qemu/util/aio-win32.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

444 lines
12 KiB
C
Raw Normal View History

/*
* QEMU aio implementation
*
* Copyright IBM Corp., 2008
* Copyright Red Hat Inc., 2012
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
* Paolo Bonzini <pbonzini@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "block/block.h"
#include "qemu/main-loop.h"
#include "qemu/queue.h"
#include "qemu/sockets.h"
aio: add polling mode to AioContext The AioContext event loop uses ppoll(2) or epoll_wait(2) to monitor file descriptors or until a timer expires. In cases like virtqueues, Linux AIO, and ThreadPool it is technically possible to wait for events via polling (i.e. continuously checking for events without blocking). Polling can be faster than blocking syscalls because file descriptors, the process scheduler, and system calls are bypassed. The main disadvantage to polling is that it increases CPU utilization. In classic polling configuration a full host CPU thread might run at 100% to respond to events as quickly as possible. This patch implements a timeout so we fall back to blocking syscalls if polling detects no activity. After the timeout no CPU cycles are wasted on polling until the next event loop iteration. The run_poll_handlers_begin() and run_poll_handlers_end() trace events are added to aid performance analysis and troubleshooting. If you need to know whether polling mode is being used, trace these events to find out. Note that the AioContext is now re-acquired before disabling notify_me in the non-polling case. This makes the code cleaner since notify_me was enabled outside the non-polling AioContext release region. This change is correct since it's safe to keep notify_me enabled longer (disabling is an optimization) but potentially causes unnecessary event_notifer_set() calls. I think the chance of performance regression is small here. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 20161201192652.9509-4-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2016-12-01 22:26:42 +03:00
#include "qapi/error.h"
#include "qemu/rcu_queue.h"
#include "qemu/error-report.h"
struct AioHandler {
EventNotifier *e;
IOHandler *io_read;
IOHandler *io_write;
EventNotifierHandler *io_notify;
GPollFD pfd;
int deleted;
void *opaque;
QLIST_ENTRY(AioHandler) node;
};
static void aio_remove_fd_handler(AioContext *ctx, AioHandler *node)
{
/*
* If the GSource is in the process of being destroyed then
* g_source_remove_poll() causes an assertion failure. Skip
* removal in that case, because glib cleans up its state during
* destruction anyway.
*/
if (!g_source_is_destroyed(&ctx->source)) {
g_source_remove_poll(&ctx->source, &node->pfd);
}
/* If aio_poll is in progress, just mark the node as deleted */
if (qemu_lockcnt_count(&ctx->list_lock)) {
node->deleted = 1;
node->pfd.revents = 0;
} else {
/* Otherwise, delete it for real. We can't just mark it as
* deleted because deleted nodes are only cleaned up after
* releasing the list_lock.
*/
QLIST_REMOVE(node, node);
g_free(node);
}
}
void aio_set_fd_handler(AioContext *ctx,
int fd,
IOHandler *io_read,
IOHandler *io_write,
aio: add polling mode to AioContext The AioContext event loop uses ppoll(2) or epoll_wait(2) to monitor file descriptors or until a timer expires. In cases like virtqueues, Linux AIO, and ThreadPool it is technically possible to wait for events via polling (i.e. continuously checking for events without blocking). Polling can be faster than blocking syscalls because file descriptors, the process scheduler, and system calls are bypassed. The main disadvantage to polling is that it increases CPU utilization. In classic polling configuration a full host CPU thread might run at 100% to respond to events as quickly as possible. This patch implements a timeout so we fall back to blocking syscalls if polling detects no activity. After the timeout no CPU cycles are wasted on polling until the next event loop iteration. The run_poll_handlers_begin() and run_poll_handlers_end() trace events are added to aid performance analysis and troubleshooting. If you need to know whether polling mode is being used, trace these events to find out. Note that the AioContext is now re-acquired before disabling notify_me in the non-polling case. This makes the code cleaner since notify_me was enabled outside the non-polling AioContext release region. This change is correct since it's safe to keep notify_me enabled longer (disabling is an optimization) but potentially causes unnecessary event_notifer_set() calls. I think the chance of performance regression is small here. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 20161201192652.9509-4-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2016-12-01 22:26:42 +03:00
AioPollFn *io_poll,
aio-posix: split poll check from ready handler Adaptive polling measures the execution time of the polling check plus handlers called when a polled event becomes ready. Handlers can take a significant amount of time, making it look like polling was running for a long time when in fact the event handler was running for a long time. For example, on Linux the io_submit(2) syscall invoked when a virtio-blk device's virtqueue becomes ready can take 10s of microseconds. This can exceed the default polling interval (32 microseconds) and cause adaptive polling to stop polling. By excluding the handler's execution time from the polling check we make the adaptive polling calculation more accurate. As a result, the event loop now stays in polling mode where previously it would have fallen back to file descriptor monitoring. The following data was collected with virtio-blk num-queues=2 event_idx=off using an IOThread. Before: 168k IOPS, IOThread syscalls: 9837.115 ( 0.020 ms): IO iothread1/620155 io_submit(ctx_id: 140512552468480, nr: 16, iocbpp: 0x7fcb9f937db0) = 16 9837.158 ( 0.002 ms): IO iothread1/620155 write(fd: 103, buf: 0x556a2ef71b88, count: 8) = 8 9837.161 ( 0.001 ms): IO iothread1/620155 write(fd: 104, buf: 0x556a2ef71b88, count: 8) = 8 9837.163 ( 0.001 ms): IO iothread1/620155 ppoll(ufds: 0x7fcb90002800, nfds: 4, tsp: 0x7fcb9f1342d0, sigsetsize: 8) = 3 9837.164 ( 0.001 ms): IO iothread1/620155 read(fd: 107, buf: 0x7fcb9f939cc0, count: 512) = 8 9837.174 ( 0.001 ms): IO iothread1/620155 read(fd: 105, buf: 0x7fcb9f939cc0, count: 512) = 8 9837.176 ( 0.001 ms): IO iothread1/620155 read(fd: 106, buf: 0x7fcb9f939cc0, count: 512) = 8 9837.209 ( 0.035 ms): IO iothread1/620155 io_submit(ctx_id: 140512552468480, nr: 32, iocbpp: 0x7fca7d0cebe0) = 32 174k IOPS (+3.6%), IOThread syscalls: 9809.566 ( 0.036 ms): IO iothread1/623061 io_submit(ctx_id: 140539805028352, nr: 32, iocbpp: 0x7fd0cdd62be0) = 32 9809.625 ( 0.001 ms): IO iothread1/623061 write(fd: 103, buf: 0x5647cfba5f58, count: 8) = 8 9809.627 ( 0.002 ms): IO iothread1/623061 write(fd: 104, buf: 0x5647cfba5f58, count: 8) = 8 9809.663 ( 0.036 ms): IO iothread1/623061 io_submit(ctx_id: 140539805028352, nr: 32, iocbpp: 0x7fd0d0388b50) = 32 Notice that ppoll(2) and eventfd read(2) syscalls are eliminated because the IOThread stays in polling mode instead of falling back to file descriptor monitoring. As usual, polling is not implemented on Windows so this patch ignores the new io_poll_read() callback in aio-win32.c. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Stefano Garzarella <sgarzare@redhat.com> Message-id: 20211207132336.36627-2-stefanha@redhat.com [Fixed up aio_set_event_notifier() calls in tests/unit/test-fdmon-epoll.c added after this series was queued. --Stefan] Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2021-12-07 16:23:31 +03:00
IOHandler *io_poll_ready,
void *opaque)
{
AioHandler *old_node;
AioHandler *node = NULL;
SOCKET s;
if (!fd_is_socket(fd)) {
error_report("fd=%d is not a socket, AIO implementation is missing", fd);
return;
}
s = _get_osfhandle(fd);
qemu_lockcnt_lock(&ctx->list_lock);
QLIST_FOREACH(old_node, &ctx->aio_handlers, node) {
if (old_node->pfd.fd == s && !old_node->deleted) {
