qemu/tests/Makefile

728 lines
33 KiB
Makefile
Raw Normal View History

export SRC_PATH
qapi-py = $(SRC_PATH)/scripts/qapi.py $(SRC_PATH)/scripts/ordereddict.py
# Get the list of all supported sysemu targets
SYSEMU_TARGET_LIST := $(subst -softmmu.mak,,$(notdir \
$(wildcard $(SRC_PATH)/default-configs/*-softmmu.mak)))
check-unit-y = tests/check-qdict$(EXESUF)
gcov-files-check-qdict-y = qobject/qdict.c
check-unit-y += tests/check-qfloat$(EXESUF)
gcov-files-check-qfloat-y = qobject/qfloat.c
check-unit-y += tests/check-qint$(EXESUF)
gcov-files-check-qint-y = qobject/qint.c
check-unit-y += tests/check-qstring$(EXESUF)
gcov-files-check-qstring-y = qobject/qstring.c
check-unit-y += tests/check-qlist$(EXESUF)
gcov-files-check-qlist-y = qobject/qlist.c
check-unit-y += tests/check-qnull$(EXESUF)
gcov-files-check-qnull-y = qobject/qnull.c
check-unit-y += tests/check-qjson$(EXESUF)
gcov-files-check-qjson-y = qobject/qjson.c
check-unit-y += tests/test-qmp-output-visitor$(EXESUF)
gcov-files-test-qmp-output-visitor-y = qapi/qmp-output-visitor.c
check-unit-y += tests/test-qmp-input-visitor$(EXESUF)
gcov-files-test-qmp-input-visitor-y = qapi/qmp-input-visitor.c
check-unit-y += tests/test-qmp-input-strict$(EXESUF)
check-unit-y += tests/test-qmp-commands$(EXESUF)
gcov-files-test-qmp-commands-y = qapi/qmp-dispatch.c
check-unit-y += tests/test-string-input-visitor$(EXESUF)
gcov-files-test-string-input-visitor-y = qapi/string-input-visitor.c
check-unit-y += tests/test-string-output-visitor$(EXESUF)
gcov-files-test-string-output-visitor-y = qapi/string-output-visitor.c
check-unit-y += tests/test-qmp-event$(EXESUF)
gcov-files-test-qmp-event-y += qapi/qmp-event.c
check-unit-y += tests/test-opts-visitor$(EXESUF)
gcov-files-test-opts-visitor-y = qapi/opts-visitor.c
check-unit-y += tests/test-coroutine$(EXESUF)
gcov-files-test-coroutine-y = coroutine-$(CONFIG_COROUTINE_BACKEND).c
check-unit-y += tests/test-visitor-serialization$(EXESUF)
check-unit-y += tests/test-iov$(EXESUF)
gcov-files-test-iov-y = util/iov.c
check-unit-y += tests/test-aio$(EXESUF)
check-unit-$(CONFIG_POSIX) += tests/test-rfifolock$(EXESUF)
check-unit-y += tests/test-throttle$(EXESUF)
gcov-files-test-aio-$(CONFIG_WIN32) = aio-win32.c
gcov-files-test-aio-$(CONFIG_POSIX) = aio-posix.c
check-unit-y += tests/test-thread-pool$(EXESUF)
gcov-files-test-thread-pool-y = thread-pool.c
add hierarchical bitmap data type and test cases HBitmaps provides an array of bits. The bits are stored as usual in an array of unsigned longs, but HBitmap is also optimized to provide fast iteration over set bits; going from one bit to the next is O(logB n) worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough that the number of levels is in fact fixed. In order to do this, it stacks multiple bitmaps with progressively coarser granularity; in all levels except the last, bit N is set iff the N-th unsigned long is nonzero in the immediately next level. When iteration completes on the last level it can examine the 2nd-last level to quickly skip entire words, and even do so recursively to skip blocks of 64 words or powers thereof (32 on 32-bit machines). Given an index in the bitmap, it can be split in group of bits like this (for the 64-bit case): bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word So it is easy to move up simply by shifting the index right by log2(BITS_PER_LONG) bits. To move down, you shift the index left similarly, and add the word index within the group. Iteration uses ffs (find first set bit) to find the next word to examine; this operation can be done in constant time in most current architectures. Setting or clearing a range of m bits on all levels, the work to perform is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap. When iterating on a bitmap, each bit (on any level) is only visited once. Hence, The total cost of visiting a bitmap with m bits in it is the number of bits that are set in all bitmaps. Unless the bitmap is extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized cost of advancing from one bit to the next is usually constant. Reviewed-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-01-21 20:09:40 +04:00
gcov-files-test-hbitmap-y = util/hbitmap.c
check-unit-y += tests/test-hbitmap$(EXESUF)
gcov-files-test-hbitmap-y = blockjob.c
check-unit-y += tests/test-blockjob-txn$(EXESUF)
check-unit-y += tests/test-x86-cpuid$(EXESUF)
# all code tested by test-x86-cpuid is inside topology.h
gcov-files-test-x86-cpuid-y =
ifeq ($(CONFIG_SOFTMMU),y)
check-unit-y += tests/test-xbzrle$(EXESUF)
gcov-files-test-xbzrle-y = migration/xbzrle.c
check-unit-$(CONFIG_POSIX) += tests/test-vmstate$(EXESUF)
endif
check-unit-y += tests/test-cutils$(EXESUF)
gcov-files-test-cutils-y += util/cutils.c
check-unit-y += tests/test-mul64$(EXESUF)
gcov-files-test-mul64-y = util/host-utils.c
check-unit-y += tests/test-int128$(EXESUF)
# all code tested by test-int128 is inside int128.h
gcov-files-test-int128-y =
check-unit-y += tests/rcutorture$(EXESUF)
gcov-files-rcutorture-y = util/rcu.c
check-unit-y += tests/test-rcu-list$(EXESUF)
gcov-files-test-rcu-list-y = util/rcu.c
check-unit-y += tests/test-bitops$(EXESUF)
check-unit-$(CONFIG_HAS_GLIB_SUBPROCESS_TESTS) += tests/test-qdev-global-props$(EXESUF)
check-unit-y += tests/check-qom-interface$(EXESUF)
gcov-files-check-qom-interface-y = qom/object.c
check-unit-y += tests/check-qom-proplist$(EXESUF)
gcov-files-check-qom-proplist-y = qom/object.c
check-unit-y += tests/test-qemu-opts$(EXESUF)
gcov-files-test-qemu-opts-y = qom/test-qemu-opts.c
block: add event when disk usage exceeds threshold Managing applications, like oVirt (http://www.ovirt.org), make extensive use of thin-provisioned disk images. To let the guest run smoothly and be not unnecessarily paused, oVirt sets a disk usage threshold (so called 'high water mark') based on the occupation of the device, and automatically extends the image once the threshold is reached or exceeded. In order to detect the crossing of the threshold, oVirt has no choice but aggressively polling the QEMU monitor using the query-blockstats command. This lead to unnecessary system load, and is made even worse under scale: deployments with hundreds of VMs are no longer rare. To fix this, this patch adds: * A new monitor command `block-set-write-threshold', to set a mark for a given block device. * A new event `BLOCK_WRITE_THRESHOLD', to report if a block device usage exceeds the threshold. * A new `write_threshold' field into the `BlockDeviceInfo' structure, to report the configured threshold. This will allow the managing application to use smarter and more efficient monitoring, greatly reducing the need of polling. [Updated qemu-iotests 067 output to add the new 'write_threshold' property. --Stefan] [Changed g_assert_false() to !g_assert() to fix the build on older glib versions. --Kevin] Signed-off-by: Francesco Romani <fromani@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Message-id: 1421068273-692-1-git-send-email-fromani@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2015-01-12 16:11:13 +03:00
check-unit-y += tests/test-write-threshold$(EXESUF)
gcov-files-test-write-threshold-y = block/write-threshold.c
check-unit-$(CONFIG_GNUTLS_HASH) += tests/test-crypto-hash$(EXESUF)
check-unit-y += tests/test-crypto-cipher$(EXESUF)
crypto: add QCryptoSecret object class for password/key handling Introduce a new QCryptoSecret object class which will be used for providing passwords and keys to other objects which need sensitive credentials. The new object can provide secret values directly as properties, or indirectly via a file. The latter includes support for file descriptor passing syntax on UNIX platforms. Ordinarily passing secret values directly as properties is insecure, since they are visible in process listings, or in log files showing the CLI args / QMP commands. It is possible to use AES-256-CBC to encrypt the secret values though, in which case all that is visible is the ciphertext. For ad hoc developer testing though, it is fine to provide the secrets directly without encryption so this is not explicitly forbidden. The anticipated scenario is that libvirtd will create a random master key per QEMU instance (eg /var/run/libvirt/qemu/$VMNAME.key) and will use that key to encrypt all passwords it provides to QEMU via '-object secret,....'. This avoids the need for libvirt (or other mgmt apps) to worry about file descriptor passing. It also makes life easier for people who are scripting the management of QEMU, for whom FD passing is significantly more complex. Providing data inline (insecure, only for ad hoc dev testing) $QEMU -object secret,id=sec0,data=letmein Providing data indirectly in raw format printf "letmein" > mypasswd.txt $QEMU -object secret,id=sec0,file=mypasswd.txt Providing data indirectly in base64 format $QEMU -object secret,id=sec0,file=mykey.b64,format=base64 Providing data with encryption $QEMU -object secret,id=master0,file=mykey.b64,format=base64 \ -object secret,id=sec0,data=[base64 ciphertext],\ keyid=master0,iv=[base64 IV],format=base64 Note that 'format' here refers to the format of the ciphertext data. The decrypted data must always be in raw byte format. More examples are shown in the updated docs. Reviewed-by: Eric Blake <eblake@redhat.com> Signed-off-by: Daniel P. Berrange <berrange@redhat.com>
2015-10-14 11:58:38 +03:00
check-unit-y += tests/test-crypto-secret$(EXESUF)
check-unit-$(CONFIG_GNUTLS) += tests/test-crypto-tlscredsx509$(EXESUF)
check-unit-$(CONFIG_GNUTLS) += tests/test-crypto-tlssession$(EXESUF)
ifneq (,$(findstring qemu-ga,$(TOOLS)))
check-unit-$(CONFIG_LINUX) += tests/test-qga$(EXESUF)
endif
check-unit-y += tests/test-timed-average$(EXESUF)
check-unit-y += tests/test-io-task$(EXESUF)
check-unit-y += tests/test-io-channel-socket$(EXESUF)
check-unit-y += tests/test-io-channel-file$(EXESUF)
check-unit-$(CONFIG_GNUTLS) += tests/test-io-channel-tls$(EXESUF)
check-unit-y += tests/test-io-channel-command$(EXESUF)
check-unit-y += tests/test-io-channel-buffer$(EXESUF)
check-unit-y += tests/test-base64$(EXESUF)
check-unit-$(if $(CONFIG_NETTLE_KDF),y,$(CONFIG_GCRYPT_KDF)) += tests/test-crypto-pbkdf$(EXESUF)
check-unit-y += tests/test-crypto-ivgen$(EXESUF)
check-unit-y += tests/test-crypto-afsplit$(EXESUF)
check-unit-y += tests/test-crypto-xts$(EXESUF)
check-unit-y += tests/test-crypto-block$(EXESUF)
gcov-files-test-logging-y = tests/test-logging.c
check-unit-y += tests/test-logging$(EXESUF)
