qemu/target/arm/translate-mve.c

1034 lines
30 KiB
C
Raw Normal View History

/*
* ARM translation: M-profile MVE instructions
*
* Copyright (c) 2021 Linaro, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "tcg/tcg-op.h"
#include "tcg/tcg-op-gvec.h"
#include "exec/exec-all.h"
#include "exec/gen-icount.h"
#include "translate.h"
#include "translate-a32.h"
/* Include the generated decoder */
#include "decode-mve.c.inc"
typedef void MVEGenLdStFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void MVEGenOneOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
typedef void MVEGenTwoOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_ptr);
typedef void MVEGenTwoOpScalarFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void MVEGenTwoOpShiftFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void MVEGenDualAccOpFn(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i64);
typedef void MVEGenVADDVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void MVEGenOneOpImmFn(TCGv_ptr, TCGv_ptr, TCGv_i64);
/* Return the offset of a Qn register (same semantics as aa32_vfp_qreg()) */
static inline long mve_qreg_offset(unsigned reg)
{
return offsetof(CPUARMState, vfp.zregs[reg].d[0]);
}
static TCGv_ptr mve_qreg_ptr(unsigned reg)
{
TCGv_ptr ret = tcg_temp_new_ptr();
tcg_gen_addi_ptr(ret, cpu_env, mve_qreg_offset(reg));
return ret;
}
static bool mve_check_qreg_bank(DisasContext *s, int qmask)
{
/*
* Check whether Qregs are in range. For v8.1M only Q0..Q7
* are supported, see VFPSmallRegisterBank().
*/
return qmask < 8;
}
bool mve_eci_check(DisasContext *s)
{
/*
* This is a beatwise insn: check that ECI is valid (not a
* reserved value) and note that we are handling it.
* Return true if OK, false if we generated an exception.
*/
s->eci_handled = true;
switch (s->eci) {
case ECI_NONE:
case ECI_A0:
case ECI_A0A1:
case ECI_A0A1A2:
case ECI_A0A1A2B0:
return true;
default:
/* Reserved value: INVSTATE UsageFault */
gen_exception_insn(s, s->pc_curr, EXCP_INVSTATE, syn_uncategorized(),
default_exception_el(s));
return false;
}
}
static void mve_update_eci(DisasContext *s)
{
/*
* The helper function will always update the CPUState field,
* so we only need to update the DisasContext field.
*/
if (s->eci) {
s->eci = (s->eci == ECI_A0A1A2B0) ? ECI_A0 : ECI_NONE;
}
}
void mve_update_and_store_eci(DisasContext *s)
{
/*
* For insns which don't call a helper function that will call
* mve_advance_vpt(), this version updates s->eci and also stores
* it out to the CPUState field.
*/
if (s->eci) {
mve_update_eci(s);
store_cpu_field(tcg_constant_i32(s->eci << 4), condexec_bits);
}
}
static bool mve_skip_first_beat(DisasContext *s)
{
