary_transfer_size;
ide_transfer_start(s, s->io_buffer + s->io_buffer_index,
size, ide_atapi_cmd_reply_end);
s->packet_transfer_size -= size;
s->elementary_transfer_size -= size;
s->io_buffer_index += size;
} else {
/* a new transfer is needed */
s->nsector = (s->nsector & ~7) | ATAPI_INT_REASON_IO;
byte_count_limit = s->lcyl | (s->hcyl << 8);
#ifdef DEBUG_IDE_ATAPI
printf("byte_count_limit=%d\n", byte_count_limit);
#endif
if (byte_count_limit == 0xffff)
byte_count_limit--;
size = s->packet_transfer_size;
if (size > byte_count_limit) {
/* byte count limit must be even if this case */
if (byte_count_limit & 1)
byte_count_limit--;
size = byte_count_limit;
}
s->lcyl = size;
s->hcyl = size >> 8;
s->elementary_transfer_size = size;
/* we cannot transmit more than one sector at a time */
if (s->lba != -1) {
if (size > (s->cd_sector_size - s->io_buffer_index))
size = (s->cd_sector_size - s->io_buffer_index);
}
ide_transfer_start(s, s->io_buffer + s->io_buffer_index,
size, ide_atapi_cmd_reply_end);
s->packet_transfer_size -= size;
s->elementary_transfer_size -= size;
s->io_buffer_index += size;
ide_set_irq(s);
#ifdef DEBUG_IDE_ATAPI
printf("status=0x%x\n", s->status);
#endif
}
}
}
/* send a reply of 'size' bytes in s->io_buffer to an ATAPI command */
static void ide_atapi_cmd_reply(IDEState *s, int size, int max_size)
{
if (size > max_size)
size = max_size;
s->lba = -1; /* no sector read */
s->packet_transfer_size = size;
s->elementary_transfer_size = 0;
s->io_buffer_index = 0;
s->status = READY_STAT;
ide_atapi_cmd_reply_end(s);
}
/* start a CD-CDROM read command */
static void ide_atapi_cmd_read_pio(IDEState *s, int lba, int nb_sectors,
int sector_size)
{
s->lba = lba;
s->packet_transfer_size = nb_sectors * sector_size;
s->elementary_transfer_size = 0;
s->io_buffer_index = sector_size;
s->cd_sector_size = sector_size;
s->status = READY_STAT;
ide_atapi_cmd_reply_end(s);
}
/* ATAPI DMA support */
static int ide_atapi_cmd_read_dma_cb(IDEState *s,
target_phys_addr_t phys_addr,
int transfer_size1)
{
int len, transfer_size;
transfer_size = transfer_size1;
while (transfer_size > 0) {
#ifdef DEBUG_IDE_ATAPI
printf("transfer_size: %d phys_addr=%08x\n", transfer_size, phys_addr);
#endif
if (s->packet_transfer_size <= 0)
break;
len = s->cd_sector_size - s->io_buffer_index;
if (len <= 0) {
/* transfert next data */
cd_read_sector(s->bs, s->lba, s->io_buffer, s->cd_sector_size);
s->lba++;
s->io_buffer_index = 0;
len = s->cd_sector_size;
}
if (len > transfer_size)
len = transfer_size;
cpu_physical_memory_write(phys_addr,
s->io_buffer + s->io_buffer_index, len);
s->packet_transfer_size -= len;
s->io_buffer_index += len;
transfer_size -= len;
phys_addr += len;
}
if (s->packet_transfer_size <= 0) {
s->status = READY_STAT;
s->nsector = (s->nsector & ~7) | ATAPI_INT_REASON_IO | ATAPI_INT_REASON_CD;
ide_set_irq(s);
#ifdef DEBUG_IDE_ATAPI
printf("dma status=0x%x\n", s->status);
#endif
return 0;
}
return transfer_size1 - transfer_size;
}
/* start a CD-CDROM read command with DMA */
/* XXX: test if DMA is available */
static void ide_atapi_cmd_read_dma(IDEState *s, int lba, int nb_sectors,
int sector_size)
{
s->lba = lba;
s->packet_transfer_size = nb_sectors * sector_size;
s->io_buffer_index = sector_size;
s->cd_sector_size = sector_size;
s->status = READY_STAT | DRQ_STAT;
ide_dma_start(s, ide_atapi_cmd_read_dma_cb);
}
static void ide_atapi_cmd_read(IDEState *s, int lba, int nb_sectors,
int sector_size)
{
#ifdef DEBUG_IDE_ATAPI
printf("read: LBA=%d nb_sectors=%d\n", lba, nb_sectors);
#endif
if (s->atapi_dma) {
ide_atapi_cmd_read_dma(s, lba, nb_sectors, sector_size);
} else {
ide_atapi_cmd_read_pio(s, lba, nb_sectors, sector_size);
}
}
/* same toc as bochs. Return -1 if error or the toc length */
/* XXX: check this */
static int cdrom_read_toc(IDEState *s, uint8_t *buf, int msf, int start_track)
{
uint8_t *q;
int nb_sectors, len;
if (start_track > 1 && start_track != 0xaa)
return -1;
q = buf + 2;
*q++ = 1; /* first session */
*q++ = 1; /* last session */
if (start_track <= 1) {
*q++ = 0; /* reserved */
*q++ = 0x14; /* ADR, control */
*q++ = 1; /* track number */
*q++ = 0; /* reserved */
if (msf) {
*q++ = 0; /* reserved */
lba_to_msf(q, 0);
q += 3;
} else {
/* sector 0 */
cpu_to_ube32(q, 0);
q += 4;
}
}
/* lead out track */
*q++ = 0; /* reserved */
*q++ = 0x16; /* ADR, control */