check-block-$(CONFIG_POSIX) += tests/qemu-iotests-quick.sh
# All QTests for now are POSIX-only, but the dependencies are
# really in libqtest, not in the testcases themselves.
check-qtest-generic-y = tests/device-introspect-test$(EXESUF)
gcov-files-generic-y = qdev-monitor.c qmp.c
tests: Fix how qom-test is run We want to run qom-test for every architecture, without having to manually add it to every architecture's list of tests. Commit 3687d53 accomplished this by adding it to every architecture's list automatically. However, some architectures inherit their tests from others, like this: check-qtest-x86_64-y = $(check-qtest-i386-y) check-qtest-microblazeel-y = $(check-qtest-microblaze-y) check-qtest-xtensaeb-y = $(check-qtest-xtensa-y) For such architectures, we ended up running the (slow!) test twice. Commit 2b8419c attempted to avoid this by adding the test only when it's not already present. Works only as long as we consider adding the test to the architectures on the left hand side *after* the ones on the right hand side: x86_64 after i386, microblazeel after microblaze, xtensaeb after xtensa. Turns out we consider them in $(SYSEMU_TARGET_LIST) order. Defined as SYSEMU_TARGET_LIST := $(subst -softmmu.mak,,$(notdir \ $(wildcard $(SRC_PATH)/default-configs/*-softmmu.mak))) On my machine, this results in the oder xtensa, x86_64, microblazeel, microblaze, i386. Consequently, qom-test runs twice for microblazeel and x86_64. Replace this complex and flawed machinery with a much simpler one: add generic tests (currently just qom-test) to check-qtest-generic-y instead of check-qtest-$(target)-y for every target, then run $(check-qtest-generic-y) for every target. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Andreas Färber <afaerber@suse.de> Message-Id: <1443689999-12182-5-git-send-email-armbru@redhat.com>
2015-10-01 11:59:53 +03:00
gcov-files-ipack-y += hw/ipack/ipack.c
check-qtest-ipack-y += tests/ipoctal232-test$(EXESUF)
gcov-files-ipack-y += hw/char/ipoctal232.c
check-qtest-virtioserial-y += tests/virtio-console-test$(EXESUF)
gcov-files-virtioserial-y += hw/char/virtio-console.c
gcov-files-virtio-y += i386-softmmu/hw/virtio/virtio.c
check-qtest-virtio-y += tests/virtio-net-test$(EXESUF)
gcov-files-virtio-y += i386-softmmu/hw/net/virtio-net.c
check-qtest-virtio-y += tests/virtio-balloon-test$(EXESUF)
gcov-files-virtio-y += i386-softmmu/hw/virtio/virtio-balloon.c
check-qtest-virtio-y += tests/virtio-blk-test$(EXESUF)
gcov-files-virtio-y += i386-softmmu/hw/block/virtio-blk.c
check-qtest-virtio-y += tests/virtio-rng-test$(EXESUF)
gcov-files-virtio-y += hw/virtio/virtio-rng.c
check-qtest-virtio-y += tests/virtio-scsi-test$(EXESUF)
gcov-files-virtio-y += i386-softmmu/hw/scsi/virtio-scsi.c
ifeq ($(CONFIG_VIRTIO)$(CONFIG_VIRTFS)$(CONFIG_PCI),yyy)
check-qtest-virtio-y += tests/virtio-9p-test$(EXESUF)
gcov-files-virtio-y += hw/9pfs/virtio-9p.c
gcov-files-virtio-y += i386-softmmu/hw/9pfs/virtio-9p-device.c
endif
check-qtest-virtio-y += tests/virtio-serial-test$(EXESUF)
gcov-files-virtio-y += i386-softmmu/hw/char/virtio-serial-bus.c
check-qtest-virtio-y += $(check-qtest-virtioserial-y)
gcov-files-virtio-y += $(gcov-files-virtioserial-y)
check-qtest-pci-y += tests/e1000-test$(EXESUF)
gcov-files-pci-y += hw/net/e1000.c
check-qtest-pci-y += tests/rtl8139-test$(EXESUF)
gcov-files-pci-y += hw/net/rtl8139.c
check-qtest-pci-y += tests/pcnet-test$(EXESUF)
gcov-files-pci-y += hw/net/pcnet.c
gcov-files-pci-y += hw/net/pcnet-pci.c
check-qtest-pci-y += tests/eepro100-test$(EXESUF)
gcov-files-pci-y += hw/net/eepro100.c
check-qtest-pci-y += tests/ne2000-test$(EXESUF)
gcov-files-pci-y += hw/net/ne2000.c
check-qtest-pci-y += tests/nvme-test$(EXESUF)
gcov-files-pci-y += hw/block/nvme.c
check-qtest-pci-y += tests/ac97-test$(EXESUF)
gcov-files-pci-y += hw/audio/ac97.c
check-qtest-pci-y += tests/es1370-test$(EXESUF)
gcov-files-pci-y += hw/audio/es1370.c
check-qtest-pci-y += $(check-qtest-virtio-y)
gcov-files-pci-y += $(gcov-files-virtio-y) hw/virtio/virtio-pci.c
check-qtest-pci-y += tests/tpci200-test$(EXESUF)
gcov-files-pci-y += hw/ipack/tpci200.c
check-qtest-pci-y += $(check-qtest-ipack-y)
gcov-files-pci-y += $(gcov-files-ipack-y)
check-qtest-pci-y += tests/display-vga-test$(EXESUF)
gcov-files-pci-y += hw/display/vga.c
gcov-files-pci-y += hw/display/cirrus_vga.c
gcov-files-pci-y += hw/display/vga-pci.c
gcov-files-pci-y += hw/display/virtio-gpu.c
gcov-files-pci-y += hw/display/virtio-gpu-pci.c
gcov-files-pci-$(CONFIG_VIRTIO_VGA) += hw/display/virtio-vga.c
check-qtest-pci-y += tests/intel-hda-test$(EXESUF)
gcov-files-pci-y += hw/audio/intel-hda.c hw/audio/hda-codec.c
check-qtest-pci-$(CONFIG_EVENTFD) += tests/ivshmem-test$(EXESUF)
gcov-files-pci-y += hw/misc/ivshmem.c
check-qtest-i386-y = tests/endianness-test$(EXESUF)
check-qtest-i386-y += tests/fdc-test$(EXESUF)
gcov-files-i386-y = hw/block/fdc.c
check-qtest-i386-y += tests/ide-test$(EXESUF)
check-qtest-i386-y += tests/ahci-test$(EXESUF)
check-qtest-i386-y += tests/hd-geo-test$(EXESUF)
gcov-files-i386-y += hw/block/hd-geometry.c
check-qtest-i386-y += tests/boot-order-test$(EXESUF)
check-qtest-i386-y += tests/bios-tables-test$(EXESUF)
check-qtest-i386-y += tests/pxe-test$(EXESUF)
check-qtest-i386-y += tests/rtc-test$(EXESUF)
check-qtest-i386-y += tests/ipmi-kcs-test$(EXESUF)
check-qtest-i386-y += tests/ipmi-bt-test$(EXESUF)
check-qtest-i386-y += tests/i440fx-test$(EXESUF)
check-qtest-i386-y += tests/fw_cfg-test$(EXESUF)
check-qtest-i386-y += tests/drive_del-test$(EXESUF)
check-qtest-i386-y += tests/wdt_ib700-test$(EXESUF)
check-qtest-i386-y += tests/tco-test$(EXESUF)
gcov-files-i386-y += hw/watchdog/watchdog.c hw/watchdog/wdt_ib700.c
check-qtest-i386-y += $(check-qtest-pci-y)
gcov-files-i386-y += $(gcov-files-pci-y)
check-qtest-i386-y += tests/vmxnet3-test$(EXESUF)
gcov-files-i386-y += hw/net/vmxnet3.c
gcov-files-i386-y += hw/net/vmxnet_rx_pkt.c
gcov-files-i386-y += hw/net/vmxnet_tx_pkt.c
check-qtest-i386-y += tests/pvpanic-test$(EXESUF)
gcov-files-i386-y += i386-softmmu/hw/misc/pvpanic.c
check-qtest-i386-y += tests/i82801b11-test$(EXESUF)
gcov-files-i386-y += hw/pci-bridge/i82801b11.c
check-qtest-i386-y += tests/ioh3420-test$(EXESUF)
gcov-files-i386-y += hw/pci-bridge/ioh3420.c
check-qtest-i386-y += tests/usb-hcd-ohci-test$(EXESUF)
gcov-files-i386-y += hw/usb/hcd-ohci.c
check-qtest-i386-y += tests/usb-hcd-uhci-test$(EXESUF)
gcov-files-i386-y += hw/usb/hcd-uhci.c
check-qtest-i386-y += tests/usb-hcd-ehci-test$(EXESUF)
gcov-files-i386-y += hw/usb/hcd-ehci.c
gcov-files-i386-y += hw/usb/dev-hid.c
gcov-files-i386-y += hw/usb/dev-storage.c
check-qtest-i386-y += tests/usb-hcd-xhci-test$(EXESUF)
gcov-files-i386-y += hw/usb/hcd-xhci.c
check-qtest-i386-y += tests/pc-cpu-test$(EXESUF)
check-qtest-i386-y += tests/q35-test$(EXESUF)
gcov-files-i386-y += hw/pci-host/q35.c
check-qtest-i386-$(CONFIG_VHOST_NET_TEST_i386) += tests/vhost-user-test$(EXESUF)
ifeq ($(CONFIG_VHOST_NET_TEST_i386),)
check-qtest-x86_64-$(CONFIG_VHOST_NET_TEST_x86_64) += tests/vhost-user-test$(EXESUF)
endif
check-qtest-i386-y += tests/test-netfilter$(EXESUF)
check-qtest-i386-y += tests/test-filter-mirror$(EXESUF)
tests/test-filter-redirector: Add unit test for filter-redirector In this unit test,we will test the filter redirector function. Case 1, tx traffic flow: qemu side | test side | +---------+ | +-------+ | backend <---------------+ sock0 | +----+----+ | +-------+ | | +----v----+ +-------+ | | rd0 +->+chardev| | +---------+ +---+---+ | | | +---------+ | | | rd1 <------+ | +----+----+ | | | +----v----+ | +-------+ | rd2 +--------------->sock1 | +---------+ | +-------+ + a. we(sock0) inject packet to qemu socket backend b. backend pass packet to filter redirector0(rd0) c. rd0 redirect packet to out_dev(chardev) which is connected with filter redirector1's(rd1) in_dev d. rd1 read this packet from in_dev, and pass to next filter redirector2(rd2) e. rd2 redirect packet to rd2's out_dev which is connected with an opened socketed(sock1) f. we read packet from sock1 and compare to what we inject Start qemu with: "-netdev socket,id=qtest-bn0,fd=%d " "-device rtl8139,netdev=qtest-bn0,id=qtest-e0 " "-chardev socket,id=redirector0,path=%s,server,nowait " "-chardev socket,id=redirector1,path=%s,server,nowait " "-chardev socket,id=redirector2,path=%s,nowait " "-object filter-redirector,id=qtest-f0,netdev=qtest-bn0," "queue=tx,outdev=redirector0 " "-object filter-redirector,id=qtest-f1,netdev=qtest-bn0," "queue=tx,indev=redirector2 " "-object filter-redirector,id=qtest-f2,netdev=qtest-bn0," "queue=tx,outdev=redirector1 " -------------------------------------- Case 2, rx traffic flow qemu side | test side | +---------+ | +-------+ | backend +---------------> sock1 | +----^----+ | +-------+ | | +----+----+ +-------+ | | rd0 +<-+chardev| | +---------+ +---+---+ | ^ | +---------+ | | | rd1 +------+ | +----^----+ | | | +----+----+ | +-------+ | rd2 <---------------+sock0 | +---------+ | +-------+ a. we(sock0) insert packet to filter redirector2(rd2) b. rd2 pass packet to filter redirector1(rd1) c. rd1 redirect packet to out_dev(chardev) which is connected with filter redirector0's(rd0) in_dev d. rd0 read this packet from in_dev, and pass ti to qemu backend which is connected with an opened socketed(sock1) e. we read packet from sock1 and compare to what we inject Start qemu with: "-netdev socket,id=qtest-bn0,fd=%d " "-device rtl8139,netdev=qtest-bn0,id=qtest-e0 " "-chardev socket,id=redirector0,path=%s,server,nowait " "-chardev socket,id=redirector1,path=%s,server,nowait " "-chardev socket,id=redirector2,path=%s,nowait " "-object filter-redirector,id=qtest-f0,netdev=qtest-bn0," "queue=rx,outdev=redirector0 " "-object filter-redirector,id=qtest-f1,netdev=qtest-bn0," "queue=rx,indev=redirector2 " "-object filter-redirector,id=qtest-f2,netdev=qtest-bn0," "queue=rx,outdev=redirector1 " Signed-off-by: Zhang Chen <zhangchen.fnst@cn.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Li Zhijian <lizhijian@cn.fujitsu.com> Signed-off-by: Jason Wang <jasowang@redhat.com>
