2013-03-05 04:34:41 +04:00
|
|
|
/*
|
|
|
|
* ARM implementation of KVM hooks
|
|
|
|
*
|
|
|
|
* Copyright Christoffer Dall 2009-2010
|
2023-12-19 20:57:42 +03:00
|
|
|
* Copyright Mian-M. Hamayun 2013, Virtual Open Systems
|
|
|
|
* Copyright Alex Bennée 2014, Linaro
|
2013-03-05 04:34:41 +04:00
|
|
|
*
|
|
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
|
|
* See the COPYING file in the top-level directory.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2015-12-07 19:23:44 +03:00
|
|
|
#include "qemu/osdep.h"
|
2013-03-05 04:34:41 +04:00
|
|
|
#include <sys/ioctl.h>
|
|
|
|
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
|
|
|
|
#include "qemu/timer.h"
|
2015-12-17 16:37:15 +03:00
|
|
|
#include "qemu/error-report.h"
|
Include qemu/main-loop.h less
In my "build everything" tree, changing qemu/main-loop.h triggers a
recompile of some 5600 out of 6600 objects (not counting tests and
objects that don't depend on qemu/osdep.h). It includes block/aio.h,
which in turn includes qemu/event_notifier.h, qemu/notify.h,
qemu/processor.h, qemu/qsp.h, qemu/queue.h, qemu/thread-posix.h,
qemu/thread.h, qemu/timer.h, and a few more.
Include qemu/main-loop.h only where it's needed. Touching it now
recompiles only some 1700 objects. For block/aio.h and
qemu/event_notifier.h, these numbers drop from 5600 to 2800. For the
others, they shrink only slightly.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190812052359.30071-21-armbru@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
2019-08-12 08:23:50 +03:00
|
|
|
#include "qemu/main-loop.h"
|
2020-01-30 19:02:06 +03:00
|
|
|
#include "qom/object.h"
|
|
|
|
#include "qapi/error.h"
|
2013-03-05 04:34:41 +04:00
|
|
|
#include "sysemu/sysemu.h"
|
2023-12-19 20:57:42 +03:00
|
|
|
#include "sysemu/runstate.h"
|
2013-03-05 04:34:41 +04:00
|
|
|
#include "sysemu/kvm.h"
|
2019-03-04 13:13:34 +03:00
|
|
|
#include "sysemu/kvm_int.h"
|
2013-03-05 04:34:42 +04:00
|
|
|
#include "kvm_arm.h"
|
2013-03-05 04:34:41 +04:00
|
|
|
#include "cpu.h"
|
2018-05-04 20:05:52 +03:00
|
|
|
#include "trace.h"
|
2014-12-11 15:07:53 +03:00
|
|
|
#include "internals.h"
|
2018-05-04 20:05:52 +03:00
|
|
|
#include "hw/pci/pci.h"
|
2015-04-08 14:30:58 +03:00
|
|
|
#include "exec/memattrs.h"
|
2016-10-17 21:22:16 +03:00
|
|
|
#include "exec/address-spaces.h"
|
2024-06-20 18:22:10 +03:00
|
|
|
#include "gdbstub/enums.h"
|
2015-12-17 19:16:08 +03:00
|
|
|
#include "hw/boards.h"
|
2019-08-12 08:23:42 +03:00
|
|
|
#include "hw/irq.h"
|
2023-09-05 12:12:46 +03:00
|
|
|
#include "qapi/visitor.h"
|
2015-12-15 15:16:16 +03:00
|
|
|
#include "qemu/log.h"
|
2023-12-19 20:57:42 +03:00
|
|
|
#include "hw/acpi/acpi.h"
|
|
|
|
#include "hw/acpi/ghes.h"
|
2024-01-18 23:06:40 +03:00
|
|
|
#include "target/arm/gtimer.h"
|
2013-03-05 04:34:41 +04:00
|
|
|
|
|
|
|
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
|
|
|
|
KVM_CAP_LAST_INFO
|
|
|
|
};
|
|
|
|
|
2015-04-01 19:57:30 +03:00
|
|
|
static bool cap_has_mp_state;
|
2018-10-24 09:50:16 +03:00
|
|
|
static bool cap_has_inject_serror_esr;
|
2020-07-03 18:59:42 +03:00
|
|
|
static bool cap_has_inject_ext_dabt;
|
2015-04-01 19:57:30 +03:00
|
|
|
|
2023-12-19 20:57:41 +03:00
|
|
|
/**
|
|
|
|
* ARMHostCPUFeatures: information about the host CPU (identified
|
|
|
|
* by asking the host kernel)
|
|
|
|
*/
|
|
|
|
typedef struct ARMHostCPUFeatures {
|
|
|
|
ARMISARegisters isar;
|
|
|
|
uint64_t features;
|
|
|
|
uint32_t target;
|
|
|
|
const char *dtb_compatible;
|
|
|
|
} ARMHostCPUFeatures;
|
|
|
|
|
2018-03-09 20:09:44 +03:00
|
|
|
static ARMHostCPUFeatures arm_host_cpu_features;
|
|
|
|
|
2023-12-19 20:57:42 +03:00
|
|
|
/**
|
|
|
|
* kvm_arm_vcpu_init:
|
2023-12-19 20:57:46 +03:00
|
|
|
* @cpu: ARMCPU
|
2023-12-19 20:57:42 +03:00
|
|
|
*
|
|
|
|
* Initialize (or reinitialize) the VCPU by invoking the
|
|
|
|
* KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
|
|
|
|
* bitmask specified in the CPUState.
|
|
|
|
*
|
|
|
|
* Returns: 0 if success else < 0 error code
|
|
|
|
*/
|
2023-12-19 20:57:46 +03:00
|
|
|
static int kvm_arm_vcpu_init(ARMCPU *cpu)
|
2014-06-19 21:06:26 +04:00
|
|
|
{
|
|
|
|
struct kvm_vcpu_init init;
|
|
|
|
|
|
|
|
init.target = cpu->kvm_target;
|
|
|
|
memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
|
|
|
|
|
2023-12-19 20:57:46 +03:00
|
|
|
return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
|
2014-06-19 21:06:26 +04:00
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:42 +03:00
|
|
|
/**
|
|
|
|
* kvm_arm_vcpu_finalize:
|
2023-12-19 20:57:46 +03:00
|
|
|
* @cpu: ARMCPU
|
2023-12-19 20:57:42 +03:00
|
|
|
* @feature: feature to finalize
|
|
|
|
*
|
|
|
|
* Finalizes the configuration of the specified VCPU feature by
|
|
|
|
* invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
|
|
|
|
* this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
|
|
|
|
* KVM's API documentation.
|
|
|
|
*
|
|
|
|
* Returns: 0 if success else < 0 error code
|
|
|
|
*/
|
2023-12-19 20:57:46 +03:00
|
|
|
static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
|
2019-10-31 17:27:31 +03:00
|
|
|
{
|
2023-12-19 20:57:46 +03:00
|
|
|
return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
|
2019-10-31 17:27:31 +03:00
|
|
|
}
|
|
|
|
|
2013-11-22 21:17:17 +04:00
|
|
|
bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
|
|
|
|
int *fdarray,
|
|
|
|
struct kvm_vcpu_init *init)
|
|
|
|
{
|
2019-10-31 17:27:32 +03:00
|
|
|
int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
|
2021-09-13 18:07:22 +03:00
|
|
|
int max_vm_pa_size;
|
2013-11-22 21:17:17 +04:00
|
|
|
|
2020-07-21 15:25:21 +03:00
|
|
|
kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
|
2013-11-22 21:17:17 +04:00
|
|
|
if (kvmfd < 0) {
|
|
|
|
goto err;
|
|
|
|
}
|
2021-09-13 18:07:22 +03:00
|
|
|
max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
|
|
|
|
if (max_vm_pa_size < 0) {
|
|
|
|
max_vm_pa_size = 0;
|
|
|
|
}
|
2022-09-30 14:38:24 +03:00
|
|
|
do {
|
|
|
|
vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
|
|
|
|
} while (vmfd == -1 && errno == EINTR);
|
2013-11-22 21:17:17 +04:00
|
|
|
if (vmfd < 0) {
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
|
|
|
|
if (cpufd < 0) {
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
2016-03-30 19:27:24 +03:00
|
|
|
if (!init) {
|
|
|
|
/* Caller doesn't want the VCPU to be initialized, so skip it */
|
|
|
|
goto finish;
|
|
|
|
}
|
|
|
|
|
2019-10-31 17:27:32 +03:00
|
|
|
if (init->target == -1) {
|
|
|
|
struct kvm_vcpu_init preferred;
|
|
|
|
|
|
|
|
ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
|
|
|
|
if (!ret) {
|
|
|
|
init->target = preferred.target;
|
|
|
|
}
|
|
|
|
}
|
2013-11-22 21:17:17 +04:00
|
|
|
if (ret >= 0) {
|
|
|
|
ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
|
|
|
|
if (ret < 0) {
|
|
|
|
goto err;
|
|
|
|
}
|
2016-03-30 19:27:24 +03:00
|
|
|
} else if (cpus_to_try) {
|
2013-11-22 21:17:17 +04:00
|
|
|
/* Old kernel which doesn't know about the
|
|
|
|
* PREFERRED_TARGET ioctl: we know it will only support
|
|
|
|
* creating one kind of guest CPU which is its preferred
|
|
|
|
* CPU type.
|
|
|
|
*/
|
2019-10-31 17:27:32 +03:00
|
|
|
struct kvm_vcpu_init try;
|
|
|
|
|
2013-11-22 21:17:17 +04:00
|
|
|
while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
|
2019-10-31 17:27:32 +03:00
|
|
|
try.target = *cpus_to_try++;
|
|
|
|
memcpy(try.features, init->features, sizeof(init->features));
|
|
|
|
ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
|
2013-11-22 21:17:17 +04:00
|
|
|
if (ret >= 0) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (ret < 0) {
|
|
|
|
goto err;
|
|
|
|
}
|
2019-10-31 17:27:32 +03:00
|
|
|
init->target = try.target;
|
2016-03-30 19:27:24 +03:00
|
|
|
} else {
|
|
|
|
/* Treat a NULL cpus_to_try argument the same as an empty
|
|
|
|
* list, which means we will fail the call since this must
|
|
|
|
* be an old kernel which doesn't support PREFERRED_TARGET.
|
|
|
|
*/
|
|
|
|
goto err;
|
2013-11-22 21:17:17 +04:00
|
|
|
}
|
|
|
|
|
2016-03-30 19:27:24 +03:00
|
|
|
finish:
|
2013-11-22 21:17:17 +04:00
|
|
|
fdarray[0] = kvmfd;
|
|
|
|
fdarray[1] = vmfd;
|
|
|
|
fdarray[2] = cpufd;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
err:
|
|
|
|
if (cpufd >= 0) {
|
|
|
|
close(cpufd);
|
|
|
|
}
|
|
|
|
if (vmfd >= 0) {
|
|
|
|
close(vmfd);
|
|
|
|
}
|
|
|
|
if (kvmfd >= 0) {
|
|
|
|
close(kvmfd);
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 2; i >= 0; i--) {
|
|
|
|
close(fdarray[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:41 +03:00
|
|
|
static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
|
|
|
|
{
|
|
|
|
uint64_t ret;
|
|
|
|
struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
|
|
|
|
int err;
|
|
|
|
|
|
|
|
assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
|
|
|
|
err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
|
|
|
|
if (err < 0) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
*pret = ret;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
|
|
|
|
{
|
|
|
|
struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
|
|
|
|
|
|
|
|
assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
|
|
|
|
return ioctl(fd, KVM_GET_ONE_REG, &idreg);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool kvm_arm_pauth_supported(void)
|
|
|
|
{
|
|
|
|
return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
|
|
|
|
kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
|
|
|
|
{
|
|
|
|
/* Identify the feature bits corresponding to the host CPU, and
|
|
|
|
* fill out the ARMHostCPUClass fields accordingly. To do this
|
|
|
|
* we have to create a scratch VM, create a single CPU inside it,
|
|
|
|
* and then query that CPU for the relevant ID registers.
|
|
|
|
*/
|
|
|
|
int fdarray[3];
|
|
|
|
bool sve_supported;
|
|
|
|
bool pmu_supported = false;
|
|
|
|
uint64_t features = 0;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
/* Old kernels may not know about the PREFERRED_TARGET ioctl: however
|
|
|
|
* we know these will only support creating one kind of guest CPU,
|
|
|
|
* which is its preferred CPU type. Fortunately these old kernels
|
|
|
|
* support only a very limited number of CPUs.
|
|
|
|
*/
|
|
|
|
static const uint32_t cpus_to_try[] = {
|
|
|
|
KVM_ARM_TARGET_AEM_V8,
|
|
|
|
KVM_ARM_TARGET_FOUNDATION_V8,
|
|
|
|
KVM_ARM_TARGET_CORTEX_A57,
|
|
|
|
QEMU_KVM_ARM_TARGET_NONE
|
|
|
|
};
|
|
|
|
/*
|
|
|
|
* target = -1 informs kvm_arm_create_scratch_host_vcpu()
|
|
|
|
* to use the preferred target
|
|
|
|
*/
|
|
|
|
struct kvm_vcpu_init init = { .target = -1, };
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ask for SVE if supported, so that we can query ID_AA64ZFR0,
|
|
|
|
* which is otherwise RAZ.