break;
}
}
if (io_read || io_write) {
HANDLE event;
long bitmask = 0;
/* Alloc and insert if it's not already there */
node = g_new0(AioHandler, 1);
node->pfd.fd = s;
node->pfd.events = 0;
if (node->io_read) {
node->pfd.events |= G_IO_IN;
}
if (node->io_write) {
node->pfd.events |= G_IO_OUT;
}
node->e = &ctx->notifier;
/* Update handler with latest information */
node->opaque = opaque;
node->io_read = io_read;
node->io_write = io_write;
if (io_read) {
bitmask |= FD_READ | FD_ACCEPT | FD_CLOSE;
}
if (io_write) {
bitmask |= FD_WRITE | FD_CONNECT;
}
QLIST_INSERT_HEAD_RCU(&ctx->aio_handlers, node, node);
event = event_notifier_get_handle(&ctx->notifier);
qemu_socket_select(fd, event, bitmask, NULL);
}
if (old_node) {
aio_remove_fd_handler(ctx, old_node);
}
qemu_lockcnt_unlock(&ctx->list_lock);
aio_notify(ctx);
}
void aio_set_event_notifier(AioContext *ctx,
EventNotifier *e,
aio: add polling mode to AioContext The AioContext event loop uses ppoll(2) or epoll_wait(2) to monitor file descriptors or until a timer expires. In cases like virtqueues, Linux AIO, and ThreadPool it is technically possible to wait for events via polling (i.e. continuously checking for events without blocking). Polling can be faster than blocking syscalls because file descriptors, the process scheduler, and system calls are bypassed. The main disadvantage to polling is that it increases CPU utilization. In classic polling configuration a full host CPU thread might run at 100% to respond to events as quickly as possible. This patch implements a timeout so we fall back to blocking syscalls if polling detects no activity. After the timeout no CPU cycles are wasted on polling until the next event loop iteration. The run_poll_handlers_begin() and run_poll_handlers_end() trace events are added to aid performance analysis and troubleshooting. If you need to know whether polling mode is being used, trace these events to find out. Note that the AioContext is now re-acquired before disabling notify_me in the non-polling case. This makes the code cleaner since notify_me was enabled outside the non-polling AioContext release region. This change is correct since it's safe to keep notify_me enabled longer (disabling is an optimization) but potentially causes unnecessary event_notifer_set() calls. I think the chance of performance regression is small here. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 20161201192652.9509-4-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2016-12-01 22:26:42 +03:00
EventNotifierHandler *io_notify,
aio-posix: split poll check from ready handler Adaptive polling measures the execution time of the polling check plus handlers called when a polled event becomes ready. Handlers can take a significant amount of time, making it look like polling was running for a long time when in fact the event handler was running for a long time. For example, on Linux the io_submit(2) syscall invoked when a virtio-blk device's virtqueue becomes ready can take 10s of microseconds. This can exceed the default polling interval (32 microseconds) and cause adaptive polling to stop polling. By excluding the handler's execution time from the polling check we make the adaptive polling calculation more accurate. As a result, the event loop now stays in polling mode where previously it would have fallen back to file descriptor monitoring. The following data was collected with virtio-blk num-queues=2 event_idx=off using an IOThread. Before: 168k IOPS, IOThread syscalls: 9837.115 ( 0.020 ms): IO iothread1/620155 io_submit(ctx_id: 140512552468480, nr: 16, iocbpp: 0x7fcb9f937db0) = 16 9837.158 ( 0.002 ms): IO iothread1/620155 write(fd: 103, buf: 0x556a2ef71b88, count: 8) = 8 9837.161 ( 0.001 ms): IO iothread1/620155 write(fd: 104, buf: 0x556a2ef71b88, count: 8) = 8 9837.163 ( 0.001 ms): IO iothread1/620155 ppoll(ufds: 0x7fcb90002800, nfds: 4, tsp: 0x7fcb9f1342d0, sigsetsize: 8) = 3 9837.164 ( 0.001 ms): IO iothread1/620155 read(fd: 107, buf: 0x7fcb9f939cc0, count: 512) = 8 9837.174 ( 0.001 ms): IO iothread1/620155 read(fd: 105, buf: 0x7fcb9f939cc0, count: 512) = 8 9837.176 ( 0.001 ms): IO iothread1/620155 read(fd: 106, buf: 0x7fcb9f939cc0, count: 512) = 8 9837.209 ( 0.035 ms): IO iothread1/620155 io_submit(ctx_id: 140512552468480, nr: 32, iocbpp: 0x7fca7d0cebe0) = 32 174k IOPS (+3.6%), IOThread syscalls: 9809.566 ( 0.036 ms): IO iothread1/623061 io_submit(ctx_id: 140539805028352, nr: 32, iocbpp: 0x7fd0cdd62be0) = 32 9809.625 ( 0.001 ms): IO iothread1/623061 write(fd: 103, buf: 0x5647cfba5f58, count: 8) = 8 9809.627 ( 0.002 ms): IO iothread1/623061 write(fd: 104, buf: 0x5647cfba5f58, count: 8) = 8 9809.663 ( 0.036 ms): IO iothread1/623061 io_submit(ctx_id: 140539805028352, nr: 32, iocbpp: 0x7fd0d0388b50) = 32 Notice that ppoll(2) and eventfd read(2) syscalls are eliminated because the IOThread stays in polling mode instead of falling back to file descriptor monitoring. As usual, polling is not implemented on Windows so this patch ignores the new io_poll_read() callback in aio-win32.c. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Stefano Garzarella <sgarzare@redhat.com> Message-id: 20211207132336.36627-2-stefanha@redhat.com [Fixed up aio_set_event_notifier() calls in tests/unit/test-fdmon-epoll.c added after this series was queued. --Stefan] Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2021-12-07 16:23:31 +03:00
AioPollFn *io_poll,
EventNotifierHandler *io_poll_ready)
{
AioHandler *node;
qemu_lockcnt_lock(&ctx->list_lock);
QLIST_FOREACH(node, &ctx->aio_handlers, node) {
if (node->e == e && !node->deleted) {
break;
}
}
/* Are we deleting the fd handler? */
if (!io_notify) {
if (node) {
aio_remove_fd_handler(ctx, node);
}
} else {
if (node == NULL) {
/* Alloc and insert if it's not already there */
node = g_new0(AioHandler, 1);
node->e = e;
node->pfd.fd = (uintptr_t)event_notifier_get_handle(e);
node->pfd.events = G_IO_IN;
QLIST_INSERT_HEAD_RCU(&ctx->aio_handlers, node, node);
g_source_add_poll(&ctx->source, &node->pfd);
}
/* Update handler with latest information */
node->io_notify = io_notify;
}
qemu_lockcnt_unlock(&ctx->list_lock);
aio_notify(ctx);
}
void aio_set_event_notifier_poll(AioContext *ctx,
EventNotifier *notifier,
EventNotifierHandler *io_poll_begin,
EventNotifierHandler *io_poll_end)
{
/* Not implemented */
}
bool aio_prepare(AioContext *ctx)
{
static struct timeval tv0;
AioHandler *node;
bool have_select_revents = false;
fd_set rfds, wfds;
/*
* We have to walk very carefully in case aio_set_fd_handler is
* called while we're walking.
*/
qemu_lockcnt_inc(&ctx->list_lock);
/* fill fd sets */
FD_ZERO(&rfds);
FD_ZERO(&wfds);
QLIST_FOREACH_RCU(node, &ctx->aio_handlers, node) {
if (node->io_read) {
FD_SET ((SOCKET)node->pfd.fd, &rfds);
}
if (node->io_write) {
FD_SET ((SOCKET)node->pfd.fd, &wfds);
}
}
if (select(0, &rfds, &wfds, NULL, &tv0) > 0) {
QLIST_FOREACH_RCU(node, &ctx->aio_handlers, node) {
node->pfd.revents = 0;
if (FD_ISSET(node->pfd.fd, &rfds)) {
node->pfd.revents |= G_IO_IN;
have_select_revents = true;
}
if (FD_ISSET(node->pfd.fd, &wfds)) {
node->pfd.revents |= G_IO_OUT;
have_select_revents = true;
}
}
}
qemu_lockcnt_dec(&ctx->list_lock);
return have_select_revents;
}
bool aio_pending(AioContext *ctx)
{
AioHandler *node;
bool result = false;
/*
* We have to walk very carefully in case aio_set_fd_handler is
* called while we're walking.
*/
qemu_lockcnt_inc(&ctx->list_lock);
QLIST_FOREACH_RCU(node, &ctx->aio_handlers, node) {
if (node->pfd.revents && node->io_notify) {
result = true;
break;
}
if ((node->pfd.revents & G_IO_IN) && node->io_read) {
result = true;
break;
}
if ((node->pfd.revents & G_IO_OUT) && node->io_write) {
result = true;
break;
}
}
qemu_lockcnt_dec(&ctx->list_lock);
return result;
}
static bool aio_dispatch_handlers(AioContext *ctx, HANDLE event)
{
AioHandler *node;
bool progress = false;
AioHandler *tmp;
/*
* We have to walk very carefully in case aio_set_fd_handler is
* called while we're walking.