2016-03-17 11:16:27 +03:00
check-qtest-i386-y += tests/test-filter-redirector$(EXESUF)
check-qtest-x86_64-y = $(check-qtest-i386-y)
gcov-files-i386-y += i386-softmmu/hw/timer/mc146818rtc.c
gcov-files-x86_64-y = $(subst i386-softmmu/,x86_64-softmmu/,$(gcov-files-i386-y))
check-qtest-mips-y = tests/endianness-test$(EXESUF)
check-qtest-mips64-y = tests/endianness-test$(EXESUF)
check-qtest-mips64el-y = tests/endianness-test$(EXESUF)
check-qtest-ppc-y = tests/endianness-test$(EXESUF)
check-qtest-ppc64-y = tests/endianness-test$(EXESUF)
check-qtest-sh4-y = tests/endianness-test$(EXESUF)
check-qtest-sh4eb-y = tests/endianness-test$(EXESUF)
check-qtest-sparc64-y = tests/endianness-test$(EXESUF)
#check-qtest-sparc-y = tests/m48t59-test$(EXESUF)
#check-qtest-sparc64-y += tests/m48t59-test$(EXESUF)
gcov-files-sparc-y += hw/timer/m48t59.c
gcov-files-sparc64-y += hw/timer/m48t59.c
check-qtest-arm-y = tests/tmp105-test$(EXESUF)
check-qtest-arm-y = tests/ds1338-test$(EXESUF)
gcov-files-arm-y += hw/misc/tmp105.c
check-qtest-arm-y += tests/virtio-blk-test$(EXESUF)
gcov-files-arm-y += arm-softmmu/hw/block/virtio-blk.c
check-qtest-ppc-y += tests/boot-order-test$(EXESUF)
check-qtest-ppc64-y += tests/boot-order-test$(EXESUF)
check-qtest-ppc64-y += tests/spapr-phb-test$(EXESUF)
gcov-files-ppc64-y += ppc64-softmmu/hw/ppc/spapr_pci.c
check-qtest-microblazeel-y = $(check-qtest-microblaze-y)
check-qtest-xtensaeb-y = $(check-qtest-xtensa-y)
tests: Fix how qom-test is run We want to run qom-test for every architecture, without having to manually add it to every architecture's list of tests. Commit 3687d53 accomplished this by adding it to every architecture's list automatically. However, some architectures inherit their tests from others, like this: check-qtest-x86_64-y = $(check-qtest-i386-y) check-qtest-microblazeel-y = $(check-qtest-microblaze-y) check-qtest-xtensaeb-y = $(check-qtest-xtensa-y) For such architectures, we ended up running the (slow!) test twice. Commit 2b8419c attempted to avoid this by adding the test only when it's not already present. Works only as long as we consider adding the test to the architectures on the left hand side *after* the ones on the right hand side: x86_64 after i386, microblazeel after microblaze, xtensaeb after xtensa. Turns out we consider them in $(SYSEMU_TARGET_LIST) order. Defined as SYSEMU_TARGET_LIST := $(subst -softmmu.mak,,$(notdir \ $(wildcard $(SRC_PATH)/default-configs/*-softmmu.mak))) On my machine, this results in the oder xtensa, x86_64, microblazeel, microblaze, i386. Consequently, qom-test runs twice for microblazeel and x86_64. Replace this complex and flawed machinery with a much simpler one: add generic tests (currently just qom-test) to check-qtest-generic-y instead of check-qtest-$(target)-y for every target, then run $(check-qtest-generic-y) for every target. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Andreas Färber <afaerber@suse.de> Message-Id: <1443689999-12182-5-git-send-email-armbru@redhat.com>
2015-10-01 11:59:53 +03:00
check-qtest-generic-y += tests/qom-test$(EXESUF)
qapi-schema += alternate-any.json
qapi-schema += alternate-array.json
qapi-schema += alternate-base.json
qapi-schema += alternate-clash.json
qapi-schema += alternate-conflict-dict.json
qapi-schema += alternate-conflict-string.json
qapi-schema += alternate-empty.json
qapi-schema += alternate-nested.json
qapi-schema += alternate-unknown.json
qapi-schema += args-alternate.json
qapi-schema += args-any.json
qapi-schema += args-array-empty.json
qapi-schema += args-array-unknown.json
qapi-schema += args-int.json
qapi-schema += args-invalid.json
qapi-schema += args-member-array-bad.json
qapi-schema += args-member-case.json
qapi-schema += args-member-unknown.json
qapi: Test for various name collisions Expose some weaknesses in the generator: we don't always forbid the generation of structs that contain multiple members that map to the same C or QMP name. This has already been marked FIXME in qapi.py in commit d90675f, but having more tests will make sure future patches produce desired behavior; and updating existing patches to better document things doesn't hurt, either. Some of these collisions are already caught in the old-style parser checks, but ultimately we want all collisions to be caught in the new-style QAPISchema*.check() methods. This patch focuses on C struct members, and does not consider collisions between commands and events (affecting C function names), or even collisions between generated C type names with user type names (for things like automatic FOOList struct representing array types or FOOKind for an implicit enum). There are two types of struct collisions we want to catch: 1) Collision between two keys in a JSON object. qapi.py prevents that within a single struct (see test duplicate-key), but it is possible to have collisions between a type's members and its base type's members (existing tests struct-base-clash, struct-base-clash-deep), and its flat union variant members (renamed test flat-union-clash-member). 2) Collision between two members of the C struct that is generated for a given QAPI type: a) Multiple QAPI names map to the same C name (new test args-name-clash) b) A QAPI name maps to a C name that is used for another purpose (new tests flat-union-clash-branch, struct-base-clash-base, union-clash-data). We already fixed some such cases in commit 0f61af3e and 1e6c1616, but more remain. c) Two C names generated for other purposes clash (updated test alternate-clash, new test union-clash-branches, union-clash-type, flat-union-clash-type) Ultimately, if we need to have a flat union where a tag value clashes with a base member name, we could change the generator to name the union (using 'foo.u.value' rather than 'foo.value') or otherwise munge the C name corresponding to tag values. But unless such a need arises, it will probably be easier to just forbid these collisions. Some of these negative tests will be deleted later, and positive tests added to qapi-schema-test.json in their place, when the generator code is reworked to avoid particular code generation collisions in class 2). [Note that viewing this patch with git rename detection enabled may see some confusion due to renaming some tests while adding others, but where the content is similar enough that git picks the wrong pre- and post-patch files to associate] Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1443565276-4535-6-git-send-email-eblake@redhat.com> [Improve commit message and comments a bit, drop an unrelated test] Signed-off-by: Markus Armbruster <armbru@redhat.com>
2015-09-30 01:21:03 +03:00
qapi-schema += args-name-clash.json
qapi-schema += args-union.json
qapi-schema += args-unknown.json
qapi-schema += bad-base.json
qapi-schema += bad-data.json
qapi-schema += bad-ident.json
qapi-schema += bad-type-bool.json
qapi-schema += bad-type-dict.json
qapi-schema += bad-type-int.json
qapi: Detect base class loops It should be fairly obvious that qapi base classes need to form an acyclic graph, since QMP cannot specify the same key more than once, while base classes are included as flat members alongside other members added by the child. But the old check_member_clash() parser function was not prepared to check for this, and entered an infinite recursion (at least until Python gives up, complaining about nesting too deep). Now that check_member_clash() has been recently removed, attempts at self-inheritance trigger an assertion failure introduced by commit ac88219a. The obvious fix is to turn the assertion into a conditional. This patch includes both the tests (base-cycle-direct and base-cycle-indirect) and the fix, since the .err file output for the unfixed case is not useful (particularly when it was warning about unbounded recursion, as that limit may be platform-specific). We don't need to worry about cycles in flat unions (neither the base type nor the type of a variant can be a union) nor in alternates (alternate branches cannot themselves be an alternate). But if we later allow a union type as a variant, we will still be okay, as QAPISchemaObjectTypeVariants.check() triggers the same QAPISchemaObjectType.check() that will detect any loops. Likewise, we need not worry about the case of diamond inheritance where the same class is used for a flat union base class and one of its variants; either both uses will introduce a collision in trying to insert the same member name twice, or the shared type is empty and changes nothing. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1449033659-25497-16-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2015-12-02 08:20:59 +03:00