*q++ = 0xaa; /* track number */
*q++ = 0; /* reserved */
nb_sectors = s->nb_sectors >> 2;
if (msf) {
*q++ = 0; /* reserved */
lba_to_msf(q, nb_sectors);
q += 3;
} else {
cpu_to_ube32(q, nb_sectors);
q += 4;
}
len = q - buf;
cpu_to_ube16(buf, len - 2);
return len;
}
/* mostly same info as PearPc */
static int cdrom_read_toc_raw(IDEState *s, uint8_t *buf, int msf,
int session_num)
{
uint8_t *q;
int nb_sectors, len;
q = buf + 2;
*q++ = 1; /* first session */
*q++ = 1; /* last session */
*q++ = 1; /* session number */
*q++ = 0x14; /* data track */
*q++ = 0; /* track number */
*q++ = 0xa0; /* lead-in */
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
*q++ = 0;
*q++ = 1; /* first track */
*q++ = 0x00; /* disk type */
*q++ = 0x00;
*q++ = 1; /* session number */
*q++ = 0x14; /* data track */
*q++ = 0; /* track number */
*q++ = 0xa1;
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
*q++ = 0;
*q++ = 1; /* last track */
*q++ = 0x00;
*q++ = 0x00;
*q++ = 1; /* session number */
*q++ = 0x14; /* data track */
*q++ = 0; /* track number */
*q++ = 0xa2; /* lead-out */
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
nb_sectors = s->nb_sectors >> 2;
if (msf) {
*q++ = 0; /* reserved */
lba_to_msf(q, nb_sectors);
q += 3;
} else {
cpu_to_ube32(q, nb_sectors);
q += 4;
}
*q++ = 1; /* session number */
*q++ = 0x14; /* ADR, control */
*q++ = 0; /* track number */
*q++ = 1; /* point */
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
if (msf) {
*q++ = 0;
lba_to_msf(q, 0);
q += 3;
} else {
*q++ = 0;
*q++ = 0;
*q++ = 0;
*q++ = 0;
}
len = q - buf;
cpu_to_ube16(buf, len - 2);
return len;
}
static void ide_atapi_cmd(IDEState *s)
{
const uint8_t *packet;
uint8_t *buf;
int max_len;
packet = s->io_buffer;
buf = s->io_buffer;
#ifdef DEBUG_IDE_ATAPI
{
int i;
printf("ATAPI limit=0x%x packet:", s->lcyl | (s->hcyl << 8));
for(i = 0; i < ATAPI_PACKET_SIZE; i++) {
printf(" %02x", packet[i]);
}
printf("\n");
}
#endif
switch(s->io_buffer[0]) {
case GPCMD_TEST_UNIT_READY:
if (bdrv_is_inserted(s->bs)) {
ide_atapi_cmd_ok(s);
} else {
ide_atapi_cmd_error(s, SENSE_NOT_READY,
ASC_MEDIUM_NOT_PRESENT);
}
break;
case GPCMD_MODE_SENSE_10:
{
int action, code;
max_len = ube16_to_cpu(packet + 7);
action = packet[2] >> 6;
code = packet[2] & 0x3f;
switch(action) {
case 0: /* current values */
switch(code) {
case 0x01: /* error recovery */
cpu_to_ube16(&buf[0], 16 + 6);
buf[2] = 0x70;
buf[3] = 0;
buf[4] = 0;
buf[5] = 0;
buf[6] = 0;
buf[7] = 0;
buf[8] = 0x01;
buf[9] = 0x06;
buf[10] = 0x00;
buf[11] = 0x05;
buf[12] = 0x00;
buf[13] = 0x00;
buf[14] = 0x00;
buf[15] = 0x00;
ide_atapi_cmd_reply(s, 16, max_len);
break;
case 0x2a:
cpu_to_ube16(&buf[0], 28 + 6);
buf[2] = 0x70;
buf[3] = 0;
buf[4] = 0;
buf[5] = 0;
buf[6] = 0;
buf[7] = 0;
buf[8] = 0x2a;
buf[9] = 0x12;
buf[10] = 0x00;
buf[11] = 0x00;
buf[12] = 0x70;
buf[13] = 3 << 5;
buf[14] = (1 << 0) | (1 << 3) | (1 << 5);
if (bdrv_is_locked(s->bs))
buf[6] |= 1 << 1;
buf[15] = 0x00;
cpu_to_ube16(&buf[16], 706);
buf[18] = 0;
buf[19] = 2;
cpu_to_ube16(&buf[20], 512);
cpu_to_ube16(&buf[22], 706);
buf[24] = 0;
buf[25] = 0;
buf[26] = 0;
buf[27] = 0;
ide_atapi_cmd_reply(s, 28, max_len);
break;
default:
goto error_cmd;
}
break;
case 1: /* changeable values */
goto error_cmd;
case 2: /* default values */
goto error_cmd;
default:
case 3: /* saved values */
ide_atapi_cmd_error(s, SENSE_ILLEGAL_REQUEST,
ASC_SAVING_PARAMETERS_NOT_SUPPORTED);
break;
}
}
break;
case GPCMD_REQUEST_SENSE:
max_len = packet[4];
memset(buf, 0, 18);
buf[0] = 0x70 | (1 << 7);
buf[2] = s->sense_key;
buf[7] = 10;
buf[12] = s->asc;
ide_atapi_cmd_reply(s, 18, max_len);
break;
case GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL:
if (bdrv_is_inserted(s->bs)) {
bdrv_set_locked(s->bs, packet[4] & 1);
ide_atapi_cmd_ok(s);
} else {
ide_atapi_cmd_error(s, SENSE_NOT_READY,
ASC_MEDIUM_NOT_PRESENT);
}
break;
case GPCMD_READ_10:
case GPCMD_READ_12:
{
int nb_sectors, lba;
if (!bdrv_is_inserted(s->bs)) {
ide_atapi_cmd_error(s, SENSE_NOT_READY,
ASC_MEDIUM_NOT_PRESENT);
break;
}
if (packet[0] == GPCMD_READ_10)
nb_sectors = ube16_to_cpu(packet + 7);
else
nb_sectors = ube32_to_cpu(packet + 6);
lba = ube32_to_cpu(packet + 2);
if (nb_sectors == 0) {
ide_atapi_cmd_ok(s);
break;
}
if (((int64_t)(lba + nb_sectors) << 2) > s->nb_sectors) {
ide_atapi_cmd_error(s, SENSE_ILLEGAL_REQUEST,
ASC_LOGICAL_BLOCK_OOR);
