qemu/target/i386/helper.c

1203 lines
37 KiB
C
Raw Normal View History

/*
* i386 helpers (without register variable usage)
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/qapi-events-run-state.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "qemu/qemu-print.h"
#include "sysemu/kvm.h"
#include "sysemu/runstate.h"
#include "kvm_i386.h"
#ifndef CONFIG_USER_ONLY
#include "sysemu/tcg.h"
#include "sysemu/hw_accel.h"
#include "monitor/monitor.h"
#include "hw/i386/apic_internal.h"
#endif
void cpu_sync_bndcs_hflags(CPUX86State *env)
{
uint32_t hflags = env->hflags;
uint32_t hflags2 = env->hflags2;
uint32_t bndcsr;
if ((hflags & HF_CPL_MASK) == 3) {
bndcsr = env->bndcs_regs.cfgu;
} else {
bndcsr = env->msr_bndcfgs;
}
if ((env->cr[4] & CR4_OSXSAVE_MASK)
&& (env->xcr0 & XSTATE_BNDCSR_MASK)
&& (bndcsr & BNDCFG_ENABLE)) {
hflags |= HF_MPX_EN_MASK;
} else {
hflags &= ~HF_MPX_EN_MASK;
}
if (bndcsr & BNDCFG_BNDPRESERVE) {
hflags2 |= HF2_MPX_PR_MASK;
} else {
hflags2 &= ~HF2_MPX_PR_MASK;
}
env->hflags = hflags;
env->hflags2 = hflags2;
}
static void cpu_x86_version(CPUX86State *env, int *family, int *model)
{
int cpuver = env->cpuid_version;
if (family == NULL || model == NULL) {
return;
}
*family = (cpuver >> 8) & 0x0f;
*model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
}
/* Broadcast MCA signal for processor version 06H_EH and above */
int cpu_x86_support_mca_broadcast(CPUX86State *env)
{
int family = 0;
int model = 0;
cpu_x86_version(env, &family, &model);
if ((family == 6 && model >= 14) || family > 6) {
return 1;
}
return 0;
}
/***********************************************************/
/* x86 debug */
static const char *cc_op_str[CC_OP_NB] = {
"DYNAMIC",
"EFLAGS",
"MULB",
"MULW",
"MULL",
"MULQ",
"ADDB",
"ADDW",
"ADDL",
"ADDQ",
"ADCB",
"ADCW",
"ADCL",
"ADCQ",
"SUBB",
"SUBW",
"SUBL",
"SUBQ",
"SBBB",
"SBBW",
"SBBL",
"SBBQ",
"LOGICB",
"LOGICW",
"LOGICL",
"LOGICQ",
"INCB",
"INCW",
"INCL",
"INCQ",
"DECB",
"DECW",
"DECL",
"DECQ",
"SHLB",
"SHLW",
"SHLL",
"SHLQ",
"SARB",
"SARW",
"SARL",
"SARQ",
"BMILGB",
"BMILGW",
"BMILGL",
"BMILGQ",
"ADCX",
"ADOX",
"ADCOX",
"CLR",
};
static void
cpu_x86_dump_seg_cache(CPUX86State *env, FILE *f,
const char *name, struct SegmentCache *sc)
{
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
qemu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name,
sc->selector, sc->base, sc->limit,
sc->flags & 0x00ffff00);
} else
#endif
{
qemu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector,
(uint32_t)sc->base, sc->limit,
sc->flags & 0x00ffff00);
}
if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK))
goto done;
qemu_fprintf(f, " DPL=%d ",
(sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT);
if (sc->flags & DESC_S_MASK) {
if (sc->flags & DESC_CS_MASK) {
qemu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" :
((sc->flags & DESC_B_MASK) ? "CS32" : "CS16"));
qemu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-',
(sc->flags & DESC_R_MASK) ? 'R' : '-');
} else {
qemu_fprintf(f, (sc->flags & DESC_B_MASK
|| env->hflags & HF_LMA_MASK)
? "DS " : "DS16");
qemu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-',
(sc->flags & DESC_W_MASK) ? 'W' : '-');
}
qemu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-');
} else {
static const char *sys_type_name[2][16] = {
{ /* 32 bit mode */
"Reserved", "TSS16-avl", "LDT", "TSS16-busy",
"CallGate16", "TaskGate", "IntGate16", "TrapGate16",
"Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
"CallGate32", "Reserved", "IntGate32", "TrapGate32"
},
{ /* 64 bit mode */
"<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved", "Reserved",
"TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
"Reserved", "IntGate64", "TrapGate64"
}
};
qemu_fprintf(f, "%s",
sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0]
[(sc->flags & DESC_TYPE_MASK) >> DESC_TYPE_SHIFT]);
}
done:
qemu_fprintf(f, "\n");
}
#ifndef CONFIG_USER_ONLY
/* ARRAY_SIZE check is not required because
* DeliveryMode(dm) has a size of 3 bit.