*/
QLIST_FOREACH_SAFE_RCU(node, &ctx->aio_handlers, node, tmp) {
int revents = node->pfd.revents;
if (!node->deleted &&
(revents || event_notifier_get_handle(node->e) == event) &&
node->io_notify) {
node->pfd.revents = 0;
node->io_notify(node->e);
aio: stop using .io_flush() Now that aio_poll() users check their termination condition themselves, it is no longer necessary to call .io_flush() handlers. The behavior of aio_poll() changes as follows: 1. .io_flush() is no longer invoked and file descriptors are *always* monitored. Previously returning 0 from .io_flush() would skip this file descriptor. Due to this change it is essential to check that requests are pending before calling qemu_aio_wait(). Failure to do so means we block, for example, waiting for an idle iSCSI socket to become readable when there are no requests. Currently all qemu_aio_wait()/aio_poll() callers check before calling. 2. aio_poll() now returns true if progress was made (BH or fd handlers executed) and false otherwise. Previously it would return true whenever 'busy', which means that .io_flush() returned true. The 'busy' concept no longer exists so just progress is returned. Due to this change we need to update tests/test-aio.c which asserts aio_poll() return values. Note that QEMU doesn't actually rely on these return values so only tests/test-aio.c cares. Note that ctx->notifier, the EventNotifier fd used for aio_notify(), is now handled as a special case. This is a little ugly but maintains aio_poll() semantics, i.e. aio_notify() does not count as 'progress' and aio_poll() avoids blocking when the user has not set any fd handlers yet. Patches after this remove .io_flush() handler code until we can finally drop the io_flush arguments to aio_set_fd_handler() and friends. Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2013-04-11 18:56:50 +04:00
/* aio_notify() does not count as progress */
if (node->e != &ctx->notifier) {
aio: stop using .io_flush() Now that aio_poll() users check their termination condition themselves, it is no longer necessary to call .io_flush() handlers. The behavior of aio_poll() changes as follows: 1. .io_flush() is no longer invoked and file descriptors are *always* monitored. Previously returning 0 from .io_flush() would skip this file descriptor. Due to this change it is essential to check that requests are pending before calling qemu_aio_wait(). Failure to do so means we block, for example, waiting for an idle iSCSI socket to become readable when there are no requests. Currently all qemu_aio_wait()/aio_poll() callers check before calling. 2. aio_poll() now returns true if progress was made (BH or fd handlers executed) and false otherwise. Previously it would return true whenever 'busy', which means that .io_flush() returned true. The 'busy' concept no longer exists so just progress is returned. Due to this change we need to update tests/test-aio.c which asserts aio_poll() return values. Note that QEMU doesn't actually rely on these return values so only tests/test-aio.c cares. Note that ctx->notifier, the EventNotifier fd used for aio_notify(), is now handled as a special case. This is a little ugly but maintains aio_poll() semantics, i.e. aio_notify() does not count as 'progress' and aio_poll() avoids blocking when the user has not set any fd handlers yet. Patches after this remove .io_flush() handler code until we can finally drop the io_flush arguments to aio_set_fd_handler() and friends. Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2013-04-11 18:56:50 +04:00
progress = true;
}
}
if (!node->deleted &&
(node->io_read || node->io_write)) {
node->pfd.revents = 0;
if ((revents & G_IO_IN) && node->io_read) {
node->io_read(node->opaque);
progress = true;
}
if ((revents & G_IO_OUT) && node->io_write) {
node->io_write(node->opaque);
progress = true;
}
/* if the next select() will return an event, we have progressed */
if (event == event_notifier_get_handle(&ctx->notifier)) {
WSANETWORKEVENTS ev;
WSAEnumNetworkEvents(node->pfd.fd, event, &ev);
if (ev.lNetworkEvents) {
progress = true;
}
}
}
if (node->deleted) {
if (qemu_lockcnt_dec_if_lock(&ctx->list_lock)) {
QLIST_REMOVE(node, node);
g_free(node);
qemu_lockcnt_inc_and_unlock(&ctx->list_lock);
}
}
}
return progress;
}
void aio_dispatch(AioContext *ctx)
{
qemu_lockcnt_inc(&ctx->list_lock);
aio_bh_poll(ctx);
aio_dispatch_handlers(ctx, INVALID_HANDLE_VALUE);
qemu_lockcnt_dec(&ctx->list_lock);
timerlistgroup_run_timers(&ctx->tlg);
}
bool aio_poll(AioContext *ctx, bool blocking)
{
AioHandler *node;
HANDLE events[MAXIMUM_WAIT_OBJECTS];
AioContext: fix broken ctx->dispatching optimization This patch rewrites the ctx->dispatching optimization, which was the cause of some mysterious hangs that could be reproduced on aarch64 KVM only. The hangs were indirectly caused by aio_poll() and in particular by flash memory updates's call to blk_write(), which invokes aio_poll(). Fun stuff: they had an extremely short race window, so much that adding all kind of tracing to either the kernel or QEMU made it go away (a single printf made it half as reproducible). On the plus side, the failure mode (a hang until the next keypress) made it very easy to examine the state of the process with a debugger. And there was a very nice reproducer from Laszlo, which failed pretty often (more than half of the time) on any version of QEMU with a non-debug kernel; it also failed fast, while still in the firmware. So, it could have been worse. For some unknown reason they happened only with virtio-scsi, but that's not important. It's more interesting that they disappeared with io=native, making thread-pool.c a likely suspect for where the bug arose. thread-pool.c is also one of the few places which use bottom halves across threads, by the way. I hope that no other similar bugs exist, but just in case :) I am going to describe how the successful debugging went... Since the likely culprit was the ctx->dispatching optimization, which mostly affects bottom halves, the first observation was that there are two qemu_bh_schedule() invocations in the thread pool: the one in the aio worker and the one in thread_pool_completion_bh. The latter always causes the optimization to trigger, the former may or may not. In order to restrict the possibilities, I introduced new functions qemu_bh_schedule_slow() and qemu_bh_schedule_fast(): /* qemu_bh_schedule_slow: */ ctx = bh->ctx; bh->idle = 0; if (atomic_xchg(&bh->scheduled, 1) == 0) { event_notifier_set(&ctx->notifier); } /* qemu_bh_schedule_fast: */ ctx = bh->ctx; bh->idle = 0; assert(ctx->dispatching); atomic_xchg(&bh->scheduled, 1); Notice how the atomic_xchg is still in qemu_bh_schedule_slow(). This was already debated a few months ago, so I assumed it to be correct. In retrospect this was a very good idea, as you'll see later. Changing thread_pool_completion_bh() to qemu_bh_schedule_fast() didn't trigger the assertion (as expected). Changing the worker's invocation to qemu_bh_schedule_slow() didn't hide the bug (another assumption which luckily held). This already limited heavily the amount of interaction between the threads, hinting that the problematic events must have triggered around thread_pool_completion_bh(). As mentioned early, invoking a debugger to examine the state of a hung process was pretty easy; the iothread was always waiting on a poll(..., -1) system call. Infinite timeouts are much rarer on x86, and this could be the reason why the bug was never observed there. With the buggy sequence more or less resolved to an interaction between thread_pool_completion_bh() and poll(..., -1), my "tracing" strategy was to just add a few qemu_clock_get_ns(QEMU_CLOCK_REALTIME) calls, hoping that the ordering of aio_ctx_prepare(), aio_ctx_dispatch, poll() and qemu_bh_schedule_fast() would provide some hint. The output was: (gdb) p last_prepare $3 = 103885451 (gdb) p last_dispatch $4 = 103876492 (gdb) p last_poll $5 = 115909333 (gdb) p last_schedule $6 = 115925212 Notice how the last call to qemu_poll_ns() came after aio_ctx_dispatch(). This makes little sense unless there is an aio_poll() call involved, and indeed with a slightly different instrumentation you can see that there is one: (gdb) p last_prepare $3 = 107569679 (gdb) p last_dispatch $4 = 107561600 (gdb) p last_aio_poll $5 = 110671400 (gdb) p last_schedule $6 = 110698917 So the scenario becomes clearer: iothread VCPU thread -------------------------------------------------------------------------- aio_ctx_prepare aio_ctx_check qemu_poll_ns(timeout=-1) aio_poll aio_dispatch thread_pool_completion_bh qemu_bh_schedule() At this point bh->scheduled = 1 and the iothread has not been woken up. The solution must be close, but this alone should not be a problem, because the bottom half is only rescheduled to account for rare situations (see commit 3c80ca1, thread-pool: avoid deadlock in nested aio_poll() calls, 2014-07-15). Introducing a third thread---a thread pool worker thread, which also does qemu_bh_schedule()---does bring out the problematic case. The third thread must be awakened *after* the callback is complete and thread_pool_completion_bh has redone the whole loop, explaining the short race window. And then this is what happens: thread pool worker -------------------------------------------------------------------------- <I/O completes> qemu_bh_schedule() Tada, bh->scheduled is already 1, so qemu_bh_schedule() does nothing and the iothread is never woken up. This is where the bh->scheduled optimization comes into play---it is correct, but removing it would have masked the bug. So, what is the bug? Well, the question asked by the ctx->dispatching optimization ("is any active aio_poll dispatching?") was wrong. The right question to ask instead is "is any active aio_poll *not* dispatching", i.e. in the prepare or poll phases? In that case, the aio_poll is sleeping or might go to sleep anytime soon, and the EventNotifier must be invoked to wake it up. In any other case (including if there is *no* active aio_poll at all!) we can just wait for the next prepare phase to pick up the event (e.g. a bottom half); the prepare phase will avoid the blocking and service the bottom half. Expressing the invariant with a logic formula, the broken one looked like: !(exists(thread): in_dispatching(thread)) => !optimize or equivalently: !(exists(thread): in_aio_poll(thread) && in_dispatching(thread)) => !optimize In the correct one, the negation is in a slightly different place: (exists(thread): in_aio_poll(thread) && !in_dispatching(thread)) => !optimize or equivalently: (exists(thread): in_prepare_or_poll(thread)) => !optimize Even if the difference boils down to moving an exclamation mark :) the implementation is quite different. However, I think the new one is simpler to understand. In the old implementation, the "exists" was implemented with a boolean value. This didn't really support well the case of multiple concurrent event loops, but I thought that this was okay: aio_poll holds the AioContext lock so there cannot be concurrent aio_poll invocations, and I was just considering nested event loops. However, aio_poll _could_ indeed be concurrent with the GSource. This is why I came up with the wrong invariant. In the new implementation, "exists" is computed simply by counting how many threads are in the prepare or poll phases. There are some interesting points to consider, but the gist of the idea remains: 1) AioContext can be used through GSource as well; as mentioned in the patch, bit 0 of the counter is reserved for the GSource. 2) the counter need not be updated for a non-blocking aio_poll, because it won't sleep forever anyway. This is just a matter of checking the "blocking" variable. This requires some changes to the win32 implementation, but is otherwise not too complicated. 3) as mentioned above, the new implementation will not call aio_notify when there is *no* active aio_poll at all. The tests have to be adjusted for this change. The calls to aio_notify in async.c are fine; they only want to kick aio_poll out of a blocking wait, but need not do anything if aio_poll is not running. 4) nested aio_poll: these just work with the new implementation; when a nested event loop is invoked, the outer event loop is never in the prepare or poll phases. The outer event loop thus has already decremented the counter. Reported-by: Richard W. M. Jones <rjones@redhat.com> Reported-by: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Tested-by: Richard W.M. Jones <rjones@redhat.com> Message-id: 1437487673-23740-5-git-send-email-pbonzini@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2015-07-21 17:07:51 +03:00
bool progress, have_select_revents, first;
unsigned count;
int timeout;
/*
* There cannot be two concurrent aio_poll calls for the same AioContext (or
* an aio_poll concurrent with a GSource prepare/check/dispatch callback).