break;
}
ide_atapi_cmd_read(s, lba, nb_sectors, 2048);
}
break;
case GPCMD_READ_CD:
{
int nb_sectors, lba, transfer_request;
if (!bdrv_is_inserted(s->bs)) {
ide_atapi_cmd_error(s, SENSE_NOT_READY,
ASC_MEDIUM_NOT_PRESENT);
break;
}
nb_sectors = (packet[6] << 16) | (packet[7] << 8) | packet[8];
lba = ube32_to_cpu(packet + 2);
if (nb_sectors == 0) {
ide_atapi_cmd_ok(s);
break;
}
if (((int64_t)(lba + nb_sectors) << 2) > s->nb_sectors) {
ide_atapi_cmd_error(s, SENSE_ILLEGAL_REQUEST,
ASC_LOGICAL_BLOCK_OOR);
break;
}
transfer_request = packet[9];
switch(transfer_request & 0xf8) {
case 0x00:
/* nothing */
ide_atapi_cmd_ok(s);
break;
case 0x10:
/* normal read */
ide_atapi_cmd_read(s, lba, nb_sectors, 2048);
break;
case 0xf8:
/* read all data */
ide_atapi_cmd_read(s, lba, nb_sectors, 2352);
break;
default:
ide_atapi_cmd_error(s, SENSE_ILLEGAL_REQUEST,
ASC_INV_FIELD_IN_CMD_PACKET);
break;
}
}
break;
case GPCMD_SEEK:
{
int lba;
if (!bdrv_is_inserted(s->bs)) {
ide_atapi_cmd_error(s, SENSE_NOT_READY,
ASC_MEDIUM_NOT_PRESENT);
break;
}
lba = ube32_to_cpu(packet + 2);
if (((int64_t)lba << 2) > s->nb_sectors) {
ide_atapi_cmd_error(s, SENSE_ILLEGAL_REQUEST,
ASC_LOGICAL_BLOCK_OOR);
break;
}
ide_atapi_cmd_ok(s);
}
break;
case GPCMD_START_STOP_UNIT:
{
int start, eject;
start = packet[4] & 1;
eject = (packet[4] >> 1) & 1;
if (eject && !start) {
/* eject the disk */
bdrv_close(s->bs);
}
ide_atapi_cmd_ok(s);
}
break;
case GPCMD_MECHANISM_STATUS:
{
max_len = ube16_to_cpu(packet + 8);
cpu_to_ube16(buf, 0);
/* no current LBA */
buf[2] = 0;
buf[3] = 0;
buf[4] = 0;
buf[5] = 1;
cpu_to_ube16(buf + 6, 0);
ide_atapi_cmd_reply(s, 8, max_len);
}
break;
case GPCMD_READ_TOC_PMA_ATIP:
{
int format, msf, start_track, len;
if (!bdrv_is_inserted(s->bs)) {
ide_atapi_cmd_error(s, SENSE_NOT_READY,
ASC_MEDIUM_NOT_PRESENT);
break;
}
max_len = ube16_to_cpu(packet + 7);
format = packet[9] >> 6;
msf = (packet[1] >> 1) & 1;
start_track = packet[6];
switch(format) {
case 0:
len = cdrom_read_toc(s, buf, msf, start_track);
if (len < 0)
goto error_cmd;
ide_atapi_cmd_reply(s, len, max_len);
break;
case 1:
/* multi session : only a single session defined */
memset(buf, 0, 12);
buf[1] = 0x0a;
buf[2] = 0x01;
buf[3] = 0x01;
ide_atapi_cmd_reply(s, 12, max_len);
break;
case 2:
len = cdrom_read_toc_raw(s, buf, msf, start_track);
if (len < 0)
goto error_cmd;
ide_atapi_cmd_reply(s, len, max_len);
break;
default:
error_cmd:
ide_atapi_cmd_error(s, SENSE_ILLEGAL_REQUEST,
ASC_INV_FIELD_IN_CMD_PACKET);
break;
}
}
break;
case GPCMD_READ_CDVD_CAPACITY:
if (!bdrv_is_inserted(s->bs)) {
ide_atapi_cmd_error(s, SENSE_NOT_READY,
ASC_MEDIUM_NOT_PRESENT);
break;
}
/* NOTE: it is really the number of sectors minus 1 */
cpu_to_ube32(buf, (s->nb_sectors >> 2) - 1);
cpu_to_ube32(buf + 4, 2048);
ide_atapi_cmd_reply(s, 8, 8);
break;
case GPCMD_INQUIRY:
max_len = packet[4];
buf[0] = 0x05; /* CD-ROM */
buf[1] = 0x80; /* removable */
buf[2] = 0x00; /* ISO */
buf[3] = 0x21; /* ATAPI-2 (XXX: put ATAPI-4 ?) */
buf[4] = 31; /* additionnal length */
buf[5] = 0; /* reserved */
buf[6] = 0; /* reserved */
buf[7] = 0; /* reserved */
padstr8(buf + 8, 8, "QEMU");
padstr8(buf + 16, 16, "QEMU CD-ROM");
padstr8(buf + 32, 4, QEMU_VERSION);
ide_atapi_cmd_reply(s, 36, max_len);
break;
default:
ide_atapi_cmd_error(s, SENSE_ILLEGAL_REQUEST,
ASC_ILLEGAL_OPCODE);
break;
}
}
/* called when the inserted state of the media has changed */
static void cdrom_change_cb(void *opaque)
{
IDEState *s = opaque;
int64_t nb_sectors;
/* XXX: send interrupt too */
bdrv_get_geometry(s->bs, &nb_sectors);
s->nb_sectors = nb_sectors;
}
static void ide_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
IDEState *ide_if = opaque;
IDEState *s;
int unit, n;
#ifdef DEBUG_IDE
printf("IDE: write addr=0x%x val=0x%02x\n", addr, val);
#endif
addr &= 7;
switch(addr) {
case 0:
break;
case 1:
/* NOTE: data is written to the two drives */
ide_if[0].feature = val;
ide_if[1].feature = val;
break;
case 2:
if (val == 0)
val = 256;
ide_if[0].nsector = val;
ide_if[1].nsector = val;
break;
case 3:
ide_if[0].sector = val;
ide_if[1].sector = val;
break;
case 4:
ide_if[0].lcyl = val;
ide_if[1].lcyl = val;
break;
case 5:
ide_if[0].hcyl = val;
ide_if[1].hcyl = val;
break;
case 6:
ide_if[0].select = (val & ~0x10) | 0xa0;
ide_if[1].select = (val | 0x10) | 0xa0;
/* select drive */
unit = (val >> 4) & 1;