*/
static inline const char *dm2str(uint32_t dm)
{
static const char *str[] = {
"Fixed",
"...",
"SMI",
"...",
"NMI",
"INIT",
"...",
"ExtINT"
};
return str[dm];
}
static void dump_apic_lvt(const char *name, uint32_t lvt, bool is_timer)
{
uint32_t dm = (lvt & APIC_LVT_DELIV_MOD) >> APIC_LVT_DELIV_MOD_SHIFT;
qemu_printf("%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s",
name, lvt,
lvt & APIC_LVT_INT_POLARITY ? "active-lo" : "active-hi",
lvt & APIC_LVT_LEVEL_TRIGGER ? "level" : "edge",
lvt & APIC_LVT_MASKED ? "masked" : "",
lvt & APIC_LVT_DELIV_STS ? "pending" : "",
!is_timer ?
"" : lvt & APIC_LVT_TIMER_PERIODIC ?
"periodic" : lvt & APIC_LVT_TIMER_TSCDEADLINE ?
"tsc-deadline" : "one-shot",
dm2str(dm));
if (dm != APIC_DM_NMI) {
qemu_printf(" (vec %u)\n", lvt & APIC_VECTOR_MASK);
} else {
qemu_printf("\n");
}
}
/* ARRAY_SIZE check is not required because
* destination shorthand has a size of 2 bit.
*/
static inline const char *shorthand2str(uint32_t shorthand)
{
const char *str[] = {
"no-shorthand", "self", "all-self", "all"
};
return str[shorthand];
}
static inline uint8_t divider_conf(uint32_t divide_conf)
{
uint8_t divide_val = ((divide_conf & 0x8) >> 1) | (divide_conf & 0x3);
return divide_val == 7 ? 1 : 2 << divide_val;
}
static inline void mask2str(char *str, uint32_t val, uint8_t size)
{
while (size--) {
*str++ = (val >> size) & 1 ? '1' : '0';
}
*str = 0;
}
#define MAX_LOGICAL_APIC_ID_MASK_SIZE 16
static void dump_apic_icr(APICCommonState *s, CPUX86State *env)
{
uint32_t icr = s->icr[0], icr2 = s->icr[1];
uint8_t dest_shorthand = \
(icr & APIC_ICR_DEST_SHORT) >> APIC_ICR_DEST_SHORT_SHIFT;
bool logical_mod = icr & APIC_ICR_DEST_MOD;
char apic_id_str[MAX_LOGICAL_APIC_ID_MASK_SIZE + 1];
uint32_t dest_field;
bool x2apic;
qemu_printf("ICR\t 0x%08x %s %s %s %s\n",
icr,
logical_mod ? "logical" : "physical",
icr & APIC_ICR_TRIGGER_MOD ? "level" : "edge",
icr & APIC_ICR_LEVEL ? "assert" : "de-assert",
shorthand2str(dest_shorthand));
qemu_printf("ICR2\t 0x%08x", icr2);
if (dest_shorthand != 0) {
qemu_printf("\n");
return;
}
x2apic = env->features[FEAT_1_ECX] & CPUID_EXT_X2APIC;
dest_field = x2apic ? icr2 : icr2 >> APIC_ICR_DEST_SHIFT;
if (!logical_mod) {
if (x2apic) {
qemu_printf(" cpu %u (X2APIC ID)\n", dest_field);
} else {
qemu_printf(" cpu %u (APIC ID)\n",
dest_field & APIC_LOGDEST_XAPIC_ID);
}
return;
}
if (s->dest_mode == 0xf) { /* flat mode */
mask2str(apic_id_str, icr2 >> APIC_ICR_DEST_SHIFT, 8);
qemu_printf(" mask %s (APIC ID)\n", apic_id_str);
} else if (s->dest_mode == 0) { /* cluster mode */
if (x2apic) {
mask2str(apic_id_str, dest_field & APIC_LOGDEST_X2APIC_ID, 16);
qemu_printf(" cluster %u mask %s (X2APIC ID)\n",
dest_field >> APIC_LOGDEST_X2APIC_SHIFT, apic_id_str);
} else {
mask2str(apic_id_str, dest_field & APIC_LOGDEST_XAPIC_ID, 4);
qemu_printf(" cluster %u mask %s (APIC ID)\n",
dest_field >> APIC_LOGDEST_XAPIC_SHIFT, apic_id_str);
}
}
}
static void dump_apic_interrupt(const char *name, uint32_t *ireg_tab,
uint32_t *tmr_tab)
{
int i, empty = true;
qemu_printf("%s\t ", name);
for (i = 0; i < 256; i++) {
if (apic_get_bit(ireg_tab, i)) {
qemu_printf("%u%s ", i,
apic_get_bit(tmr_tab, i) ? "(level)" : "");
empty = false;
}
}
qemu_printf("%s\n", empty ? "(none)" : "");
}
void x86_cpu_dump_local_apic_state(CPUState *cs, int flags)
{
X86CPU *cpu = X86_CPU(cs);
APICCommonState *s = APIC_COMMON(cpu->apic_state);
if (!s) {
qemu_printf("local apic state not available\n");
return;
}
uint32_t *lvt = s->lvt;
qemu_printf("dumping local APIC state for CPU %-2u\n\n",
CPU(cpu)->cpu_index);
dump_apic_lvt("LVT0", lvt[APIC_LVT_LINT0], false);
dump_apic_lvt("LVT1", lvt[APIC_LVT_LINT1], false);
dump_apic_lvt("LVTPC", lvt[APIC_LVT_PERFORM], false);