qapi-schema += base-cycle-direct.json
qapi-schema += base-cycle-indirect.json
qapi-schema += command-int.json
qapi-schema += comments.json
qapi-schema += double-data.json
qapi-schema += double-type.json
qapi-schema += duplicate-key.json
qapi-schema += empty.json
qapi-schema += enum-bad-name.json
qapi-schema += enum-bad-prefix.json
qapi-schema += enum-clash-member.json
qapi-schema += enum-dict-member.json
qapi-schema += enum-int-member.json
qapi-schema += enum-member-case.json
qapi-schema += enum-missing-data.json
qapi-schema += enum-wrong-data.json
qapi-schema += escape-outside-string.json
qapi-schema += escape-too-big.json
qapi-schema += escape-too-short.json
qapi-schema += event-case.json
qapi-schema += event-nest-struct.json
qapi-schema += flat-union-array-branch.json
qapi-schema += flat-union-bad-base.json
qapi-schema += flat-union-bad-discriminator.json
qapi-schema += flat-union-base-any.json
qapi-schema += flat-union-base-union.json
qapi: Test for various name collisions Expose some weaknesses in the generator: we don't always forbid the generation of structs that contain multiple members that map to the same C or QMP name. This has already been marked FIXME in qapi.py in commit d90675f, but having more tests will make sure future patches produce desired behavior; and updating existing patches to better document things doesn't hurt, either. Some of these collisions are already caught in the old-style parser checks, but ultimately we want all collisions to be caught in the new-style QAPISchema*.check() methods. This patch focuses on C struct members, and does not consider collisions between commands and events (affecting C function names), or even collisions between generated C type names with user type names (for things like automatic FOOList struct representing array types or FOOKind for an implicit enum). There are two types of struct collisions we want to catch: 1) Collision between two keys in a JSON object. qapi.py prevents that within a single struct (see test duplicate-key), but it is possible to have collisions between a type's members and its base type's members (existing tests struct-base-clash, struct-base-clash-deep), and its flat union variant members (renamed test flat-union-clash-member). 2) Collision between two members of the C struct that is generated for a given QAPI type: a) Multiple QAPI names map to the same C name (new test args-name-clash) b) A QAPI name maps to a C name that is used for another purpose (new tests flat-union-clash-branch, struct-base-clash-base, union-clash-data). We already fixed some such cases in commit 0f61af3e and 1e6c1616, but more remain. c) Two C names generated for other purposes clash (updated test alternate-clash, new test union-clash-branches, union-clash-type, flat-union-clash-type) Ultimately, if we need to have a flat union where a tag value clashes with a base member name, we could change the generator to name the union (using 'foo.u.value' rather than 'foo.value') or otherwise munge the C name corresponding to tag values. But unless such a need arises, it will probably be easier to just forbid these collisions. Some of these negative tests will be deleted later, and positive tests added to qapi-schema-test.json in their place, when the generator code is reworked to avoid particular code generation collisions in class 2). [Note that viewing this patch with git rename detection enabled may see some confusion due to renaming some tests while adding others, but where the content is similar enough that git picks the wrong pre- and post-patch files to associate] Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1443565276-4535-6-git-send-email-eblake@redhat.com> [Improve commit message and comments a bit, drop an unrelated test] Signed-off-by: Markus Armbruster <armbru@redhat.com>
2015-09-30 01:21:03 +03:00
qapi-schema += flat-union-clash-member.json
qapi-schema += flat-union-empty.json
qapi-schema += flat-union-inline.json
qapi-schema += flat-union-int-branch.json
qapi-schema += flat-union-invalid-branch-key.json
qapi-schema += flat-union-invalid-discriminator.json
qapi-schema += flat-union-no-base.json
qapi-schema += flat-union-optional-discriminator.json
qapi-schema += flat-union-string-discriminator.json
qapi-schema += funny-char.json
qapi-schema += ident-with-escape.json
qapi-schema += include-before-err.json
qapi-schema += include-cycle.json
qapi-schema += include-format-err.json
qapi-schema += include-nested-err.json
qapi-schema += include-no-file.json
qapi-schema += include-non-file.json
qapi-schema += include-relpath.json
qapi-schema += include-repetition.json
qapi-schema += include-self-cycle.json
qapi-schema += include-simple.json
qapi-schema += indented-expr.json
qapi-schema += leading-comma-list.json
qapi-schema += leading-comma-object.json
qapi-schema += missing-colon.json
qapi-schema += missing-comma-list.json
qapi-schema += missing-comma-object.json
qapi-schema += missing-type.json
qapi-schema += nested-struct-data.json
qapi-schema += non-objects.json
qapi-schema += qapi-schema-test.json
qapi-schema += quoted-structural-chars.json
qapi-schema += redefined-builtin.json
qapi-schema += redefined-command.json
qapi-schema += redefined-event.json
qapi-schema += redefined-type.json
tests/qapi-schema: Test for reserved names, empty struct Add some testsuite coverage to ensure future patches are on the right track: Our current C representation of qapi arrays is done by appending 'List' to the element name; but we are not preventing the creation of an object type with the same name. Add reserved-type-list.json to test this. Then rename enum-union-clash.json to reserved-type-kind.json to cover the reservation that we DO detect, and shorten it to match the fact that the name is reserved even if there is no clash. We are failing to detect a collision between a dictionary member and the implicit 'has_*' flag for another optional member. The easiest fix would be for a future patch to reserve the entire "has[-_]" namespace for member names (the collision is also possible for branch names within flat unions, but only as long as branch names can collide with (non-variant) members; however, since future patches are about to remove that, it is not worth testing here). Add reserved-member-has.json to test this. A similar collision exists between a dictionary member where c_name() munges what might otherwise be a reserved name to start with 'q_', and another member explicitly starts with "q[-_]". Again, the easiest solution for a future patch will be reserving the entire namespace, but here for commands as well as members. Add reserved-member-q.json and reserved-command-q.json to test this; separate tests since arguably our munging of command 'unix' to 'qmp_q_unix()' could be done without a q_, which is different than the munging of a member 'unix' to 'foo.q_unix'. Finally, our testsuite does not have any compilation coverage of struct inheritance with empty qapi structs. Update qapi-schema-test.json to test this. Note that there is currently no technical reason to forbid type name patterns from member names, or member name patterns from types, since the two are not in the same namespace in C and won't collide; but it's not worth adding positive tests of these corner cases at this time, especially while there is other churn pending in patches that rearrange which collisions actually happen. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1445898903-12082-2-git-send-email-eblake@redhat.com> [Commit message tweaked slightly] Signed-off-by: Markus Armbruster <armbru@redhat.com>
2015-10-27 01:34:40 +03:00
qapi-schema += reserved-command-q.json
qapi-schema += reserved-enum-q.json
tests/qapi-schema: Test for reserved names, empty struct Add some testsuite coverage to ensure future patches are on the right track: Our current C representation of qapi arrays is done by appending 'List' to the element name; but we are not preventing the creation of an object type with the same name. Add reserved-type-list.json to test this. Then rename enum-union-clash.json to reserved-type-kind.json to cover the reservation that we DO detect, and shorten it to match the fact that the name is reserved even if there is no clash. We are failing to detect a collision between a dictionary member and the implicit 'has_*' flag for another optional member. The easiest fix would be for a future patch to reserve the entire "has[-_]" namespace for member names (the collision is also possible for branch names within flat unions, but only as long as branch names can collide with (non-variant) members; however, since future patches are about to remove that, it is not worth testing here). Add reserved-member-has.json to test this. A similar collision exists between a dictionary member where c_name() munges what might otherwise be a reserved name to start with 'q_', and another member explicitly starts with "q[-_]". Again, the easiest solution for a future patch will be reserving the entire namespace, but here for commands as well as members. Add reserved-member-q.json and reserved-command-q.json to test this; separate tests since arguably our munging of command 'unix' to 'qmp_q_unix()' could be done without a q_, which is different than the munging of a member 'unix' to 'foo.q_unix'. Finally, our testsuite does not have any compilation coverage of struct inheritance with empty qapi structs. Update qapi-schema-test.json to test this. Note that there is currently no technical reason to forbid type name patterns from member names, or member name patterns from types, since the two are not in the same namespace in C and won't collide; but it's not worth adding positive tests of these corner cases at this time, especially while there is other churn pending in patches that rearrange which collisions actually happen. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1445898903-12082-2-git-send-email-eblake@redhat.com> [Commit message tweaked slightly] Signed-off-by: Markus Armbruster <armbru@redhat.com>