s = ide_if + unit;
ide_if->cur_drive = s;
break;
default:
case 7:
/* command */
#if defined(DEBUG_IDE)
printf("ide: CMD=%02x\n", val);
#endif
s = ide_if->cur_drive;
/* ignore commands to non existant slave */
if (s != ide_if && !s->bs)
break;
switch(val) {
case WIN_IDENTIFY:
if (s->bs && !s->is_cdrom) {
ide_identify(s);
s->status = READY_STAT | SEEK_STAT;
ide_transfer_start(s, s->io_buffer, 512, ide_transfer_stop);
} else {
if (s->is_cdrom) {
ide_set_signature(s);
}
ide_abort_command(s);
}
ide_set_irq(s);
break;
case WIN_SPECIFY:
case WIN_RECAL:
s->error = 0;
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s);
break;
case WIN_SETMULT:
if (s->nsector > MAX_MULT_SECTORS ||
s->nsector == 0 ||
(s->nsector & (s->nsector - 1)) != 0) {
ide_abort_command(s);
} else {
s->mult_sectors = s->nsector;
s->status = READY_STAT;
}
ide_set_irq(s);
break;
case WIN_VERIFY:
case WIN_VERIFY_ONCE:
/* do sector number check ? */
s->status = READY_STAT;
ide_set_irq(s);
break;
case WIN_READ:
case WIN_READ_ONCE:
if (!s->bs)
goto abort_cmd;
s->req_nb_sectors = 1;
ide_sector_read(s);
break;
case WIN_WRITE:
case WIN_WRITE_ONCE:
s->error = 0;
s->status = SEEK_STAT | READY_STAT;
s->req_nb_sectors = 1;
ide_transfer_start(s, s->io_buffer, 512, ide_sector_write);
break;
case WIN_MULTREAD:
if (!s->mult_sectors)
goto abort_cmd;
s->req_nb_sectors = s->mult_sectors;
ide_sector_read(s);
break;
case WIN_MULTWRITE:
if (!s->mult_sectors)
goto abort_cmd;
s->error = 0;
s->status = SEEK_STAT | READY_STAT;
s->req_nb_sectors = s->mult_sectors;
n = s->nsector;
if (n > s->req_nb_sectors)
n = s->req_nb_sectors;
ide_transfer_start(s, s->io_buffer, 512 * n, ide_sector_write);
break;
case WIN_READDMA:
case WIN_READDMA_ONCE:
if (!s->bs)
goto abort_cmd;
ide_sector_read_dma(s);
break;
case WIN_WRITEDMA:
case WIN_WRITEDMA_ONCE:
if (!s->bs)
goto abort_cmd;
ide_sector_write_dma(s);
break;
case WIN_READ_NATIVE_MAX:
ide_set_sector(s, s->nb_sectors - 1);
s->status = READY_STAT;
ide_set_irq(s);
break;
case WIN_CHECKPOWERMODE1:
s->nsector = 0xff; /* device active or idle */
s->status = READY_STAT;
ide_set_irq(s);
break;
case WIN_SETFEATURES:
if (!s->bs)
goto abort_cmd;
/* XXX: valid for CDROM ? */
switch(s->feature) {
case 0x02: /* write cache enable */
case 0x03: /* set transfer mode */
case 0x82: /* write cache disable */
case 0xaa: /* read look-ahead enable */
case 0x55: /* read look-ahead disable */
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s);
break;
default:
goto abort_cmd;
}
break;
case WIN_STANDBYNOW1:
case WIN_IDLEIMMEDIATE:
case WIN_FLUSH_CACHE:
s->status = READY_STAT;
ide_set_irq(s);
break;
/* ATAPI commands */
case WIN_PIDENTIFY:
if (s->is_cdrom) {
ide_atapi_identify(s);
s->status = READY_STAT;
ide_transfer_start(s, s->io_buffer, 512, ide_transfer_stop);
} else {
ide_abort_command(s);
}
ide_set_irq(s);
break;
case WIN_DIAGNOSE:
ide_set_signature(s);
s->status = 0x00; /* NOTE: READY is _not_ set */
s->error = 0x01;
break;
case WIN_SRST:
if (!s->is_cdrom)
goto abort_cmd;
ide_set_signature(s);
s->status = 0x00; /* NOTE: READY is _not_ set */
s->error = 0x01;
break;
case WIN_PACKETCMD:
if (!s->is_cdrom)
goto abort_cmd;
/* overlapping commands not supported */
if (s->feature & 0x02)
goto abort_cmd;
s->atapi_dma = s->feature & 1;
s->nsector = 1;
ide_transfer_start(s, s->io_buffer, ATAPI_PACKET_SIZE,
ide_atapi_cmd);
break;
default:
abort_cmd:
ide_abort_command(s);
ide_set_irq(s);
break;
}
}
}
static uint32_t ide_ioport_read(void *opaque, uint32_t addr1)
{
IDEState *ide_if = opaque;
IDEState *s = ide_if->cur_drive;
uint32_t addr;
int ret;
addr = addr1 & 7;
switch(addr) {
case 0:
ret = 0xff;
break;
case 1:
if (!ide_if[0].bs && !ide_if[1].bs)
ret = 0;
else
ret = s->error;
break;
case 2:
if (!ide_if[0].bs && !ide_if[1].bs)
ret = 0;
else
ret = s->nsector & 0xff;
break;
case 3:
if (!ide_if[0].bs && !ide_if[1].bs)
ret = 0;
else
ret = s->sector;
break;
case 4:
if (!ide_if[0].bs && !ide_if[1].bs)
ret = 0;
else
ret = s->lcyl;
break;
case 5:
if (!ide_if[0].bs && !ide_if[1].bs)
ret = 0;
else
ret = s->hcyl;
break;
case 6:
if (!ide_if[0].bs && !ide_if[1].bs)
ret = 0;
else
ret = s->select;
break;
default:
case 7:
if ((!ide_if[0].bs && !ide_if[1].bs) ||
(s != ide_if && !s->bs))
ret = 0;
else
ret = s->status;
s->set_irq(s->irq_opaque, s->irq, 0);
break;
}
#ifdef DEBUG_IDE
