target/arm/kvm: Merge kvm64.c into kvm.c

Since kvm32.c was removed, there is no need to keep them separate.
This will allow more symbols to be unexported.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Tested-by: Philippe Mathieu-Daudé <philmd@linaro.org>
[PMM: retain copyright lines from kvm64.c in kvm.c]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Richard Henderson 2023-12-19 17:57:42 +00:00 committed by Peter Maydell
parent f38ce925eb
commit de3c96017f
3 changed files with 792 additions and 821 deletions

View File

@ -2,6 +2,8 @@
* ARM implementation of KVM hooks
*
* Copyright Christoffer Dall 2009-2010
* Copyright Mian-M. Hamayun 2013, Virtual Open Systems
* Copyright Alex Bennée 2014, Linaro
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
@ -19,6 +21,7 @@
#include "qom/object.h"
#include "qapi/error.h"
#include "sysemu/sysemu.h"
#include "sysemu/runstate.h"
#include "sysemu/kvm.h"
#include "sysemu/kvm_int.h"
#include "kvm_arm.h"
@ -28,10 +31,13 @@
#include "hw/pci/pci.h"
#include "exec/memattrs.h"
#include "exec/address-spaces.h"
#include "exec/gdbstub.h"
#include "hw/boards.h"
#include "hw/irq.h"
#include "qapi/visitor.h"
#include "qemu/log.h"
#include "hw/acpi/acpi.h"
#include "hw/acpi/ghes.h"
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
@ -1610,3 +1616,788 @@ void kvm_arch_accel_class_init(ObjectClass *oc)
object_class_property_set_description(oc, "eager-split-size",
"Eager Page Split chunk size for hugepages. (default: 0, disabled)");
}
int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
return insert_hw_breakpoint(addr);
break;
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
return insert_hw_watchpoint(addr, len, type);
default:
return -ENOSYS;
}
}
int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
return delete_hw_breakpoint(addr);
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
return delete_hw_watchpoint(addr, len, type);
default:
return -ENOSYS;
}
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
if (cur_hw_wps > 0) {
g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
}
if (cur_hw_bps > 0) {
g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
}
}
static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
const char *name)
{
int err;
err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
if (err != 0) {
error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
return false;
}
err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
if (err != 0) {
error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
return false;
}
return true;
}
void kvm_arm_pmu_init(CPUState *cs)
{
struct kvm_device_attr attr = {
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
.attr = KVM_ARM_VCPU_PMU_V3_INIT,
};
if (!ARM_CPU(cs)->has_pmu) {
return;
}
if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
error_report("failed to init PMU");
abort();
}
}
void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
{
struct kvm_device_attr attr = {
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
.addr = (intptr_t)&irq,
.attr = KVM_ARM_VCPU_PMU_V3_IRQ,
};
if (!ARM_CPU(cs)->has_pmu) {
return;
}
if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
error_report("failed to set irq for PMU");
abort();
}
}
void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
{
struct kvm_device_attr attr = {
.group = KVM_ARM_VCPU_PVTIME_CTRL,
.attr = KVM_ARM_VCPU_PVTIME_IPA,
.addr = (uint64_t)&ipa,
};
if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
return;
}
if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
error_report("failed to init PVTIME IPA");
abort();
}
}
void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
{
bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
} else {
cpu->kvm_steal_time = ON_OFF_AUTO_ON;
}
} else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
if (!has_steal_time) {
error_setg(errp, "'kvm-steal-time' cannot be enabled "
"on this host");
return;
} else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
/*
* DEN0057A chapter 2 says "This specification only covers
* systems in which the Execution state of the hypervisor
* as well as EL1 of virtual machines is AArch64.". And,
* to ensure that, the smc/hvc calls are only specified as
* smc64/hvc64.
*/
error_setg(errp, "'kvm-steal-time' cannot be enabled "
"for AArch32 guests");
return;
}
}
}
bool kvm_arm_aarch32_supported(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
}
bool kvm_arm_sve_supported(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
}
QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
uint32_t kvm_arm_sve_get_vls(CPUState *cs)
{
/* Only call this function if kvm_arm_sve_supported() returns true. */
static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
static bool probed;
uint32_t vq = 0;
int i;
/*
* KVM ensures all host CPUs support the same set of vector lengths.
* So we only need to create the scratch VCPUs once and then cache
* the results.