|
|
|
|
*/
|
|
|
|
sve_supported = kvm_arm_sve_supported();
|
|
|
|
if (sve_supported) {
|
|
|
|
init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ask for Pointer Authentication if supported, so that we get
|
|
|
|
* the unsanitized field values for AA64ISAR1_EL1.
|
|
|
|
*/
|
|
|
|
if (kvm_arm_pauth_supported()) {
|
|
|
|
init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
|
|
|
|
1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (kvm_arm_pmu_supported()) {
|
|
|
|
init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
|
|
|
|
pmu_supported = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
ahcf->target = init.target;
|
|
|
|
ahcf->dtb_compatible = "arm,arm-v8";
|
|
|
|
|
|
|
|
err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 4, 0));
|
|
|
|
if (unlikely(err < 0)) {
|
|
|
|
/*
|
|
|
|
* Before v4.15, the kernel only exposed a limited number of system
|
|
|
|
* registers, not including any of the interesting AArch64 ID regs.
|
|
|
|
* For the most part we could leave these fields as zero with minimal
|
|
|
|
* effect, since this does not affect the values seen by the guest.
|
|
|
|
*
|
|
|
|
* However, it could cause problems down the line for QEMU,
|
|
|
|
* so provide a minimal v8.0 default.
|
|
|
|
*
|
|
|
|
* ??? Could read MIDR and use knowledge from cpu64.c.
|
|
|
|
* ??? Could map a page of memory into our temp guest and
|
|
|
|
* run the tiniest of hand-crafted kernels to extract
|
|
|
|
* the values seen by the guest.
|
|
|
|
* ??? Either of these sounds like too much effort just
|
|
|
|
* to work around running a modern host kernel.
|
|
|
|
*/
|
|
|
|
ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
|
|
|
|
err = 0;
|
|
|
|
} else {
|
|
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 4, 1));
|
|
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 4, 5));
|
|
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 5, 0));
|
|
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 5, 1));
|
|
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 6, 0));
|
|
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 6, 1));
|
|
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 6, 2));
|
|
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 7, 0));
|
|
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 7, 1));
|
|
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 7, 2));
|
2024-04-18 18:20:03 +03:00
|
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr3,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 7, 3));
|
2023-12-19 20:57:41 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Note that if AArch32 support is not present in the host,
|
|
|
|
* the AArch32 sysregs are present to be read, but will
|
|
|
|
* return UNKNOWN values. This is neither better nor worse
|
|
|
|
* than skipping the reads and leaving 0, as we must avoid
|
|
|
|
* considering the values in every case.
|
|
|
|
*/
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 1, 0));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 1, 1));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 1, 2));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 1, 4));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 1, 5));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 1, 6));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 1, 7));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 2, 0));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 2, 1));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 2, 2));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 2, 3));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 2, 4));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 2, 5));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 2, 6));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 2, 7));
|
|
|
|
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 3, 0));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 3, 1));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 3, 2));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 3, 4));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 3, 5));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 3, 6));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* DBGDIDR is a bit complicated because the kernel doesn't
|
|
|
|
* provide an accessor for it in 64-bit mode, which is what this
|
|
|
|
* scratch VM is in, and there's no architected "64-bit sysreg
|
|
|
|
* which reads the same as the 32-bit register" the way there is
|
|
|
|
* for other ID registers. Instead we synthesize a value from the
|
|
|
|
* AArch64 ID_AA64DFR0, the same way the kernel code in
|
|
|
|
* arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
|
|
|
|
* We only do this if the CPU supports AArch32 at EL1.
|
|
|
|
*/
|
|
|
|
if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
|
|
|
|
int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
|
|
|
|
int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
|
|
|
|
int ctx_cmps =
|
|
|
|
FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
|
|
|
|
int version = 6; /* ARMv8 debug architecture */
|
|
|
|
bool has_el3 =
|
|
|
|
!!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
|
|
|
|
uint32_t dbgdidr = 0;
|
|
|
|
|
|
|
|
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
|
|
|
|
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
|
|
|
|
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
|
|
|
|
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
|
|
|
|
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
|
|
|
|
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
|
|
|
|
dbgdidr |= (1 << 15); /* RES1 bit */
|
|
|
|
ahcf->isar.dbgdidr = dbgdidr;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pmu_supported) {
|
|
|
|
/* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
|
|
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
|
|
|
|
ARM64_SYS_REG(3, 3, 9, 12, 0));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (sve_supported) {
|
|
|
|
/*
|
|
|
|
* There is a range of kernels between kernel commit 73433762fcae
|
|
|
|
* and f81cb2c3ad41 which have a bug where the kernel doesn't
|
|
|
|
* expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
|
|
|
|
* enabled SVE support, which resulted in an error rather than RAZ.
|
|
|
|
* So only read the register if we set KVM_ARM_VCPU_SVE above.
|
|
|
|
*/
|
|
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
|
|
|
|
ARM64_SYS_REG(3, 0, 0, 4, 4));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
kvm_arm_destroy_scratch_host_vcpu(fdarray);
|
|
|
|
|
|
|
|
if (err < 0) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We can assume any KVM supporting CPU is at least a v8
|
|
|
|
* with VFPv4+Neon; this in turn implies most of the other
|
|
|
|
* feature bits.
|
|
|
|
*/
|
|
|
|
features |= 1ULL << ARM_FEATURE_V8;
|
|
|
|
features |= 1ULL << ARM_FEATURE_NEON;
|
|
|
|
features |= 1ULL << ARM_FEATURE_AARCH64;
|
|
|
|
features |= 1ULL << ARM_FEATURE_PMU;
|
|
|
|
features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
|
|
|
|
|
|
|
|
ahcf->features = features;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2018-03-09 20:09:44 +03:00
|
|
|
void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
|
2013-11-22 21:17:17 +04:00
|
|
|
{
|
2018-03-09 20:09:44 +03:00
|
|
|
CPUARMState *env = &cpu->env;
|
2013-11-22 21:17:17 +04:00
|
|
|
|
2018-03-09 20:09:44 +03:00
|
|
|
if (!arm_host_cpu_features.dtb_compatible) {
|
|
|
|
if (!kvm_enabled() ||
|
|
|
|
!kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
|
|
|
|
/* We can't report this error yet, so flag that we need to
|
|
|
|
* in arm_cpu_realizefn().
|
|
|
|
*/
|
|
|
|
cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
|
|
|
|
cpu->host_cpu_probe_failed = true;
|
|
|
|
return;
|
|
|
|
}
|
2013-11-22 21:17:17 +04:00
|
|
|
}
|
2018-03-09 20:09:44 +03:00
|
|
|
|
|
|
|
cpu->kvm_target = arm_host_cpu_features.target;
|
|
|
|
cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
|
2018-11-19 18:29:07 +03:00
|
|
|
cpu->isar = arm_host_cpu_features.isar;
|
2018-03-09 20:09:44 +03:00
|
|
|
env->features = arm_host_cpu_features.features;
|
2013-11-22 21:17:17 +04:00
|
|
|
}
|
|
|
|
|
2020-01-30 19:02:06 +03:00
|
|
|
static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
|
|
|
|
{
|
|
|
|
return !ARM_CPU(obj)->kvm_adjvtime;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
|
|
|
|
{
|
|
|
|
ARM_CPU(obj)->kvm_adjvtime = !value;
|
|
|
|
}
|
|
|
|
|
2020-10-01 09:17:18 +03:00
|
|
|
static bool kvm_steal_time_get(Object *obj, Error **errp)
|
|
|
|
{
|
|
|
|
return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
|
|
|
|
{
|
|
|
|
ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
|
|
|
|
}
|
|
|
|
|
2020-01-30 19:02:06 +03:00
|
|
|
/* KVM VCPU properties should be prefixed with "kvm-". */
|
2023-12-19 20:57:44 +03:00
|
|
|
void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
|
2020-01-30 19:02:06 +03:00
|
|
|
{
|
2020-06-16 12:32:29 +03:00
|
|
|
CPUARMState *env = &cpu->env;
|
2023-12-19 20:57:44 +03:00
|
|
|
Object *obj = OBJECT(cpu);
|
2020-01-30 19:02:06 +03:00
|
|
|
|
2020-06-16 12:32:29 +03:00
|
|
|
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
|
|
|
|
cpu->kvm_adjvtime = true;
|
|
|
|
object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
|
|
|
|
kvm_no_adjvtime_set);
|
|
|
|
object_property_set_description(obj, "kvm-no-adjvtime",
|
|
|
|
"Set on to disable the adjustment of "
|
|
|
|
"the virtual counter. VM stopped time "
|
|
|
|
"will be counted.");
|
|
|
|
}
|
2020-10-01 09:17:18 +03:00
|
|
|
|
|
|
|
cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
|
|
|
|
object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
|
|
|
|
kvm_steal_time_set);
|
|
|
|
object_property_set_description(obj, "kvm-steal-time",
|
|
|
|
"Set off to disable KVM steal time.");
|
2020-01-30 19:02:06 +03:00
|
|
|
}
|
|
|
|
|
target/arm: Check supported KVM features globally (not per vCPU)
Since commit d70c996df23f, when enabling the PMU we get:
$ qemu-system-aarch64 -cpu host,pmu=on -M virt,accel=kvm,gic-version=3
Segmentation fault (core dumped)
Thread 1 "qemu-system-aar" received signal SIGSEGV, Segmentation fault.
0x0000aaaaaae356d0 in kvm_ioctl (s=0x0, type=44547) at accel/kvm/kvm-all.c:2588
2588 ret = ioctl(s->fd, type, arg);
(gdb) bt
#0 0x0000aaaaaae356d0 in kvm_ioctl (s=0x0, type=44547) at accel/kvm/kvm-all.c:2588
#1 0x0000aaaaaae31568 in kvm_check_extension (s=0x0, extension=126) at accel/kvm/kvm-all.c:916
#2 0x0000aaaaaafce254 in kvm_arm_pmu_supported (cpu=0xaaaaac214ab0) at target/arm/kvm.c:213
#3 0x0000aaaaaafc0f94 in arm_set_pmu (obj=0xaaaaac214ab0, value=true, errp=0xffffffffe438) at target/arm/cpu.c:1111
#4 0x0000aaaaab5533ac in property_set_bool (obj=0xaaaaac214ab0, v=0xaaaaac223a80, name=0xaaaaac11a970 "pmu", opaque=0xaaaaac222730, errp=0xffffffffe438) at qom/object.c:2170
#5 0x0000aaaaab5512f0 in object_property_set (obj=0xaaaaac214ab0, v=0xaaaaac223a80, name=0xaaaaac11a970 "pmu", errp=0xffffffffe438) at qom/object.c:1328
#6 0x0000aaaaab551e10 in object_property_parse (obj=0xaaaaac214ab0, string=0xaaaaac11b4c0 "on", name=0xaaaaac11a970 "pmu", errp=0xffffffffe438) at qom/object.c:1561
#7 0x0000aaaaab54ee8c in object_apply_global_props (obj=0xaaaaac214ab0, props=0xaaaaac018e20, errp=0xaaaaabd6fd88 <error_fatal>) at qom/object.c:407
#8 0x0000aaaaab1dd5a4 in qdev_prop_set_globals (dev=0xaaaaac214ab0) at hw/core/qdev-properties.c:1218
#9 0x0000aaaaab1d9fac in device_post_init (obj=0xaaaaac214ab0) at hw/core/qdev.c:1050
...
#15 0x0000aaaaab54f310 in object_initialize_with_type (obj=0xaaaaac214ab0, size=52208, type=0xaaaaabe237f0) at qom/object.c:512
#16 0x0000aaaaab54fa24 in object_new_with_type (type=0xaaaaabe237f0) at qom/object.c:687
#17 0x0000aaaaab54fa80 in object_new (typename=0xaaaaabe23970 "host-arm-cpu") at qom/object.c:702
#18 0x0000aaaaaaf04a74 in machvirt_init (machine=0xaaaaac0a8550) at hw/arm/virt.c:1770
#19 0x0000aaaaab1e8720 in machine_run_board_init (machine=0xaaaaac0a8550) at hw/core/machine.c:1138
#20 0x0000aaaaaaf95394 in qemu_init (argc=5, argv=0xffffffffea58, envp=0xffffffffea88) at softmmu/vl.c:4348
#21 0x0000aaaaaada3f74 in main (argc=<optimized out>, argv=<optimized out>, envp=<optimized out>) at softmmu/main.c:48
This is because in frame #2, cpu->kvm_state is still NULL
(the vCPU is not yet realized).
KVM has a hard requirement of all cores supporting the same
feature set. We only need to check if the accelerator supports
a feature, not each vCPU individually.
Fix by removing the 'CPUState *cpu' argument from the
kvm_arm_<FEATURE>_supported() functions.