printf("ide: read addr=0x%x val=%02x\n", addr1, ret);
#endif
return ret;
}
static uint32_t ide_status_read(void *opaque, uint32_t addr)
{
IDEState *ide_if = opaque;
IDEState *s = ide_if->cur_drive;
int ret;
if ((!ide_if[0].bs && !ide_if[1].bs) ||
(s != ide_if && !s->bs))
ret = 0;
else
ret = s->status;
#ifdef DEBUG_IDE
printf("ide: read status addr=0x%x val=%02x\n", addr, ret);
#endif
return ret;
}
static void ide_cmd_write(void *opaque, uint32_t addr, uint32_t val)
{
IDEState *ide_if = opaque;
IDEState *s;
int i;
#ifdef DEBUG_IDE
printf("ide: write control addr=0x%x val=%02x\n", addr, val);
#endif
/* common for both drives */
if (!(ide_if[0].cmd & IDE_CMD_RESET) &&
(val & IDE_CMD_RESET)) {
/* reset low to high */
for(i = 0;i < 2; i++) {
s = &ide_if[i];
s->status = BUSY_STAT | SEEK_STAT;
s->error = 0x01;
}
} else if ((ide_if[0].cmd & IDE_CMD_RESET) &&
!(val & IDE_CMD_RESET)) {
/* high to low */
for(i = 0;i < 2; i++) {
s = &ide_if[i];
if (s->is_cdrom)
s->status = 0x00; /* NOTE: READY is _not_ set */
else
s->status = READY_STAT | SEEK_STAT;
ide_set_signature(s);
}
}
ide_if[0].cmd = val;
ide_if[1].cmd = val;
}
static void ide_data_writew(void *opaque, uint32_t addr, uint32_t val)
{
IDEState *s = ((IDEState *)opaque)->cur_drive;
uint8_t *p;
p = s->data_ptr;
*(uint16_t *)p = le16_to_cpu(val);
p += 2;
s->data_ptr = p;
if (p >= s->data_end)
s->end_transfer_func(s);
}
static uint32_t ide_data_readw(void *opaque, uint32_t addr)
{
IDEState *s = ((IDEState *)opaque)->cur_drive;
uint8_t *p;
int ret;
p = s->data_ptr;
ret = cpu_to_le16(*(uint16_t *)p);
p += 2;
s->data_ptr = p;
if (p >= s->data_end)
s->end_transfer_func(s);
return ret;
}
static void ide_data_writel(void *opaque, uint32_t addr, uint32_t val)
{
IDEState *s = ((IDEState *)opaque)->cur_drive;
uint8_t *p;
p = s->data_ptr;
*(uint32_t *)p = le32_to_cpu(val);
p += 4;
s->data_ptr = p;
if (p >= s->data_end)
s->end_transfer_func(s);
}
static uint32_t ide_data_readl(void *opaque, uint32_t addr)
{
IDEState *s = ((IDEState *)opaque)->cur_drive;
uint8_t *p;
int ret;
p = s->data_ptr;
ret = cpu_to_le32(*(uint32_t *)p);
p += 4;
s->data_ptr = p;
if (p >= s->data_end)
s->end_transfer_func(s);
return ret;
}
static void ide_dummy_transfer_stop(IDEState *s)
{
s->data_ptr = s->io_buffer;
s->data_end = s->io_buffer;
s->io_buffer[0] = 0xff;
s->io_buffer[1] = 0xff;
s->io_buffer[2] = 0xff;
s->io_buffer[3] = 0xff;
}
static void ide_reset(IDEState *s)
{
s->mult_sectors = MAX_MULT_SECTORS;
s->cur_drive = s;
s->select = 0xa0;
s->status = READY_STAT;
ide_set_signature(s);
/* init the transfer handler so that 0xffff is returned on data
accesses */
s->end_transfer_func = ide_dummy_transfer_stop;
ide_dummy_transfer_stop(s);
}
struct partition {
uint8_t boot_ind; /* 0x80 - active */
uint8_t head; /* starting head */
uint8_t sector; /* starting sector */
uint8_t cyl; /* starting cylinder */
uint8_t sys_ind; /* What partition type */
uint8_t end_head; /* end head */
uint8_t end_sector; /* end sector */
uint8_t end_cyl; /* end cylinder */
uint32_t start_sect; /* starting sector counting from 0 */
uint32_t nr_sects; /* nr of sectors in partition */
} __attribute__((packed));
/* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */
static int guess_disk_lchs(IDEState *s,
int *pcylinders, int *pheads, int *psectors)
{
uint8_t buf[512];
int ret, i, heads, sectors, cylinders;
struct partition *p;
uint32_t nr_sects;
ret = bdrv_read(s->bs, 0, buf, 1);
if (ret < 0)
return -1;
/* test msdos magic */
if (buf[510] != 0x55 || buf[511] != 0xaa)
return -1;
for(i = 0; i < 4; i++) {
p = ((struct partition *)(buf + 0x1be)) + i;
nr_sects = le32_to_cpu(p->nr_sects);
if (nr_sects && p->end_head) {
/* We make the assumption that the partition terminates on
a cylinder boundary */
heads = p->end_head + 1;
sectors = p->end_sector & 63;
if (sectors == 0)
continue;
cylinders = s->nb_sectors / (heads * sectors);
if (cylinders < 1 || cylinders > 16383)
continue;
*pheads = heads;
*psectors = sectors;
*pcylinders = cylinders;
#if 0
printf("guessed geometry: LCHS=%d %d %d\n",
cylinders, heads, sectors);
#endif
return 0;
}
}
return -1;
}
static void ide_init2(IDEState *ide_state,
BlockDriverState *hd0, BlockDriverState *hd1,
SetIRQFunc *set_irq, void *irq_opaque, int irq)
{
IDEState *s;
static int drive_serial = 1;
int i, cylinders, heads, secs, translation;
int64_t nb_sectors;
for(i = 0; i < 2; i++) {