*/
if (!probed) {
struct kvm_vcpu_init init = {
.target = -1,
.features[0] = (1 << KVM_ARM_VCPU_SVE),
};
struct kvm_one_reg reg = {
.id = KVM_REG_ARM64_SVE_VLS,
.addr = (uint64_t)&vls[0],
};
int fdarray[3], ret;
probed = true;
if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
error_report("failed to create scratch VCPU with SVE enabled");
abort();
}
ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
kvm_arm_destroy_scratch_host_vcpu(fdarray);
if (ret) {
error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
strerror(errno));
abort();
}
for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
if (vls[i]) {
vq = 64 - clz64(vls[i]) + i * 64;
break;
}
}
if (vq > ARM_MAX_VQ) {
warn_report("KVM supports vector lengths larger than "
"QEMU can enable");
vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
}
}
return vls[0];
}
static int kvm_arm_sve_set_vls(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
return kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_VLS, &vls[0]);
}
#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
int kvm_arch_init_vcpu(CPUState *cs)
{
int ret;
uint64_t mpidr;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t psciver;
if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
!object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
error_report("KVM is not supported for this guest CPU type");
return -EINVAL;
}
qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
/* Determine init features for this CPU */
memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
if (cs->start_powered_off) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
}
if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
cpu->psci_version = QEMU_PSCI_VERSION_0_2;
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
}
if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
}
if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
cpu->has_pmu = false;
}
if (cpu->has_pmu) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
} else {
env->features &= ~(1ULL << ARM_FEATURE_PMU);
}
if (cpu_isar_feature(aa64_sve, cpu)) {
assert(kvm_arm_sve_supported());
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
}
if (cpu_isar_feature(aa64_pauth, cpu)) {
cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
}
/* Do KVM_ARM_VCPU_INIT ioctl */
ret = kvm_arm_vcpu_init(cs);
if (ret) {
return ret;
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arm_sve_set_vls(cs);
if (ret) {
return ret;
}
ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
if (ret) {
return ret;
}
}
/*
* KVM reports the exact PSCI version it is implementing via a
* special sysreg. If it is present, use its contents to determine
* what to report to the guest in the dtb (it is the PSCI version,
* in the same 15-bits major 16-bits minor format that PSCI_VERSION
* returns).
*/
if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
cpu->psci_version = psciver;
}
/*
* When KVM is in use, PSCI is emulated in-kernel and not by qemu.
* Currently KVM has its own idea about MPIDR assignment, so we
* override our defaults with what we get from KVM.
*/
ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
if (ret) {
return ret;
}
cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
/* Check whether user space can specify guest syndrome value */
kvm_arm_init_serror_injection(cs);
return kvm_arm_init_cpreg_list(cpu);
}
int kvm_arch_destroy_vcpu(CPUState *cs)
{
return 0;
}
/* Callers must hold the iothread mutex lock */
static void kvm_inject_arm_sea(CPUState *c)
{
ARMCPU *cpu = ARM_CPU(c);
CPUARMState *env = &cpu->env;
uint32_t esr;
bool same_el;
c->exception_index = EXCP_DATA_ABORT;
env->exception.target_el = 1;
/*
* Set the DFSC to synchronous external abort and set FnV to not valid,
* this will tell guest the FAR_ELx is UNKNOWN for this abort.
*/
same_el = arm_current_el(env) == env->exception.target_el;
esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
env->exception.syndrome = esr;
arm_cpu_do_interrupt(c);
}
#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
static int kvm_arch_put_fpsimd(CPUState *cs)
{
CPUARMState *env = &ARM_CPU(cs)->env;
int i, ret;
for (i = 0; i < 32; i++) {
uint64_t *q = aa64_vfp_qreg(env, i);
#if HOST_BIG_ENDIAN
uint64_t fp_val[2] = { q[1], q[0] };
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
fp_val);
#else
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
#endif
if (ret) {
return ret;
}
}
return 0;
}
/*
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
* code the slice index to zero for now as it's unlikely we'll need more than
* one slice for quite some time.
*/
static int kvm_arch_put_sve(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t tmp[ARM_MAX_VQ * 2];
uint64_t *r;
int n, ret;
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
if (ret) {
return ret;
}
}
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
if (ret) {
return ret;
}
}
r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
if (ret) {
return ret;
}
return 0;
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
uint64_t val;
uint32_t fpr;
int i, ret;
unsigned int el;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/* If we are in AArch32 mode then we need to copy the AArch32 regs to the
* AArch64 registers before pushing them out to 64-bit KVM.