2015-10-27 01:34:40 +03:00
qapi-schema += reserved-member-has.json
qapi-schema += reserved-member-q.json
qapi-schema += reserved-member-u.json
qapi-schema += reserved-member-underscore.json
tests/qapi-schema: Test for reserved names, empty struct Add some testsuite coverage to ensure future patches are on the right track: Our current C representation of qapi arrays is done by appending 'List' to the element name; but we are not preventing the creation of an object type with the same name. Add reserved-type-list.json to test this. Then rename enum-union-clash.json to reserved-type-kind.json to cover the reservation that we DO detect, and shorten it to match the fact that the name is reserved even if there is no clash. We are failing to detect a collision between a dictionary member and the implicit 'has_*' flag for another optional member. The easiest fix would be for a future patch to reserve the entire "has[-_]" namespace for member names (the collision is also possible for branch names within flat unions, but only as long as branch names can collide with (non-variant) members; however, since future patches are about to remove that, it is not worth testing here). Add reserved-member-has.json to test this. A similar collision exists between a dictionary member where c_name() munges what might otherwise be a reserved name to start with 'q_', and another member explicitly starts with "q[-_]". Again, the easiest solution for a future patch will be reserving the entire namespace, but here for commands as well as members. Add reserved-member-q.json and reserved-command-q.json to test this; separate tests since arguably our munging of command 'unix' to 'qmp_q_unix()' could be done without a q_, which is different than the munging of a member 'unix' to 'foo.q_unix'. Finally, our testsuite does not have any compilation coverage of struct inheritance with empty qapi structs. Update qapi-schema-test.json to test this. Note that there is currently no technical reason to forbid type name patterns from member names, or member name patterns from types, since the two are not in the same namespace in C and won't collide; but it's not worth adding positive tests of these corner cases at this time, especially while there is other churn pending in patches that rearrange which collisions actually happen. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1445898903-12082-2-git-send-email-eblake@redhat.com> [Commit message tweaked slightly] Signed-off-by: Markus Armbruster <armbru@redhat.com>
2015-10-27 01:34:40 +03:00
qapi-schema += reserved-type-kind.json
qapi-schema += reserved-type-list.json
qapi-schema += returns-alternate.json
qapi-schema += returns-array-bad.json
qapi-schema += returns-dict.json
qapi-schema += returns-unknown.json
qapi-schema += returns-whitelist.json
qapi-schema += struct-base-clash-deep.json
qapi-schema += struct-base-clash.json
qapi-schema += struct-data-invalid.json
qapi-schema += struct-member-invalid.json
qapi-schema += trailing-comma-list.json
qapi-schema += trailing-comma-object.json
qapi-schema += type-bypass-bad-gen.json
qapi-schema += unclosed-list.json
qapi-schema += unclosed-object.json
qapi-schema += unclosed-string.json
qapi-schema += unicode-str.json
qapi-schema += union-base-no-discriminator.json
qapi-schema += union-branch-case.json
qapi: Test for various name collisions Expose some weaknesses in the generator: we don't always forbid the generation of structs that contain multiple members that map to the same C or QMP name. This has already been marked FIXME in qapi.py in commit d90675f, but having more tests will make sure future patches produce desired behavior; and updating existing patches to better document things doesn't hurt, either. Some of these collisions are already caught in the old-style parser checks, but ultimately we want all collisions to be caught in the new-style QAPISchema*.check() methods. This patch focuses on C struct members, and does not consider collisions between commands and events (affecting C function names), or even collisions between generated C type names with user type names (for things like automatic FOOList struct representing array types or FOOKind for an implicit enum). There are two types of struct collisions we want to catch: 1) Collision between two keys in a JSON object. qapi.py prevents that within a single struct (see test duplicate-key), but it is possible to have collisions between a type's members and its base type's members (existing tests struct-base-clash, struct-base-clash-deep), and its flat union variant members (renamed test flat-union-clash-member). 2) Collision between two members of the C struct that is generated for a given QAPI type: a) Multiple QAPI names map to the same C name (new test args-name-clash) b) A QAPI name maps to a C name that is used for another purpose (new tests flat-union-clash-branch, struct-base-clash-base, union-clash-data). We already fixed some such cases in commit 0f61af3e and 1e6c1616, but more remain. c) Two C names generated for other purposes clash (updated test alternate-clash, new test union-clash-branches, union-clash-type, flat-union-clash-type) Ultimately, if we need to have a flat union where a tag value clashes with a base member name, we could change the generator to name the union (using 'foo.u.value' rather than 'foo.value') or otherwise munge the C name corresponding to tag values. But unless such a need arises, it will probably be easier to just forbid these collisions. Some of these negative tests will be deleted later, and positive tests added to qapi-schema-test.json in their place, when the generator code is reworked to avoid particular code generation collisions in class 2). [Note that viewing this patch with git rename detection enabled may see some confusion due to renaming some tests while adding others, but where the content is similar enough that git picks the wrong pre- and post-patch files to associate] Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1443565276-4535-6-git-send-email-eblake@redhat.com> [Improve commit message and comments a bit, drop an unrelated test] Signed-off-by: Markus Armbruster <armbru@redhat.com>
2015-09-30 01:21:03 +03:00
qapi-schema += union-clash-branches.json
qapi-schema += union-empty.json
qapi-schema += union-invalid-base.json
qapi-schema += union-optional-branch.json
qapi-schema += union-unknown.json
qapi-schema += unknown-escape.json
qapi-schema += unknown-expr-key.json
check-qapi-schema-y := $(addprefix tests/qapi-schema/, $(qapi-schema))
GENERATED_HEADERS += tests/test-qapi-types.h tests/test-qapi-visit.h \
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
tests/test-qmp-commands.h tests/test-qapi-event.h \
tests/test-qmp-introspect.h
test-obj-y = tests/check-qint.o tests/check-qstring.o tests/check-qdict.o \
tests/check-qlist.o tests/check-qfloat.o tests/check-qnull.o \
tests/check-qjson.o \
tests/test-coroutine.o tests/test-string-output-visitor.o \
tests/test-string-input-visitor.o tests/test-qmp-output-visitor.o \
tests/test-qmp-input-visitor.o tests/test-qmp-input-strict.o \
tests/test-qmp-commands.o tests/test-visitor-serialization.o \
tests/test-x86-cpuid.o tests/test-mul64.o tests/test-int128.o \
tests/test-opts-visitor.o tests/test-qmp-event.o \
tests/rcutorture.o tests/test-rcu-list.o
$(test-obj-y): QEMU_INCLUDES += -Itests
QEMU_CFLAGS += -I$(SRC_PATH)/tests
# Deps that are common to various different sets of tests below
test-util-obj-y = libqemuutil.a libqemustub.a
test-qom-obj-y = $(qom-obj-y) $(test-util-obj-y)
test-qapi-obj-y = tests/test-qapi-visit.o tests/test-qapi-types.o \
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
tests/test-qapi-event.o tests/test-qmp-introspect.o \
$(test-qom-obj-y)
test-crypto-obj-y = $(crypto-obj-y) $(test-qom-obj-y)
test-io-obj-y = $(io-obj-y) $(test-crypto-obj-y)
test-block-obj-y = $(block-obj-y) $(test-io-obj-y)
tests/check-qint$(EXESUF): tests/check-qint.o $(test-util-obj-y)
tests/check-qstring$(EXESUF): tests/check-qstring.o $(test-util-obj-y)
tests/check-qdict$(EXESUF): tests/check-qdict.o $(test-util-obj-y)
tests/check-qlist$(EXESUF): tests/check-qlist.o $(test-util-obj-y)
tests/check-qfloat$(EXESUF): tests/check-qfloat.o $(test-util-obj-y)
tests/check-qnull$(EXESUF): tests/check-qnull.o $(test-util-obj-y)
tests/check-qjson$(EXESUF): tests/check-qjson.o $(test-util-obj-y)
tests/check-qom-interface$(EXESUF): tests/check-qom-interface.o $(test-qom-obj-y)