s = ide_state + i;
if (i == 0)
s->bs = hd0;
else
s->bs = hd1;
if (s->bs) {
bdrv_get_geometry(s->bs, &nb_sectors);
s->nb_sectors = nb_sectors;
/* if a geometry hint is available, use it */
bdrv_get_geometry_hint(s->bs, &cylinders, &heads, &secs);
if (cylinders != 0) {
s->cylinders = cylinders;
s->heads = heads;
s->sectors = secs;
} else {
if (guess_disk_lchs(s, &cylinders, &heads, &secs) == 0) {
if (heads > 16) {
/* if heads > 16, it means that a BIOS LBA
translation was active, so the default
hardware geometry is OK */
goto default_geometry;
} else {
s->cylinders = cylinders;
s->heads = heads;
s->sectors = secs;
/* disable any translation to be in sync with
the logical geometry */
translation = bdrv_get_translation_hint(s->bs);
if (translation == BIOS_ATA_TRANSLATION_AUTO) {
bdrv_set_translation_hint(s->bs,
BIOS_ATA_TRANSLATION_NONE);
}
}
} else {
default_geometry:
/* if no geometry, use a standard physical disk geometry */
cylinders = nb_sectors / (16 * 63);
if (cylinders > 16383)
cylinders = 16383;
else if (cylinders < 2)
cylinders = 2;
s->cylinders = cylinders;
s->heads = 16;
s->sectors = 63;
}
bdrv_set_geometry_hint(s->bs, s->cylinders, s->heads, s->sectors);
}
if (bdrv_get_type_hint(s->bs) == BDRV_TYPE_CDROM) {
s->is_cdrom = 1;
bdrv_set_change_cb(s->bs, cdrom_change_cb, s);
}
}
s->drive_serial = drive_serial++;
s->set_irq = set_irq;
s->irq_opaque = irq_opaque;
s->irq = irq;
s->sector_write_timer = qemu_new_timer(vm_clock,
ide_sector_write_timer_cb, s);
ide_reset(s);
}
}
static void ide_init_ioport(IDEState *ide_state, int iobase, int iobase2)
{
register_ioport_write(iobase, 8, 1, ide_ioport_write, ide_state);
register_ioport_read(iobase, 8, 1, ide_ioport_read, ide_state);
if (iobase2) {
register_ioport_read(iobase2, 1, 1, ide_status_read, ide_state);
register_ioport_write(iobase2, 1, 1, ide_cmd_write, ide_state);
}
/* data ports */
register_ioport_write(iobase, 2, 2, ide_data_writew, ide_state);
register_ioport_read(iobase, 2, 2, ide_data_readw, ide_state);
register_ioport_write(iobase, 4, 4, ide_data_writel, ide_state);
register_ioport_read(iobase, 4, 4, ide_data_readl, ide_state);
}
/***********************************************************/
/* ISA IDE definitions */
void isa_ide_init(int iobase, int iobase2, int irq,
BlockDriverState *hd0, BlockDriverState *hd1)
{
IDEState *ide_state;
ide_state = qemu_mallocz(sizeof(IDEState) * 2);
if (!ide_state)
return;
ide_init2(ide_state, hd0, hd1, pic_set_irq_new, isa_pic, irq);
ide_init_ioport(ide_state, iobase, iobase2);
}
/***********************************************************/
/* PCI IDE definitions */
static void cmd646_update_irq(PCIIDEState *d);
static void ide_map(PCIDevice *pci_dev, int region_num,
uint32_t addr, uint32_t size, int type)
{
PCIIDEState *d = (PCIIDEState *)pci_dev;
IDEState *ide_state;
if (region_num <= 3) {
ide_state = &d->ide_if[(region_num >> 1) * 2];
if (region_num & 1) {
register_ioport_read(addr + 2, 1, 1, ide_status_read, ide_state);
register_ioport_write(addr + 2, 1, 1, ide_cmd_write, ide_state);
} else {
register_ioport_write(addr, 8, 1, ide_ioport_write, ide_state);
register_ioport_read(addr, 8, 1, ide_ioport_read, ide_state);
/* data ports */
register_ioport_write(addr, 2, 2, ide_data_writew, ide_state);
register_ioport_read(addr, 2, 2, ide_data_readw, ide_state);
register_ioport_write(addr, 4, 4, ide_data_writel, ide_state);
register_ioport_read(addr, 4, 4, ide_data_readl, ide_state);
}
}
}
/* XXX: full callback usage to prepare non blocking I/Os support -
error handling */
static void ide_dma_loop(BMDMAState *bm)
{
struct {
uint32_t addr;
uint32_t size;
} prd;
target_phys_addr_t cur_addr;
int len, i, len1;
cur_addr = bm->addr;
/* at most one page to avoid hanging if erroneous parameters */
for(i = 0; i < 512; i++) {
cpu_physical_memory_read(cur_addr, (uint8_t *)&prd, 8);
prd.addr = le32_to_cpu(prd.addr);
prd.size = le32_to_cpu(prd.size);
#ifdef DEBUG_IDE
printf("ide: dma: prd: %08x: addr=0x%08x size=0x%08x\n",
(int)cur_addr, prd.addr, prd.size);
#endif
len = prd.size & 0xfffe;
if (len == 0)
len = 0x10000;
while (len > 0) {
len1 = bm->dma_cb(bm->ide_if, prd.addr, len);
if (len1 == 0)
goto the_end;
prd.addr += len1;
len -= len1;
}
/* end of transfer */
if (prd.size & 0x80000000)
break;
cur_addr += 8;
}
/* end of transfer */
the_end:
bm->status &= ~BM_STATUS_DMAING;