*/
if (!is_a64(env)) {
aarch64_sync_32_to_64(env);
}
for (i = 0; i < 31; i++) {
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
&env->xregs[i]);
if (ret) {
return ret;
}
}
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
* QEMU side we keep the current SP in xregs[31] as well.
*/
aarch64_save_sp(env, 1);
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
if (ret) {
return ret;
}
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
if (ret) {
return ret;
}
/* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
if (is_a64(env)) {
val = pstate_read(env);
} else {
val = cpsr_read(env);
}
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
if (ret) {
return ret;
}
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
if (ret) {
return ret;
}
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
if (ret) {
return ret;
}
/* Saved Program State Registers
*
* Before we restore from the banked_spsr[] array we need to
* ensure that any modifications to env->spsr are correctly
* reflected in the banks.
*/
el = arm_current_el(env);
if (el > 0 && !is_a64(env)) {
i = bank_number(env->uncached_cpsr & CPSR_M);
env->banked_spsr[i] = env->spsr;
}
/* KVM 0-4 map to QEMU banks 1-5 */
for (i = 0; i < KVM_NR_SPSR; i++) {
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
&env->banked_spsr[i + 1]);
if (ret) {
return ret;
}
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arch_put_sve(cs);
} else {
ret = kvm_arch_put_fpsimd(cs);
}
if (ret) {
return ret;
}
fpr = vfp_get_fpsr(env);
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
if (ret) {
return ret;
}
fpr = vfp_get_fpcr(env);
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
if (ret) {
return ret;
}
write_cpustate_to_list(cpu, true);
if (!write_list_to_kvmstate(cpu, level)) {
return -EINVAL;
}
/*
* Setting VCPU events should be triggered after syncing the registers
* to avoid overwriting potential changes made by KVM upon calling
* KVM_SET_VCPU_EVENTS ioctl
*/
ret = kvm_put_vcpu_events(cpu);
if (ret) {
return ret;
}
kvm_arm_sync_mpstate_to_kvm(cpu);
return ret;
}
static int kvm_arch_get_fpsimd(CPUState *cs)
{
CPUARMState *env = &ARM_CPU(cs)->env;
int i, ret;
for (i = 0; i < 32; i++) {
uint64_t *q = aa64_vfp_qreg(env, i);
ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
if (ret) {
return ret;
} else {
#if HOST_BIG_ENDIAN
uint64_t t;
t = q[0], q[0] = q[1], q[1] = t;
#endif
}
}
return 0;
}
/*
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
* code the slice index to zero for now as it's unlikely we'll need more than
* one slice for quite some time.
*/
static int kvm_arch_get_sve(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t *r;
int n, ret;
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
r = &env->vfp.zregs[n].d[0];
ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
if (ret) {
return ret;
}
sve_bswap64(r, r, cpu->sve_max_vq * 2);
}
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
r = &env->vfp.pregs[n].p[0];
ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
if (ret) {
return ret;
}
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
}
r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
if (ret) {
return ret;
}
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
return 0;
}
int kvm_arch_get_registers(CPUState *cs)
{
uint64_t val;
unsigned int el;
uint32_t fpr;
int i, ret;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
for (i = 0; i < 31; i++) {
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
&env->xregs[i]);
if (ret) {
return ret;
}
}
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
if (ret) {
return ret;
}
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
if (ret) {
return ret;
}
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
if (ret) {
return ret;
}
env->aarch64 = ((val & PSTATE_nRW) == 0);
if (is_a64(env)) {
pstate_write(env, val);
} else {
cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
}
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
* QEMU side we keep the current SP in xregs[31] as well.
*/
aarch64_restore_sp(env, 1);
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
if (ret) {
return ret;
}
/* If we are in AArch32 mode then we need to sync the AArch32 regs with the
* incoming AArch64 regs received from 64-bit KVM.
* We must perform this after all of the registers have been acquired from
* the kernel.