/* Return true if PSR.ECI says we must skip the first beat of this insn */
switch (s->eci) {
case ECI_NONE:
return false;
case ECI_A0:
case ECI_A0A1:
case ECI_A0A1A2:
case ECI_A0A1A2B0:
return true;
default:
g_assert_not_reached();
}
}
static bool do_ldst(DisasContext *s, arg_VLDR_VSTR *a, MVEGenLdStFn *fn,
unsigned msize)
{
TCGv_i32 addr;
uint32_t offset;
TCGv_ptr qreg;
if (!dc_isar_feature(aa32_mve, s) ||
!mve_check_qreg_bank(s, a->qd) ||
!fn) {
return false;
}
/* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */
if (a->rn == 15 || (a->rn == 13 && a->w)) {
return false;
}
if (!mve_eci_check(s) || !vfp_access_check(s)) {
return true;
}
offset = a->imm << msize;
if (!a->a) {
offset = -offset;
}
addr = load_reg(s, a->rn);
if (a->p) {
tcg_gen_addi_i32(addr, addr, offset);
}
qreg = mve_qreg_ptr(a->qd);
fn(cpu_env, qreg, addr);
tcg_temp_free_ptr(qreg);
/*
* Writeback always happens after the last beat of the insn,
* regardless of predication
*/
if (a->w) {
if (!a->p) {
tcg_gen_addi_i32(addr, addr, offset);
}
store_reg(s, a->rn, addr);
} else {
tcg_temp_free_i32(addr);
}
mve_update_eci(s);
return true;
}
static bool trans_VLDR_VSTR(DisasContext *s, arg_VLDR_VSTR *a)
{
static MVEGenLdStFn * const ldstfns[4][2] = {
{ gen_helper_mve_vstrb, gen_helper_mve_vldrb },
{ gen_helper_mve_vstrh, gen_helper_mve_vldrh },
{ gen_helper_mve_vstrw, gen_helper_mve_vldrw },
{ NULL, NULL }
};
return do_ldst(s, a, ldstfns[a->size][a->l], a->size);
}
#define DO_VLDST_WIDE_NARROW(OP, SLD, ULD, ST, MSIZE) \
static bool trans_##OP(DisasContext *s, arg_VLDR_VSTR *a) \
{ \
static MVEGenLdStFn * const ldstfns[2][2] = { \
{ gen_helper_mve_##ST, gen_helper_mve_##SLD }, \
{ NULL, gen_helper_mve_##ULD }, \
}; \
return do_ldst(s, a, ldstfns[a->u][a->l], MSIZE); \
}
DO_VLDST_WIDE_NARROW(VLDSTB_H, vldrb_sh, vldrb_uh, vstrb_h, MO_8)
DO_VLDST_WIDE_NARROW(VLDSTB_W, vldrb_sw, vldrb_uw, vstrb_w, MO_8)
DO_VLDST_WIDE_NARROW(VLDSTH_W, vldrh_sw, vldrh_uw, vstrh_w, MO_16)
static bool trans_VDUP(DisasContext *s, arg_VDUP *a)
{
TCGv_ptr qd;
TCGv_i32 rt;
if (!dc_isar_feature(aa32_mve, s) ||
!mve_check_qreg_bank(s, a->qd)) {
return false;
}
if (a->rt == 13 || a->rt == 15) {
/* UNPREDICTABLE; we choose to UNDEF */
return false;
}
if (!mve_eci_check(s) || !vfp_access_check(s)) {
return true;
}
qd = mve_qreg_ptr(a->qd);
rt = load_reg(s, a->rt);
tcg_gen_dup_i32(a->size, rt, rt);
gen_helper_mve_vdup(cpu_env, qd, rt);
tcg_temp_free_ptr(qd);
tcg_temp_free_i32(rt);
mve_update_eci(s);
return true;
}
static bool do_1op(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn)
{
TCGv_ptr qd, qm;
if (!dc_isar_feature(aa32_mve, s) ||
!mve_check_qreg_bank(s, a->qd | a->qm) ||
!fn) {
return false;
}
if (!mve_eci_check(s) || !vfp_access_check(s)) {