bm->status |= BM_STATUS_INT;
bm->dma_cb = NULL;
bm->ide_if = NULL;
}
static void ide_dma_start(IDEState *s, IDEDMAFunc *dma_cb)
{
BMDMAState *bm = s->bmdma;
if(!bm)
return;
bm->ide_if = s;
bm->dma_cb = dma_cb;
if (bm->status & BM_STATUS_DMAING) {
ide_dma_loop(bm);
}
}
static void bmdma_cmd_writeb(void *opaque, uint32_t addr, uint32_t val)
{
BMDMAState *bm = opaque;
#ifdef DEBUG_IDE
printf("%s: 0x%08x\n", __func__, val);
#endif
if (!(val & BM_CMD_START)) {
/* XXX: do it better */
bm->status &= ~BM_STATUS_DMAING;
bm->cmd = val & 0x09;
} else {
bm->status |= BM_STATUS_DMAING;
bm->cmd = val & 0x09;
/* start dma transfer if possible */
if (bm->dma_cb)
ide_dma_loop(bm);
}
}
static uint32_t bmdma_readb(void *opaque, uint32_t addr)
{
BMDMAState *bm = opaque;
PCIIDEState *pci_dev;
uint32_t val;
switch(addr & 3) {
case 0:
val = bm->cmd;
break;
case 1:
pci_dev = bm->pci_dev;
if (pci_dev->type == IDE_TYPE_CMD646) {
val = pci_dev->dev.config[MRDMODE];
} else {
val = 0xff;
}
break;
case 2:
val = bm->status;
break;
case 3:
pci_dev = bm->pci_dev;
if (pci_dev->type == IDE_TYPE_CMD646) {
if (bm == &pci_dev->bmdma[0])
val = pci_dev->dev.config[UDIDETCR0];
else
val = pci_dev->dev.config[UDIDETCR1];
} else {
val = 0xff;
}
break;
default:
val = 0xff;
break;
}
#ifdef DEBUG_IDE
printf("bmdma: readb 0x%02x : 0x%02x\n", addr, val);
#endif
return val;
}
static void bmdma_writeb(void *opaque, uint32_t addr, uint32_t val)
{
BMDMAState *bm = opaque;
PCIIDEState *pci_dev;
#ifdef DEBUG_IDE
printf("bmdma: writeb 0x%02x : 0x%02x\n", addr, val);
#endif
switch(addr & 3) {
case 1:
pci_dev = bm->pci_dev;
if (pci_dev->type == IDE_TYPE_CMD646) {
pci_dev->dev.config[MRDMODE] =
(pci_dev->dev.config[MRDMODE] & ~0x30) | (val & 0x30);
cmd646_update_irq(pci_dev);
}
break;
case 2:
bm->status = (val & 0x60) | (bm->status & 1) | (bm->status & ~val & 0x06);
break;
case 3:
pci_dev = bm->pci_dev;
if (pci_dev->type == IDE_TYPE_CMD646) {
if (bm == &pci_dev->bmdma[0])
pci_dev->dev.config[UDIDETCR0] = val;
else
pci_dev->dev.config[UDIDETCR1] = val;
}
break;
}
}
static uint32_t bmdma_addr_readl(void *opaque, uint32_t addr)
{
BMDMAState *bm = opaque;
uint32_t val;
val = bm->addr;
#ifdef DEBUG_IDE
printf("%s: 0x%08x\n", __func__, val);
#endif
return val;
}
static void bmdma_addr_writel(void *opaque, uint32_t addr, uint32_t val)
{
BMDMAState *bm = opaque;
#ifdef DEBUG_IDE
printf("%s: 0x%08x\n", __func__, val);
#endif
bm->addr = val & ~3;
}
static void bmdma_map(PCIDevice *pci_dev, int region_num,
uint32_t addr, uint32_t size, int type)
{
PCIIDEState *d = (PCIIDEState *)pci_dev;
int i;
for(i = 0;i < 2; i++) {
BMDMAState *bm = &d->bmdma[i];
d->ide_if[2 * i].bmdma = bm;
d->ide_if[2 * i + 1].bmdma = bm;
bm->pci_dev = (PCIIDEState *)pci_dev;
register_ioport_write(addr, 1, 1, bmdma_cmd_writeb, bm);
register_ioport_write(addr + 1, 3, 1, bmdma_writeb, bm);
register_ioport_read(addr, 4, 1, bmdma_readb, bm);
register_ioport_write(addr + 4, 4, 4, bmdma_addr_writel, bm);
register_ioport_read(addr + 4, 4, 4, bmdma_addr_readl, bm);
addr += 8;
}
}
/* XXX: call it also when the MRDMODE is changed from the PCI config
registers */
static void cmd646_update_irq(PCIIDEState *d)
{
int pci_level;
pci_level = ((d->dev.config[MRDMODE] & MRDMODE_INTR_CH0) &&
!(d->dev.config[MRDMODE] & MRDMODE_BLK_CH0)) ||
((d->dev.config[MRDMODE] & MRDMODE_INTR_CH1) &&
!(d->dev.config[MRDMODE] & MRDMODE_BLK_CH1));
pci_set_irq((PCIDevice *)d, 0, pci_level);
}
/* the PCI irq level is the logical OR of the two channels */
static void cmd646_set_irq(void *opaque, int channel, int level)
{
PCIIDEState *d = opaque;
int irq_mask;
irq_mask = MRDMODE_INTR_CH0 << channel;
if (level)
d->dev.config[MRDMODE] |= irq_mask;
else
d->dev.config[MRDMODE] &= ~irq_mask;
cmd646_update_irq(d);
}
/* CMD646 PCI IDE controller */
void pci_cmd646_ide_init(PCIBus *bus, BlockDriverState **hd_table,
int secondary_ide_enabled)
{
PCIIDEState *d;
uint8_t *pci_conf;
int i;
d = (PCIIDEState *)pci_register_device(bus, "CMD646 IDE",
sizeof(PCIIDEState),
-1,
NULL, NULL);
d->type = IDE_TYPE_CMD646;
pci_conf = d->dev.config;
pci_conf[0x00] = 0x95; // CMD646
pci_conf[0x01] = 0x10;
pci_conf[0x02] = 0x46;
pci_conf[0x03] = 0x06;
pci_conf[0x08] = 0x07; // IDE controller revision
pci_conf[0x09] = 0x8f;
pci_conf[0x0a] = 0x01; // class_sub = PCI_IDE
pci_conf[0x0b] = 0x01; // class_base = PCI_mass_storage