* We rely on this below to avoid slow locked accesses to ctx->notify_me.
*
* aio_poll() may only be called in the AioContext's thread. iohandler_ctx
* is special in that it runs in the main thread, but that thread's context
* is qemu_aio_context.
*/
assert(in_aio_context_home_thread(ctx == iohandler_get_aio_context() ?
qemu_get_aio_context() : ctx));
progress = false;
/* aio_notify can avoid the expensive event_notifier_set if
* everything (file descriptors, bottom halves, timers) will
* be re-evaluated before the next blocking poll(). This is
* already true when aio_poll is called with blocking == false;
AioContext: fix broken ctx->dispatching optimization This patch rewrites the ctx->dispatching optimization, which was the cause of some mysterious hangs that could be reproduced on aarch64 KVM only. The hangs were indirectly caused by aio_poll() and in particular by flash memory updates's call to blk_write(), which invokes aio_poll(). Fun stuff: they had an extremely short race window, so much that adding all kind of tracing to either the kernel or QEMU made it go away (a single printf made it half as reproducible). On the plus side, the failure mode (a hang until the next keypress) made it very easy to examine the state of the process with a debugger. And there was a very nice reproducer from Laszlo, which failed pretty often (more than half of the time) on any version of QEMU with a non-debug kernel; it also failed fast, while still in the firmware. So, it could have been worse. For some unknown reason they happened only with virtio-scsi, but that's not important. It's more interesting that they disappeared with io=native, making thread-pool.c a likely suspect for where the bug arose. thread-pool.c is also one of the few places which use bottom halves across threads, by the way. I hope that no other similar bugs exist, but just in case :) I am going to describe how the successful debugging went... Since the likely culprit was the ctx->dispatching optimization, which mostly affects bottom halves, the first observation was that there are two qemu_bh_schedule() invocations in the thread pool: the one in the aio worker and the one in thread_pool_completion_bh. The latter always causes the optimization to trigger, the former may or may not. In order to restrict the possibilities, I introduced new functions qemu_bh_schedule_slow() and qemu_bh_schedule_fast(): /* qemu_bh_schedule_slow: */ ctx = bh->ctx; bh->idle = 0; if (atomic_xchg(&bh->scheduled, 1) == 0) { event_notifier_set(&ctx->notifier); } /* qemu_bh_schedule_fast: */ ctx = bh->ctx; bh->idle = 0; assert(ctx->dispatching); atomic_xchg(&bh->scheduled, 1); Notice how the atomic_xchg is still in qemu_bh_schedule_slow(). This was already debated a few months ago, so I assumed it to be correct. In retrospect this was a very good idea, as you'll see later. Changing thread_pool_completion_bh() to qemu_bh_schedule_fast() didn't trigger the assertion (as expected). Changing the worker's invocation to qemu_bh_schedule_slow() didn't hide the bug (another assumption which luckily held). This already limited heavily the amount of interaction between the threads, hinting that the problematic events must have triggered around thread_pool_completion_bh(). As mentioned early, invoking a debugger to examine the state of a hung process was pretty easy; the iothread was always waiting on a poll(..., -1) system call. Infinite timeouts are much rarer on x86, and this could be the reason why the bug was never observed there. With the buggy sequence more or less resolved to an interaction between thread_pool_completion_bh() and poll(..., -1), my "tracing" strategy was to just add a few qemu_clock_get_ns(QEMU_CLOCK_REALTIME) calls, hoping that the ordering of aio_ctx_prepare(), aio_ctx_dispatch, poll() and qemu_bh_schedule_fast() would provide some hint. The output was: (gdb) p last_prepare $3 = 103885451 (gdb) p last_dispatch $4 = 103876492 (gdb) p last_poll $5 = 115909333 (gdb) p last_schedule $6 = 115925212 Notice how the last call to qemu_poll_ns() came after aio_ctx_dispatch(). This makes little sense unless there is an aio_poll() call involved, and indeed with a slightly different instrumentation you can see that there is one: (gdb) p last_prepare $3 = 107569679 (gdb) p last_dispatch $4 = 107561600 (gdb) p last_aio_poll $5 = 110671400 (gdb) p last_schedule $6 = 110698917 So the scenario becomes clearer: iothread VCPU thread -------------------------------------------------------------------------- aio_ctx_prepare aio_ctx_check qemu_poll_ns(timeout=-1) aio_poll aio_dispatch thread_pool_completion_bh qemu_bh_schedule() At this point bh->scheduled = 1 and the iothread has not been woken up. The solution must be close, but this alone should not be a problem, because the bottom half is only rescheduled to account for rare situations (see commit 3c80ca1, thread-pool: avoid deadlock in nested aio_poll() calls, 2014-07-15). Introducing a third thread---a thread pool worker thread, which also does qemu_bh_schedule()---does bring out the problematic case. The third thread must be awakened *after* the callback is complete and thread_pool_completion_bh has redone the whole loop, explaining the short race window. And then this is what happens: thread pool worker -------------------------------------------------------------------------- <I/O completes> qemu_bh_schedule() Tada, bh->scheduled is already 1, so qemu_bh_schedule() does nothing and the iothread is never woken up. This is where the bh->scheduled optimization comes into play---it is correct, but removing it would have masked the bug. So, what is the bug? Well, the question asked by the ctx->dispatching optimization ("is any active aio_poll dispatching?") was wrong. The right question to ask instead is "is any active aio_poll *not* dispatching", i.e. in the prepare or poll phases? In that case, the aio_poll is sleeping or might go to sleep anytime soon, and the EventNotifier must be invoked to wake it up. In any other case (including if there is *no* active aio_poll at all!) we can just wait for the next prepare phase to pick up the event (e.g. a bottom half); the prepare phase will avoid the blocking and service the bottom half. Expressing the invariant with a logic formula, the broken one looked like: !(exists(thread): in_dispatching(thread)) => !optimize or equivalently: !(exists(thread): in_aio_poll(thread) && in_dispatching(thread)) => !optimize In the correct one, the negation is in a slightly different place: (exists(thread): in_aio_poll(thread) && !in_dispatching(thread)) => !optimize or equivalently: (exists(thread): in_prepare_or_poll(thread)) => !optimize Even if the difference boils down to moving an exclamation mark :) the implementation is quite different. However, I think the new one is simpler to understand. In the old implementation, the "exists" was implemented with a boolean value. This didn't really support well the case of multiple concurrent event loops, but I thought that this was okay: aio_poll holds the AioContext lock so there cannot be concurrent aio_poll invocations, and I was just considering nested event loops. However, aio_poll _could_ indeed be concurrent with the GSource. This is why I came up with the wrong invariant. In the new implementation, "exists" is computed simply by counting how many threads are in the prepare or poll phases. There are some interesting points to consider, but the gist of the idea remains: 1) AioContext can be used through GSource as well; as mentioned in the patch, bit 0 of the counter is reserved for the GSource. 2) the counter need not be updated for a non-blocking aio_poll, because it won't sleep forever anyway. This is just a matter of checking the "blocking" variable. This requires some changes to the win32 implementation, but is otherwise not too complicated. 3) as mentioned above, the new implementation will not call aio_notify when there is *no* active aio_poll at all. The tests have to be adjusted for this change. The calls to aio_notify in async.c are fine; they only want to kick aio_poll out of a blocking wait, but need not do anything if aio_poll is not running. 4) nested aio_poll: these just work with the new implementation; when a nested event loop is invoked, the outer event loop is never in the prepare or poll phases. The outer event loop thus has already decremented the counter. Reported-by: Richard W. M. Jones <rjones@redhat.com> Reported-by: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Tested-by: Richard W.M. Jones <rjones@redhat.com> Message-id: 1437487673-23740-5-git-send-email-pbonzini@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2015-07-21 17:07:51 +03:00
* if blocking == true, it is only true after poll() returns,
* so disable the optimization now.