return true;
}
qd = mve_qreg_ptr(a->qd);
qm = mve_qreg_ptr(a->qm);
fn(cpu_env, qd, qm);
tcg_temp_free_ptr(qd);
tcg_temp_free_ptr(qm);
mve_update_eci(s);
return true;
}
#define DO_1OP(INSN, FN) \
static bool trans_##INSN(DisasContext *s, arg_1op *a) \
{ \
static MVEGenOneOpFn * const fns[] = { \
gen_helper_mve_##FN##b, \
gen_helper_mve_##FN##h, \
gen_helper_mve_##FN##w, \
NULL, \
}; \
return do_1op(s, a, fns[a->size]); \
}
DO_1OP(VCLZ, vclz)
DO_1OP(VCLS, vcls)
DO_1OP(VABS, vabs)
DO_1OP(VNEG, vneg)
static bool trans_VREV16(DisasContext *s, arg_1op *a)
{
static MVEGenOneOpFn * const fns[] = {
gen_helper_mve_vrev16b,
NULL,
NULL,
NULL,
};
return do_1op(s, a, fns[a->size]);
}
static bool trans_VREV32(DisasContext *s, arg_1op *a)
{
static MVEGenOneOpFn * const fns[] = {
gen_helper_mve_vrev32b,
gen_helper_mve_vrev32h,
NULL,
NULL,
};
return do_1op(s, a, fns[a->size]);
}
static bool trans_VREV64(DisasContext *s, arg_1op *a)
{
static MVEGenOneOpFn * const fns[] = {
gen_helper_mve_vrev64b,
gen_helper_mve_vrev64h,
gen_helper_mve_vrev64w,
NULL,
};
return do_1op(s, a, fns[a->size]);
}
static bool trans_VMVN(DisasContext *s, arg_1op *a)
{
return do_1op(s, a, gen_helper_mve_vmvn);
}
static bool trans_VABS_fp(DisasContext *s, arg_1op *a)
{
static MVEGenOneOpFn * const fns[] = {
NULL,
gen_helper_mve_vfabsh,
gen_helper_mve_vfabss,
NULL,
};
if (!dc_isar_feature(aa32_mve_fp, s)) {
return false;
}
return do_1op(s, a, fns[a->size]);
}
static bool trans_VNEG_fp(DisasContext *s, arg_1op *a)
{
static MVEGenOneOpFn * const fns[] = {
NULL,
gen_helper_mve_vfnegh,
gen_helper_mve_vfnegs,
NULL,
};
if (!dc_isar_feature(aa32_mve_fp, s)) {
return false;
}
return do_1op(s, a, fns[a->size]);
}
static bool do_2op(DisasContext *s, arg_2op *a, MVEGenTwoOpFn fn)
{
TCGv_ptr qd, qn, qm;
if (!dc_isar_feature(aa32_mve, s) ||
!mve_check_qreg_bank(s, a->qd | a->qn | a->qm) ||
!fn) {
return false;
}
if (!mve_eci_check(s) || !vfp_access_check(s)) {
return true;
}
qd = mve_qreg_ptr(a->qd);
qn = mve_qreg_ptr(a->qn);
qm = mve_qreg_ptr(a->qm);
fn(cpu_env, qd, qn, qm);
tcg_temp_free_ptr(qd);
tcg_temp_free_ptr(qn);
tcg_temp_free_ptr(qm);
mve_update_eci(s);
return true;
}
#define DO_LOGIC(INSN, HELPER) \
static bool trans_##INSN(DisasContext *s, arg_2op *a) \
{ \
return do_2op(s, a, HELPER); \
}
DO_LOGIC(VAND, gen_helper_mve_vand)
DO_LOGIC(VBIC, gen_helper_mve_vbic)
DO_LOGIC(VORR, gen_helper_mve_vorr)
DO_LOGIC(VORN, gen_helper_mve_vorn)
DO_LOGIC(VEOR, gen_helper_mve_veor)
#define DO_2OP(INSN, FN) \
static bool trans_##INSN(DisasContext *s, arg_2op *a) \
{ \
static MVEGenTwoOpFn * const fns[] = { \
gen_helper_mve_##FN##b, \
gen_helper_mve_##FN##h, \
gen_helper_mve_##FN##w, \
NULL, \
}; \