pci_conf[0x0e] = 0x00; // header_type
if (secondary_ide_enabled) {
/* XXX: if not enabled, really disable the seconday IDE controller */
pci_conf[0x51] = 0x80; /* enable IDE1 */
}
pci_register_io_region((PCIDevice *)d, 0, 0x8,
PCI_ADDRESS_SPACE_IO, ide_map);
pci_register_io_region((PCIDevice *)d, 1, 0x4,
PCI_ADDRESS_SPACE_IO, ide_map);
pci_register_io_region((PCIDevice *)d, 2, 0x8,
PCI_ADDRESS_SPACE_IO, ide_map);
pci_register_io_region((PCIDevice *)d, 3, 0x4,
PCI_ADDRESS_SPACE_IO, ide_map);
pci_register_io_region((PCIDevice *)d, 4, 0x10,
PCI_ADDRESS_SPACE_IO, bmdma_map);
pci_conf[0x3d] = 0x01; // interrupt on pin 1
for(i = 0; i < 4; i++)
d->ide_if[i].pci_dev = (PCIDevice *)d;
ide_init2(&d->ide_if[0], hd_table[0], hd_table[1],
cmd646_set_irq, d, 0);
ide_init2(&d->ide_if[2], hd_table[2], hd_table[3],
cmd646_set_irq, d, 1);
}
/* hd_table must contain 4 block drivers */
/* NOTE: for the PIIX3, the IRQs and IOports are hardcoded */
void pci_piix3_ide_init(PCIBus *bus, BlockDriverState **hd_table)
{
PCIIDEState *d;
uint8_t *pci_conf;
/* register a function 1 of PIIX3 */
d = (PCIIDEState *)pci_register_device(bus, "PIIX3 IDE",
sizeof(PCIIDEState),
((PCIDevice *)piix3_state)->devfn + 1,
NULL, NULL);
d->type = IDE_TYPE_PIIX3;
pci_conf = d->dev.config;
pci_conf[0x00] = 0x86; // Intel
pci_conf[0x01] = 0x80;
pci_conf[0x02] = 0x10;
pci_conf[0x03] = 0x70;
pci_conf[0x09] = 0x80; // legacy ATA mode
pci_conf[0x0a] = 0x01; // class_sub = PCI_IDE
pci_conf[0x0b] = 0x01; // class_base = PCI_mass_storage
pci_conf[0x0e] = 0x00; // header_type
pci_register_io_region((PCIDevice *)d, 4, 0x10,
PCI_ADDRESS_SPACE_IO, bmdma_map);
ide_init2(&d->ide_if[0], hd_table[0], hd_table[1],
pic_set_irq_new, isa_pic, 14);
ide_init2(&d->ide_if[2], hd_table[2], hd_table[3],
pic_set_irq_new, isa_pic, 15);
ide_init_ioport(&d->ide_if[0], 0x1f0, 0x3f6);
ide_init_ioport(&d->ide_if[2], 0x170, 0x376);
}
/***********************************************************/
/* MacIO based PowerPC IDE */
/* PowerMac IDE memory IO */
static void pmac_ide_writeb (void *opaque,
target_phys_addr_t addr, uint32_t val)
{
addr = (addr & 0xFFF) >> 4;
switch (addr) {
case 1 ... 7:
ide_ioport_write(opaque, addr, val);
break;
case 8:
case 22:
ide_cmd_write(opaque, 0, val);
break;
default:
break;
}
}
static uint32_t pmac_ide_readb (void *opaque,target_phys_addr_t addr)
{
uint8_t retval;
addr = (addr & 0xFFF) >> 4;
switch (addr) {
case 1 ... 7:
retval = ide_ioport_read(opaque, addr);
break;
case 8:
case 22:
retval = ide_status_read(opaque, 0);
break;
default:
retval = 0xFF;
break;
}
return retval;
}
static void pmac_ide_writew (void *opaque,
target_phys_addr_t addr, uint32_t val)
{
addr = (addr & 0xFFF) >> 4;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap16(val);
#endif
if (addr == 0) {
ide_data_writew(opaque, 0, val);
}
}
static uint32_t pmac_ide_readw (void *opaque,target_phys_addr_t addr)
{
uint16_t retval;
addr = (addr & 0xFFF) >> 4;
if (addr == 0) {
retval = ide_data_readw(opaque, 0);
} else {
retval = 0xFFFF;
}
#ifdef TARGET_WORDS_BIGENDIAN
retval = bswap16(retval);
#endif
return retval;
}
static void pmac_ide_writel (void *opaque,
target_phys_addr_t addr, uint32_t val)
{
addr = (addr & 0xFFF) >> 4;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
if (addr == 0) {
ide_data_writel(opaque, 0, val);
}
}
static uint32_t pmac_ide_readl (void *opaque,target_phys_addr_t addr)
{
uint32_t retval;
addr = (addr & 0xFFF) >> 4;
if (addr == 0) {
retval = ide_data_readl(opaque, 0);
} else {
retval = 0xFFFFFFFF;
}
#ifdef TARGET_WORDS_BIGENDIAN
retval = bswap32(retval);
#endif
return retval;
}
static CPUWriteMemoryFunc *pmac_ide_write[] = {
pmac_ide_writeb,
pmac_ide_writew,
pmac_ide_writel,
};
static CPUReadMemoryFunc *pmac_ide_read[] = {
pmac_ide_readb,
pmac_ide_readw,
pmac_ide_readl,
};
/* hd_table must contain 4 block drivers */
/* PowerMac uses memory mapped registers, not I/O. Return the memory
I/O index to access the ide. */
int pmac_ide_init (BlockDriverState **hd_table,
SetIRQFunc *set_irq, void *irq_opaque, int irq)
{
IDEState *ide_if;
int pmac_ide_memory;
ide_if = qemu_mallocz(sizeof(IDEState) * 2);
ide_init2(&ide_if[0], hd_table[0], hd_table[1],
set_irq, irq_opaque, irq);
pmac_ide_memory = cpu_register_io_memory(0, pmac_ide_read,
pmac_ide_write, &ide_if[0]);
return pmac_ide_memory;
}