tests/check-qom-proplist$(EXESUF): tests/check-qom-proplist.o $(test-qom-obj-y)
tests/test-coroutine$(EXESUF): tests/test-coroutine.o $(test-block-obj-y)
tests/test-aio$(EXESUF): tests/test-aio.o $(test-block-obj-y)
tests/test-rfifolock$(EXESUF): tests/test-rfifolock.o $(test-util-obj-y)
tests/test-throttle$(EXESUF): tests/test-throttle.o $(test-block-obj-y)
tests/test-blockjob-txn$(EXESUF): tests/test-blockjob-txn.o $(test-block-obj-y) $(test-util-obj-y)
tests/test-thread-pool$(EXESUF): tests/test-thread-pool.o $(test-block-obj-y)
tests/test-iov$(EXESUF): tests/test-iov.o $(test-util-obj-y)
tests/test-hbitmap$(EXESUF): tests/test-hbitmap.o $(test-util-obj-y)
tests/test-x86-cpuid$(EXESUF): tests/test-x86-cpuid.o
tests/test-xbzrle$(EXESUF): tests/test-xbzrle.o migration/xbzrle.o page_cache.o $(test-util-obj-y)
tests/test-cutils$(EXESUF): tests/test-cutils.o util/cutils.o
tests/test-int128$(EXESUF): tests/test-int128.o
tests/rcutorture$(EXESUF): tests/rcutorture.o $(test-util-obj-y)
tests/test-rcu-list$(EXESUF): tests/test-rcu-list.o $(test-util-obj-y)
tests/test-qdev-global-props$(EXESUF): tests/test-qdev-global-props.o \
hw/core/qdev.o hw/core/qdev-properties.o hw/core/hotplug.o\
hw/core/irq.o \
hw/core/fw-path-provider.o \
$(test-qapi-obj-y)
tests/test-vmstate$(EXESUF): tests/test-vmstate.o \
migration/vmstate.o migration/qemu-file.o migration/qemu-file-buf.o \
migration/qemu-file-unix.o qjson.o \
$(test-qom-obj-y)
tests/test-timed-average$(EXESUF): tests/test-timed-average.o qemu-timer.o \
$(test-util-obj-y)
tests/test-base64$(EXESUF): tests/test-base64.o \
libqemuutil.a libqemustub.a
tests/test-logging$(EXESUF): tests/test-logging.o $(test-util-obj-y)
tests/test-qapi-types.c tests/test-qapi-types.h :\
$(SRC_PATH)/tests/qapi-schema/qapi-schema-test.json $(SRC_PATH)/scripts/qapi-types.py $(qapi-py)
$(call quiet-command,$(PYTHON) $(SRC_PATH)/scripts/qapi-types.py \
$(gen-out-type) -o tests -p "test-" $<, \
" GEN $@")
tests/test-qapi-visit.c tests/test-qapi-visit.h :\
$(SRC_PATH)/tests/qapi-schema/qapi-schema-test.json $(SRC_PATH)/scripts/qapi-visit.py $(qapi-py)
$(call quiet-command,$(PYTHON) $(SRC_PATH)/scripts/qapi-visit.py \
$(gen-out-type) -o tests -p "test-" $<, \
" GEN $@")
tests/test-qmp-commands.h tests/test-qmp-marshal.c :\
$(SRC_PATH)/tests/qapi-schema/qapi-schema-test.json $(SRC_PATH)/scripts/qapi-commands.py $(qapi-py)
$(call quiet-command,$(PYTHON) $(SRC_PATH)/scripts/qapi-commands.py \
$(gen-out-type) -o tests -p "test-" $<, \
" GEN $@")
tests/test-qapi-event.c tests/test-qapi-event.h :\
$(SRC_PATH)/tests/qapi-schema/qapi-schema-test.json $(SRC_PATH)/scripts/qapi-event.py $(qapi-py)
$(call quiet-command,$(PYTHON) $(SRC_PATH)/scripts/qapi-event.py \
$(gen-out-type) -o tests -p "test-" $<, \
" GEN $@")
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
tests/test-qmp-introspect.c tests/test-qmp-introspect.h :\
$(SRC_PATH)/tests/qapi-schema/qapi-schema-test.json $(SRC_PATH)/scripts/qapi-introspect.py $(qapi-py)
$(call quiet-command,$(PYTHON) $(SRC_PATH)/scripts/qapi-introspect.py \
$(gen-out-type) -o tests -p "test-" $<, \
" GEN $@")
tests/test-string-output-visitor$(EXESUF): tests/test-string-output-visitor.o $(test-qapi-obj-y)
tests/test-string-input-visitor$(EXESUF): tests/test-string-input-visitor.o $(test-qapi-obj-y)
tests/test-qmp-event$(EXESUF): tests/test-qmp-event.o $(test-qapi-obj-y)
tests/test-qmp-output-visitor$(EXESUF): tests/test-qmp-output-visitor.o $(test-qapi-obj-y)
tests/test-qmp-input-visitor$(EXESUF): tests/test-qmp-input-visitor.o $(test-qapi-obj-y)
tests/test-qmp-input-strict$(EXESUF): tests/test-qmp-input-strict.o $(test-qapi-obj-y)
tests/test-qmp-commands$(EXESUF): tests/test-qmp-commands.o tests/test-qmp-marshal.o $(test-qapi-obj-y)
tests/test-visitor-serialization$(EXESUF): tests/test-visitor-serialization.o $(test-qapi-obj-y)
tests/test-opts-visitor$(EXESUF): tests/test-opts-visitor.o $(test-qapi-obj-y)
tests/test-mul64$(EXESUF): tests/test-mul64.o $(test-util-obj-y)
tests/test-bitops$(EXESUF): tests/test-bitops.o $(test-util-obj-y)
tests/test-crypto-hash$(EXESUF): tests/test-crypto-hash.o $(test-crypto-obj-y)
tests/test-crypto-cipher$(EXESUF): tests/test-crypto-cipher.o $(test-crypto-obj-y)
crypto: add QCryptoSecret object class for password/key handling Introduce a new QCryptoSecret object class which will be used for providing passwords and keys to other objects which need sensitive credentials. The new object can provide secret values directly as properties, or indirectly via a file. The latter includes support for file descriptor passing syntax on UNIX platforms. Ordinarily passing secret values directly as properties is insecure, since they are visible in process listings, or in log files showing the CLI args / QMP commands. It is possible to use AES-256-CBC to encrypt the secret values though, in which case all that is visible is the ciphertext. For ad hoc developer testing though, it is fine to provide the secrets directly without encryption so this is not explicitly forbidden. The anticipated scenario is that libvirtd will create a random master key per QEMU instance (eg /var/run/libvirt/qemu/$VMNAME.key) and will use that key to encrypt all passwords it provides to QEMU via '-object secret,....'. This avoids the need for libvirt (or other mgmt apps) to worry about file descriptor passing. It also makes life easier for people who are scripting the management of QEMU, for whom FD passing is significantly more complex. Providing data inline (insecure, only for ad hoc dev testing) $QEMU -object secret,id=sec0,data=letmein Providing data indirectly in raw format printf "letmein" > mypasswd.txt $QEMU -object secret,id=sec0,file=mypasswd.txt Providing data indirectly in base64 format $QEMU -object secret,id=sec0,file=mykey.b64,format=base64 Providing data with encryption $QEMU -object secret,id=master0,file=mykey.b64,format=base64 \ -object secret,id=sec0,data=[base64 ciphertext],\ keyid=master0,iv=[base64 IV],format=base64 Note that 'format' here refers to the format of the ciphertext data. The decrypted data must always be in raw byte format. More examples are shown in the updated docs. Reviewed-by: Eric Blake <eblake@redhat.com> Signed-off-by: Daniel P. Berrange <berrange@redhat.com>
2015-10-14 11:58:38 +03:00
tests/test-crypto-secret$(EXESUF): tests/test-crypto-secret.o $(test-crypto-obj-y)
tests/test-crypto-xts$(EXESUF): tests/test-crypto-xts.o $(test-crypto-obj-y)
tests/crypto-tls-x509-helpers.o-cflags := $(TASN1_CFLAGS)
tests/crypto-tls-x509-helpers.o-libs := $(TASN1_LIBS)
tests/pkix_asn1_tab.o-cflags := $(TASN1_CFLAGS)
tests/test-crypto-tlscredsx509.o-cflags := $(TASN1_CFLAGS)
tests/test-crypto-tlscredsx509$(EXESUF): tests/test-crypto-tlscredsx509.o \
tests/crypto-tls-x509-helpers.o tests/pkix_asn1_tab.o $(test-crypto-obj-y)
tests/test-crypto-tlssession.o-cflags := $(TASN1_CFLAGS)
tests/test-crypto-tlssession$(EXESUF): tests/test-crypto-tlssession.o \
tests/crypto-tls-x509-helpers.o tests/pkix_asn1_tab.o $(test-crypto-obj-y)
tests/test-io-task$(EXESUF): tests/test-io-task.o $(test-io-obj-y)
tests/test-io-channel-socket$(EXESUF): tests/test-io-channel-socket.o \
tests/io-channel-helpers.o $(test-io-obj-y)
tests/test-io-channel-file$(EXESUF): tests/test-io-channel-file.o \
tests/io-channel-helpers.o $(test-io-obj-y)
tests/test-io-channel-tls$(EXESUF): tests/test-io-channel-tls.o \
tests/crypto-tls-x509-helpers.o tests/pkix_asn1_tab.o \
tests/io-channel-helpers.o $(test-io-obj-y)
tests/test-io-channel-command$(EXESUF): tests/test-io-channel-command.o \
tests/io-channel-helpers.o $(test-io-obj-y)
tests/test-io-channel-buffer$(EXESUF): tests/test-io-channel-buffer.o \
tests/io-channel-helpers.o $(test-io-obj-y)
tests/test-crypto-pbkdf$(EXESUF): tests/test-crypto-pbkdf.o $(test-crypto-obj-y)
tests/test-crypto-ivgen$(EXESUF): tests/test-crypto-ivgen.o $(test-crypto-obj-y)
tests/test-crypto-afsplit$(EXESUF): tests/test-crypto-afsplit.o $(test-crypto-obj-y)
tests/test-crypto-block$(EXESUF): tests/test-crypto-block.o $(test-crypto-obj-y)
libqos-obj-y = tests/libqos/pci.o tests/libqos/fw_cfg.o tests/libqos/malloc.o
libqos-obj-y += tests/libqos/i2c.o tests/libqos/libqos.o
libqos-pc-obj-y = $(libqos-obj-y) tests/libqos/pci-pc.o
libqos-pc-obj-y += tests/libqos/malloc-pc.o tests/libqos/libqos-pc.o
libqos-pc-obj-y += tests/libqos/ahci.o
libqos-omap-obj-y = $(libqos-obj-y) tests/libqos/i2c-omap.o
libqos-imx-obj-y = $(libqos-obj-y) tests/libqos/i2c-imx.o
libqos-usb-obj-y = $(libqos-pc-obj-y) tests/libqos/usb.o
libqos-virtio-obj-y = $(libqos-pc-obj-y) tests/libqos/virtio.o tests/libqos/virtio-pci.o tests/libqos/virtio-mmio.o tests/libqos/malloc-generic.o
tests/device-introspect-test$(EXESUF): tests/device-introspect-test.o
tests/rtc-test$(EXESUF): tests/rtc-test.o
tests/m48t59-test$(EXESUF): tests/m48t59-test.o
tests/endianness-test$(EXESUF): tests/endianness-test.o
tests/spapr-phb-test$(EXESUF): tests/spapr-phb-test.o $(libqos-obj-y)
tests/fdc-test$(EXESUF): tests/fdc-test.o
tests/ide-test$(EXESUF): tests/ide-test.o $(libqos-pc-obj-y)
tests/ahci-test$(EXESUF): tests/ahci-test.o $(libqos-pc-obj-y)
tests/ipmi-kcs-test$(EXESUF): tests/ipmi-kcs-test.o
tests/ipmi-bt-test$(EXESUF): tests/ipmi-bt-test.o
tests/hd-geo-test$(EXESUF): tests/hd-geo-test.o