Fixes: d70c996df23f ('Use CPUState::kvm_state in kvm_arm_pmu_supported')
Reported-by: Haibo Xu <haibo.xu@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2020-06-23 12:06:22 +03:00
|
|
|
bool kvm_arm_pmu_supported(void)
|
2019-08-02 15:25:27 +03:00
|
|
|
{
|
target/arm: Check supported KVM features globally (not per vCPU)
Since commit d70c996df23f, when enabling the PMU we get:
$ qemu-system-aarch64 -cpu host,pmu=on -M virt,accel=kvm,gic-version=3
Segmentation fault (core dumped)
Thread 1 "qemu-system-aar" received signal SIGSEGV, Segmentation fault.
0x0000aaaaaae356d0 in kvm_ioctl (s=0x0, type=44547) at accel/kvm/kvm-all.c:2588
2588 ret = ioctl(s->fd, type, arg);
(gdb) bt
#0 0x0000aaaaaae356d0 in kvm_ioctl (s=0x0, type=44547) at accel/kvm/kvm-all.c:2588
#1 0x0000aaaaaae31568 in kvm_check_extension (s=0x0, extension=126) at accel/kvm/kvm-all.c:916
#2 0x0000aaaaaafce254 in kvm_arm_pmu_supported (cpu=0xaaaaac214ab0) at target/arm/kvm.c:213
#3 0x0000aaaaaafc0f94 in arm_set_pmu (obj=0xaaaaac214ab0, value=true, errp=0xffffffffe438) at target/arm/cpu.c:1111
#4 0x0000aaaaab5533ac in property_set_bool (obj=0xaaaaac214ab0, v=0xaaaaac223a80, name=0xaaaaac11a970 "pmu", opaque=0xaaaaac222730, errp=0xffffffffe438) at qom/object.c:2170
#5 0x0000aaaaab5512f0 in object_property_set (obj=0xaaaaac214ab0, v=0xaaaaac223a80, name=0xaaaaac11a970 "pmu", errp=0xffffffffe438) at qom/object.c:1328
#6 0x0000aaaaab551e10 in object_property_parse (obj=0xaaaaac214ab0, string=0xaaaaac11b4c0 "on", name=0xaaaaac11a970 "pmu", errp=0xffffffffe438) at qom/object.c:1561
#7 0x0000aaaaab54ee8c in object_apply_global_props (obj=0xaaaaac214ab0, props=0xaaaaac018e20, errp=0xaaaaabd6fd88 <error_fatal>) at qom/object.c:407
#8 0x0000aaaaab1dd5a4 in qdev_prop_set_globals (dev=0xaaaaac214ab0) at hw/core/qdev-properties.c:1218
#9 0x0000aaaaab1d9fac in device_post_init (obj=0xaaaaac214ab0) at hw/core/qdev.c:1050
...
#15 0x0000aaaaab54f310 in object_initialize_with_type (obj=0xaaaaac214ab0, size=52208, type=0xaaaaabe237f0) at qom/object.c:512
#16 0x0000aaaaab54fa24 in object_new_with_type (type=0xaaaaabe237f0) at qom/object.c:687
#17 0x0000aaaaab54fa80 in object_new (typename=0xaaaaabe23970 "host-arm-cpu") at qom/object.c:702
#18 0x0000aaaaaaf04a74 in machvirt_init (machine=0xaaaaac0a8550) at hw/arm/virt.c:1770
#19 0x0000aaaaab1e8720 in machine_run_board_init (machine=0xaaaaac0a8550) at hw/core/machine.c:1138
#20 0x0000aaaaaaf95394 in qemu_init (argc=5, argv=0xffffffffea58, envp=0xffffffffea88) at softmmu/vl.c:4348
#21 0x0000aaaaaada3f74 in main (argc=<optimized out>, argv=<optimized out>, envp=<optimized out>) at softmmu/main.c:48
This is because in frame #2, cpu->kvm_state is still NULL
(the vCPU is not yet realized).
KVM has a hard requirement of all cores supporting the same
feature set. We only need to check if the accelerator supports
a feature, not each vCPU individually.
Fix by removing the 'CPUState *cpu' argument from the
kvm_arm_<FEATURE>_supported() functions.
Fixes: d70c996df23f ('Use CPUState::kvm_state in kvm_arm_pmu_supported')
Reported-by: Haibo Xu <haibo.xu@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2020-06-23 12:06:22 +03:00
|
|
|
return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
|
2019-08-02 15:25:27 +03:00
|
|
|
}
|
|
|
|
|
hw/arm/virt: KVM: The IPA lower bound is 32
The virt machine already checks KVM_CAP_ARM_VM_IPA_SIZE to get the
upper bound of the IPA size. If that bound is lower than the highest
possible GPA for the machine, then QEMU will error out. However, the
IPA is set to 40 when the highest GPA is less than or equal to 40,
even when KVM may support an IPA limit as low as 32. This means KVM
may fail the VM creation unnecessarily. Additionally, 40 is selected
with the value 0, which means use the default, and that gets around
a check in some versions of KVM, causing a difficult to debug fail.
Always use the IPA size that corresponds to the highest possible GPA,
unless it's lower than 32, in which case use 32. Also, we must still
use 0 when KVM only supports the legacy fixed 40 bit IPA.
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Message-id: 20210310135218.255205-3-drjones@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2021-03-10 16:52:18 +03:00
|
|
|
int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
|
2019-03-04 13:13:34 +03:00
|
|
|
{
|
|
|
|
KVMState *s = KVM_STATE(ms->accelerator);
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
|
hw/arm/virt: KVM: The IPA lower bound is 32
The virt machine already checks KVM_CAP_ARM_VM_IPA_SIZE to get the
upper bound of the IPA size. If that bound is lower than the highest
possible GPA for the machine, then QEMU will error out. However, the
IPA is set to 40 when the highest GPA is less than or equal to 40,
even when KVM may support an IPA limit as low as 32. This means KVM
may fail the VM creation unnecessarily. Additionally, 40 is selected
with the value 0, which means use the default, and that gets around
a check in some versions of KVM, causing a difficult to debug fail.
Always use the IPA size that corresponds to the highest possible GPA,
unless it's lower than 32, in which case use 32. Also, we must still
use 0 when KVM only supports the legacy fixed 40 bit IPA.
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Message-id: 20210310135218.255205-3-drjones@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2021-03-10 16:52:18 +03:00
|
|
|
*fixed_ipa = ret <= 0;
|
|
|
|
|
2019-03-04 13:13:34 +03:00
|
|
|
return ret > 0 ? ret : 40;
|
|
|
|
}
|
|
|
|
|
2023-08-22 19:31:02 +03:00
|
|
|
int kvm_arch_get_default_type(MachineState *ms)
|
|
|
|
{
|
accel/kvm: Specify default IPA size for arm64
Before this change, the default KVM type, which is used for non-virt
machine models, was 0.
The kernel documentation says:
> On arm64, the physical address size for a VM (IPA Size limit) is
> limited to 40bits by default. The limit can be configured if the host
> supports the extension KVM_CAP_ARM_VM_IPA_SIZE. When supported, use
> KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the size in the machine type
> identifier, where IPA_Bits is the maximum width of any physical
> address used by the VM. The IPA_Bits is encoded in bits[7-0] of the
> machine type identifier.
>
> e.g, to configure a guest to use 48bit physical address size::
>
> vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_VM_TYPE_ARM_IPA_SIZE(48));
>
> The requested size (IPA_Bits) must be:
>
> == =========================================================
> 0 Implies default size, 40bits (for backward compatibility)
> N Implies N bits, where N is a positive integer such that,
> 32 <= N <= Host_IPA_Limit
> == =========================================================
> Host_IPA_Limit is the maximum possible value for IPA_Bits on the host
> and is dependent on the CPU capability and the kernel configuration.
> The limit can be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of the
> KVM_CHECK_EXTENSION ioctl() at run-time.
>
> Creation of the VM will fail if the requested IPA size (whether it is
> implicit or explicit) is unsupported on the host.
https://docs.kernel.org/virt/kvm/api.html#kvm-create-vm
So if Host_IPA_Limit < 40, specifying 0 as the type will fail. This
actually confused libvirt, which uses "none" machine model to probe the
KVM availability, on M2 MacBook Air.
Fix this by using Host_IPA_Limit as the default type when
KVM_CAP_ARM_VM_IPA_SIZE is available.
Cc: qemu-stable@nongnu.org
Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Message-id: 20230727073134.134102-3-akihiko.odaki@daynix.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2023-08-22 19:31:02 +03:00
|
|
|
bool fixed_ipa;
|
|
|
|
int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
|
|
|
|
return fixed_ipa ? 0 : size;
|
2023-08-22 19:31:02 +03:00
|
|
|
}
|
|
|
|
|
2015-02-04 18:43:51 +03:00
|
|
|
int kvm_arch_init(MachineState *ms, KVMState *s)
|
2013-03-05 04:34:41 +04:00
|
|
|
{
|
2019-10-03 18:46:40 +03:00
|
|
|
int ret = 0;
|
2013-03-05 04:34:41 +04:00
|
|
|
/* For ARM interrupt delivery is always asynchronous,
|
|
|
|
* whether we are using an in-kernel VGIC or not.
|
|
|
|
*/
|
|
|
|
kvm_async_interrupts_allowed = true;
|
2013-11-22 21:17:17 +04:00
|
|
|
|
2017-07-11 13:21:26 +03:00
|
|
|
/*
|
|
|
|
* PSCI wakes up secondary cores, so we always need to
|
|
|
|
* have vCPUs waiting in kernel space
|
|
|
|
*/
|
|
|
|
kvm_halt_in_kernel_allowed = true;
|
|
|
|
|
2015-04-01 19:57:30 +03:00
|
|
|
cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
|
|
|
|
|
2023-12-19 20:57:43 +03:00
|
|
|
/* Check whether user space can specify guest syndrome value */
|
|
|
|
cap_has_inject_serror_esr =
|
|
|
|
kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
|
|
|
|
|
2019-10-03 18:46:40 +03:00
|
|
|
if (ms->smp.cpus > 256 &&
|
|
|
|
!kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
|
|
|
|
error_report("Using more than 256 vcpus requires a host kernel "
|
|
|
|
"with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
|
|
|
|
ret = -EINVAL;
|
|
|
|
}
|
|
|
|
|
2020-07-03 18:59:42 +03:00
|
|
|
if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
|
|
|
|
if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
|
|
|
|
error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
|
|
|
|
} else {
|
|
|
|
/* Set status for supporting the external dabt injection */
|
|
|
|
cap_has_inject_ext_dabt = kvm_check_extension(s,
|
|
|
|
KVM_CAP_ARM_INJECT_EXT_DABT);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-09-05 12:12:46 +03:00
|
|
|
if (s->kvm_eager_split_size) {
|
|
|
|
uint32_t sizes;
|
|
|
|
|
|
|
|
sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
|
|
|
|
if (!sizes) {
|
|
|
|
s->kvm_eager_split_size = 0;
|
|
|
|
warn_report("Eager Page Split support not available");
|
|
|
|
} else if (!(s->kvm_eager_split_size & sizes)) {
|
|
|
|
error_report("Eager Page Split requested chunk size not valid");
|
|
|
|
ret = -EINVAL;
|
|
|
|
} else {
|
|
|
|
ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
|
|
|
|
s->kvm_eager_split_size);
|
|
|
|
if (ret < 0) {
|
|
|
|
error_report("Enabling of Eager Page Split failed: %s",
|
|
|
|
strerror(-ret));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:39 +03:00
|
|
|
max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
|
|
|
|
hw_watchpoints = g_array_sized_new(true, true,
|
|
|
|
sizeof(HWWatchpoint), max_hw_wps);
|
|
|
|
|
|
|
|
max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
|
|
|
|
hw_breakpoints = g_array_sized_new(true, true,
|
|
|
|
sizeof(HWBreakpoint), max_hw_bps);
|
2023-04-20 12:21:15 +03:00
|
|
|
|
2019-10-03 18:46:40 +03:00
|
|
|
return ret;
|
2013-03-05 04:34:41 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
|
|
|
|
{
|
|
|
|
return cpu->cpu_index;
|
|
|
|
}
|
|
|
|
|
2013-03-05 04:34:42 +04:00
|
|
|
/* We track all the KVM devices which need their memory addresses
|
|
|
|
* passing to the kernel in a list of these structures.
|
|
|
|
* When board init is complete we run through the list and
|
|
|
|
* tell the kernel the base addresses of the memory regions.
|
|
|
|
* We use a MemoryListener to track mapping and unmapping of
|
|
|
|
* the regions during board creation, so the board models don't
|
|
|
|
* need to do anything special for the KVM case.
|
2018-06-22 15:28:35 +03:00
|
|
|
*
|
|
|
|
* Sometimes the address must be OR'ed with some other fields
|
|
|
|
* (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
|
|
|
|
* @kda_addr_ormask aims at storing the value of those fields.