dump_apic_lvt("LVTERR", lvt[APIC_LVT_ERROR], false);
dump_apic_lvt("LVTTHMR", lvt[APIC_LVT_THERMAL], false);
dump_apic_lvt("LVTT", lvt[APIC_LVT_TIMER], true);
qemu_printf("Timer\t DCR=0x%x (divide by %u) initial_count = %u"
" current_count = %u\n",
s->divide_conf & APIC_DCR_MASK,
divider_conf(s->divide_conf),
s->initial_count, apic_get_current_count(s));
qemu_printf("SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n",
s->spurious_vec,
s->spurious_vec & APIC_SPURIO_ENABLED ? "enabled" : "disabled",
s->spurious_vec & APIC_SPURIO_FOCUS ? "on" : "off",
s->spurious_vec & APIC_VECTOR_MASK);
dump_apic_icr(s, &cpu->env);
qemu_printf("ESR\t 0x%08x\n", s->esr);
dump_apic_interrupt("ISR", s->isr, s->tmr);
dump_apic_interrupt("IRR", s->irr, s->tmr);
qemu_printf("\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x",
s->arb_id, s->tpr, s->dest_mode, s->log_dest);
if (s->dest_mode == 0) {
qemu_printf("(cluster %u: id %u)",
s->log_dest >> APIC_LOGDEST_XAPIC_SHIFT,
s->log_dest & APIC_LOGDEST_XAPIC_ID);
}
qemu_printf(" PPR 0x%02x\n", apic_get_ppr(s));
}
#else
void x86_cpu_dump_local_apic_state(CPUState *cs, int flags)
{
}
#endif /* !CONFIG_USER_ONLY */
#define DUMP_CODE_BYTES_TOTAL 50
#define DUMP_CODE_BYTES_BACKWARD 20
void x86_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
int eflags, i, nb;
char cc_op_name[32];
static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
eflags = cpu_compute_eflags(env);
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
qemu_fprintf(f, "RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n"
"RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n"
"R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n"
"R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n"
"RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
env->regs[R_EAX],
env->regs[R_EBX],
env->regs[R_ECX],
env->regs[R_EDX],
env->regs[R_ESI],
env->regs[R_EDI],
env->regs[R_EBP],
env->regs[R_ESP],
env->regs[8],
env->regs[9],
env->regs[10],
env->regs[11],
env->regs[12],
env->regs[13],
env->regs[14],
env->regs[15],
env->eip, eflags,
eflags & DF_MASK ? 'D' : '-',
eflags & CC_O ? 'O' : '-',
eflags & CC_S ? 'S' : '-',
eflags & CC_Z ? 'Z' : '-',
eflags & CC_A ? 'A' : '-',
eflags & CC_P ? 'P' : '-',
eflags & CC_C ? 'C' : '-',
env->hflags & HF_CPL_MASK,
(env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
(env->a20_mask >> 20) & 1,
(env->hflags >> HF_SMM_SHIFT) & 1,
cs->halted);
} else
#endif
{
qemu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
"ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
"EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
(uint32_t)env->regs[R_EAX],
(uint32_t)env->regs[R_EBX],
(uint32_t)env->regs[R_ECX],
(uint32_t)env->regs[R_EDX],
(uint32_t)env->regs[R_ESI],
(uint32_t)env->regs[R_EDI],
(uint32_t)env->regs[R_EBP],
(uint32_t)env->regs[R_ESP],
(uint32_t)env->eip, eflags,
eflags & DF_MASK ? 'D' : '-',
eflags & CC_O ? 'O' : '-',
eflags & CC_S ? 'S' : '-',
eflags & CC_Z ? 'Z' : '-',
eflags & CC_A ? 'A' : '-',
eflags & CC_P ? 'P' : '-',
eflags & CC_C ? 'C' : '-',
env->hflags & HF_CPL_MASK,
(env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
(env->a20_mask >> 20) & 1,
(env->hflags >> HF_SMM_SHIFT) & 1,
cs->halted);
}
for(i = 0; i < 6; i++) {
cpu_x86_dump_seg_cache(env, f, seg_name[i], &env->segs[i]);
}
cpu_x86_dump_seg_cache(env, f, "LDT", &env->ldt);
cpu_x86_dump_seg_cache(env, f, "TR", &env->tr);
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
qemu_fprintf(f, "GDT= %016" PRIx64 " %08x\n",
env->gdt.base, env->gdt.limit);
qemu_fprintf(f, "IDT= %016" PRIx64 " %08x\n",
env->idt.base, env->idt.limit);
qemu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n",