*/
AioContext: fix broken ctx->dispatching optimization This patch rewrites the ctx->dispatching optimization, which was the cause of some mysterious hangs that could be reproduced on aarch64 KVM only. The hangs were indirectly caused by aio_poll() and in particular by flash memory updates's call to blk_write(), which invokes aio_poll(). Fun stuff: they had an extremely short race window, so much that adding all kind of tracing to either the kernel or QEMU made it go away (a single printf made it half as reproducible). On the plus side, the failure mode (a hang until the next keypress) made it very easy to examine the state of the process with a debugger. And there was a very nice reproducer from Laszlo, which failed pretty often (more than half of the time) on any version of QEMU with a non-debug kernel; it also failed fast, while still in the firmware. So, it could have been worse. For some unknown reason they happened only with virtio-scsi, but that's not important. It's more interesting that they disappeared with io=native, making thread-pool.c a likely suspect for where the bug arose. thread-pool.c is also one of the few places which use bottom halves across threads, by the way. I hope that no other similar bugs exist, but just in case :) I am going to describe how the successful debugging went... Since the likely culprit was the ctx->dispatching optimization, which mostly affects bottom halves, the first observation was that there are two qemu_bh_schedule() invocations in the thread pool: the one in the aio worker and the one in thread_pool_completion_bh. The latter always causes the optimization to trigger, the former may or may not. In order to restrict the possibilities, I introduced new functions qemu_bh_schedule_slow() and qemu_bh_schedule_fast(): /* qemu_bh_schedule_slow: */ ctx = bh->ctx; bh->idle = 0; if (atomic_xchg(&bh->scheduled, 1) == 0) { event_notifier_set(&ctx->notifier); } /* qemu_bh_schedule_fast: */ ctx = bh->ctx; bh->idle = 0; assert(ctx->dispatching); atomic_xchg(&bh->scheduled, 1); Notice how the atomic_xchg is still in qemu_bh_schedule_slow(). This was already debated a few months ago, so I assumed it to be correct. In retrospect this was a very good idea, as you'll see later. Changing thread_pool_completion_bh() to qemu_bh_schedule_fast() didn't trigger the assertion (as expected). Changing the worker's invocation to qemu_bh_schedule_slow() didn't hide the bug (another assumption which luckily held). This already limited heavily the amount of interaction between the threads, hinting that the problematic events must have triggered around thread_pool_completion_bh(). As mentioned early, invoking a debugger to examine the state of a hung process was pretty easy; the iothread was always waiting on a poll(..., -1) system call. Infinite timeouts are much rarer on x86, and this could be the reason why the bug was never observed there. With the buggy sequence more or less resolved to an interaction between thread_pool_completion_bh() and poll(..., -1), my "tracing" strategy was to just add a few qemu_clock_get_ns(QEMU_CLOCK_REALTIME) calls, hoping that the ordering of aio_ctx_prepare(), aio_ctx_dispatch, poll() and qemu_bh_schedule_fast() would provide some hint. The output was: (gdb) p last_prepare $3 = 103885451 (gdb) p last_dispatch $4 = 103876492 (gdb) p last_poll $5 = 115909333 (gdb) p last_schedule $6 = 115925212 Notice how the last call to qemu_poll_ns() came after aio_ctx_dispatch(). This makes little sense unless there is an aio_poll() call involved, and indeed with a slightly different instrumentation you can see that there is one: (gdb) p last_prepare $3 = 107569679 (gdb) p last_dispatch $4 = 107561600 (gdb) p last_aio_poll $5 = 110671400 (gdb) p last_schedule $6 = 110698917 So the scenario becomes clearer: iothread VCPU thread -------------------------------------------------------------------------- aio_ctx_prepare aio_ctx_check qemu_poll_ns(timeout=-1) aio_poll aio_dispatch thread_pool_completion_bh qemu_bh_schedule() At this point bh->scheduled = 1 and the iothread has not been woken up. The solution must be close, but this alone should not be a problem, because the bottom half is only rescheduled to account for rare situations (see commit 3c80ca1, thread-pool: avoid deadlock in nested aio_poll() calls, 2014-07-15). Introducing a third thread---a thread pool worker thread, which also does qemu_bh_schedule()---does bring out the problematic case. The third thread must be awakened *after* the callback is complete and thread_pool_completion_bh has redone the whole loop, explaining the short race window. And then this is what happens: thread pool worker -------------------------------------------------------------------------- <I/O completes> qemu_bh_schedule() Tada, bh->scheduled is already 1, so qemu_bh_schedule() does nothing and the iothread is never woken up. This is where the bh->scheduled optimization comes into play---it is correct, but removing it would have masked the bug. So, what is the bug? Well, the question asked by the ctx->dispatching optimization ("is any active aio_poll dispatching?") was wrong. The right question to ask instead is "is any active aio_poll *not* dispatching", i.e. in the prepare or poll phases? In that case, the aio_poll is sleeping or might go to sleep anytime soon, and the EventNotifier must be invoked to wake it up. In any other case (including if there is *no* active aio_poll at all!) we can just wait for the next prepare phase to pick up the event (e.g. a bottom half); the prepare phase will avoid the blocking and service the bottom half. Expressing the invariant with a logic formula, the broken one looked like: !(exists(thread): in_dispatching(thread)) => !optimize or equivalently: !(exists(thread): in_aio_poll(thread) && in_dispatching(thread)) => !optimize In the correct one, the negation is in a slightly different place: (exists(thread): in_aio_poll(thread) && !in_dispatching(thread)) => !optimize or equivalently: (exists(thread): in_prepare_or_poll(thread)) => !optimize Even if the difference boils down to moving an exclamation mark :) the implementation is quite different. However, I think the new one is simpler to understand. In the old implementation, the "exists" was implemented with a boolean value. This didn't really support well the case of multiple concurrent event loops, but I thought that this was okay: aio_poll holds the AioContext lock so there cannot be concurrent aio_poll invocations, and I was just considering nested event loops. However, aio_poll _could_ indeed be concurrent with the GSource. This is why I came up with the wrong invariant. In the new implementation, "exists" is computed simply by counting how many threads are in the prepare or poll phases. There are some interesting points to consider, but the gist of the idea remains: 1) AioContext can be used through GSource as well; as mentioned in the patch, bit 0 of the counter is reserved for the GSource. 2) the counter need not be updated for a non-blocking aio_poll, because it won't sleep forever anyway. This is just a matter of checking the "blocking" variable. This requires some changes to the win32 implementation, but is otherwise not too complicated. 3) as mentioned above, the new implementation will not call aio_notify when there is *no* active aio_poll at all. The tests have to be adjusted for this change. The calls to aio_notify in async.c are fine; they only want to kick aio_poll out of a blocking wait, but need not do anything if aio_poll is not running. 4) nested aio_poll: these just work with the new implementation; when a nested event loop is invoked, the outer event loop is never in the prepare or poll phases. The outer event loop thus has already decremented the counter. Reported-by: Richard W. M. Jones <rjones@redhat.com> Reported-by: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Tested-by: Richard W.M. Jones <rjones@redhat.com> Message-id: 1437487673-23740-5-git-send-email-pbonzini@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2015-07-21 17:07:51 +03:00
if (blocking) {
qatomic_set(&ctx->notify_me, qatomic_read(&ctx->notify_me) + 2);
/*
* Write ctx->notify_me before computing the timeout
* (reading bottom half flags, etc.). Pairs with
* smp_mb in aio_notify().
*/
smp_mb();
AioContext: fix broken ctx->dispatching optimization This patch rewrites the ctx->dispatching optimization, which was the cause of some mysterious hangs that could be reproduced on aarch64 KVM only. The hangs were indirectly caused by aio_poll() and in particular by flash memory updates's call to blk_write(), which invokes aio_poll(). Fun stuff: they had an extremely short race window, so much that adding all kind of tracing to either the kernel or QEMU made it go away (a single printf made it half as reproducible). On the plus side, the failure mode (a hang until the next keypress) made it very easy to examine the state of the process with a debugger. And there was a very nice reproducer from Laszlo, which failed pretty often (more than half of the time) on any version of QEMU with a non-debug kernel; it also failed fast, while still in the firmware. So, it could have been worse. For some unknown reason they happened only with virtio-scsi, but that's not important. It's more interesting that they disappeared with io=native, making thread-pool.c a likely suspect for where the bug arose. thread-pool.c is also one of the few places which use bottom halves across threads, by the way. I hope that no other similar bugs exist, but just in case :) I am going to describe how the successful debugging went... Since the likely culprit was the ctx->dispatching optimization, which mostly affects bottom halves, the first observation was that there are two qemu_bh_schedule() invocations in the thread pool: the one in the aio worker and the one in thread_pool_completion_bh. The latter always causes the optimization to trigger, the former may or may not. In order to restrict the possibilities, I introduced new functions qemu_bh_schedule_slow() and qemu_bh_schedule_fast(): /* qemu_bh_schedule_slow: */ ctx = bh->ctx; bh->idle = 0; if (atomic_xchg(&bh->scheduled, 1) == 0) { event_notifier_set(&ctx->notifier); } /* qemu_bh_schedule_fast: */ ctx = bh->ctx; bh->idle = 0; assert(ctx->dispatching); atomic_xchg(&bh->scheduled, 1); Notice how the atomic_xchg is still in qemu_bh_schedule_slow(). This was already debated a few months ago, so I assumed it to be correct. In retrospect this was a very good idea, as you'll see later. Changing thread_pool_completion_bh() to qemu_bh_schedule_fast() didn't trigger the assertion (as expected). Changing the worker's invocation to qemu_bh_schedule_slow() didn't hide the bug (another assumption which luckily held). This already limited heavily the amount of interaction between the threads, hinting that the problematic events must have triggered around thread_pool_completion_bh(). As mentioned early, invoking a debugger to examine the state of a hung process was pretty easy; the iothread was always waiting on a poll(..., -1) system call. Infinite