|
2013-03-05 04:34:42 +04:00
|
|
|
*/
|
|
|
|
typedef struct KVMDevice {
|
|
|
|
struct kvm_arm_device_addr kda;
|
2014-02-26 21:20:00 +04:00
|
|
|
struct kvm_device_attr kdattr;
|
2018-06-22 15:28:35 +03:00
|
|
|
uint64_t kda_addr_ormask;
|
2013-03-05 04:34:42 +04:00
|
|
|
MemoryRegion *mr;
|
|
|
|
QSLIST_ENTRY(KVMDevice) entries;
|
2014-02-26 21:20:00 +04:00
|
|
|
int dev_fd;
|
2013-03-05 04:34:42 +04:00
|
|
|
} KVMDevice;
|
|
|
|
|
2018-12-06 13:58:10 +03:00
|
|
|
static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
|
2013-03-05 04:34:42 +04:00
|
|
|
|
|
|
|
static void kvm_arm_devlistener_add(MemoryListener *listener,
|
|
|
|
MemoryRegionSection *section)
|
|
|
|
{
|
|
|
|
KVMDevice *kd;
|
|
|
|
|
|
|
|
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
|
|
|
|
if (section->mr == kd->mr) {
|
|
|
|
kd->kda.addr = section->offset_within_address_space;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kvm_arm_devlistener_del(MemoryListener *listener,
|
|
|
|
MemoryRegionSection *section)
|
|
|
|
{
|
|
|
|
KVMDevice *kd;
|
|
|
|
|
|
|
|
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
|
|
|
|
if (section->mr == kd->mr) {
|
|
|
|
kd->kda.addr = -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static MemoryListener devlistener = {
|
2021-08-17 04:35:52 +03:00
|
|
|
.name = "kvm-arm",
|
2013-03-05 04:34:42 +04:00
|
|
|
.region_add = kvm_arm_devlistener_add,
|
|
|
|
.region_del = kvm_arm_devlistener_del,
|
2023-06-20 19:50:49 +03:00
|
|
|
.priority = MEMORY_LISTENER_PRIORITY_MIN,
|
2013-03-05 04:34:42 +04:00
|
|
|
};
|
|
|
|
|
2014-02-26 21:20:00 +04:00
|
|
|
static void kvm_arm_set_device_addr(KVMDevice *kd)
|
|
|
|
{
|
|
|
|
struct kvm_device_attr *attr = &kd->kdattr;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* If the device control API is available and we have a device fd on the
|
|
|
|
* KVMDevice struct, let's use the newer API
|
|
|
|
*/
|
|
|
|
if (kd->dev_fd >= 0) {
|
|
|
|
uint64_t addr = kd->kda.addr;
|
2018-06-22 15:28:35 +03:00
|
|
|
|
|
|
|
addr |= kd->kda_addr_ormask;
|
2014-02-26 21:20:00 +04:00
|
|
|
attr->addr = (uintptr_t)&addr;
|
|
|
|
ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
|
|
|
|
} else {
|
|
|
|
ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ret < 0) {
|
|
|
|
fprintf(stderr, "Failed to set device address: %s\n",
|
|
|
|
strerror(-ret));
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-03-05 04:34:42 +04:00
|
|
|
static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
|
|
|
|
{
|
|
|
|
KVMDevice *kd, *tkd;
|
|
|
|
|
|
|
|
QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
|
|
|
|
if (kd->kda.addr != -1) {
|
2014-02-26 21:20:00 +04:00
|
|
|
kvm_arm_set_device_addr(kd);
|
2013-03-05 04:34:42 +04:00
|
|
|
}
|
2013-05-06 12:46:11 +04:00
|
|
|
memory_region_unref(kd->mr);
|
2018-06-22 15:28:35 +03:00
|
|
|
QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
|
2013-03-05 04:34:42 +04:00
|
|
|
g_free(kd);
|
|
|
|
}
|
2018-01-22 09:02:42 +03:00
|
|
|
memory_listener_unregister(&devlistener);
|
2013-03-05 04:34:42 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
static Notifier notify = {
|
|
|
|
.notify = kvm_arm_machine_init_done,
|
|
|
|
};
|
|
|
|
|
2014-02-26 21:20:00 +04:00
|
|
|
void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
|
2018-06-22 15:28:35 +03:00
|
|
|
uint64_t attr, int dev_fd, uint64_t addr_ormask)
|
2013-03-05 04:34:42 +04:00
|
|
|
{
|
|
|
|
KVMDevice *kd;
|
|
|
|
|
|
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (QSLIST_EMPTY(&kvm_devices_head)) {
|
2016-10-17 21:22:16 +03:00
|
|
|
memory_listener_register(&devlistener, &address_space_memory);
|
2013-03-05 04:34:42 +04:00
|
|
|
qemu_add_machine_init_done_notifier(¬ify);
|
|
|
|
}
|
|
|
|
kd = g_new0(KVMDevice, 1);
|
|
|
|
kd->mr = mr;
|
|
|
|
kd->kda.id = devid;
|
|
|
|
kd->kda.addr = -1;
|
2014-02-26 21:20:00 +04:00
|
|
|
kd->kdattr.flags = 0;
|
|
|
|
kd->kdattr.group = group;
|
|
|
|
kd->kdattr.attr = attr;
|
|
|
|
kd->dev_fd = dev_fd;
|
2018-06-22 15:28:35 +03:00
|
|
|
kd->kda_addr_ormask = addr_ormask;
|
2013-03-05 04:34:42 +04:00
|
|
|
QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
|
2013-05-06 12:46:11 +04:00
|
|
|
memory_region_ref(kd->mr);
|
2013-03-05 04:34:42 +04:00
|
|
|
}
|
|
|
|
|
2014-12-11 15:07:53 +03:00
|
|
|
static int compare_u64(const void *a, const void *b)
|
|
|
|
{
|
|
|
|
if (*(uint64_t *)a > *(uint64_t *)b) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
if (*(uint64_t *)a < *(uint64_t *)b) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2020-01-30 19:02:06 +03:00
|
|
|
/*
|
|
|
|
* cpreg_values are sorted in ascending order by KVM register ID
|
|
|
|
* (see kvm_arm_init_cpreg_list). This allows us to cheaply find
|
|
|
|
* the storage for a KVM register by ID with a binary search.
|
|
|
|
*/
|
|
|
|
static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
|
|
|
|
{
|
|
|
|
uint64_t *res;
|
|
|
|
|
|
|
|
res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len,
|
|
|
|
sizeof(uint64_t), compare_u64);
|
|
|
|
assert(res);
|
|
|
|
|
|
|
|
return &cpu->cpreg_values[res - cpu->cpreg_indexes];
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:41 +03:00
|
|
|
/**
|
|
|
|
* kvm_arm_reg_syncs_via_cpreg_list:
|
|
|
|
* @regidx: KVM register index
|
|
|
|
*
|
|
|
|
* Return true if this KVM register should be synchronized via the
|
|
|
|
* cpreg list of arbitrary system registers, false if it is synchronized
|
|
|
|
* by hand using code in kvm_arch_get/put_registers().
|
|
|
|
*/
|
|
|
|
static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
|
|
|
|
{
|
|
|
|
switch (regidx & KVM_REG_ARM_COPROC_MASK) {
|
|
|
|
case KVM_REG_ARM_CORE:
|
|
|
|
case KVM_REG_ARM64_SVE:
|
|
|
|
return false;
|
|
|
|
default:
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:42 +03:00
|
|
|
/**
|
|
|
|
* kvm_arm_init_cpreg_list:
|
|
|
|
* @cpu: ARMCPU
|
|
|
|
*
|
|
|
|
* Initialize the ARMCPU cpreg list according to the kernel's
|
2014-12-11 15:07:53 +03:00
|
|
|
* definition of what CPU registers it knows about (and throw away
|
|
|
|
* the previous TCG-created cpreg list).
|
2023-12-19 20:57:42 +03:00
|
|
|
*
|
|
|
|
* Returns: 0 if success, else < 0 error code
|
2014-12-11 15:07:53 +03:00
|
|
|
*/
|
2023-12-19 20:57:42 +03:00
|
|
|
static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
|
2014-12-11 15:07:53 +03:00
|
|
|
{
|
|
|
|
struct kvm_reg_list rl;
|
|
|
|
struct kvm_reg_list *rlp;
|
|
|
|
int i, ret, arraylen;
|
|
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
|
|
|
|
rl.n = 0;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
|
|
|
|
if (ret != -E2BIG) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
|
|
|
|
rlp->n = rl.n;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
|
|
|
|
if (ret) {
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
/* Sort the list we get back from the kernel, since cpreg_tuples
|
|
|
|
* must be in strictly ascending order.
|
|
|
|
*/
|
|
|
|
qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
|
|
|
|
|
|
|
|
for (i = 0, arraylen = 0; i < rlp->n; i++) {
|
|
|
|
if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
|
|
|
|
case KVM_REG_SIZE_U32:
|
|
|
|
case KVM_REG_SIZE_U64:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
fprintf(stderr, "Can't handle size of register in kernel list\n");
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
arraylen++;
|
|
|
|
}
|
|
|
|
|
|
|
|
cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
|
|
|
|
cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
|
|
|
|
cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
|
|
|
|
arraylen);
|
|
|
|
cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
|
|
|
|
arraylen);
|
|
|
|
cpu->cpreg_array_len = arraylen;
|
|
|
|
cpu->cpreg_vmstate_array_len = arraylen;
|
|
|
|
|
|
|
|
for (i = 0, arraylen = 0; i < rlp->n; i++) {
|
|
|
|
uint64_t regidx = rlp->reg[i];
|
|
|
|
if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
cpu->cpreg_indexes[arraylen] = regidx;
|
|
|
|
arraylen++;
|
|
|
|
}
|
|
|
|
assert(cpu->cpreg_array_len == arraylen);
|
|
|
|
|
|
|
|
if (!write_kvmstate_to_list(cpu)) {
|
|
|
|
/* Shouldn't happen unless kernel is inconsistent about
|
|
|
|
* what registers exist.
|
|
|
|
*/
|
|
|
|
fprintf(stderr, "Initial read of kernel register state failed\n");
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
g_free(rlp);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:41 +03:00
|
|
|
/**
|
|
|
|
* kvm_arm_cpreg_level:
|
|
|
|
* @regidx: KVM register index
|
|
|
|
*
|
|
|
|
* Return the level of this coprocessor/system register. Return value is
|
|
|
|
* either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
|
|
|
|
*/
|
|
|
|
static int kvm_arm_cpreg_level(uint64_t regidx)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
|
|
|
|
* If a register should be written less often, you must add it here
|
|
|
|
* with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
|
|
|
|
*/
|
|
|
|
switch (regidx) {
|
|
|
|
case KVM_REG_ARM_TIMER_CNT:
|
|
|
|
case KVM_REG_ARM_PTIMER_CNT:
|
|
|
|
return KVM_PUT_FULL_STATE;
|
|
|
|
}
|
|
|
|
return KVM_PUT_RUNTIME_STATE;
|
|
|
|
}
|
|
|
|
|
2013-06-25 21:16:07 +04:00
|
|
|
bool write_kvmstate_to_list(ARMCPU *cpu)
|
|
|
|
{
|
|
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
int i;
|
|
|
|
bool ok = true;
|
|
|
|
|
|
|
|
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
|
|
|
uint64_t regidx = cpu->cpreg_indexes[i];
|
|
|
|
uint32_t v32;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
switch (regidx & KVM_REG_SIZE_MASK) {
|
|
|
|
case KVM_REG_SIZE_U32:
|
2023-10-10 17:24:52 +03:00
|
|
|
ret = kvm_get_one_reg(cs, regidx, &v32);
|
2013-06-25 21:16:07 +04:00
|
|
|
if (!ret) {
|
|
|
|
cpu->cpreg_values[i] = v32;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case KVM_REG_SIZE_U64:
|
2023-10-10 17:24:52 +03:00
|
|
|
ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
|
2013-06-25 21:16:07 +04:00
|
|
|
break;
|
|
|
|
default:
|
2022-05-01 08:49:48 +03:00
|
|
|
g_assert_not_reached();
|
2013-06-25 21:16:07 +04:00
|
|
|
}
|
|
|
|
if (ret) {
|
|
|
|
ok = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
2015-07-21 13:18:45 +03:00
|
|
|
bool write_list_to_kvmstate(ARMCPU *cpu, int level)
|
2013-06-25 21:16:07 +04:00
|
|
|
{
|
|
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
int i;
|
|
|
|
bool ok = true;
|
|
|
|
|
|
|
|
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
|
|
|
uint64_t regidx = cpu->cpreg_indexes[i];
|
|
|
|
uint32_t v32;
|
|
|
|
int ret;
|
|
|
|
|
2015-07-21 13:18:45 +03:00
|
|
|
if (kvm_arm_cpreg_level(regidx) > level) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2013-06-25 21:16:07 +04:00
|
|
|
switch (regidx & KVM_REG_SIZE_MASK) {
|
|
|
|
case KVM_REG_SIZE_U32:
|
|
|
|
v32 = cpu->cpreg_values[i];
|
2023-10-10 17:24:51 +03:00
|
|
|
ret = kvm_set_one_reg(cs, regidx, &v32);
|
2013-06-25 21:16:07 +04:00
|
|
|
break;
|
|
|
|
case KVM_REG_SIZE_U64:
|
2023-10-10 17:24:51 +03:00
|
|
|
ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
|
2013-06-25 21:16:07 +04:00
|
|
|
break;
|
|
|
|
default:
|
2022-05-01 08:49:48 +03:00
|
|
|
g_assert_not_reached();
|
2013-06-25 21:16:07 +04:00
|
|
|
}
|
|
|
|
if (ret) {
|
|
|
|
/* We might fail for "unknown register" and also for
|
|
|
|
* "you tried to set a register which is constant with
|
|
|
|
* a different value from what it actually contains".