(uint32_t)env->cr[0],
env->cr[2],
env->cr[3],
(uint32_t)env->cr[4]);
for(i = 0; i < 4; i++)
qemu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]);
qemu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n",
env->dr[6], env->dr[7]);
} else
#endif
{
qemu_fprintf(f, "GDT= %08x %08x\n",
(uint32_t)env->gdt.base, env->gdt.limit);
qemu_fprintf(f, "IDT= %08x %08x\n",
(uint32_t)env->idt.base, env->idt.limit);
qemu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
(uint32_t)env->cr[0],
(uint32_t)env->cr[2],
(uint32_t)env->cr[3],
(uint32_t)env->cr[4]);
for(i = 0; i < 4; i++) {
qemu_fprintf(f, "DR%d=" TARGET_FMT_lx " ", i, env->dr[i]);
}
qemu_fprintf(f, "\nDR6=" TARGET_FMT_lx " DR7=" TARGET_FMT_lx "\n",
env->dr[6], env->dr[7]);
}
if (flags & CPU_DUMP_CCOP) {
if ((unsigned)env->cc_op < CC_OP_NB)
snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]);
else
snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op);
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
qemu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n",
env->cc_src, env->cc_dst,
cc_op_name);
} else
#endif
{
qemu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n",
(uint32_t)env->cc_src, (uint32_t)env->cc_dst,
cc_op_name);
}
}
qemu_fprintf(f, "EFER=%016" PRIx64 "\n", env->efer);
if (flags & CPU_DUMP_FPU) {
int fptag;
fptag = 0;
for(i = 0; i < 8; i++) {
fptag |= ((!env->fptags[i]) << i);
}
target/i386: fix IEEE SSE floating-point exception raising The SSE instruction implementations all fail to raise the expected IEEE floating-point exceptions because they do nothing to convert the exception state from the softfloat machinery into the exception flags in MXCSR. Fix this by adding such conversions. Unlike for x87, emulated SSE floating-point operations might be optimized using hardware floating point on the host, and so a different approach is taken that is compatible with such optimizations. The required invariant is that all exceptions set in env->sse_status (other than "denormal operand", for which the SSE semantics are different from those in the softfloat code) are ones that are set in the MXCSR; the emulated MXCSR is updated lazily when code reads MXCSR, while when code sets MXCSR, the exceptions in env->sse_status are set accordingly. A few instructions do not raise all the exceptions that would be raised by the softfloat code, and those instructions are made to save and restore the softfloat exception state accordingly. Nothing is done about "denormal operand"; setting that (only for the case when input denormals are *not* flushed to zero, the opposite of the logic in the softfloat code for such an exception) will require custom code for relevant instructions, or else architecture-specific conditionals in the softfloat code for when to set such an exception together with custom code for various SSE conversion and rounding instructions that do not set that exception. Nothing is done about trapping exceptions (for which there is minimal and largely broken support in QEMU's emulation in the x87 case and no support at all in the SSE case). Signed-off-by: Joseph Myers <joseph@codesourcery.com> Message-Id: <alpine.DEB.2.21.2006252358000.3832@digraph.polyomino.org.uk> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-06-26 02:58:31 +03:00
update_mxcsr_from_sse_status(env);
qemu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
env->fpuc,
(env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11,
env->fpstt,
fptag,
env->mxcsr);
for(i=0;i<8;i++) {
CPU_LDoubleU u;
u.d = env->fpregs[i].d;
qemu_fprintf(f, "FPR%d=%016" PRIx64 " %04x",
i, u.l.lower, u.l.upper);
if ((i & 1) == 1)
qemu_fprintf(f, "\n");
else
qemu_fprintf(f, " ");
}