*/
if (!is_a64(env)) {
aarch64_sync_64_to_32(env);
}
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
if (ret) {
return ret;
}
/* Fetch the SPSR registers
*
* KVM SPSRs 0-4 map to QEMU banks 1-5
*/
for (i = 0; i < KVM_NR_SPSR; i++) {
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
&env->banked_spsr[i + 1]);
if (ret) {
return ret;
}
}
el = arm_current_el(env);
if (el > 0 && !is_a64(env)) {
i = bank_number(env->uncached_cpsr & CPSR_M);
env->spsr = env->banked_spsr[i];
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arch_get_sve(cs);
} else {
ret = kvm_arch_get_fpsimd(cs);
}
if (ret) {
return ret;
}
ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
if (ret) {
return ret;
}
vfp_set_fpsr(env, fpr);
ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
if (ret) {
return ret;
}
vfp_set_fpcr(env, fpr);
ret = kvm_get_vcpu_events(cpu);
if (ret) {
return ret;
}
if (!write_kvmstate_to_list(cpu)) {
return -EINVAL;
}
/* Note that it's OK to have registers which aren't in CPUState,
* so we can ignore a failure return here.
*/
write_list_to_cpustate(cpu);
kvm_arm_sync_mpstate_to_qemu(cpu);
/* TODO: other registers */
return ret;
}
void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
{
ram_addr_t ram_addr;
hwaddr paddr;
assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
if (acpi_ghes_present() && addr) {
ram_addr = qemu_ram_addr_from_host(addr);
if (ram_addr != RAM_ADDR_INVALID &&
kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
kvm_hwpoison_page_add(ram_addr);
/*
* If this is a BUS_MCEERR_AR, we know we have been called
* synchronously from the vCPU thread, so we can easily
* synchronize the state and inject an error.
*
* TODO: we currently don't tell the guest at all about
* BUS_MCEERR_AO. In that case we might either be being
* called synchronously from the vCPU thread, or a bit
* later from the main thread, so doing the injection of
* the error would be more complicated.
*/
if (code == BUS_MCEERR_AR) {
kvm_cpu_synchronize_state(c);
if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
kvm_inject_arm_sea(c);
} else {
error_report("failed to record the error");
abort();
}
}
return;
}
if (code == BUS_MCEERR_AO) {
error_report("Hardware memory error at addr %p for memory used by "
"QEMU itself instead of guest system!", addr);
}
}
if (code == BUS_MCEERR_AR) {
error_report("Hardware memory error!");
exit(1);
}
}
/* C6.6.29 BRK instruction */
static const uint32_t brk_insn = 0xd4200000;
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
return -EINVAL;
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
static uint32_t brk;
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
brk != brk_insn ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
return -EINVAL;
}
return 0;
}

View File

@ -1,820 +0,0 @@
/*
* ARM implementation of KVM hooks, 64 bit specific code
*
* Copyright Mian-M. Hamayun 2013, Virtual Open Systems
* Copyright Alex Bennée 2014, Linaro
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include <sys/ioctl.h>
#include <sys/ptrace.h>
#include <linux/elf.h>
#include <linux/kvm.h>
#include "qapi/error.h"
#include "cpu.h"
#include "qemu/timer.h"
#include "qemu/error-report.h"
#include "qemu/host-utils.h"
#include "qemu/main-loop.h"
#include "exec/gdbstub.h"
#include "sysemu/runstate.h"
#include "sysemu/kvm.h"
#include "sysemu/kvm_int.h"
#include "kvm_arm.h"
#include "internals.h"
#include "cpu-features.h"
#include "hw/acpi/acpi.h"
#include "hw/acpi/ghes.h"
int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
return insert_hw_breakpoint(addr);
break;
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
return insert_hw_watchpoint(addr, len, type);
default:
return -ENOSYS;
}
}
int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
return delete_hw_breakpoint(addr);
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
return delete_hw_watchpoint(addr, len, type);
default:
return -ENOSYS;
}
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
if (cur_hw_wps > 0) {
g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
}
if (cur_hw_bps > 0) {
g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
}
}
static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
const char *name)
{
int err;
err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
if (err != 0) {
error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
return false;
}
err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
if (err != 0) {
error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
return false;
}
return true;
}
void kvm_arm_pmu_init(CPUState *cs)
{
struct kvm_device_attr attr = {
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
.attr = KVM_ARM_VCPU_PMU_V3_INIT,
};
if (!ARM_CPU(cs)->has_pmu) {
return;
}
if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
error_report("failed to init PMU");
abort();
}
}
void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
{
struct kvm_device_attr attr = {
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
.addr = (intptr_t)&irq,
.attr = KVM_ARM_VCPU_PMU_V3_IRQ,
};
if (!ARM_CPU(cs)->has_pmu) {
return;
}
if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
error_report("failed to set irq for PMU");
abort();
}
}
void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
{
struct kvm_device_attr attr = {
.group = KVM_ARM_VCPU_PVTIME_CTRL,
.attr = KVM_ARM_VCPU_PVTIME_IPA,
.addr = (uint64_t)&ipa,
};
if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
return;
}
if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
error_report("failed to init PVTIME IPA");
abort();
}
}
void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
{
bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
} else {
cpu->kvm_steal_time = ON_OFF_AUTO_ON;
}
} else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
if (!has_steal_time) {
error_setg(errp, "'kvm-steal-time' cannot be enabled "
"on this host");
return;
} else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
/*
* DEN0057A chapter 2 says "This specification only covers
* systems in which the Execution state of the hypervisor
* as well as EL1 of virtual machines is AArch64.". And,
* to ensure that, the smc/hvc calls are only specified as
* smc64/hvc64.