return do_2op(s, a, fns[a->size]); \
}
DO_2OP(VADD, vadd)
DO_2OP(VSUB, vsub)
DO_2OP(VMUL, vmul)
DO_2OP(VMULH_S, vmulhs)
DO_2OP(VMULH_U, vmulhu)
DO_2OP(VRMULH_S, vrmulhs)
DO_2OP(VRMULH_U, vrmulhu)
DO_2OP(VMAX_S, vmaxs)
DO_2OP(VMAX_U, vmaxu)
DO_2OP(VMIN_S, vmins)
DO_2OP(VMIN_U, vminu)
DO_2OP(VABD_S, vabds)
DO_2OP(VABD_U, vabdu)
DO_2OP(VHADD_S, vhadds)
DO_2OP(VHADD_U, vhaddu)
DO_2OP(VHSUB_S, vhsubs)
DO_2OP(VHSUB_U, vhsubu)
DO_2OP(VMULL_BS, vmullbs)
DO_2OP(VMULL_BU, vmullbu)
DO_2OP(VMULL_TS, vmullts)
DO_2OP(VMULL_TU, vmulltu)
DO_2OP(VQDMULH, vqdmulh)
DO_2OP(VQRDMULH, vqrdmulh)
DO_2OP(VQADD_S, vqadds)
DO_2OP(VQADD_U, vqaddu)
DO_2OP(VQSUB_S, vqsubs)
DO_2OP(VQSUB_U, vqsubu)
DO_2OP(VSHL_S, vshls)
DO_2OP(VSHL_U, vshlu)
DO_2OP(VRSHL_S, vrshls)
DO_2OP(VRSHL_U, vrshlu)
DO_2OP(VQSHL_S, vqshls)
DO_2OP(VQSHL_U, vqshlu)
DO_2OP(VQRSHL_S, vqrshls)
DO_2OP(VQRSHL_U, vqrshlu)
DO_2OP(VQDMLADH, vqdmladh)
DO_2OP(VQDMLADHX, vqdmladhx)
DO_2OP(VQRDMLADH, vqrdmladh)
DO_2OP(VQRDMLADHX, vqrdmladhx)
DO_2OP(VQDMLSDH, vqdmlsdh)
DO_2OP(VQDMLSDHX, vqdmlsdhx)
DO_2OP(VQRDMLSDH, vqrdmlsdh)
DO_2OP(VQRDMLSDHX, vqrdmlsdhx)
DO_2OP(VRHADD_S, vrhadds)
DO_2OP(VRHADD_U, vrhaddu)
/*
* VCADD Qd == Qm at size MO_32 is UNPREDICTABLE; we choose not to diagnose
* so we can reuse the DO_2OP macro. (Our implementation calculates the
* "expected" results in this case.) Similarly for VHCADD.
*/
DO_2OP(VCADD90, vcadd90)
DO_2OP(VCADD270, vcadd270)
DO_2OP(VHCADD90, vhcadd90)
DO_2OP(VHCADD270, vhcadd270)
static bool trans_VQDMULLB(DisasContext *s, arg_2op *a)
{
static MVEGenTwoOpFn * const fns[] = {
NULL,
gen_helper_mve_vqdmullbh,
gen_helper_mve_vqdmullbw,
NULL,
};
if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) {
/* UNPREDICTABLE; we choose to undef */
return false;
}
return do_2op(s, a, fns[a->size]);
}
static bool trans_VQDMULLT(DisasContext *s, arg_2op *a)
{
static MVEGenTwoOpFn * const fns[] = {
NULL,
gen_helper_mve_vqdmullth,
gen_helper_mve_vqdmulltw,
NULL,
};
if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) {
/* UNPREDICTABLE; we choose to undef */
return false;
}
return do_2op(s, a, fns[a->size]);
}
/*
* VADC and VSBC: these perform an add-with-carry or subtract-with-carry
* of the 32-bit elements in each lane of the input vectors, where the
* carry-out of each add is the carry-in of the next. The initial carry
* input is either fixed (0 for VADCI, 1 for VSBCI) or is from FPSCR.C
* (for VADC and VSBC); the carry out at the end is written back to FPSCR.C.
* These insns are subject to beat-wise execution. Partial execution
* of an I=1 (initial carry input fixed) insn which does not
* execute the first beat must start with the current FPSCR.NZCV
* value, not the fixed constant input.