if (env->hflags & HF_CS64_MASK)
nb = 16;
else
nb = 8;
for(i=0;i<nb;i++) {
qemu_fprintf(f, "XMM%02d=%08x%08x%08x%08x",
i,
env->xmm_regs[i].ZMM_L(3),
env->xmm_regs[i].ZMM_L(2),
env->xmm_regs[i].ZMM_L(1),
env->xmm_regs[i].ZMM_L(0));
if ((i & 1) == 1)
qemu_fprintf(f, "\n");
else
qemu_fprintf(f, " ");
}
}
if (flags & CPU_DUMP_CODE) {
target_ulong base = env->segs[R_CS].base + env->eip;
target_ulong offs = MIN(env->eip, DUMP_CODE_BYTES_BACKWARD);
uint8_t code;
char codestr[3];
qemu_fprintf(f, "Code=");
for (i = 0; i < DUMP_CODE_BYTES_TOTAL; i++) {
if (cpu_memory_rw_debug(cs, base - offs + i, &code, 1, 0) == 0) {
snprintf(codestr, sizeof(codestr), "%02x", code);
} else {
snprintf(codestr, sizeof(codestr), "??");
}
qemu_fprintf(f, "%s%s%s%s", i > 0 ? " " : "",
i == offs ? "<" : "", codestr, i == offs ? ">" : "");
}
qemu_fprintf(f, "\n");
}
}
/***********************************************************/
/* x86 mmu */
/* XXX: add PGE support */
void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
{
CPUX86State *env = &cpu->env;
a20_state = (a20_state != 0);
if (a20_state != ((env->a20_mask >> 20) & 1)) {
CPUState *cs = CPU(cpu);
qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
/* if the cpu is currently executing code, we must unlink it and
all the potentially executing TB */
cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
/* when a20 is changed, all the MMU mappings are invalid, so
we must flush everything */
tlb_flush(cs);
env->a20_mask = ~(1 << 20) | (a20_state << 20);
}
}
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
{
X86CPU *cpu = env_archcpu(env);
int pe_state;
qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
(env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
tlb_flush(CPU(cpu));
}
#ifdef TARGET_X86_64
if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
(env->efer & MSR_EFER_LME)) {
/* enter in long mode */
/* XXX: generate an exception */
if (!(env->cr[4] & CR4_PAE_MASK))
return;
env->efer |= MSR_EFER_LMA;
env->hflags |= HF_LMA_MASK;
} else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
(env->efer & MSR_EFER_LMA)) {
/* exit long mode */
env->efer &= ~MSR_EFER_LMA;
env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
env->eip &= 0xffffffff;
}
#endif
env->cr[0] = new_cr0 | CR0_ET_MASK;
/* update PE flag in hidden flags */
pe_state = (env->cr[0] & CR0_PE_MASK);
env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
/* ensure that ADDSEG is always set in real mode */
env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
/* update FPU flags */
env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
}
/* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
the PDPT */
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
{
env->cr[3] = new_cr3;
if (env->cr[0] & CR0_PG_MASK) {
qemu_log_mask(CPU_LOG_MMU,
"CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
tlb_flush(env_cpu(env));
}
}
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
{
uint32_t hflags;
#if defined(DEBUG_MMU)
printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
#endif
if ((new_cr4 ^ env->cr[4]) &
(CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
tlb_flush(env_cpu(env));
}
/* Clear bits we're going to recompute. */
hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK);
/* SSE handling */
if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
new_cr4 &= ~CR4_OSFXSR_MASK;
}
if (new_cr4 & CR4_OSFXSR_MASK) {
hflags |= HF_OSFXSR_MASK;
}
if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
new_cr4 &= ~CR4_SMAP_MASK;
}
if (new_cr4 & CR4_SMAP_MASK) {
hflags |= HF_SMAP_MASK;
}
if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
new_cr4 &= ~CR4_PKE_MASK;
}
env->cr[4] = new_cr4;
env->hflags = hflags;