*/
error_setg(errp, "'kvm-steal-time' cannot be enabled "
"for AArch32 guests");
return;
}
}
}
bool kvm_arm_aarch32_supported(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
}
bool kvm_arm_sve_supported(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
}
QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
uint32_t kvm_arm_sve_get_vls(CPUState *cs)
{
/* Only call this function if kvm_arm_sve_supported() returns true. */
static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
static bool probed;
uint32_t vq = 0;
int i;
/*
* KVM ensures all host CPUs support the same set of vector lengths.
* So we only need to create the scratch VCPUs once and then cache
* the results.
*/
if (!probed) {
struct kvm_vcpu_init init = {
.target = -1,
.features[0] = (1 << KVM_ARM_VCPU_SVE),
};
struct kvm_one_reg reg = {
.id = KVM_REG_ARM64_SVE_VLS,
.addr = (uint64_t)&vls[0],
};
int fdarray[3], ret;
probed = true;
if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
error_report("failed to create scratch VCPU with SVE enabled");
abort();
}
ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
kvm_arm_destroy_scratch_host_vcpu(fdarray);
if (ret) {
error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
strerror(errno));
abort();
}
for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
if (vls[i]) {
vq = 64 - clz64(vls[i]) + i * 64;
break;
}
}
if (vq > ARM_MAX_VQ) {
warn_report("KVM supports vector lengths larger than "
"QEMU can enable");
vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
}
}
return vls[0];
}
static int kvm_arm_sve_set_vls(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
return kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_VLS, &vls[0]);
}
#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
int kvm_arch_init_vcpu(CPUState *cs)
{
int ret;
uint64_t mpidr;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t psciver;
if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
!object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
error_report("KVM is not supported for this guest CPU type");
return -EINVAL;
}
qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
/* Determine init features for this CPU */
memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
if (cs->start_powered_off) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
}
if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
cpu->psci_version = QEMU_PSCI_VERSION_0_2;
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
}
if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
}
if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
cpu->has_pmu = false;
}
if (cpu->has_pmu) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
} else {
env->features &= ~(1ULL << ARM_FEATURE_PMU);
}
if (cpu_isar_feature(aa64_sve, cpu)) {
assert(kvm_arm_sve_supported());
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
}
if (cpu_isar_feature(aa64_pauth, cpu)) {
cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
}
/* Do KVM_ARM_VCPU_INIT ioctl */
ret = kvm_arm_vcpu_init(cs);
if (ret) {
return ret;
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arm_sve_set_vls(cs);
if (ret) {
return ret;
}
ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
if (ret) {
return ret;
}
}
/*
* KVM reports the exact PSCI version it is implementing via a
* special sysreg. If it is present, use its contents to determine
* what to report to the guest in the dtb (it is the PSCI version,
* in the same 15-bits major 16-bits minor format that PSCI_VERSION
* returns).
*/
if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
cpu->psci_version = psciver;
}
/*
* When KVM is in use, PSCI is emulated in-kernel and not by qemu.
* Currently KVM has its own idea about MPIDR assignment, so we
* override our defaults with what we get from KVM.
*/
ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
if (ret) {
return ret;
}
cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
/* Check whether user space can specify guest syndrome value */
kvm_arm_init_serror_injection(cs);
return kvm_arm_init_cpreg_list(cpu);
}
int kvm_arch_destroy_vcpu(CPUState *cs)
{
return 0;
}
/* Callers must hold the iothread mutex lock */
static void kvm_inject_arm_sea(CPUState *c)
{
ARMCPU *cpu = ARM_CPU(c);
CPUARMState *env = &cpu->env;
uint32_t esr;
bool same_el;
c->exception_index = EXCP_DATA_ABORT;
env->exception.target_el = 1;
/*
* Set the DFSC to synchronous external abort and set FnV to not valid,
* this will tell guest the FAR_ELx is UNKNOWN for this abort.