*/
static bool trans_VADC(DisasContext *s, arg_2op *a)
{
return do_2op(s, a, gen_helper_mve_vadc);
}
static bool trans_VADCI(DisasContext *s, arg_2op *a)
{
if (mve_skip_first_beat(s)) {
return trans_VADC(s, a);
}
return do_2op(s, a, gen_helper_mve_vadci);
}
static bool trans_VSBC(DisasContext *s, arg_2op *a)
{
return do_2op(s, a, gen_helper_mve_vsbc);
}
static bool trans_VSBCI(DisasContext *s, arg_2op *a)
{
if (mve_skip_first_beat(s)) {
return trans_VSBC(s, a);
}
return do_2op(s, a, gen_helper_mve_vsbci);
}
static bool do_2op_scalar(DisasContext *s, arg_2scalar *a,
MVEGenTwoOpScalarFn fn)
{
TCGv_ptr qd, qn;
TCGv_i32 rm;
if (!dc_isar_feature(aa32_mve, s) ||
!mve_check_qreg_bank(s, a->qd | a->qn) ||
!fn) {
return false;
}
if (a->rm == 13 || a->rm == 15) {
/* UNPREDICTABLE */
return false;
}
if (!mve_eci_check(s) || !vfp_access_check(s)) {
return true;
}
qd = mve_qreg_ptr(a->qd);
qn = mve_qreg_ptr(a->qn);
rm = load_reg(s, a->rm);
fn(cpu_env, qd, qn, rm);
tcg_temp_free_i32(rm);
tcg_temp_free_ptr(qd);
tcg_temp_free_ptr(qn);
mve_update_eci(s);
return true;
}
#define DO_2OP_SCALAR(INSN, FN) \
static bool trans_##INSN(DisasContext *s, arg_2scalar *a) \
{ \
static MVEGenTwoOpScalarFn * const fns[] = { \
gen_helper_mve_##FN##b, \
gen_helper_mve_##FN##h, \
gen_helper_mve_##FN##w, \
NULL, \
}; \
return do_2op_scalar(s, a, fns[a->size]); \
}
DO_2OP_SCALAR(VADD_scalar, vadd_scalar)
DO_2OP_SCALAR(VSUB_scalar, vsub_scalar)
DO_2OP_SCALAR(VMUL_scalar, vmul_scalar)
DO_2OP_SCALAR(VHADD_S_scalar, vhadds_scalar)
DO_2OP_SCALAR(VHADD_U_scalar, vhaddu_scalar)
DO_2OP_SCALAR(VHSUB_S_scalar, vhsubs_scalar)
DO_2OP_SCALAR(VHSUB_U_scalar, vhsubu_scalar)
DO_2OP_SCALAR(VQADD_S_scalar, vqadds_scalar)
DO_2OP_SCALAR(VQADD_U_scalar, vqaddu_scalar)
DO_2OP_SCALAR(VQSUB_S_scalar, vqsubs_scalar)
DO_2OP_SCALAR(VQSUB_U_scalar, vqsubu_scalar)
DO_2OP_SCALAR(VQDMULH_scalar, vqdmulh_scalar)
DO_2OP_SCALAR(VQRDMULH_scalar, vqrdmulh_scalar)
DO_2OP_SCALAR(VBRSR, vbrsr)
static bool trans_VQDMULLB_scalar(DisasContext *s, arg_2scalar *a)
{
static MVEGenTwoOpScalarFn * const fns[] = {
NULL,
gen_helper_mve_vqdmullb_scalarh,
gen_helper_mve_vqdmullb_scalarw,
NULL,
};
if (a->qd == a->qn && a->size == MO_32) {
/* UNPREDICTABLE; we choose to undef */
return false;
}
return do_2op_scalar(s, a, fns[a->size]);
}
static bool trans_VQDMULLT_scalar(DisasContext *s, arg_2scalar *a)
{
static MVEGenTwoOpScalarFn * const fns[] = {
NULL,
gen_helper_mve_vqdmullt_scalarh,
gen_helper_mve_vqdmullt_scalarw,
NULL,
};
if (a->qd == a->qn && a->size == MO_32) {
/* UNPREDICTABLE; we choose to undef */
return false;
}
return do_2op_scalar(s, a, fns[a->size]);
}
static bool do_long_dual_acc(DisasContext *s, arg_vmlaldav *a,
MVEGenDualAccOpFn *fn)
{
TCGv_ptr qn, qm;
TCGv_i64 rda;
TCGv_i32 rdalo, rdahi;
if (!dc_isar_feature(aa32_mve, s) ||
!mve_check_qreg_bank(s, a->qn | a->qm) ||
!fn) {
return false;
}
/*
* rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related
* encoding; rdalo always has bit 0 clear so cannot be 13 or 15.