cpu_sync_bndcs_hflags(env);
}
#if !defined(CONFIG_USER_ONLY)
hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
MemTxAttrs *attrs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
target_ulong pde_addr, pte_addr;
uint64_t pte;
int32_t a20_mask;
uint32_t page_offset;
int page_size;
*attrs = cpu_get_mem_attrs(env);
a20_mask = x86_get_a20_mask(env);
if (!(env->cr[0] & CR0_PG_MASK)) {
pte = addr & a20_mask;
page_size = 4096;
} else if (env->cr[4] & CR4_PAE_MASK) {
target_ulong pdpe_addr;
uint64_t pde, pdpe;
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
bool la57 = env->cr[4] & CR4_LA57_MASK;
uint64_t pml5e_addr, pml5e;
uint64_t pml4e_addr, pml4e;
int32_t sext;
/* test virtual address sign extension */
sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
if (sext != 0 && sext != -1) {
return -1;
}
if (la57) {
pml5e_addr = ((env->cr[3] & ~0xfff) +
(((addr >> 48) & 0x1ff) << 3)) & a20_mask;
pml5e = x86_ldq_phys(cs, pml5e_addr);
if (!(pml5e & PG_PRESENT_MASK)) {
return -1;
}
} else {
pml5e = env->cr[3];
}
pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
(((addr >> 39) & 0x1ff) << 3)) & a20_mask;
pml4e = x86_ldq_phys(cs, pml4e_addr);
if (!(pml4e & PG_PRESENT_MASK)) {
return -1;
}
pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
(((addr >> 30) & 0x1ff) << 3)) & a20_mask;
pdpe = x86_ldq_phys(cs, pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK)) {
return -1;
}
if (pdpe & PG_PSE_MASK) {
page_size = 1024 * 1024 * 1024;
pte = pdpe;
goto out;
}
} else
#endif
{
pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
a20_mask;
pdpe = x86_ldq_phys(cs, pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK))
return -1;
}
pde_addr = ((pdpe & PG_ADDRESS_MASK) +
(((addr >> 21) & 0x1ff) << 3)) & a20_mask;
pde = x86_ldq_phys(cs, pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
return -1;
}
if (pde & PG_PSE_MASK) {
/* 2 MB page */
page_size = 2048 * 1024;
pte = pde;
} else {
/* 4 KB page */
pte_addr = ((pde & PG_ADDRESS_MASK) +
(((addr >> 12) & 0x1ff) << 3)) & a20_mask;
page_size = 4096;
pte = x86_ldq_phys(cs, pte_addr);
}
if (!(pte & PG_PRESENT_MASK)) {
return -1;
}
} else {
uint32_t pde;
/* page directory entry */
pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
pde = x86_ldl_phys(cs, pde_addr);
if (!(pde & PG_PRESENT_MASK))
return -1;
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
page_size = 4096 * 1024;
} else {
/* page directory entry */
pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
pte = x86_ldl_phys(cs, pte_addr);
if (!(pte & PG_PRESENT_MASK)) {
return -1;
}
page_size = 4096;
}
pte = pte & a20_mask;
}
#ifdef TARGET_X86_64
out:
#endif
pte &= PG_ADDRESS_MASK & ~(page_size - 1);
page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
return pte | page_offset;
}
typedef struct MCEInjectionParams {
Monitor *mon;
int bank;
uint64_t status;
uint64_t mcg_status;
uint64_t addr;
uint64_t misc;
int flags;
} MCEInjectionParams;
static void emit_guest_memory_failure(MemoryFailureAction action, bool ar,
bool recursive)
{
MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive};
qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action,
&mff);
}
static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
{
MCEInjectionParams *params = data.host_ptr;
X86CPU *cpu = X86_CPU(cs);
CPUX86State *cenv = &cpu->env;
uint64_t *banks = cenv->mce_banks + 4 * params->bank;
g_autofree char *msg = NULL;
bool need_reset = false;
bool recursive;
bool ar = !!(params->status & MCI_STATUS_AR);
cpu_synchronize_state(cs);
recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP);
/*
* If there is an MCE exception being processed, ignore this SRAO MCE
* unless unconditional injection was requested.