*/
same_el = arm_current_el(env) == env->exception.target_el;
esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
env->exception.syndrome = esr;
arm_cpu_do_interrupt(c);
}
#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
static int kvm_arch_put_fpsimd(CPUState *cs)
{
CPUARMState *env = &ARM_CPU(cs)->env;
int i, ret;
for (i = 0; i < 32; i++) {
uint64_t *q = aa64_vfp_qreg(env, i);
#if HOST_BIG_ENDIAN
uint64_t fp_val[2] = { q[1], q[0] };
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
fp_val);
#else
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
#endif
if (ret) {
return ret;
}
}
return 0;
}
/*
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
* code the slice index to zero for now as it's unlikely we'll need more than
* one slice for quite some time.
*/
static int kvm_arch_put_sve(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t tmp[ARM_MAX_VQ * 2];
uint64_t *r;
int n, ret;
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
if (ret) {
return ret;
}
}
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
if (ret) {
return ret;
}
}
r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
if (ret) {
return ret;
}
return 0;
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
uint64_t val;
uint32_t fpr;
int i, ret;
unsigned int el;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/* If we are in AArch32 mode then we need to copy the AArch32 regs to the
* AArch64 registers before pushing them out to 64-bit KVM.
*/
if (!is_a64(env)) {
aarch64_sync_32_to_64(env);
}
for (i = 0; i < 31; i++) {
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
&env->xregs[i]);
if (ret) {
return ret;
}
}
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
* QEMU side we keep the current SP in xregs[31] as well.
*/
aarch64_save_sp(env, 1);
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
if (ret) {
return ret;
}
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
if (ret) {
return ret;
}
/* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
if (is_a64(env)) {
val = pstate_read(env);
} else {
val = cpsr_read(env);
}
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
if (ret) {
return ret;
}
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
if (ret) {
return ret;
}
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
if (ret) {
return ret;
}
/* Saved Program State Registers
*
* Before we restore from the banked_spsr[] array we need to
* ensure that any modifications to env->spsr are correctly
* reflected in the banks.
*/
el = arm_current_el(env);
if (el > 0 && !is_a64(env)) {
i = bank_number(env->uncached_cpsr & CPSR_M);
env->banked_spsr[i] = env->spsr;
}
/* KVM 0-4 map to QEMU banks 1-5 */
for (i = 0; i < KVM_NR_SPSR; i++) {
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
&env->banked_spsr[i + 1]);
if (ret) {
return ret;
}
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arch_put_sve(cs);
} else {
ret = kvm_arch_put_fpsimd(cs);
}
if (ret) {
return ret;
}
fpr = vfp_get_fpsr(env);
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
if (ret) {
return ret;
}
fpr = vfp_get_fpcr(env);
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
if (ret) {
return ret;
}
write_cpustate_to_list(cpu, true);
if (!write_list_to_kvmstate(cpu, level)) {
return -EINVAL;
}
/*
* Setting VCPU events should be triggered after syncing the registers
* to avoid overwriting potential changes made by KVM upon calling
* KVM_SET_VCPU_EVENTS ioctl
*/
ret = kvm_put_vcpu_events(cpu);
if (ret) {
return ret;
}
kvm_arm_sync_mpstate_to_kvm(cpu);
return ret;
}
static int kvm_arch_get_fpsimd(CPUState *cs)
{
CPUARMState *env = &ARM_CPU(cs)->env;
int i, ret;
for (i = 0; i < 32; i++) {
uint64_t *q = aa64_vfp_qreg(env, i);
ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
if (ret) {
return ret;
} else {
#if HOST_BIG_ENDIAN
uint64_t t;
t = q[0], q[0] = q[1], q[1] = t;
#endif
}
}
return 0;
}
/*
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
* code the slice index to zero for now as it's unlikely we'll need more than
* one slice for quite some time.