|
|
|
|
*/
|
|
|
|
ok = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
2020-01-30 19:02:06 +03:00
|
|
|
void kvm_arm_cpu_pre_save(ARMCPU *cpu)
|
|
|
|
{
|
|
|
|
/* KVM virtual time adjustment */
|
|
|
|
if (cpu->kvm_vtime_dirty) {
|
|
|
|
*kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arm_cpu_post_load(ARMCPU *cpu)
|
|
|
|
{
|
|
|
|
/* KVM virtual time adjustment */
|
|
|
|
if (cpu->kvm_adjvtime) {
|
|
|
|
cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
|
|
|
|
cpu->kvm_vtime_dirty = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-12-11 15:07:53 +03:00
|
|
|
void kvm_arm_reset_vcpu(ARMCPU *cpu)
|
|
|
|
{
|
2014-12-11 15:07:53 +03:00
|
|
|
int ret;
|
|
|
|
|
2014-12-11 15:07:53 +03:00
|
|
|
/* Re-init VCPU so that all registers are set to
|
|
|
|
* their respective reset values.
|
|
|
|
*/
|
2023-12-19 20:57:46 +03:00
|
|
|
ret = kvm_arm_vcpu_init(cpu);
|
2014-12-11 15:07:53 +03:00
|
|
|
if (ret < 0) {
|
|
|
|
fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
if (!write_kvmstate_to_list(cpu)) {
|
|
|
|
fprintf(stderr, "write_kvmstate_to_list failed\n");
|
|
|
|
abort();
|
|
|
|
}
|
2019-05-07 14:55:02 +03:00
|
|
|
/*
|
|
|
|
* Sync the reset values also into the CPUState. This is necessary
|
|
|
|
* because the next thing we do will be a kvm_arch_put_registers()
|
|
|
|
* which will update the list values from the CPUState before copying
|
|
|
|
* the list values back to KVM. It's OK to ignore failure returns here
|
|
|
|
* for the same reason we do so in kvm_arch_get_registers().
|
|
|
|
*/
|
|
|
|
write_list_to_cpustate(cpu);
|
2014-12-11 15:07:53 +03:00
|
|
|
}
|
|
|
|
|
2015-04-01 19:57:30 +03:00
|
|
|
/*
|
|
|
|
* Update KVM's MP_STATE based on what QEMU thinks it is
|
|
|
|
*/
|
2023-12-19 20:57:43 +03:00
|
|
|
static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
|
2015-04-01 19:57:30 +03:00
|
|
|
{
|
|
|
|
if (cap_has_mp_state) {
|
|
|
|
struct kvm_mp_state mp_state = {
|
2017-02-23 21:29:23 +03:00
|
|
|
.mp_state = (cpu->power_state == PSCI_OFF) ?
|
|
|
|
KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
|
2015-04-01 19:57:30 +03:00
|
|
|
};
|
2023-12-19 20:57:43 +03:00
|
|
|
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
|
2015-04-01 19:57:30 +03:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Sync the KVM MP_STATE into QEMU
|
|
|
|
*/
|
2023-12-19 20:57:43 +03:00
|
|
|
static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
|
2015-04-01 19:57:30 +03:00
|
|
|
{
|
|
|
|
if (cap_has_mp_state) {
|
|
|
|
struct kvm_mp_state mp_state;
|
|
|
|
int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
|
|
|
|
if (ret) {
|
2023-12-19 20:57:43 +03:00
|
|
|
return ret;
|
2015-04-01 19:57:30 +03:00
|
|
|
}
|
2017-02-23 21:29:23 +03:00
|
|
|
cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
|
|
|
|
PSCI_OFF : PSCI_ON;
|
2015-04-01 19:57:30 +03:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:40 +03:00
|
|
|
/**
|
|
|
|
* kvm_arm_get_virtual_time:
|
2023-12-19 20:57:47 +03:00
|
|
|
* @cpu: ARMCPU
|
2023-12-19 20:57:40 +03:00
|
|
|
*
|
|
|
|
* Gets the VCPU's virtual counter and stores it in the KVM CPU state.
|
|
|
|
*/
|
2023-12-19 20:57:47 +03:00
|
|
|
static void kvm_arm_get_virtual_time(ARMCPU *cpu)
|
2020-01-30 19:02:06 +03:00
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (cpu->kvm_vtime_dirty) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:47 +03:00
|
|
|
ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
|
2020-01-30 19:02:06 +03:00
|
|
|
if (ret) {
|
|
|
|
error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
cpu->kvm_vtime_dirty = true;
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:40 +03:00
|
|
|
/**
|
|
|
|
* kvm_arm_put_virtual_time:
|
2023-12-19 20:57:47 +03:00
|
|
|
* @cpu: ARMCPU
|
2023-12-19 20:57:40 +03:00
|
|
|
*
|
|
|
|
* Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
|
|
|
|
*/
|
2023-12-19 20:57:47 +03:00
|
|
|
static void kvm_arm_put_virtual_time(ARMCPU *cpu)
|
2020-01-30 19:02:06 +03:00
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!cpu->kvm_vtime_dirty) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:47 +03:00
|
|
|
ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
|
2020-01-30 19:02:06 +03:00
|
|
|
if (ret) {
|
|
|
|
error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
cpu->kvm_vtime_dirty = false;
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:43 +03:00
|
|
|
/**
|
|
|
|
* kvm_put_vcpu_events:
|
|
|
|
* @cpu: ARMCPU
|
|
|
|
*
|
|
|
|
* Put VCPU related state to kvm.
|
|
|
|
*
|
|
|
|
* Returns: 0 if success else < 0 error code
|
|
|
|
*/
|
|
|
|
static int kvm_put_vcpu_events(ARMCPU *cpu)
|
2018-10-24 09:50:16 +03:00
|
|
|
{
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
struct kvm_vcpu_events events;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!kvm_has_vcpu_events()) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
memset(&events, 0, sizeof(events));
|
|
|
|
events.exception.serror_pending = env->serror.pending;
|
|
|
|
|
|
|
|
/* Inject SError to guest with specified syndrome if host kernel
|
|
|
|
* supports it, otherwise inject SError without syndrome.
|
|
|
|
*/
|
|
|
|
if (cap_has_inject_serror_esr) {
|
|
|
|
events.exception.serror_has_esr = env->serror.has_esr;
|
|
|
|
events.exception.serror_esr = env->serror.esr;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
|
|
|
|
if (ret) {
|
|
|
|
error_report("failed to put vcpu events");
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:43 +03:00
|
|
|
/**
|
|
|
|
* kvm_get_vcpu_events:
|
|
|
|
* @cpu: ARMCPU
|
|
|
|
*
|
|
|
|
* Get VCPU related state from kvm.
|
|
|
|
*
|
|
|
|
* Returns: 0 if success else < 0 error code
|
|
|
|
*/
|
|
|
|
static int kvm_get_vcpu_events(ARMCPU *cpu)
|
2018-10-24 09:50:16 +03:00
|
|
|
{
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
struct kvm_vcpu_events events;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!kvm_has_vcpu_events()) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
memset(&events, 0, sizeof(events));
|
|
|
|
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
|
|
|
|
if (ret) {
|
|
|
|
error_report("failed to get vcpu events");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
env->serror.pending = events.exception.serror_pending;
|
|
|
|
env->serror.has_esr = events.exception.serror_has_esr;
|
|
|
|
env->serror.esr = events.exception.serror_esr;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:39 +03:00
|
|
|
#define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
|
|
|
|
#define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ESR_EL1
|
|
|
|
* ISS encoding
|
|
|
|
* AARCH64: DFSC, bits [5:0]
|
|
|
|
* AARCH32:
|
|
|
|
* TTBCR.EAE == 0
|
|
|
|
* FS[4] - DFSR[10]
|
|
|
|
* FS[3:0] - DFSR[3:0]
|
|
|
|
* TTBCR.EAE == 1
|
|
|
|
* FS, bits [5:0]
|
|
|
|
*/
|
|
|
|
#define ESR_DFSC(aarch64, lpae, v) \
|
|
|
|
((aarch64 || (lpae)) ? ((v) & 0x3F) \
|
|
|
|
: (((v) >> 6) | ((v) & 0x1F)))
|
|
|
|
|
|
|
|
#define ESR_DFSC_EXTABT(aarch64, lpae) \
|
|
|
|
((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* kvm_arm_verify_ext_dabt_pending:
|
2023-12-19 20:57:47 +03:00
|
|
|
* @cpu: ARMCPU
|
2023-12-19 20:57:39 +03:00
|
|
|
*
|
|
|
|
* Verify the fault status code wrt the Ext DABT injection
|
|
|
|
*
|
|
|
|
* Returns: true if the fault status code is as expected, false otherwise
|
|
|
|
*/
|
2023-12-19 20:57:47 +03:00
|
|
|
static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
|
2023-12-19 20:57:39 +03:00
|
|
|
{
|
2023-12-19 20:57:47 +03:00
|
|
|
CPUState *cs = CPU(cpu);
|
2023-12-19 20:57:39 +03:00
|
|
|
uint64_t dfsr_val;
|
|
|
|
|
|
|
|
if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
|
|
|
|
int lpae = 0;
|
|
|
|
|
|
|
|
if (!aarch64_mode) {
|
|
|
|
uint64_t ttbcr;
|
|
|
|
|
|
|
|
if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
|
|
|
|
lpae = arm_feature(env, ARM_FEATURE_LPAE)
|
|
|
|
&& (ttbcr & TTBCR_EAE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* The verification here is based on the DFSC bits
|
|
|
|
* of the ESR_EL1 reg only
|
|
|
|
*/
|
|
|
|
return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
|
|
|
|
ESR_DFSC_EXTABT(aarch64_mode, lpae));
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2013-03-05 04:34:41 +04:00
|
|
|
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
|
|
|
|
{
|
2020-07-03 18:59:42 +03:00
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
|
|
|
|
if (unlikely(env->ext_dabt_raised)) {
|
|
|
|
/*
|
|
|
|
* Verifying that the ext DABT has been properly injected,
|
|
|
|
* otherwise risking indefinitely re-running the faulting instruction
|
|
|
|
* Covering a very narrow case for kernels 5.5..5.5.4
|
|
|
|
* when injected abort was misconfigured to be
|
|
|
|
* an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
|
|
|
|
*/
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
|
2023-12-19 20:57:47 +03:00
|
|
|
unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
|
2020-07-03 18:59:42 +03:00
|
|
|
|
|
|
|
error_report("Data abort exception with no valid ISS generated by "
|
|
|
|
"guest memory access. KVM unable to emulate faulting "
|
|
|
|
"instruction. Failed to inject an external data abort "
|
|
|
|
"into the guest.");
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
/* Clear the status */
|
|
|
|
env->ext_dabt_raised = 0;
|
|
|
|
}
|
2013-03-05 04:34:41 +04:00
|
|
|
}
|
|
|
|
|
2015-04-08 14:30:58 +03:00
|
|
|
MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
|
2013-03-05 04:34:41 +04:00
|
|
|
{
|
2017-07-11 13:21:26 +03:00
|
|
|
ARMCPU *cpu;
|
|
|
|
uint32_t switched_level;
|
|
|
|
|
|
|
|
if (kvm_irqchip_in_kernel()) {
|
|
|
|
/*
|
|
|
|
* We only need to sync timer states with user-space interrupt
|
|
|
|
* controllers, so return early and save cycles if we don't.