tests/boot-order-test$(EXESUF): tests/boot-order-test.o $(libqos-obj-y)
tests/bios-tables-test$(EXESUF): tests/bios-tables-test.o \
tests/boot-sector.o $(libqos-obj-y)
tests/pxe-test$(EXESUF): tests/pxe-test.o tests/boot-sector.o $(libqos-obj-y)
tests/tmp105-test$(EXESUF): tests/tmp105-test.o $(libqos-omap-obj-y)
tests/ds1338-test$(EXESUF): tests/ds1338-test.o $(libqos-imx-obj-y)
tests/i440fx-test$(EXESUF): tests/i440fx-test.o $(libqos-pc-obj-y)
tests/q35-test$(EXESUF): tests/q35-test.o $(libqos-pc-obj-y)
tests/fw_cfg-test$(EXESUF): tests/fw_cfg-test.o $(libqos-pc-obj-y)
tests/e1000-test$(EXESUF): tests/e1000-test.o
tests/rtl8139-test$(EXESUF): tests/rtl8139-test.o $(libqos-pc-obj-y)
tests/pcnet-test$(EXESUF): tests/pcnet-test.o
tests/eepro100-test$(EXESUF): tests/eepro100-test.o
tests/vmxnet3-test$(EXESUF): tests/vmxnet3-test.o
tests/ne2000-test$(EXESUF): tests/ne2000-test.o
tests/wdt_ib700-test$(EXESUF): tests/wdt_ib700-test.o
tests/tco-test$(EXESUF): tests/tco-test.o $(libqos-pc-obj-y)
tests/virtio-balloon-test$(EXESUF): tests/virtio-balloon-test.o
tests/virtio-blk-test$(EXESUF): tests/virtio-blk-test.o $(libqos-virtio-obj-y)
tests/virtio-net-test$(EXESUF): tests/virtio-net-test.o $(libqos-pc-obj-y) $(libqos-virtio-obj-y)
tests/virtio-rng-test$(EXESUF): tests/virtio-rng-test.o $(libqos-pc-obj-y)
tests/virtio-scsi-test$(EXESUF): tests/virtio-scsi-test.o $(libqos-virtio-obj-y)
tests/virtio-9p-test$(EXESUF): tests/virtio-9p-test.o
tests/virtio-serial-test$(EXESUF): tests/virtio-serial-test.o
tests/virtio-console-test$(EXESUF): tests/virtio-console-test.o
tests/tpci200-test$(EXESUF): tests/tpci200-test.o
tests/display-vga-test$(EXESUF): tests/display-vga-test.o
tests/ipoctal232-test$(EXESUF): tests/ipoctal232-test.o
tests/qom-test$(EXESUF): tests/qom-test.o
tests/drive_del-test$(EXESUF): tests/drive_del-test.o $(libqos-pc-obj-y)
tests/qdev-monitor-test$(EXESUF): tests/qdev-monitor-test.o $(libqos-pc-obj-y)
tests/nvme-test$(EXESUF): tests/nvme-test.o
tests/pvpanic-test$(EXESUF): tests/pvpanic-test.o
tests/i82801b11-test$(EXESUF): tests/i82801b11-test.o
tests/ac97-test$(EXESUF): tests/ac97-test.o
tests/es1370-test$(EXESUF): tests/es1370-test.o
tests/intel-hda-test$(EXESUF): tests/intel-hda-test.o
tests/ioh3420-test$(EXESUF): tests/ioh3420-test.o
tests/usb-hcd-ohci-test$(EXESUF): tests/usb-hcd-ohci-test.o $(libqos-usb-obj-y)
tests/usb-hcd-uhci-test$(EXESUF): tests/usb-hcd-uhci-test.o $(libqos-usb-obj-y)
tests/usb-hcd-ehci-test$(EXESUF): tests/usb-hcd-ehci-test.o $(libqos-usb-obj-y)
tests/usb-hcd-xhci-test$(EXESUF): tests/usb-hcd-xhci-test.o $(libqos-usb-obj-y)
tests/pc-cpu-test$(EXESUF): tests/pc-cpu-test.o
tests/vhost-user-test$(EXESUF): tests/vhost-user-test.o qemu-char.o qemu-timer.o $(qtest-obj-y) $(test-io-obj-y)
tests/qemu-iotests/socket_scm_helper$(EXESUF): tests/qemu-iotests/socket_scm_helper.o
tests/test-qemu-opts$(EXESUF): tests/test-qemu-opts.o $(test-util-obj-y)
tests/test-write-threshold$(EXESUF): tests/test-write-threshold.o $(test-block-obj-y)
tests/test-netfilter$(EXESUF): tests/test-netfilter.o $(qtest-obj-y)
tests/test-filter-mirror$(EXESUF): tests/test-filter-mirror.o $(qtest-obj-y)
tests/test-filter-redirector: Add unit test for filter-redirector In this unit test,we will test the filter redirector function. Case 1, tx traffic flow: qemu side | test side | +---------+ | +-------+ | backend <---------------+ sock0 | +----+----+ | +-------+ | | +----v----+ +-------+ | | rd0 +->+chardev| | +---------+ +---+---+ | | | +---------+ | | | rd1 <------+ | +----+----+ | | | +----v----+ | +-------+ | rd2 +--------------->sock1 | +---------+ | +-------+ + a. we(sock0) inject packet to qemu socket backend b. backend pass packet to filter redirector0(rd0) c. rd0 redirect packet to out_dev(chardev) which is connected with filter redirector1's(rd1) in_dev d. rd1 read this packet from in_dev, and pass to next filter redirector2(rd2) e. rd2 redirect packet to rd2's out_dev which is connected with an opened socketed(sock1) f. we read packet from sock1 and compare to what we inject Start qemu with: "-netdev socket,id=qtest-bn0,fd=%d " "-device rtl8139,netdev=qtest-bn0,id=qtest-e0 " "-chardev socket,id=redirector0,path=%s,server,nowait " "-chardev socket,id=redirector1,path=%s,server,nowait " "-chardev socket,id=redirector2,path=%s,nowait " "-object filter-redirector,id=qtest-f0,netdev=qtest-bn0," "queue=tx,outdev=redirector0 " "-object filter-redirector,id=qtest-f1,netdev=qtest-bn0," "queue=tx,indev=redirector2 " "-object filter-redirector,id=qtest-f2,netdev=qtest-bn0," "queue=tx,outdev=redirector1 " -------------------------------------- Case 2, rx traffic flow qemu side | test side | +---------+ | +-------+ | backend +---------------> sock1 | +----^----+ | +-------+ | | +----+----+ +-------+ | | rd0 +<-+chardev| | +---------+ +---+---+ | ^ | +---------+ | | | rd1 +------+ | +----^----+ | | | +----+----+ | +-------+ | rd2 <---------------+sock0 | +---------+ | +-------+ a. we(sock0) insert packet to filter redirector2(rd2) b. rd2 pass packet to filter redirector1(rd1) c. rd1 redirect packet to out_dev(chardev) which is connected with filter redirector0's(rd0) in_dev d. rd0 read this packet from in_dev, and pass ti to qemu backend which is connected with an opened socketed(sock1) e. we read packet from sock1 and compare to what we inject Start qemu with: "-netdev socket,id=qtest-bn0,fd=%d " "-device rtl8139,netdev=qtest-bn0,id=qtest-e0 " "-chardev socket,id=redirector0,path=%s,server,nowait " "-chardev socket,id=redirector1,path=%s,server,nowait " "-chardev socket,id=redirector2,path=%s,nowait " "-object filter-redirector,id=qtest-f0,netdev=qtest-bn0," "queue=rx,outdev=redirector0 " "-object filter-redirector,id=qtest-f1,netdev=qtest-bn0," "queue=rx,indev=redirector2 " "-object filter-redirector,id=qtest-f2,netdev=qtest-bn0," "queue=rx,outdev=redirector1 " Signed-off-by: Zhang Chen <zhangchen.fnst@cn.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Li Zhijian <lizhijian@cn.fujitsu.com> Signed-off-by: Jason Wang <jasowang@redhat.com>
2016-03-17 11:16:27 +03:00
tests/test-filter-redirector$(EXESUF): tests/test-filter-redirector.o $(qtest-obj-y)
tests/ivshmem-test$(EXESUF): tests/ivshmem-test.o contrib/ivshmem-server/ivshmem-server.o $(libqos-pc-obj-y)
tests/vhost-user-bridge: add vhost-user bridge application The test existing in QEMU for vhost-user feature is good for testing the management protocol, but does not allow actual traffic. This patch proposes Vhost-User Bridge application, which can serve the QEMU community as a comprehensive test by running real internet traffic by means of vhost-user interface. Essentially the Vhost-User Bridge is a very basic vhost-user backend for QEMU. It runs as a standalone user-level process. For packet processing Vhost-User Bridge uses an additional QEMU instance with a backend configured by "-net socket" as a shared VLAN. This way another QEMU virtual machine can effectively serve as a shared bus by means of UDP communication. For a more simple setup, the another QEMU instance running the SLiRP backend can be the same QEMU instance running vhost-user client. This Vhost-User Bridge implementation is very preliminary. It is missing many features. I has been studying vhost-user protocol internals, so I've written vhost-user-bridge bit by bit as I progressed through the protocol. Most probably its internal architecture will change significantly. To run Vhost-User Bridge application: 1. Build vhost-user-bridge with a regular procedure. This will create a vhost-user-bridge executable under tests directory: $ configure; make tests/vhost-user-bridge 2. Ensure the machine has hugepages enabled in kernel with command line like: default_hugepagesz=2M hugepagesz=2M hugepages=2048 3. Run Vhost-User Bridge with: $ tests/vhost-user-bridge The above will run vhost-user server listening for connections on UNIX domain socket /tmp/vubr.sock, and will try to connect by UDP to VLAN bridge to localhost:5555, while listening on localhost:4444 Run qemu with a virtio-net backed by vhost-user: $ qemu \ -enable-kvm -m 512 -smp 2 \ -object memory-backend-file,id=mem,size=512M,mem-path=/dev/hugepages,share=on \ -numa node,memdev=mem -mem-prealloc \ -chardev socket,id=char0,path=/tmp/vubr.sock \ -netdev type=vhost-user,id=mynet1,chardev=char0,vhostforce \ -device virtio-net-pci,netdev=mynet1 \ -net none \ -net socket,vlan=0,udp=localhost:4444,localaddr=localhost:5555 \ -net user,vlan=0 \ disk.img vhost-user-bridge was tested very lightly: it's able to bringup a linux on client VM with the virtio-net driver, and execute transmits and receives to the internet. I tested with "wget redhat.com", "dig redhat.com". PS. I've consulted DPDK's code for vhost-user during Vhost-User Bridge implementation. Signed-off-by: Victor Kaplansky <victork@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2015-10-28 15:53:07 +03:00
tests/vhost-user-bridge$(EXESUF): tests/vhost-user-bridge.o
ifeq ($(CONFIG_POSIX),y)
LIBS += -lutil
endif
# QTest rules
TARGETS=$(patsubst %-softmmu,%, $(filter %-softmmu,$(TARGET_DIRS)))
ifeq ($(CONFIG_POSIX),y)