timeouts are much rarer on x86, and this could be the reason why the bug was never observed there. With the buggy sequence more or less resolved to an interaction between thread_pool_completion_bh() and poll(..., -1), my "tracing" strategy was to just add a few qemu_clock_get_ns(QEMU_CLOCK_REALTIME) calls, hoping that the ordering of aio_ctx_prepare(), aio_ctx_dispatch, poll() and qemu_bh_schedule_fast() would provide some hint. The output was: (gdb) p last_prepare $3 = 103885451 (gdb) p last_dispatch $4 = 103876492 (gdb) p last_poll $5 = 115909333 (gdb) p last_schedule $6 = 115925212 Notice how the last call to qemu_poll_ns() came after aio_ctx_dispatch(). This makes little sense unless there is an aio_poll() call involved, and indeed with a slightly different instrumentation you can see that there is one: (gdb) p last_prepare $3 = 107569679 (gdb) p last_dispatch $4 = 107561600 (gdb) p last_aio_poll $5 = 110671400 (gdb) p last_schedule $6 = 110698917 So the scenario becomes clearer: iothread VCPU thread -------------------------------------------------------------------------- aio_ctx_prepare aio_ctx_check qemu_poll_ns(timeout=-1) aio_poll aio_dispatch thread_pool_completion_bh qemu_bh_schedule() At this point bh->scheduled = 1 and the iothread has not been woken up. The solution must be close, but this alone should not be a problem, because the bottom half is only rescheduled to account for rare situations (see commit 3c80ca1, thread-pool: avoid deadlock in nested aio_poll() calls, 2014-07-15). Introducing a third thread---a thread pool worker thread, which also does qemu_bh_schedule()---does bring out the problematic case. The third thread must be awakened *after* the callback is complete and thread_pool_completion_bh has redone the whole loop, explaining the short race window. And then this is what happens: thread pool worker -------------------------------------------------------------------------- <I/O completes> qemu_bh_schedule() Tada, bh->scheduled is already 1, so qemu_bh_schedule() does nothing and the iothread is never woken up. This is where the bh->scheduled optimization comes into play---it is correct, but removing it would have masked the bug. So, what is the bug? Well, the question asked by the ctx->dispatching optimization ("is any active aio_poll dispatching?") was wrong. The right question to ask instead is "is any active aio_poll *not* dispatching", i.e. in the prepare or poll phases? In that case, the aio_poll is sleeping or might go to sleep anytime soon, and the EventNotifier must be invoked to wake it up. In any other case (including if there is *no* active aio_poll at all!) we can just wait for the next prepare phase to pick up the event (e.g. a bottom half); the prepare phase will avoid the blocking and service the bottom half. Expressing the invariant with a logic formula, the broken one looked like: !(exists(thread): in_dispatching(thread)) => !optimize or equivalently: !(exists(thread): in_aio_poll(thread) && in_dispatching(thread)) => !optimize In the correct one, the negation is in a slightly different place: (exists(thread): in_aio_poll(thread) && !in_dispatching(thread)) => !optimize or equivalently: (exists(thread): in_prepare_or_poll(thread)) => !optimize Even if the difference boils down to moving an exclamation mark :) the implementation is quite different. However, I think the new one is simpler to understand. In the old implementation, the "exists" was implemented with a boolean value. This didn't really support well the case of multiple concurrent event loops, but I thought that this was okay: aio_poll holds the AioContext lock so there cannot be concurrent aio_poll invocations, and I was just considering nested event loops. However, aio_poll _could_ indeed be concurrent with the GSource. This is why I came up with the wrong invariant. In the new implementation, "exists" is computed simply by counting how many threads are in the prepare or poll phases. There are some interesting points to consider, but the gist of the idea remains: 1) AioContext can be used through GSource as well; as mentioned in the patch, bit 0 of the counter is reserved for the GSource. 2) the counter need not be updated for a non-blocking aio_poll, because it won't sleep forever anyway. This is just a matter of checking the "blocking" variable. This requires some changes to the win32 implementation, but is otherwise not too complicated. 3) as mentioned above, the new implementation will not call aio_notify when there is *no* active aio_poll at all. The tests have to be adjusted for this change. The calls to aio_notify in async.c are fine; they only want to kick aio_poll out of a blocking wait, but need not do anything if aio_poll is not running. 4) nested aio_poll: these just work with the new implementation; when a nested event loop is invoked, the outer event loop is never in the prepare or poll phases. The outer event loop thus has already decremented the counter. Reported-by: Richard W. M. Jones <rjones@redhat.com> Reported-by: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Tested-by: Richard W.M. Jones <rjones@redhat.com> Message-id: 1437487673-23740-5-git-send-email-pbonzini@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2015-07-21 17:07:51 +03:00
}
qemu_lockcnt_inc(&ctx->list_lock);
have_select_revents = aio_prepare(ctx);
/* fill fd sets */
count = 0;
QLIST_FOREACH_RCU(node, &ctx->aio_handlers, node) {
if (!node->deleted && node->io_notify) {
assert(count < MAXIMUM_WAIT_OBJECTS);
events[count++] = event_notifier_get_handle(node->e);
}
}
first = true;
/* ctx->notifier is always registered. */
assert(count > 0);
/* Multiple iterations, all of them non-blocking except the first,
* may be necessary to process all pending events. After the first
* WaitForMultipleObjects call ctx->notify_me will be decremented.
*/
do {
HANDLE event;
int ret;
timeout = blocking && !have_select_revents
? qemu_timeout_ns_to_ms(aio_compute_timeout(ctx)) : 0;
ret = WaitForMultipleObjects(count, events, FALSE, timeout);
AioContext: fix broken ctx->dispatching optimization This patch rewrites the ctx->dispatching optimization, which was the cause of some mysterious hangs that could be reproduced on aarch64 KVM only. The hangs were indirectly caused by aio_poll() and in particular by flash memory updates's call to blk_write(), which invokes aio_poll(). Fun stuff: they had an extremely short race window, so much that adding all kind of tracing to either the kernel or QEMU made it go away (a single printf made it half as reproducible). On the plus side, the failure mode (a hang until the next keypress) made it very easy to examine the state of the process with a debugger. And there was a very nice reproducer from Laszlo, which failed pretty often (more than half of the time) on any version of QEMU with a non-debug kernel; it also failed fast, while still in the firmware. So, it could have been worse. For some unknown reason they happened only with virtio-scsi, but that's not important. It's more interesting that they disappeared with io=native, making thread-pool.c a likely suspect for where the bug arose. thread-pool.c is also one of the few places which use bottom halves across threads, by the way. I hope that no other similar bugs exist, but just in case :) I am going to describe how the successful debugging went... Since the likely culprit was the ctx->dispatching optimization, which mostly affects bottom halves, the first observation was that there are two qemu_bh_schedule() invocations in the thread pool: the one in the aio worker and the one in thread_pool_completion_bh. The latter always causes the optimization to trigger, the former may or may not. In order to restrict the possibilities, I introduced new functions qemu_bh_schedule_slow() and qemu_bh_schedule_fast(): /* qemu_bh_schedule_slow: */ ctx = bh->ctx; bh->idle = 0; if (atomic_xchg(&bh->scheduled, 1) == 0) { event_notifier_set(&ctx->notifier); } /* qemu_bh_schedule_fast: */ ctx = bh->ctx; bh->idle = 0; assert(ctx->dispatching); atomic_xchg(&bh->scheduled, 1); Notice how the atomic_xchg is still in qemu_bh_schedule_slow(). This was already debated a few months ago, so I assumed it to be correct. In retrospect this was a very good idea, as you'll see later. Changing thread_pool_completion_bh() to qemu_bh_schedule_fast() didn't trigger the assertion (as expected). Changing the worker's invocation to qemu_bh_schedule_slow() didn't hide the bug (another assumption which luckily held). This already limited heavily the amount of interaction between the threads, hinting that the problematic events must have triggered around thread_pool_completion_bh(). As mentioned early, invoking a debugger to examine the state of a hung process was pretty easy; the iothread was always waiting on a poll(..., -1) system call. Infinite timeouts are much rarer on x86, and this could be the reason why the bug was never observed there. With the buggy sequence more or less resolved to an interaction between thread_pool_completion_bh() and poll(..., -1), my "tracing" strategy was to just add a few qemu_clock_get_ns(QEMU_CLOCK_REALTIME) calls, hoping that the ordering of aio_ctx_prepare(), aio_ctx_dispatch, poll() and qemu_bh_schedule_fast() would provide some hint. The output was: (gdb) p last_prepare $3 = 103885451 (gdb) p last_dispatch $4 = 103876492 (gdb) p last_poll $5 = 115909333 (gdb) p last_schedule $6 = 115925212 Notice how the last call to qemu_poll_ns() came after aio_ctx_dispatch(). This makes little sense unless there is an aio_poll() call involved, and indeed with a slightly different instrumentation you can see that there is one: (gdb) p last_prepare $3 = 107569679 (gdb) p last_dispatch $4 = 107561600 (gdb) p last_aio_poll $5 = 110671400 (gdb) p last_schedule $6 = 110698917 So the scenario becomes clearer: iothread VCPU thread -------------------------------------------------------------------------- aio_ctx_prepare aio_ctx_check qemu_poll_ns(timeout=-1) aio_poll aio_dispatch thread_pool_completion_bh qemu_bh_schedule() At this point bh->scheduled = 1 and the iothread has not been woken up. The solution must be close, but this alone should not be a problem, because the bottom half is only rescheduled to account for rare situations (see commit 3c80ca1, thread-pool: avoid deadlock in nested aio_poll() calls, 2014-07-15). Introducing a third thread---a thread pool worker thread, which also does qemu_bh_schedule()---does bring out the problematic case. The third thread must be awakened *after* the callback is complete and thread_pool_completion_bh has redone the whole loop, explaining the short race window. And then this is what happens: thread pool worker -------------------------------------------------------------------------- <I/O completes> qemu_bh_schedule() Tada, bh->scheduled is already 1, so qemu_bh_schedule() does nothing and the iothread is never woken up. This is where the bh->scheduled optimization comes into play---it is correct, but removing it would have masked the bug. So, what is the bug? Well, the question asked by the ctx->dispatching optimization ("is any active aio_poll dispatching?") was wrong. The right question to ask instead is "is any active aio_poll *not* dispatching", i.e. in the prepare or poll phases? In that case, the aio_poll is sleeping or might go to sleep anytime soon, and the EventNotifier must be invoked to wake it up. In any other case (including if there is *no* active aio_poll at all!) we can just wait for the next prepare phase to pick up the event (e.g. a bottom half); the prepare phase will avoid the blocking and service the bottom half. Expressing the invariant with a logic formula, the broken one looked like: !