|
|
|
|
*/
|
|
|
|
return MEMTXATTRS_UNSPECIFIED;
|
|
|
|
}
|
|
|
|
|
|
|
|
cpu = ARM_CPU(cs);
|
|
|
|
|
|
|
|
/* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
|
|
|
|
if (run->s.regs.device_irq_level != cpu->device_irq_level) {
|
|
|
|
switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
|
|
|
|
|
2024-01-02 18:35:25 +03:00
|
|
|
bql_lock();
|
2017-07-11 13:21:26 +03:00
|
|
|
|
|
|
|
if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
|
|
|
|
qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
|
|
|
|
!!(run->s.regs.device_irq_level &
|
|
|
|
KVM_ARM_DEV_EL1_VTIMER));
|
|
|
|
switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
|
|
|
|
qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
|
|
|
|
!!(run->s.regs.device_irq_level &
|
|
|
|
KVM_ARM_DEV_EL1_PTIMER));
|
|
|
|
switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
|
|
|
|
}
|
|
|
|
|
2017-09-04 17:21:54 +03:00
|
|
|
if (switched_level & KVM_ARM_DEV_PMU) {
|
|
|
|
qemu_set_irq(cpu->pmu_interrupt,
|
|
|
|
!!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
|
|
|
|
switched_level &= ~KVM_ARM_DEV_PMU;
|
|
|
|
}
|
2017-07-11 13:21:26 +03:00
|
|
|
|
|
|
|
if (switched_level) {
|
|
|
|
qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
|
|
|
|
__func__, switched_level);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* We also mark unknown levels as processed to not waste cycles */
|
|
|
|
cpu->device_irq_level = run->s.regs.device_irq_level;
|
2024-01-02 18:35:25 +03:00
|
|
|
bql_unlock();
|
2017-07-11 13:21:26 +03:00
|
|
|
}
|
|
|
|
|
2015-04-08 14:30:58 +03:00
|
|
|
return MEMTXATTRS_UNSPECIFIED;
|
2013-03-05 04:34:41 +04:00
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:43 +03:00
|
|
|
static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
|
2020-01-30 19:02:06 +03:00
|
|
|
{
|
2023-12-19 20:57:47 +03:00
|
|
|
ARMCPU *cpu = opaque;
|
2020-01-30 19:02:06 +03:00
|
|
|
|
|
|
|
if (running) {
|
|
|
|
if (cpu->kvm_adjvtime) {
|
2023-12-19 20:57:47 +03:00
|
|
|
kvm_arm_put_virtual_time(cpu);
|
2020-01-30 19:02:06 +03:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (cpu->kvm_adjvtime) {
|
2023-12-19 20:57:47 +03:00
|
|
|
kvm_arm_get_virtual_time(cpu);
|
2020-01-30 19:02:06 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2015-12-17 16:37:15 +03:00
|
|
|
|
2020-07-03 18:59:42 +03:00
|
|
|
/**
|
|
|
|
* kvm_arm_handle_dabt_nisv:
|
2023-12-19 20:57:47 +03:00
|
|
|
* @cpu: ARMCPU
|
2020-07-03 18:59:42 +03:00
|
|
|
* @esr_iss: ISS encoding (limited) for the exception from Data Abort
|
|
|
|
* ISV bit set to '0b0' -> no valid instruction syndrome
|
|
|
|
* @fault_ipa: faulting address for the synchronous data abort
|
|
|
|
*
|
|
|
|
* Returns: 0 if the exception has been handled, < 0 otherwise
|
|
|
|
*/
|
2023-12-19 20:57:47 +03:00
|
|
|
static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
|
2020-07-03 18:59:42 +03:00
|
|
|
uint64_t fault_ipa)
|
|
|
|
{
|
2020-07-03 18:59:42 +03:00
|
|
|
CPUARMState *env = &cpu->env;
|
2020-07-03 18:59:42 +03:00
|
|
|
/*
|
|
|
|
* Request KVM to inject the external data abort into the guest
|
|
|
|
*/
|
|
|
|
if (cap_has_inject_ext_dabt) {
|
|
|
|
struct kvm_vcpu_events events = { };
|
|
|
|
/*
|
|
|
|
* The external data abort event will be handled immediately by KVM
|
|
|
|
* using the address fault that triggered the exit on given VCPU.
|
|
|
|
* Requesting injection of the external data abort does not rely
|
|
|
|
* on any other VCPU state. Therefore, in this particular case, the VCPU
|
|
|
|
* synchronization can be exceptionally skipped.
|
|
|
|
*/
|
|
|
|
events.exception.ext_dabt_pending = 1;
|
|
|
|
/* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
|
2023-12-19 20:57:47 +03:00
|
|
|
if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
|
2020-07-03 18:59:42 +03:00
|
|
|
env->ext_dabt_raised = 1;
|
|
|
|
return 0;
|
|
|
|
}
|
2020-07-03 18:59:42 +03:00
|
|
|
} else {
|
|
|
|
error_report("Data abort exception triggered by guest memory access "
|
|
|
|
"at physical address: 0x" TARGET_FMT_lx,
|
|
|
|
(target_ulong)fault_ipa);
|
|
|
|
error_printf("KVM unable to emulate faulting instruction.\n");
|
|
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:40 +03:00
|
|
|
/**
|
|
|
|
* kvm_arm_handle_debug:
|
2023-12-19 20:57:47 +03:00
|
|
|
* @cpu: ARMCPU
|
2023-12-19 20:57:40 +03:00
|
|
|
* @debug_exit: debug part of the KVM exit structure
|
|
|
|
*
|
|
|
|
* Returns: TRUE if the debug exception was handled.
|
|
|
|
*
|
|
|
|
* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
|
|
|
|
*
|
|
|
|
* To minimise translating between kernel and user-space the kernel
|
|
|
|
* ABI just provides user-space with the full exception syndrome
|
|
|
|
* register value to be decoded in QEMU.
|
|
|
|
*/
|
2023-12-19 20:57:47 +03:00
|
|
|
static bool kvm_arm_handle_debug(ARMCPU *cpu,
|
2023-12-19 20:57:40 +03:00
|
|
|
struct kvm_debug_exit_arch *debug_exit)
|
|
|
|
{
|
|
|
|
int hsr_ec = syn_get_ec(debug_exit->hsr);
|
2023-12-19 20:57:47 +03:00
|
|
|
CPUState *cs = CPU(cpu);
|
2023-12-19 20:57:40 +03:00
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
|
|
|
|
/* Ensure PC is synchronised */
|
|
|
|
kvm_cpu_synchronize_state(cs);
|
|
|
|
|
|
|
|
switch (hsr_ec) {
|
|
|
|
case EC_SOFTWARESTEP:
|
|
|
|
if (cs->singlestep_enabled) {
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* The kernel should have suppressed the guest's ability to
|
|
|
|
* single step at this point so something has gone wrong.
|
|
|
|
*/
|
|
|
|
error_report("%s: guest single-step while debugging unsupported"
|
|
|
|
" (%"PRIx64", %"PRIx32")",
|
|
|
|
__func__, env->pc, debug_exit->hsr);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case EC_AA64_BKPT:
|
|
|
|
if (kvm_find_sw_breakpoint(cs, env->pc)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case EC_BREAKPOINT:
|
|
|
|
if (find_hw_breakpoint(cs, env->pc)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case EC_WATCHPOINT:
|
|
|
|
{
|
|
|
|
CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
|
|
|
|
if (wp) {
|
|
|
|
cs->watchpoint_hit = wp;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
|
|
|
|
__func__, debug_exit->hsr, env->pc);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If we are not handling the debug exception it must belong to
|
|
|
|
* the guest. Let's re-use the existing TCG interrupt code to set
|
|
|
|
* everything up properly.
|
|
|
|
*/
|
|
|
|
cs->exception_index = EXCP_BKPT;
|
|
|
|
env->exception.syndrome = debug_exit->hsr;
|
|
|
|
env->exception.vaddress = debug_exit->far;
|
|
|
|
env->exception.target_el = 1;
|
2024-01-02 18:35:25 +03:00
|
|
|
bql_lock();
|
2023-12-19 20:57:40 +03:00
|
|
|
arm_cpu_do_interrupt(cs);
|
2024-01-02 18:35:25 +03:00
|
|
|
bql_unlock();
|
2023-12-19 20:57:40 +03:00
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2013-03-05 04:34:41 +04:00
|
|
|
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
|
|
|
|
{
|
2023-12-19 20:57:47 +03:00
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
2015-12-17 16:37:15 +03:00
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
switch (run->exit_reason) {
|
|
|
|
case KVM_EXIT_DEBUG:
|
2023-12-19 20:57:47 +03:00
|
|
|
if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
|
2015-12-17 16:37:15 +03:00
|
|
|
ret = EXCP_DEBUG;
|
|
|
|
} /* otherwise return to guest */
|
|
|
|
break;
|
2020-07-03 18:59:42 +03:00
|
|
|
case KVM_EXIT_ARM_NISV:
|
|
|
|
/* External DABT with no valid iss to decode */
|
2023-12-19 20:57:47 +03:00
|
|
|
ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
|
2020-07-03 18:59:42 +03:00
|
|
|
run->arm_nisv.fault_ipa);
|
|
|
|
break;
|
2015-12-17 16:37:15 +03:00
|
|
|
default:
|
|
|
|
qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
|
|
|
|
__func__, run->exit_reason);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return ret;
|
2013-03-05 04:34:41 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_process_async_events(CPUState *cs)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:40 +03:00
|
|
|
/**
|
|
|
|
* kvm_arm_hw_debug_active:
|
2023-12-19 20:57:48 +03:00
|
|
|
* @cpu: ARMCPU
|
2023-12-19 20:57:40 +03:00
|
|
|
*
|
|
|
|
* Return: TRUE if any hardware breakpoints in use.
|
|
|
|
*/
|
2023-12-19 20:57:48 +03:00
|
|
|
static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
|
2023-12-19 20:57:40 +03:00
|
|
|
{
|
|
|
|
return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:39 +03:00
|
|
|
/**
|
|
|
|
* kvm_arm_copy_hw_debug_data:
|
|
|
|
* @ptr: kvm_guest_debug_arch structure
|
|
|
|
*
|
|
|
|
* Copy the architecture specific debug registers into the
|
|
|
|
* kvm_guest_debug ioctl structure.