*/
if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) {
emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive);
return;
}
if (params->status & MCI_STATUS_UC) {
/*
* if MSR_MCG_CTL is not all 1s, the uncorrected error
* reporting is disabled
*/
if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
monitor_printf(params->mon,
"CPU %d: Uncorrected error reporting disabled\n",
cs->cpu_index);
return;
}
/*
* if MSR_MCi_CTL is not all 1s, the uncorrected error
* reporting is disabled for the bank
*/
if (banks[0] != ~(uint64_t)0) {
monitor_printf(params->mon,
"CPU %d: Uncorrected error reporting disabled for"
" bank %d\n",
cs->cpu_index, params->bank);
return;
}
if (recursive) {
need_reset = true;
msg = g_strdup_printf("CPU %d: Previous MCE still in progress, "
"raising triple fault", cs->cpu_index);
}
if (!(cenv->cr[4] & CR4_MCE_MASK)) {
need_reset = true;
msg = g_strdup_printf("CPU %d: MCE capability is not enabled, "
"raising triple fault", cs->cpu_index);
}
if (need_reset) {
emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar,
recursive);
monitor_printf(params->mon, "%s", msg);
qemu_log_mask(CPU_LOG_RESET, "%s\n", msg);
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
return;
}
if (banks[1] & MCI_STATUS_VAL) {
params->status |= MCI_STATUS_OVER;
}
banks[2] = params->addr;
banks[3] = params->misc;
cenv->mcg_status = params->mcg_status;
banks[1] = params->status;
cpu_interrupt(cs, CPU_INTERRUPT_MCE);
} else if (!(banks[1] & MCI_STATUS_VAL)
|| !(banks[1] & MCI_STATUS_UC)) {
if (banks[1] & MCI_STATUS_VAL) {
params->status |= MCI_STATUS_OVER;
}
banks[2] = params->addr;
banks[3] = params->misc;
banks[1] = params->status;
} else {
banks[1] |= MCI_STATUS_OVER;
}
emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive);
}
void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
uint64_t status, uint64_t mcg_status, uint64_t addr,
uint64_t misc, int flags)
{
CPUState *cs = CPU(cpu);
CPUX86State *cenv = &cpu->env;
MCEInjectionParams params = {
.mon = mon,
.bank = bank,
.status = status,
.mcg_status = mcg_status,
.addr = addr,
.misc = misc,
.flags = flags,
};
unsigned bank_num = cenv->mcg_cap & 0xff;
if (!cenv->mcg_cap) {
monitor_printf(mon, "MCE injection not supported\n");
return;
}
if (bank >= bank_num) {
monitor_printf(mon, "Invalid MCE bank number\n");
return;
}
if (!(status & MCI_STATUS_VAL)) {
monitor_printf(mon, "Invalid MCE status code\n");
return;
}
if ((flags & MCE_INJECT_BROADCAST)
&& !cpu_x86_support_mca_broadcast(cenv)) {
monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
return;
}
run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
if (flags & MCE_INJECT_BROADCAST) {
CPUState *other_cs;
params.bank = 1;
params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
params.addr = 0;
params.misc = 0;
CPU_FOREACH(other_cs) {
if (other_cs == cs) {
continue;
}
run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
}
}
}
void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
{
X86CPU *cpu = env_archcpu(env);
CPUState *cs = env_cpu(env);
if (kvm_enabled() || whpx_enabled()) {
env->tpr_access_type = access;
cpu_interrupt(cs, CPU_INTERRUPT_TPR);
} else if (tcg_enabled()) {
icount: fix cpu_restore_state_from_tb for non-tb-exit cases In icount mode, instructions that access io memory spaces in the middle of the translation block invoke TB recompilation. After recompilation, such instructions become last in the TB and are allowed to access io memory spaces. When the code includes instruction like i386 'xchg eax, 0xffffd080' which accesses APIC, QEMU goes into an infinite loop of the recompilation. This instruction includes two memory accesses - one read and one write. After the first access, APIC calls cpu_report_tpr_access, which restores the CPU state to get the current eip. But cpu_restore_state_from_tb resets the cpu->can_do_io flag which makes the second memory access invalid. Therefore the second memory access causes a recompilation of the block. Then these operations repeat again and again. This patch moves resetting cpu->can_do_io flag from cpu_restore_state_from_tb to cpu_loop_exit* functions. It also adds a parameter for cpu_restore_state which controls restoring icount. There is no need to restore icount when we only query CPU state without breaking the TB. Restoring it in such cases leads to the incorrect flow of the virtual time. In most cases new parameter is true (icount should be recalculated). But there are two cases in i386 and openrisc when the CPU state is only queried without the need to break the TB. This patch fixes both of these cases. Signed-off-by: Pavel Dovgalyuk <Pavel.Dovgaluk@ispras.ru> Message-Id: <20180409091320.12504.35329.stgit@pasha-VirtualBox> [rth: Make can_do_io setting unconditional; move from cpu_exec; make cpu_loop_exit_{noexc,restore} call cpu_loop_exit.] Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2018-04-09 12:13:20 +03:00