tests: Fix how qom-test is run We want to run qom-test for every architecture, without having to manually add it to every architecture's list of tests. Commit 3687d53 accomplished this by adding it to every architecture's list automatically. However, some architectures inherit their tests from others, like this: check-qtest-x86_64-y = $(check-qtest-i386-y) check-qtest-microblazeel-y = $(check-qtest-microblaze-y) check-qtest-xtensaeb-y = $(check-qtest-xtensa-y) For such architectures, we ended up running the (slow!) test twice. Commit 2b8419c attempted to avoid this by adding the test only when it's not already present. Works only as long as we consider adding the test to the architectures on the left hand side *after* the ones on the right hand side: x86_64 after i386, microblazeel after microblaze, xtensaeb after xtensa. Turns out we consider them in $(SYSEMU_TARGET_LIST) order. Defined as SYSEMU_TARGET_LIST := $(subst -softmmu.mak,,$(notdir \ $(wildcard $(SRC_PATH)/default-configs/*-softmmu.mak))) On my machine, this results in the oder xtensa, x86_64, microblazeel, microblaze, i386. Consequently, qom-test runs twice for microblazeel and x86_64. Replace this complex and flawed machinery with a much simpler one: add generic tests (currently just qom-test) to check-qtest-generic-y instead of check-qtest-$(target)-y for every target, then run $(check-qtest-generic-y) for every target. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Andreas Färber <afaerber@suse.de> Message-Id: <1443689999-12182-5-git-send-email-armbru@redhat.com>
2015-10-01 11:59:53 +03:00
QTEST_TARGETS = $(TARGETS)
check-qtest-y=$(foreach TARGET,$(TARGETS), $(check-qtest-$(TARGET)-y))
tests: Fix how qom-test is run We want to run qom-test for every architecture, without having to manually add it to every architecture's list of tests. Commit 3687d53 accomplished this by adding it to every architecture's list automatically. However, some architectures inherit their tests from others, like this: check-qtest-x86_64-y = $(check-qtest-i386-y) check-qtest-microblazeel-y = $(check-qtest-microblaze-y) check-qtest-xtensaeb-y = $(check-qtest-xtensa-y) For such architectures, we ended up running the (slow!) test twice. Commit 2b8419c attempted to avoid this by adding the test only when it's not already present. Works only as long as we consider adding the test to the architectures on the left hand side *after* the ones on the right hand side: x86_64 after i386, microblazeel after microblaze, xtensaeb after xtensa. Turns out we consider them in $(SYSEMU_TARGET_LIST) order. Defined as SYSEMU_TARGET_LIST := $(subst -softmmu.mak,,$(notdir \ $(wildcard $(SRC_PATH)/default-configs/*-softmmu.mak))) On my machine, this results in the oder xtensa, x86_64, microblazeel, microblaze, i386. Consequently, qom-test runs twice for microblazeel and x86_64. Replace this complex and flawed machinery with a much simpler one: add generic tests (currently just qom-test) to check-qtest-generic-y instead of check-qtest-$(target)-y for every target, then run $(check-qtest-generic-y) for every target. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Andreas Färber <afaerber@suse.de> Message-Id: <1443689999-12182-5-git-send-email-armbru@redhat.com>
2015-10-01 11:59:53 +03:00
check-qtest-y += $(check-qtest-generic-y)
else
QTEST_TARGETS =
endif
qtest-obj-y = tests/libqtest.o $(test-util-obj-y)
$(check-qtest-y): $(qtest-obj-y)
tests/test-qga: tests/test-qga.o $(qtest-obj-y)
.PHONY: check-help
check-help:
@echo "Regression testing targets:"
@echo
@echo " make check Run all tests"
@echo " make check-qtest-TARGET Run qtest tests for given target"
@echo " make check-qtest Run qtest tests"
@echo " make check-unit Run qobject tests"
@echo " make check-qapi-schema Run QAPI schema tests"
@echo " make check-block Run block tests"
@echo " make check-report.html Generates an HTML test report"
@echo " make check-clean Clean the tests"
@echo
@echo "Please note that HTML reports do not regenerate if the unit tests"
@echo "has not changed."
@echo
@echo "The variable SPEED can be set to control the gtester speed setting."
@echo "Default options are -k and (for make V=1) --verbose; they can be"
@echo "changed with variable GTESTER_OPTIONS."
SPEED = quick
GTESTER_OPTIONS = -k $(if $(V),--verbose,-q)
GCOV_OPTIONS = -n $(if $(V),-f,)
# gtester tests, possibly with verbose output
.PHONY: $(patsubst %, check-qtest-%, $(QTEST_TARGETS))
$(patsubst %, check-qtest-%, $(QTEST_TARGETS)): check-qtest-%: $(check-qtest-y)
$(if $(CONFIG_GCOV),@rm -f *.gcda */*.gcda */*/*.gcda */*/*/*.gcda,)
$(call quiet-command,QTEST_QEMU_BINARY=$*-softmmu/qemu-system-$* \
QTEST_QEMU_IMG=qemu-img$(EXESUF) \
MALLOC_PERTURB_=$${MALLOC_PERTURB_:-$$((RANDOM % 255 + 1))} \
tests: Fix how qom-test is run We want to run qom-test for every architecture, without having to manually add it to every architecture's list of tests. Commit 3687d53 accomplished this by adding it to every architecture's list automatically. However, some architectures inherit their tests from others, like this: check-qtest-x86_64-y = $(check-qtest-i386-y) check-qtest-microblazeel-y = $(check-qtest-microblaze-y) check-qtest-xtensaeb-y = $(check-qtest-xtensa-y) For such architectures, we ended up running the (slow!) test twice. Commit 2b8419c attempted to avoid this by adding the test only when it's not already present. Works only as long as we consider adding the test to the architectures on the left hand side *after* the ones on the right hand side: x86_64 after i386, microblazeel after microblaze, xtensaeb after xtensa. Turns out we consider them in $(SYSEMU_TARGET_LIST) order. Defined as SYSEMU_TARGET_LIST := $(subst -softmmu.mak,,$(notdir \ $(wildcard $(SRC_PATH)/default-configs/*-softmmu.mak))) On my machine, this results in the oder xtensa, x86_64, microblazeel, microblaze, i386. Consequently, qom-test runs twice for microblazeel and x86_64. Replace this complex and flawed machinery with a much simpler one: add generic tests (currently just qom-test) to check-qtest-generic-y instead of check-qtest-$(target)-y for every target, then run $(check-qtest-generic-y) for every target. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Andreas Färber <afaerber@suse.de> Message-Id: <1443689999-12182-5-git-send-email-armbru@redhat.com>
2015-10-01 11:59:53 +03:00
gtester $(GTESTER_OPTIONS) -m=$(SPEED) $(check-qtest-$*-y) $(check-qtest-generic-y),"GTESTER $@")
$(if $(CONFIG_GCOV),@for f in $(gcov-files-$*-y) $(gcov-files-generic-y); do \
echo Gcov report for $$f:;\
$(GCOV) $(GCOV_OPTIONS) $$f -o `dirname $$f`; \
done,)
.PHONY: $(patsubst %, check-%, $(check-unit-y))
$(patsubst %, check-%, $(check-unit-y)): check-%: %
$(if $(CONFIG_GCOV),@rm -f *.gcda */*.gcda */*/*.gcda */*/*/*.gcda,)
$(call quiet-command, \
MALLOC_PERTURB_=$${MALLOC_PERTURB_:-$$((RANDOM % 255 + 1))} \
gtester $(GTESTER_OPTIONS) -m=$(SPEED) $*,"GTESTER $*")
$(if $(CONFIG_GCOV),@for f in $(gcov-files-$(subst tests/,,$*)-y) $(gcov-files-generic-y); do \
echo Gcov report for $$f:;\
$(GCOV) $(GCOV_OPTIONS) $$f -o `dirname $$f`; \
done,)
# gtester tests with XML output
$(patsubst %, check-report-qtest-%.xml, $(QTEST_TARGETS)): check-report-qtest-%.xml: $(check-qtest-y)
$(call quiet-command,QTEST_QEMU_BINARY=$*-softmmu/qemu-system-$* \
QTEST_QEMU_IMG=qemu-img$(EXESUF) \
gtester -q $(GTESTER_OPTIONS) -o $@ -m=$(SPEED) $(check-qtest-$*-y) $(check-qtest-generic-y),"GTESTER $@")
check-report-unit.xml: $(check-unit-y)
$(call quiet-command,gtester -q $(GTESTER_OPTIONS) -o $@ -m=$(SPEED) $^, "GTESTER $@")
# Reports and overall runs
check-report.xml: $(patsubst %,check-report-qtest-%.xml, $(QTEST_TARGETS)) check-report-unit.xml
$(call quiet-command,$(SRC_PATH)/scripts/gtester-cat $^ > $@, " GEN $@")
check-report.html: check-report.xml
$(call quiet-command,gtester-report $< > $@, " GEN $@")
# Other tests
QEMU_IOTESTS_HELPERS-$(CONFIG_LINUX) = tests/qemu-iotests/socket_scm_helper$(EXESUF)
.PHONY: check-tests/qemu-iotests-quick.sh
check-tests/qemu-iotests-quick.sh: tests/qemu-iotests-quick.sh qemu-img$(EXESUF) qemu-io$(EXESUF) $(QEMU_IOTESTS_HELPERS-y)
$<
.PHONY: check-tests/test-qapi.py
check-tests/test-qapi.py: tests/test-qapi.py
.PHONY: $(patsubst %, check-%, $(check-qapi-schema-y))
$(patsubst %, check-%, $(check-qapi-schema-y)): check-%.json: $(SRC_PATH)/%.json
$(call quiet-command, PYTHONPATH=$(SRC_PATH)/scripts \
$(PYTHON) $(SRC_PATH)/tests/qapi-schema/test-qapi.py \
$^ >$*.test.out 2>$*.test.err; \
echo $$? >$*.test.exit, \
" TEST $*.out")
@diff -q $(SRC_PATH)/$*.out $*.test.out
@# Sanitize error messages (make them independent of build directory)
@perl -p -e 's|\Q$(SRC_PATH)\E/||g' $*.test.err | diff -q $(SRC_PATH)/$*.err -
@diff -q $(SRC_PATH)/$*.exit $*.test.exit
# Consolidated targets
.PHONY: check-qapi-schema check-qtest check-unit check check-clean
check-qapi-schema: $(patsubst %,check-%, $(check-qapi-schema-y))
check-qtest: $(patsubst %,check-qtest-%, $(QTEST_TARGETS))
check-unit: $(patsubst %,check-%, $(check-unit-y))
check-block: $(patsubst %,check-%, $(check-block-y))
check: check-qapi-schema check-unit check-qtest
check-clean:
$(MAKE) -C tests/tcg clean
rm -rf $(check-unit-y) tests/*.o $(QEMU_IOTESTS_HELPERS-y)
rm -rf $(sort $(foreach target,$(SYSEMU_TARGET_LIST), $(check-qtest-$(target)-y)) $(check-qtest-generic-y))
clean: check-clean
# Build the help program automatically
all: $(QEMU_IOTESTS_HELPERS-y)
-include $(wildcard tests/*.d)
-include $(wildcard tests/libqos/*.d)