|
|
|
|
*/
|
|
|
|
static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
|
|
|
|
|
|
|
|
for (i = 0; i < max_hw_wps; i++) {
|
|
|
|
HWWatchpoint *wp = get_hw_wp(i);
|
|
|
|
ptr->dbg_wcr[i] = wp->wcr;
|
|
|
|
ptr->dbg_wvr[i] = wp->wvr;
|
|
|
|
}
|
|
|
|
for (i = 0; i < max_hw_bps; i++) {
|
|
|
|
HWBreakpoint *bp = get_hw_bp(i);
|
|
|
|
ptr->dbg_bcr[i] = bp->bcr;
|
|
|
|
ptr->dbg_bvr[i] = bp->bvr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-03-05 04:34:41 +04:00
|
|
|
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
|
|
|
|
{
|
2015-12-17 16:37:15 +03:00
|
|
|
if (kvm_sw_breakpoints_active(cs)) {
|
|
|
|
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
|
|
|
|
}
|
2023-12-19 20:57:48 +03:00
|
|
|
if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
|
2015-12-17 16:37:15 +03:00
|
|
|
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
|
|
|
|
kvm_arm_copy_hw_debug_data(&dbg->arch);
|
|
|
|
}
|
2013-03-05 04:34:41 +04:00
|
|
|
}
|
2013-06-12 11:26:52 +04:00
|
|
|
|
|
|
|
void kvm_arch_init_irq_routing(KVMState *s)
|
|
|
|
{
|
|
|
|
}
|
2014-02-26 21:20:00 +04:00
|
|
|
|
2019-11-13 13:17:12 +03:00
|
|
|
int kvm_arch_irqchip_create(KVMState *s)
|
2014-02-26 21:20:00 +04:00
|
|
|
{
|
2019-11-13 13:17:12 +03:00
|
|
|
if (kvm_kernel_irqchip_split()) {
|
2022-07-28 17:24:46 +03:00
|
|
|
error_report("-machine kernel_irqchip=split is not supported on ARM.");
|
2019-11-13 13:17:12 +03:00
|
|
|
exit(1);
|
2015-12-17 19:16:08 +03:00
|
|
|
}
|
|
|
|
|
2014-02-26 21:20:00 +04:00
|
|
|
/* If we can create the VGIC using the newer device control API, we
|
|
|
|
* let the device do this when it initializes itself, otherwise we
|
|
|
|
* fall back to the old API */
|
2015-09-24 03:29:37 +03:00
|
|
|
return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
|
|
|
|
}
|
2014-02-26 21:20:00 +04:00
|
|
|
|
2015-09-24 03:29:37 +03:00
|
|
|
int kvm_arm_vgic_probe(void)
|
|
|
|
{
|
2020-03-11 16:16:16 +03:00
|
|
|
int val = 0;
|
|
|
|
|
2015-09-24 03:29:37 +03:00
|
|
|
if (kvm_create_device(kvm_state,
|
|
|
|
KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
|
2020-03-11 16:16:16 +03:00
|
|
|
val |= KVM_ARM_VGIC_V3;
|
|
|
|
}
|
|
|
|
if (kvm_create_device(kvm_state,
|
|
|
|
KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
|
|
|
|
val |= KVM_ARM_VGIC_V2;
|
2014-02-26 21:20:00 +04:00
|
|
|
}
|
2020-03-11 16:16:16 +03:00
|
|
|
return val;
|
2014-02-26 21:20:00 +04:00
|
|
|
}
|
2015-01-09 11:04:40 +03:00
|
|
|
|
2019-10-03 18:46:39 +03:00
|
|
|
int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
|
|
|
|
{
|
|
|
|
int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
|
|
|
|
int cpu_idx1 = cpu % 256;
|
|
|
|
int cpu_idx2 = cpu / 256;
|
|
|
|
|
|
|
|
kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
|
|
|
|
(cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
|
|
|
|
|
|
|
|
return kvm_set_irq(kvm_state, kvm_irq, !!level);
|
|
|
|
}
|
|
|
|
|
2015-01-09 11:04:40 +03:00
|
|
|
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
|
2015-10-15 16:44:52 +03:00
|
|
|
uint64_t address, uint32_t data, PCIDevice *dev)
|
2015-01-09 11:04:40 +03:00
|
|
|
{
|
2018-05-04 20:05:52 +03:00
|
|
|
AddressSpace *as = pci_device_iommu_address_space(dev);
|
|
|
|
hwaddr xlat, len, doorbell_gpa;
|
|
|
|
MemoryRegionSection mrs;
|
|
|
|
MemoryRegion *mr;
|
|
|
|
|
|
|
|
if (as == &address_space_memory) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* MSI doorbell address is translated by an IOMMU */
|
|
|
|
|
2021-07-28 02:52:01 +03:00
|
|
|
RCU_READ_LOCK_GUARD();
|
|
|
|
|
2018-05-31 16:50:52 +03:00
|
|
|
mr = address_space_translate(as, address, &xlat, &len, true,
|
|
|
|
MEMTXATTRS_UNSPECIFIED);
|
2021-07-28 02:52:01 +03:00
|
|
|
|
2018-05-04 20:05:52 +03:00
|
|
|
if (!mr) {
|
2021-07-28 02:52:01 +03:00
|
|
|
return 1;
|
2018-05-04 20:05:52 +03:00
|
|
|
}
|
2021-07-28 02:52:01 +03:00
|
|
|
|
2018-05-04 20:05:52 +03:00
|
|
|
mrs = memory_region_find(mr, xlat, 1);
|
2021-07-28 02:52:01 +03:00
|
|
|
|
2018-05-04 20:05:52 +03:00
|
|
|
if (!mrs.mr) {
|
2021-07-28 02:52:01 +03:00
|
|
|
return 1;
|
2018-05-04 20:05:52 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
doorbell_gpa = mrs.offset_within_address_space;
|
|
|
|
memory_region_unref(mrs.mr);
|
|
|
|
|
|
|
|
route->u.msi.address_lo = doorbell_gpa;
|
|
|
|
route->u.msi.address_hi = doorbell_gpa >> 32;
|
|
|
|
|
|
|
|
trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
|
|
|
|
|
2021-07-28 02:52:01 +03:00
|
|
|
return 0;
|
2015-01-09 11:04:40 +03:00
|
|
|
}
|
2015-06-02 16:56:23 +03:00
|
|
|
|
2016-07-14 08:56:31 +03:00
|
|
|
int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
|
|
|
|
int vector, PCIDevice *dev)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_release_virq_post(int virq)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-06-02 16:56:23 +03:00
|
|
|
int kvm_arch_msi_data_to_gsi(uint32_t data)
|
|
|
|
{
|
|
|
|
return (data - 32) & 0xffff;
|
|
|
|
}
|
2021-01-26 20:36:47 +03:00
|
|
|
|
2023-09-05 12:12:46 +03:00
|
|
|
static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
|
|
|
|
const char *name, void *opaque,
|
|
|
|
Error **errp)
|
|
|
|
{
|
|
|
|
KVMState *s = KVM_STATE(obj);
|
|
|
|
uint64_t value = s->kvm_eager_split_size;
|
|
|
|
|
|
|
|
visit_type_size(v, name, &value, errp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
|
|
|
|
const char *name, void *opaque,
|
|
|
|
Error **errp)
|
|
|
|
{
|
|
|
|
KVMState *s = KVM_STATE(obj);
|
|
|
|
uint64_t value;
|
|
|
|
|
|
|
|
if (s->fd != -1) {
|
|
|
|
error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!visit_type_size(v, name, &value, errp)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (value && !is_power_of_2(value)) {
|
|
|
|
error_setg(errp, "early-split-size must be a power of two");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
s->kvm_eager_split_size = value;
|
|
|
|
}
|
|
|
|
|
2022-09-29 10:20:12 +03:00
|
|
|
void kvm_arch_accel_class_init(ObjectClass *oc)
|
|
|
|
{
|
2023-09-05 12:12:46 +03:00
|
|
|
object_class_property_add(oc, "eager-split-size", "size",
|
|
|
|
kvm_arch_get_eager_split_size,
|
|
|
|
kvm_arch_set_eager_split_size, NULL, NULL);
|
|
|
|
|
|
|
|
object_class_property_set_description(oc, "eager-split-size",
|
|
|
|
"Eager Page Split chunk size for hugepages. (default: 0, disabled)");
|
2022-09-29 10:20:12 +03:00
|
|
|
}
|
2023-12-19 20:57:42 +03:00
|
|
|
|
|
|
|
int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
|
|
|
|
{
|
|
|
|
switch (type) {
|
|
|
|
case GDB_BREAKPOINT_HW:
|
|
|
|
return insert_hw_breakpoint(addr);
|
|
|
|
break;
|
|
|
|
case GDB_WATCHPOINT_READ:
|
|
|
|
case GDB_WATCHPOINT_WRITE:
|
|
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
|
|
return insert_hw_watchpoint(addr, len, type);
|
|
|
|
default:
|
|
|
|
return -ENOSYS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
|
|
|
|
{
|
|
|
|
switch (type) {
|
|
|
|
case GDB_BREAKPOINT_HW:
|
|
|
|
return delete_hw_breakpoint(addr);
|
|
|
|
case GDB_WATCHPOINT_READ:
|
|
|
|
case GDB_WATCHPOINT_WRITE:
|
|
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
|
|
return delete_hw_watchpoint(addr, len, type);
|
|
|
|
default:
|
|
|
|
return -ENOSYS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arch_remove_all_hw_breakpoints(void)
|
|
|
|
{
|
|
|
|
if (cur_hw_wps > 0) {
|
|
|
|
g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
|
|
|
|
}
|
|
|
|
if (cur_hw_bps > 0) {
|
|
|
|
g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:45 +03:00
|
|
|
static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
|
2023-12-19 20:57:42 +03:00
|
|
|
const char *name)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
2023-12-19 20:57:45 +03:00
|
|
|
err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
|
2023-12-19 20:57:42 +03:00
|
|
|
if (err != 0) {
|
|
|
|
error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:45 +03:00
|
|
|
err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
|
2023-12-19 20:57:42 +03:00
|
|
|
if (err != 0) {
|
|
|
|
error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:46 +03:00
|
|
|
void kvm_arm_pmu_init(ARMCPU *cpu)
|
2023-12-19 20:57:42 +03:00
|
|
|
{
|
|
|
|
struct kvm_device_attr attr = {
|
|
|
|
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
|
|
|
|
.attr = KVM_ARM_VCPU_PMU_V3_INIT,
|
|
|
|
};
|
|
|
|
|
2023-12-19 20:57:46 +03:00
|
|
|
if (!cpu->has_pmu) {
|
2023-12-19 20:57:42 +03:00
|
|
|
return;
|
|
|
|
}
|
2023-12-19 20:57:46 +03:00
|
|
|
if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
|
2023-12-19 20:57:42 +03:00
|
|
|
error_report("failed to init PMU");
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:46 +03:00
|
|
|
void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
|
2023-12-19 20:57:42 +03:00
|
|
|
{
|
|
|
|
struct kvm_device_attr attr = {
|
|
|
|
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
|
|
|
|
.addr = (intptr_t)&irq,
|
|
|
|
.attr = KVM_ARM_VCPU_PMU_V3_IRQ,
|
|
|
|
};
|
|
|
|
|
2023-12-19 20:57:46 +03:00
|
|
|
if (!cpu->has_pmu) {
|
2023-12-19 20:57:42 +03:00
|
|
|
return;
|
|
|
|
}
|
2023-12-19 20:57:46 +03:00
|
|
|
if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
|
2023-12-19 20:57:42 +03:00
|
|
|
error_report("failed to set irq for PMU");
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:45 +03:00
|
|
|
void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
|
2023-12-19 20:57:42 +03:00
|
|
|
{
|
|
|
|
struct kvm_device_attr attr = {
|
|
|
|
.group = KVM_ARM_VCPU_PVTIME_CTRL,
|
|
|
|
.attr = KVM_ARM_VCPU_PVTIME_IPA,
|
|
|
|
.addr = (uint64_t)&ipa,
|
|
|
|
};
|
|
|
|
|
2023-12-19 20:57:45 +03:00
|
|
|
if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
|
2023-12-19 20:57:42 +03:00
|
|
|
return;
|
|
|
|
}
|
2023-12-19 20:57:45 +03:00
|
|
|
if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
|
2023-12-19 20:57:42 +03:00
|
|
|
error_report("failed to init PVTIME IPA");
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
|
|
|
|
{
|
|
|
|
bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
|
|
|
|
|
|
|
|
if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
|
|
|
|
if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
|
|
cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
|
|
|
|
} else {
|
|
|
|
cpu->kvm_steal_time = ON_OFF_AUTO_ON;
|
|
|
|
}
|
|
|
|
} else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
|
|
|
|
if (!has_steal_time) {
|
|
|
|
error_setg(errp, "'kvm-steal-time' cannot be enabled "
|
|
|
|
"on this host");
|
|
|
|
return;
|
|
|
|
} else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
|
|
/*
|
|
|
|
* DEN0057A chapter 2 says "This specification only covers
|
|
|
|
* systems in which the Execution state of the hypervisor
|
|
|
|
* as well as EL1 of virtual machines is AArch64.". And,
|
|
|
|
* to ensure that, the smc/hvc calls are only specified as
|
|
|
|
* smc64/hvc64.
|
|
|
|
*/
|
|
|
|
error_setg(errp, "'kvm-steal-time' cannot be enabled "
|
|
|
|
"for AArch32 guests");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool kvm_arm_aarch32_supported(void)
|
|
|
|
{
|
|
|
|
return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool kvm_arm_sve_supported(void)
|
|
|
|
{
|
|
|
|
return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
|
|
|
|
}
|
|
|
|
|
|
|
|
QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
|
|
|
|
|
2023-12-19 20:57:45 +03:00
|
|
|
uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
|
2023-12-19 20:57:42 +03:00
|
|
|
{
|
|
|
|
/* Only call this function if kvm_arm_sve_supported() returns true. */
|
|
|
|
static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
|
|
|
|
static bool probed;
|
|
|
|
uint32_t vq = 0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* KVM ensures all host CPUs support the same set of vector lengths.
|
|
|
|
* So we only need to create the scratch VCPUs once and then cache
|
|
|
|
* the results.
|
|
|
|
*/
|
|
|
|
if (!probed) {
|
|
|
|
struct kvm_vcpu_init init = {
|
|
|
|
.target = -1,
|
|
|
|
.features[0] = (1 << KVM_ARM_VCPU_SVE),
|
|
|
|
};
|
|
|
|
struct kvm_one_reg reg = {
|
|
|
|
.id = KVM_REG_ARM64_SVE_VLS,
|
|
|
|
.addr = (uint64_t)&vls[0],
|
|
|
|
};
|
|
|
|
int fdarray[3], ret;
|
|
|
|
|
|
|
|
probed = true;
|
|
|
|
|
|
|
|
if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
|
|
|
|
error_report("failed to create scratch VCPU with SVE enabled");
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
ret = ioctl(fdarray[2], KVM_GET_ONE_REG, ®);
|
|
|
|
kvm_arm_destroy_scratch_host_vcpu(fdarray);
|
|
|
|
if (ret) {
|
|
|
|
error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
|
|
|
|
strerror(errno));
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
|
|
|
|
if (vls[i]) {
|
|
|
|
vq = 64 - clz64(vls[i]) + i * 64;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (vq > ARM_MAX_VQ) {
|
|
|
|
warn_report("KVM supports vector lengths larger than "
|
|
|
|
"QEMU can enable");
|
|
|
|
vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return vls[0];
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:45 +03:00
|
|
|
static int kvm_arm_sve_set_vls(ARMCPU *cpu)
|
2023-12-19 20:57:42 +03:00
|
|
|
{
|
|
|
|
uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
|
|
|
|
|
|
|
|
assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
|
|
|
|
|
2023-12-19 20:57:45 +03:00
|
|
|
return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
|
2023-12-19 20:57:42 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
|
|
|
|
|
|
|
|
int kvm_arch_init_vcpu(CPUState *cs)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
uint64_t mpidr;
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
uint64_t psciver;
|
|
|
|
|
|
|
|
if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
|
|
|
|
!object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
|
|
|
|
error_report("KVM is not supported for this guest CPU type");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:47 +03:00
|
|
|
qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
|
2023-12-19 20:57:42 +03:00
|
|
|
|
|
|
|
/* Determine init features for this CPU */
|
|
|
|
memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
|
|
|
|
if (cs->start_powered_off) {
|
|
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
|
|
|
|
}
|
|
|
|
if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
|
|
|
|
cpu->psci_version = QEMU_PSCI_VERSION_0_2;
|
|
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
|
|
|
|
}
|
2024-01-29 19:44:43 +03:00
|
|
|
if (!arm_feature(env, ARM_FEATURE_AARCH64)) {
|
2023-12-19 20:57:42 +03:00
|
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
|
|
|
|
}
|
|
|
|
if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
|
|
|
|
cpu->has_pmu = false;
|
|
|
|
}
|
|
|
|
if (cpu->has_pmu) {
|
|
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
|
|
|
|
} else {
|
|
|
|
env->features &= ~(1ULL << ARM_FEATURE_PMU);
|
|
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
|
|
|
assert(kvm_arm_sve_supported());
|
|
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
|
|
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_pauth, cpu)) {
|
|
|
|
cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
|
|
|
|
1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Do KVM_ARM_VCPU_INIT ioctl */
|
2023-12-19 20:57:46 +03:00
|
|
|
ret = kvm_arm_vcpu_init(cpu);
|
2023-12-19 20:57:42 +03:00
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
2023-12-19 20:57:45 +03:00
|
|
|
ret = kvm_arm_sve_set_vls(cpu);
|
2023-12-19 20:57:42 +03:00
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
2023-12-19 20:57:46 +03:00
|
|
|
ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
|
2023-12-19 20:57:42 +03:00
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* KVM reports the exact PSCI version it is implementing via a
|
|
|
|
* special sysreg. If it is present, use its contents to determine
|
|
|
|
* what to report to the guest in the dtb (it is the PSCI version,
|
|
|
|
* in the same 15-bits major 16-bits minor format that PSCI_VERSION
|
|
|
|
* returns).