cpu_restore_state(cs, cs->mem_io_pc, false);
apic_handle_tpr_access_report(cpu->apic_state, env->eip, access);
}
}
#endif /* !CONFIG_USER_ONLY */
int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
target_ulong *base, unsigned int *limit,
unsigned int *flags)
{
CPUState *cs = env_cpu(env);
SegmentCache *dt;
target_ulong ptr;
uint32_t e1, e2;
int index;
if (selector & 0x4)
dt = &env->ldt;
else
dt = &env->gdt;
index = selector & ~7;
ptr = dt->base + index;
if ((index + 7) > dt->limit
|| cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
|| cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
return 0;
*base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
*limit = (e1 & 0xffff) | (e2 & 0x000f0000);
if (e2 & DESC_G_MASK)
*limit = (*limit << 12) | 0xfff;
*flags = e2;
return 1;
}
#if !defined(CONFIG_USER_ONLY)
void do_cpu_init(X86CPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUX86State *env = &cpu->env;
CPUX86State *save = g_new(CPUX86State, 1);
int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
*save = *env;
cpu_reset(cs);
cs->interrupt_request = sipi;
memcpy(&env->start_init_save, &save->start_init_save,
offsetof(CPUX86State, end_init_save) -
offsetof(CPUX86State, start_init_save));
g_free(save);
if (kvm_enabled()) {
kvm_arch_do_init_vcpu(cpu);
}
apic_init_reset(cpu->apic_state);
}
void do_cpu_sipi(X86CPU *cpu)
{
apic_sipi(cpu->apic_state);
}
#else
void do_cpu_init(X86CPU *cpu)
{
}
void do_cpu_sipi(X86CPU *cpu)
{
}
#endif
/* Frob eflags into and out of the CPU temporary format. */
void x86_cpu_exec_enter(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
env->df = 1 - (2 * ((env->eflags >> 10) & 1));
CC_OP = CC_OP_EFLAGS;
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
}
void x86_cpu_exec_exit(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
env->eflags = cpu_compute_eflags(env);
}
#ifndef CONFIG_USER_ONLY
uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
MemTxAttrs attrs = cpu_get_mem_attrs(env);
AddressSpace *as = cpu_addressspace(cs, attrs);
return address_space_ldub(as, addr, attrs, NULL);
}
uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
MemTxAttrs attrs = cpu_get_mem_attrs(env);
AddressSpace *as = cpu_addressspace(cs, attrs);
return address_space_lduw(as, addr, attrs, NULL);
}
uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
MemTxAttrs attrs = cpu_get_mem_attrs(env);
AddressSpace *as = cpu_addressspace(cs, attrs);
return address_space_ldl(as, addr, attrs, NULL);
}
uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
MemTxAttrs attrs = cpu_get_mem_attrs(env);
AddressSpace *as = cpu_addressspace(cs, attrs);
return address_space_ldq(as, addr, attrs, NULL);
}
void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
MemTxAttrs attrs = cpu_get_mem_attrs(env);
AddressSpace *as = cpu_addressspace(cs, attrs);
address_space_stb(as, addr, val, attrs, NULL);
}
void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
MemTxAttrs attrs = cpu_get_mem_attrs(env);
AddressSpace *as = cpu_addressspace(cs, attrs);
address_space_stl_notdirty(as, addr, val, attrs, NULL);
}
void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
MemTxAttrs attrs = cpu_get_mem_attrs(env);
AddressSpace *as = cpu_addressspace(cs, attrs);
address_space_stw(as, addr, val, attrs, NULL);
}
void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
MemTxAttrs attrs = cpu_get_mem_attrs(env);
AddressSpace *as = cpu_addressspace(cs, attrs);
address_space_stl(as, addr, val, attrs, NULL);
}
void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
MemTxAttrs attrs = cpu_get_mem_attrs(env);
AddressSpace *as = cpu_addressspace(cs, attrs);
address_space_stq(as, addr, val, attrs, NULL);
}
#endif