(exists(thread): in_dispatching(thread)) => !optimize or equivalently: !(exists(thread): in_aio_poll(thread) && in_dispatching(thread)) => !optimize In the correct one, the negation is in a slightly different place: (exists(thread): in_aio_poll(thread) && !in_dispatching(thread)) => !optimize or equivalently: (exists(thread): in_prepare_or_poll(thread)) => !optimize Even if the difference boils down to moving an exclamation mark :) the implementation is quite different. However, I think the new one is simpler to understand. In the old implementation, the "exists" was implemented with a boolean value. This didn't really support well the case of multiple concurrent event loops, but I thought that this was okay: aio_poll holds the AioContext lock so there cannot be concurrent aio_poll invocations, and I was just considering nested event loops. However, aio_poll _could_ indeed be concurrent with the GSource. This is why I came up with the wrong invariant. In the new implementation, "exists" is computed simply by counting how many threads are in the prepare or poll phases. There are some interesting points to consider, but the gist of the idea remains: 1) AioContext can be used through GSource as well; as mentioned in the patch, bit 0 of the counter is reserved for the GSource. 2) the counter need not be updated for a non-blocking aio_poll, because it won't sleep forever anyway. This is just a matter of checking the "blocking" variable. This requires some changes to the win32 implementation, but is otherwise not too complicated. 3) as mentioned above, the new implementation will not call aio_notify when there is *no* active aio_poll at all. The tests have to be adjusted for this change. The calls to aio_notify in async.c are fine; they only want to kick aio_poll out of a blocking wait, but need not do anything if aio_poll is not running. 4) nested aio_poll: these just work with the new implementation; when a nested event loop is invoked, the outer event loop is never in the prepare or poll phases. The outer event loop thus has already decremented the counter. Reported-by: Richard W. M. Jones <rjones@redhat.com> Reported-by: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Tested-by: Richard W.M. Jones <rjones@redhat.com> Message-id: 1437487673-23740-5-git-send-email-pbonzini@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2015-07-21 17:07:51 +03:00
if (blocking) {
assert(first);
qatomic_store_release(&ctx->notify_me,
qatomic_read(&ctx->notify_me) - 2);
aio: Do aio_notify_accept only during blocking aio_poll An aio_notify() pairs with an aio_notify_accept(). The former should happen in the main thread or a vCPU thread, and the latter should be done in the IOThread. There is one rare case that the main thread or vCPU thread may "steal" the aio_notify() event just raised by itself, in bdrv_set_aio_context() [1]. The sequence is like this: main thread IO Thread =============================================================== bdrv_drained_begin() aio_disable_external(ctx) aio_poll(ctx, true) ctx->notify_me += 2 ... bdrv_drained_end() ... aio_notify() ... bdrv_set_aio_context() aio_poll(ctx, false) [1] aio_notify_accept(ctx) ppoll() /* Hang! */ [1] is problematic. It will clear the ctx->notifier event so that the blocked ppoll() will not return. (For the curious, this bug was noticed when booting a number of VMs simultaneously in RHV. One or two of the VMs will hit this race condition, making the VIRTIO device unresponsive to I/O commands. When it hangs, Seabios is busy waiting for a read request to complete (read MBR), right after initializing the virtio-blk-pci device, using 100% guest CPU. See also https://bugzilla.redhat.com/show_bug.cgi?id=1562750 for the original bug analysis.) aio_notify() only injects an event when ctx->notify_me is set, correspondingly aio_notify_accept() is only useful when ctx->notify_me _was_ set. Move the call to it into the "blocking" branch. This will effectively skip [1] and fix the hang. Furthermore, blocking aio_poll is only allowed on home thread (in_aio_context_home_thread), because otherwise two blocking aio_poll()'s can steal each other's ctx->notifier event and cause hanging just like described above. Cc: qemu-stable@nongnu.org Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Fam Zheng <famz@redhat.com> Message-Id: <20180809132259.18402-3-famz@redhat.com> Signed-off-by: Fam Zheng <famz@redhat.com>
2018-08-09 16:22:59 +03:00
aio_notify_accept(ctx);
AioContext: fix broken ctx->dispatching optimization This patch rewrites the ctx->dispatching optimization, which was the cause of some mysterious hangs that could be reproduced on aarch64 KVM only. The hangs were indirectly caused by aio_poll() and in particular by flash memory updates's call to blk_write(), which invokes aio_poll(). Fun stuff: they had an extremely short race window, so much that adding all kind of tracing to either the kernel or QEMU made it go away (a single printf made it half as reproducible). On the plus side, the failure mode (a hang until the next keypress) made it very easy to examine the state of the process with a debugger. And there was a very nice reproducer from Laszlo, which failed pretty often (more than half of the time) on any version of QEMU with a non-debug kernel; it also failed fast, while still in the firmware. So, it could have been worse. For some unknown reason they happened only with virtio-scsi, but that's not important. It's more interesting that they disappeared with io=native, making thread-pool.c a likely suspect for where the bug arose. thread-pool.c is also one of the few places which use bottom halves across threads, by the way. I hope that no other similar bugs exist, but just in case :) I am going to describe how the successful debugging went... Since the likely culprit was the ctx->dispatching optimization, which mostly affects bottom halves, the first observation was that there are two qemu_bh_schedule() invocations in the thread pool: the one in the aio worker and the one in thread_pool_completion_bh. The latter always causes the optimization to trigger, the former may or may not. In order to restrict the possibilities, I introduced new functions qemu_bh_schedule_slow() and qemu_bh_schedule_fast(): /* qemu_bh_schedule_slow: */ ctx = bh->ctx; bh->idle = 0; if (atomic_xchg(&bh->scheduled, 1) == 0) { event_notifier_set(&ctx->notifier); } /* qemu_bh_schedule_fast: */ ctx = bh->ctx; bh->idle = 0; assert(ctx->dispatching); atomic_xchg(&bh->scheduled, 1); Notice how the atomic_xchg is still in qemu_bh_schedule_slow(). This was already debated a few months ago, so I assumed it to be correct. In retrospect this was a very good idea, as you'll see later. Changing thread_pool_completion_bh() to qemu_bh_schedule_fast() didn't trigger the assertion (as expected). Changing the worker's invocation to qemu_bh_schedule_slow() didn't hide the bug (another assumption which luckily held). This already limited heavily the amount of interaction between the threads, hinting that the problematic events must have triggered around thread_pool_completion_bh(). As mentioned early, invoking a debugger to examine the state of a hung process was pretty easy; the iothread was always waiting on a poll(..., -1) system call. Infinite timeouts are much rarer on x86, and this could be the reason why the bug was never observed there. With the buggy sequence more or less resolved to an interaction between thread_pool_completion_bh() and poll(..., -1), my "tracing" strategy was to just add a few qemu_clock_get_ns(QEMU_CLOCK_REALTIME) calls, hoping that the ordering of aio_ctx_prepare(), aio_ctx_dispatch, poll() and qemu_bh_schedule_fast() would provide some hint. The output was: (gdb) p last_prepare $3 = 103885451 (gdb) p last_dispatch $4 = 103876492 (gdb) p last_poll $5 = 115909333 (gdb) p last_schedule $6 = 115925212 Notice how the last call to qemu_poll_ns() came after aio_ctx_dispatch(). This makes little sense unless there is an aio_poll() call involved, and indeed with a slightly different instrumentation you can see that there is one: (gdb) p last_prepare $3 = 107569679 (gdb) p last_dispatch $4 = 107561600 (gdb) p last_aio_poll $5 = 110671400 (gdb) p last_schedule $6 = 110698917 So the scenario becomes clearer: iothread VCPU thread -------------------------------------------------------------------------- aio_ctx_prepare aio_ctx_check qemu_poll_ns(timeout=-1) aio_poll aio_dispatch thread_pool_completion_bh qemu_bh_schedule() At this point bh->scheduled = 1 and the iothread has not been woken up. The solution must be close, but this alone should not be a problem, because the bottom half is only rescheduled to account for rare situations (see commit 3c80ca1, thread-pool: avoid deadlock in nested aio_poll() calls, 2014-07-15). Introducing a third thread---a thread pool worker thread, which also does qemu_bh_schedule()---does bring out the problematic case. The third thread must be awakened *after* the callback is complete and thread_pool_completion_bh has redone the whole loop, explaining the short race window. And then this is what happens: thread pool worker -------------------------------------------------------------------------- <I/O completes> qemu_bh_schedule() Tada, bh->scheduled is already 1, so qemu_bh_schedule() does nothing and the iothread is never woken up. This is where the bh->scheduled optimization comes into play---it is correct, but removing it would have masked the bug. So, what is the bug? Well, the question asked by the ctx->dispatching optimization ("is any active aio_poll dispatching?") was wrong. The right question to ask instead is "is any active aio_poll *not* dispatching", i.e. in the prepare or poll phases? In that case, the aio_poll is sleeping or might go to sleep anytime soon, and the EventNotifier must be invoked to wake it up. In any other case (including if there is *no* active aio_poll at all!) we can just wait for the next prepare phase to pick up the event (e.g. a bottom half); the prepare phase will avoid the blocking and service the bottom half. Expressing the invariant with a logic formula, the broken one looked like: !(exists(thread): in_dispatching(thread)) => !optimize or equivalently: !