|
|
|
|
*/
|
|
|
|
if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
|
|
|
|
cpu->psci_version = psciver;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When KVM is in use, PSCI is emulated in-kernel and not by qemu.
|
|
|
|
* Currently KVM has its own idea about MPIDR assignment, so we
|
|
|
|
* override our defaults with what we get from KVM.
|
|
|
|
*/
|
|
|
|
ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
|
|
|
|
|
|
|
|
return kvm_arm_init_cpreg_list(cpu);
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_destroy_vcpu(CPUState *cs)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Callers must hold the iothread mutex lock */
|
|
|
|
static void kvm_inject_arm_sea(CPUState *c)
|
|
|
|
{
|
|
|
|
ARMCPU *cpu = ARM_CPU(c);
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
uint32_t esr;
|
|
|
|
bool same_el;
|
|
|
|
|
|
|
|
c->exception_index = EXCP_DATA_ABORT;
|
|
|
|
env->exception.target_el = 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the DFSC to synchronous external abort and set FnV to not valid,
|
|
|
|
* this will tell guest the FAR_ELx is UNKNOWN for this abort.
|
|
|
|
*/
|
|
|
|
same_el = arm_current_el(env) == env->exception.target_el;
|
|
|
|
esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
|
|
|
|
|
|
|
|
env->exception.syndrome = esr;
|
|
|
|
|
|
|
|
arm_cpu_do_interrupt(c);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
|
|
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
|
|
|
|
|
|
|
|
#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
|
|
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
|
|
|
|
|
|
|
|
#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
|
|
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
|
|
|
|
|
|
|
|
static int kvm_arch_put_fpsimd(CPUState *cs)
|
|
|
|
{
|
|
|
|
CPUARMState *env = &ARM_CPU(cs)->env;
|
|
|
|
int i, ret;
|
|
|
|
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
|
|
uint64_t *q = aa64_vfp_qreg(env, i);
|
|
|
|
#if HOST_BIG_ENDIAN
|
|
|
|
uint64_t fp_val[2] = { q[1], q[0] };
|
|
|
|
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
|
|
|
|
fp_val);
|
|
|
|
#else
|
|
|
|
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
|
|
|
|
#endif
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
|
|
|
|
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
|
|
|
|
* code the slice index to zero for now as it's unlikely we'll need more than
|
|
|
|
* one slice for quite some time.
|
|
|
|
*/
|
|
|
|
static int kvm_arch_put_sve(CPUState *cs)
|
|
|
|
{
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
uint64_t tmp[ARM_MAX_VQ * 2];
|
|
|
|
uint64_t *r;
|
|
|
|
int n, ret;
|
|
|
|
|
|
|
|
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
|
|
|
|
r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
|
|
|
|
ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
|
|
|
|
r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
|
|
|
|
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
|
|
|
|
ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
|
|
|
|
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
|
|
|
|
ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_put_registers(CPUState *cs, int level)
|
|
|
|
{
|
|
|
|
uint64_t val;
|
|
|
|
uint32_t fpr;
|
|
|
|
int i, ret;
|
|
|
|
unsigned int el;
|
|
|
|
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
|
|
|
|
/* If we are in AArch32 mode then we need to copy the AArch32 regs to the
|
|
|
|
* AArch64 registers before pushing them out to 64-bit KVM.
|
|
|
|
*/
|
|
|
|
if (!is_a64(env)) {
|
|
|
|
aarch64_sync_32_to_64(env);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < 31; i++) {
|
|
|
|
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
|
|
|
|
&env->xregs[i]);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
|
|
|
|
* QEMU side we keep the current SP in xregs[31] as well.
|
|
|
|
*/
|
|
|
|
aarch64_save_sp(env, 1);
|
|
|
|
|
|
|
|
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
|
|
|
|
if (is_a64(env)) {
|
|
|
|
val = pstate_read(env);
|
|
|
|
} else {
|
|
|
|
val = cpsr_read(env);
|
|
|
|
}
|
|
|
|
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Saved Program State Registers
|
|
|
|
*
|
|
|
|
* Before we restore from the banked_spsr[] array we need to
|
|
|
|
* ensure that any modifications to env->spsr are correctly
|
|
|
|
* reflected in the banks.
|
|
|
|
*/
|
|
|
|
el = arm_current_el(env);
|
|
|
|
if (el > 0 && !is_a64(env)) {
|
|
|
|
i = bank_number(env->uncached_cpsr & CPSR_M);
|
|
|
|
env->banked_spsr[i] = env->spsr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* KVM 0-4 map to QEMU banks 1-5 */
|
|
|
|
for (i = 0; i < KVM_NR_SPSR; i++) {
|
|
|
|
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
|
|
|
|
&env->banked_spsr[i + 1]);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
|
|
|
ret = kvm_arch_put_sve(cs);
|
|
|
|
} else {
|
|
|
|
ret = kvm_arch_put_fpsimd(cs);
|
|
|
|
}
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
fpr = vfp_get_fpsr(env);
|
|
|
|
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
fpr = vfp_get_fpcr(env);
|
|
|
|
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
write_cpustate_to_list(cpu, true);
|
|
|
|
|
|
|
|
if (!write_list_to_kvmstate(cpu, level)) {
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Setting VCPU events should be triggered after syncing the registers
|
|
|
|
* to avoid overwriting potential changes made by KVM upon calling
|
|
|
|
* KVM_SET_VCPU_EVENTS ioctl
|
|
|
|
*/
|
|
|
|
ret = kvm_put_vcpu_events(cpu);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2023-12-19 20:57:43 +03:00
|
|
|
return kvm_arm_sync_mpstate_to_kvm(cpu);
|
2023-12-19 20:57:42 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
static int kvm_arch_get_fpsimd(CPUState *cs)
|
|
|
|
{
|
|
|
|
CPUARMState *env = &ARM_CPU(cs)->env;
|
|
|
|
int i, ret;
|
|
|
|
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
|
|
uint64_t *q = aa64_vfp_qreg(env, i);
|
|
|
|
ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
} else {
|
|
|
|
#if HOST_BIG_ENDIAN
|
|
|
|
uint64_t t;
|
|
|
|
t = q[0], q[0] = q[1], q[1] = t;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
|
|
|
|
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
|
|
|
|
* code the slice index to zero for now as it's unlikely we'll need more than
|
|
|
|
* one slice for quite some time.
|
|
|
|
*/
|
|
|
|
static int kvm_arch_get_sve(CPUState *cs)
|
|
|
|
{
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
uint64_t *r;
|
|
|
|
int n, ret;
|
|
|
|
|
|
|
|
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
|
|
|
|
r = &env->vfp.zregs[n].d[0];
|
|
|
|
ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
sve_bswap64(r, r, cpu->sve_max_vq * 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
|
|
|
|
r = &env->vfp.pregs[n].p[0];
|
|
|
|
ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
|
|
|
|
}
|
|
|
|
|
|
|
|
r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
|
|
|
|
ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_get_registers(CPUState *cs)
|
|
|
|
{
|
|
|
|
uint64_t val;
|
|
|
|
unsigned int el;
|
|
|
|
uint32_t fpr;
|
|
|
|
int i, ret;
|
|
|
|
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
|
|
|
|
for (i = 0; i < 31; i++) {
|
|
|
|
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
|
|
|
|
&env->xregs[i]);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
env->aarch64 = ((val & PSTATE_nRW) == 0);
|
|
|
|
if (is_a64(env)) {
|
|
|
|
pstate_write(env, val);
|
|
|
|
} else {
|
|
|
|
cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
|
|
|
|
* QEMU side we keep the current SP in xregs[31] as well.
|
|
|
|
*/
|
|
|
|
aarch64_restore_sp(env, 1);
|
|
|
|
|
|
|
|
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If we are in AArch32 mode then we need to sync the AArch32 regs with the
|
|
|
|
* incoming AArch64 regs received from 64-bit KVM.
|
|
|
|
* We must perform this after all of the registers have been acquired from
|
|
|
|
* the kernel.
|
|
|
|
*/
|
|
|
|
if (!is_a64(env)) {
|
|
|
|
aarch64_sync_64_to_32(env);
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fetch the SPSR registers
|
|
|
|
*
|
|
|
|
* KVM SPSRs 0-4 map to QEMU banks 1-5
|
|
|
|
*/
|
|
|
|
for (i = 0; i < KVM_NR_SPSR; i++) {
|
|
|
|
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
|
|
|
|
&env->banked_spsr[i + 1]);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
el = arm_current_el(env);
|
|
|
|
if (el > 0 && !is_a64(env)) {
|
|
|
|
i = bank_number(env->uncached_cpsr & CPSR_M);
|
|
|
|
env->spsr = env->banked_spsr[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
|
|
|
ret = kvm_arch_get_sve(cs);
|
|
|
|
} else {
|
|
|
|
ret = kvm_arch_get_fpsimd(cs);
|
|
|
|
}
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
vfp_set_fpsr(env, fpr);
|
|
|
|
|
|
|
|
ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
vfp_set_fpcr(env, fpr);
|
|
|
|
|
|
|
|
ret = kvm_get_vcpu_events(cpu);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!write_kvmstate_to_list(cpu)) {
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
/* Note that it's OK to have registers which aren't in CPUState,
|
|
|
|
* so we can ignore a failure return here.
|
|
|
|
*/
|
|
|
|
write_list_to_cpustate(cpu);
|
|
|
|
|
2023-12-19 20:57:43 +03:00
|
|
|
ret = kvm_arm_sync_mpstate_to_qemu(cpu);
|
2023-12-19 20:57:42 +03:00
|
|
|
|
|
|
|
/* TODO: other registers */
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
|
|
|
|
{
|
|
|
|
ram_addr_t ram_addr;
|
|
|
|
hwaddr paddr;
|
|
|
|
|
|
|
|
assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
|
|
|
|
|
|
|
|
if (acpi_ghes_present() && addr) {
|
|
|
|
ram_addr = qemu_ram_addr_from_host(addr);
|
|
|
|
if (ram_addr != RAM_ADDR_INVALID &&
|
|
|
|
kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
|
|
|
|
kvm_hwpoison_page_add(ram_addr);
|
|
|
|
/*
|
|
|
|
* If this is a BUS_MCEERR_AR, we know we have been called
|
|
|
|
* synchronously from the vCPU thread, so we can easily
|
|
|
|
* synchronize the state and inject an error.
|
|
|
|
*
|
|
|
|
* TODO: we currently don't tell the guest at all about
|
|
|
|
* BUS_MCEERR_AO. In that case we might either be being
|
|
|
|
* called synchronously from the vCPU thread, or a bit
|
|
|
|
* later from the main thread, so doing the injection of
|
|
|
|
* the error would be more complicated.
|
|
|
|
*/
|
|
|
|
if (code == BUS_MCEERR_AR) {
|
|
|
|
kvm_cpu_synchronize_state(c);
|
|
|
|
if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
|
|
|
|
kvm_inject_arm_sea(c);
|
|
|
|
} else {
|
|
|
|
error_report("failed to record the error");
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (code == BUS_MCEERR_AO) {
|
|
|
|
error_report("Hardware memory error at addr %p for memory used by "
|
|
|
|
"QEMU itself instead of guest system!", addr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (code == BUS_MCEERR_AR) {
|
|
|
|
error_report("Hardware memory error!");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* C6.6.29 BRK instruction */
|
|
|
|
static const uint32_t brk_insn = 0xd4200000;
|
|
|
|
|
|
|
|
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
|
|
|
|
{
|
|
|
|
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
|
|
|
|
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
|
|
|
|
{
|
|
|
|
static uint32_t brk;
|
|
|
|
|
|
|
|
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
|
|
|
|
brk != brk_insn ||
|
|
|
|
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|