*/
static int kvm_arch_get_sve(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t *r;
int n, ret;
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
r = &env->vfp.zregs[n].d[0];
ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
if (ret) {
return ret;
}
sve_bswap64(r, r, cpu->sve_max_vq * 2);
}
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
r = &env->vfp.pregs[n].p[0];
ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
if (ret) {
return ret;
}
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
}
r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
if (ret) {
return ret;
}
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
return 0;
}
int kvm_arch_get_registers(CPUState *cs)
{
uint64_t val;
unsigned int el;
uint32_t fpr;
int i, ret;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
for (i = 0; i < 31; i++) {
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
&env->xregs[i]);
if (ret) {
return ret;
}
}
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
if (ret) {
return ret;
}
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
if (ret) {
return ret;
}
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
if (ret) {
return ret;
}
env->aarch64 = ((val & PSTATE_nRW) == 0);
if (is_a64(env)) {
pstate_write(env, val);
} else {
cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
}
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
* QEMU side we keep the current SP in xregs[31] as well.
*/
aarch64_restore_sp(env, 1);
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
if (ret) {
return ret;
}
/* If we are in AArch32 mode then we need to sync the AArch32 regs with the
* incoming AArch64 regs received from 64-bit KVM.
* We must perform this after all of the registers have been acquired from
* the kernel.
*/
if (!is_a64(env)) {
aarch64_sync_64_to_32(env);
}
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
if (ret) {
return ret;
}
/* Fetch the SPSR registers
*
* KVM SPSRs 0-4 map to QEMU banks 1-5
*/
for (i = 0; i < KVM_NR_SPSR; i++) {
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
&env->banked_spsr[i + 1]);
if (ret) {
return ret;
}
}
el = arm_current_el(env);
if (el > 0 && !is_a64(env)) {
i = bank_number(env->uncached_cpsr & CPSR_M);
env->spsr = env->banked_spsr[i];
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arch_get_sve(cs);
} else {
ret = kvm_arch_get_fpsimd(cs);
}
if (ret) {
return ret;
}
ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
if (ret) {
return ret;
}
vfp_set_fpsr(env, fpr);
ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
if (ret) {
return ret;
}
vfp_set_fpcr(env, fpr);
ret = kvm_get_vcpu_events(cpu);
if (ret) {
return ret;
}
if (!write_kvmstate_to_list(cpu)) {
return -EINVAL;
}
/* Note that it's OK to have registers which aren't in CPUState,
* so we can ignore a failure return here.
*/
write_list_to_cpustate(cpu);
kvm_arm_sync_mpstate_to_qemu(cpu);
/* TODO: other registers */
return ret;
}
void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
{
ram_addr_t ram_addr;
hwaddr paddr;
assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
if (acpi_ghes_present() && addr) {
ram_addr = qemu_ram_addr_from_host(addr);
if (ram_addr != RAM_ADDR_INVALID &&
kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
kvm_hwpoison_page_add(ram_addr);
/*
* If this is a BUS_MCEERR_AR, we know we have been called
* synchronously from the vCPU thread, so we can easily
* synchronize the state and inject an error.
*
* TODO: we currently don't tell the guest at all about
* BUS_MCEERR_AO. In that case we might either be being
* called synchronously from the vCPU thread, or a bit
* later from the main thread, so doing the injection of
* the error would be more complicated.
*/
if (code == BUS_MCEERR_AR) {
kvm_cpu_synchronize_state(c);
if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
kvm_inject_arm_sea(c);
} else {
error_report("failed to record the error");
abort();
}
}
return;
}
if (code == BUS_MCEERR_AO) {
error_report("Hardware memory error at addr %p for memory used by "
"QEMU itself instead of guest system!", addr);
}
}
if (code == BUS_MCEERR_AR) {
error_report("Hardware memory error!");
exit(1);
}
}
/* C6.6.29 BRK instruction */
static const uint32_t brk_insn = 0xd4200000;
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
return -EINVAL;
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
static uint32_t brk;
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
brk != brk_insn ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
return -EINVAL;
}
return 0;
}

View File

@ -8,7 +8,7 @@ arm_ss.add(files(
))
arm_ss.add(zlib)
arm_ss.add(when: 'CONFIG_KVM', if_true: files('hyp_gdbstub.c', 'kvm.c', 'kvm64.c'), if_false: files('kvm-stub.c'))
arm_ss.add(when: 'CONFIG_KVM', if_true: files('hyp_gdbstub.c', 'kvm.c'), if_false: files('kvm-stub.c'))
arm_ss.add(when: 'CONFIG_HVF', if_true: files('hyp_gdbstub.c'))
arm_ss.add(when: 'TARGET_AARCH64', if_true: files(