(exists(thread): in_aio_poll(thread) && in_dispatching(thread)) => !optimize In the correct one, the negation is in a slightly different place: (exists(thread): in_aio_poll(thread) && !in_dispatching(thread)) => !optimize or equivalently: (exists(thread): in_prepare_or_poll(thread)) => !optimize Even if the difference boils down to moving an exclamation mark :) the implementation is quite different. However, I think the new one is simpler to understand. In the old implementation, the "exists" was implemented with a boolean value. This didn't really support well the case of multiple concurrent event loops, but I thought that this was okay: aio_poll holds the AioContext lock so there cannot be concurrent aio_poll invocations, and I was just considering nested event loops. However, aio_poll _could_ indeed be concurrent with the GSource. This is why I came up with the wrong invariant. In the new implementation, "exists" is computed simply by counting how many threads are in the prepare or poll phases. There are some interesting points to consider, but the gist of the idea remains: 1) AioContext can be used through GSource as well; as mentioned in the patch, bit 0 of the counter is reserved for the GSource. 2) the counter need not be updated for a non-blocking aio_poll, because it won't sleep forever anyway. This is just a matter of checking the "blocking" variable. This requires some changes to the win32 implementation, but is otherwise not too complicated. 3) as mentioned above, the new implementation will not call aio_notify when there is *no* active aio_poll at all. The tests have to be adjusted for this change. The calls to aio_notify in async.c are fine; they only want to kick aio_poll out of a blocking wait, but need not do anything if aio_poll is not running. 4) nested aio_poll: these just work with the new implementation; when a nested event loop is invoked, the outer event loop is never in the prepare or poll phases. The outer event loop thus has already decremented the counter. Reported-by: Richard W. M. Jones <rjones@redhat.com> Reported-by: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Tested-by: Richard W.M. Jones <rjones@redhat.com> Message-id: 1437487673-23740-5-git-send-email-pbonzini@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2015-07-21 17:07:51 +03:00
}
AioContext: fix broken placement of event_notifier_test_and_clear event_notifier_test_and_clear must be called before processing events. Otherwise, an aio_poll could "eat" the notification before the main I/O thread invokes ppoll(). The main I/O thread then never wakes up. This is an example of what could happen: i/o thread vcpu thread worker thread --------------------------------------------------------------------- lock_iothread notify_me = 1 ... unlock_iothread bh->scheduled = 1 event_notifier_set lock_iothread notify_me = 3 ppoll notify_me = 1 aio_dispatch aio_bh_poll thread_pool_completion_bh bh->scheduled = 1 event_notifier_set node->io_read(node->opaque) event_notifier_test_and_clear ppoll *** hang *** "Tracing" with qemu_clock_get_ns shows pretty much the same behavior as in the previous bug, so there are no new tricks here---just stare more at the code until it is apparent. One could also use a formal model, of course. The included one shows this with three processes: notifier corresponds to a QEMU thread pool worker, temporary_waiter to a VCPU thread that invokes aio_poll(), waiter to the main I/O thread. I would be happy to say that the formal model found the bug for me, but actually I wrote it after the fact. This patch is a bit of a big hammer. The next one optimizes it, with help (this time for real rather than a posteriori :)) from another, similar formal model. Reported-by: Richard W. M. Jones <rjones@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Tested-by: Richard W.M. Jones <rjones@redhat.com> Message-id: 1437487673-23740-6-git-send-email-pbonzini@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2015-07-21 17:07:52 +03:00
if (first) {
progress |= aio_bh_poll(ctx);
first = false;
}
/* if we have any signaled events, dispatch event */
event = NULL;
if ((DWORD) (ret - WAIT_OBJECT_0) < count) {
event = events[ret - WAIT_OBJECT_0];
events[ret - WAIT_OBJECT_0] = events[--count];
} else if (!have_select_revents) {
break;
}
have_select_revents = false;
blocking = false;
progress |= aio_dispatch_handlers(ctx, event);
} while (count > 0);
qemu_lockcnt_dec(&ctx->list_lock);
progress |= timerlistgroup_run_timers(&ctx->tlg);
aio: stop using .io_flush() Now that aio_poll() users check their termination condition themselves, it is no longer necessary to call .io_flush() handlers. The behavior of aio_poll() changes as follows: 1. .io_flush() is no longer invoked and file descriptors are *always* monitored. Previously returning 0 from .io_flush() would skip this file descriptor. Due to this change it is essential to check that requests are pending before calling qemu_aio_wait(). Failure to do so means we block, for example, waiting for an idle iSCSI socket to become readable when there are no requests. Currently all qemu_aio_wait()/aio_poll() callers check before calling. 2. aio_poll() now returns true if progress was made (BH or fd handlers executed) and false otherwise. Previously it would return true whenever 'busy', which means that .io_flush() returned true. The 'busy' concept no longer exists so just progress is returned. Due to this change we need to update tests/test-aio.c which asserts aio_poll() return values. Note that QEMU doesn't actually rely on these return values so only tests/test-aio.c cares. Note that ctx->notifier, the EventNotifier fd used for aio_notify(), is now handled as a special case. This is a little ugly but maintains aio_poll() semantics, i.e. aio_notify() does not count as 'progress' and aio_poll() avoids blocking when the user has not set any fd handlers yet. Patches after this remove .io_flush() handler code until we can finally drop the io_flush arguments to aio_set_fd_handler() and friends. Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2013-04-11 18:56:50 +04:00
return progress;
}
void aio_context_setup(AioContext *ctx)
{
}
aio: add polling mode to AioContext The AioContext event loop uses ppoll(2) or epoll_wait(2) to monitor file descriptors or until a timer expires. In cases like virtqueues, Linux AIO, and ThreadPool it is technically possible to wait for events via polling (i.e. continuously checking for events without blocking). Polling can be faster than blocking syscalls because file descriptors, the process scheduler, and system calls are bypassed. The main disadvantage to polling is that it increases CPU utilization. In classic polling configuration a full host CPU thread might run at 100% to respond to events as quickly as possible. This patch implements a timeout so we fall back to blocking syscalls if polling detects no activity. After the timeout no CPU cycles are wasted on polling until the next event loop iteration. The run_poll_handlers_begin() and run_poll_handlers_end() trace events are added to aid performance analysis and troubleshooting. If you need to know whether polling mode is being used, trace these events to find out. Note that the AioContext is now re-acquired before disabling notify_me in the non-polling case. This makes the code cleaner since notify_me was enabled outside the non-polling AioContext release region. This change is correct since it's safe to keep notify_me enabled longer (disabling is an optimization) but potentially causes unnecessary event_notifer_set() calls. I think the chance of performance regression is small here. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 20161201192652.9509-4-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2016-12-01 22:26:42 +03:00
void aio_context_destroy(AioContext *ctx)
{
}
void aio_context_use_g_source(AioContext *ctx)
{
}
void aio_context_set_poll_params(AioContext *ctx, int64_t max_ns,
int64_t grow, int64_t shrink, Error **errp)
aio: add polling mode to AioContext The AioContext event loop uses ppoll(2) or epoll_wait(2) to monitor file descriptors or until a timer expires. In cases like virtqueues, Linux AIO, and ThreadPool it is technically possible to wait for events via polling (i.e. continuously checking for events without blocking). Polling can be faster than blocking syscalls because file descriptors, the process scheduler, and system calls are bypassed. The main disadvantage to polling is that it increases CPU utilization. In classic polling configuration a full host CPU thread might run at 100% to respond to events as quickly as possible. This patch implements a timeout so we fall back to blocking syscalls if polling detects no activity. After the timeout no CPU cycles are wasted on polling until the next event loop iteration. The run_poll_handlers_begin() and run_poll_handlers_end() trace events are added to aid performance analysis and troubleshooting. If you need to know whether polling mode is being used, trace these events to find out. Note that the AioContext is now re-acquired before disabling notify_me in the non-polling case. This makes the code cleaner since notify_me was enabled outside the non-polling AioContext release region. This change is correct since it's safe to keep notify_me enabled longer (disabling is an optimization) but potentially causes unnecessary event_notifer_set() calls. I think the chance of performance regression is small here. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 20161201192652.9509-4-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2016-12-01 22:26:42 +03:00
{
if (max_ns) {
error_setg(errp, "AioContext polling is not implemented on Windows");
}
aio: add polling mode to AioContext The AioContext event loop uses ppoll(2) or epoll_wait(2) to monitor file descriptors or until a timer expires. In cases like virtqueues, Linux AIO, and ThreadPool it is technically possible to wait for events via polling (i.e. continuously checking for events without blocking). Polling can be faster than blocking syscalls because file descriptors, the process scheduler, and system calls are bypassed. The main disadvantage to polling is that it increases CPU utilization. In classic polling configuration a full host CPU thread might run at 100% to respond to events as quickly as possible. This patch implements a timeout so we fall back to blocking syscalls if polling detects no activity. After the timeout no CPU cycles are wasted on polling until the next event loop iteration. The run_poll_handlers_begin() and run_poll_handlers_end() trace events are added to aid performance analysis and troubleshooting. If you need to know whether polling mode is being used, trace these events to find out. Note that the AioContext is now re-acquired before disabling notify_me in the non-polling case. This makes the code cleaner since notify_me was enabled outside the non-polling AioContext release region. This change is correct since it's safe to keep notify_me enabled longer (disabling is an optimization) but potentially causes unnecessary event_notifer_set() calls. I think the chance of performance regression is small here. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 20161201192652.9509-4-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2016-12-01 22:26:42 +03:00
}
void aio_context_set_aio_params(AioContext *ctx, int64_t max_batch)
{
}