*/
if (a->rdahi == 13 || a->rdahi == 15) {
return false;
}
if (!mve_eci_check(s) || !vfp_access_check(s)) {
return true;
}
qn = mve_qreg_ptr(a->qn);
qm = mve_qreg_ptr(a->qm);
/*
* This insn is subject to beat-wise execution. Partial execution
* of an A=0 (no-accumulate) insn which does not execute the first
* beat must start with the current rda value, not 0.
*/
if (a->a || mve_skip_first_beat(s)) {
rda = tcg_temp_new_i64();
rdalo = load_reg(s, a->rdalo);
rdahi = load_reg(s, a->rdahi);
tcg_gen_concat_i32_i64(rda, rdalo, rdahi);
tcg_temp_free_i32(rdalo);
tcg_temp_free_i32(rdahi);
} else {
rda = tcg_const_i64(0);
}
fn(rda, cpu_env, qn, qm, rda);
tcg_temp_free_ptr(qn);
tcg_temp_free_ptr(qm);
rdalo = tcg_temp_new_i32();
rdahi = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(rdalo, rda);
tcg_gen_extrh_i64_i32(rdahi, rda);
store_reg(s, a->rdalo, rdalo);
store_reg(s, a->rdahi, rdahi);
tcg_temp_free_i64(rda);
mve_update_eci(s);
return true;
}
static bool trans_VMLALDAV_S(DisasContext *s, arg_vmlaldav *a)
{
static MVEGenDualAccOpFn * const fns[4][2] = {
{ NULL, NULL },
{ gen_helper_mve_vmlaldavsh, gen_helper_mve_vmlaldavxsh },
{ gen_helper_mve_vmlaldavsw, gen_helper_mve_vmlaldavxsw },
{ NULL, NULL },
};
return do_long_dual_acc(s, a, fns[a->size][a->x]);
}
static bool trans_VMLALDAV_U(DisasContext *s, arg_vmlaldav *a)
{
static MVEGenDualAccOpFn * const fns[4][2] = {
{ NULL, NULL },
{ gen_helper_mve_vmlaldavuh, NULL },
{ gen_helper_mve_vmlaldavuw, NULL },
{ NULL, NULL },
};
return do_long_dual_acc(s, a, fns[a->size][a->x]);
}
static bool trans_VMLSLDAV(DisasContext *s, arg_vmlaldav *a)
{
static MVEGenDualAccOpFn * const fns[4][2] = {
{ NULL, NULL },
{ gen_helper_mve_vmlsldavsh, gen_helper_mve_vmlsldavxsh },
{ gen_helper_mve_vmlsldavsw, gen_helper_mve_vmlsldavxsw },
{ NULL, NULL },
};
return do_long_dual_acc(s, a, fns[a->size][a->x]);
}
static bool trans_VRMLALDAVH_S(DisasContext *s, arg_vmlaldav *a)
{
static MVEGenDualAccOpFn * const fns[] = {
gen_helper_mve_vrmlaldavhsw, gen_helper_mve_vrmlaldavhxsw,
};
return do_long_dual_acc(s, a, fns[a->x]);
}
static bool trans_VRMLALDAVH_U(DisasContext *s, arg_vmlaldav *a)
{
static MVEGenDualAccOpFn * const fns[] = {
gen_helper_mve_vrmlaldavhuw, NULL,
};
return do_long_dual_acc(s, a, fns[a->x]);
}
static bool trans_VRMLSLDAVH(DisasContext *s, arg_vmlaldav *a)
{
static MVEGenDualAccOpFn * const fns[] = {
gen_helper_mve_vrmlsldavhsw, gen_helper_mve_vrmlsldavhxsw,
};
return do_long_dual_acc(s, a, fns[a->x]);
}
static bool trans_VPST(DisasContext *s, arg_VPST *a)
{
TCGv_i32 vpr;
/* mask == 0 is a "related encoding" */
if (!dc_isar_feature(aa32_mve, s) || !a->mask) {
return false;
}
if (!mve_eci_check(s) || !vfp_access_check(s)) {
return true;
}
/*
* Set the VPR mask fields. We take advantage of MASK01 and MASK23
* being adjacent fields in the register.
*
* This insn is not predicated, but it is subject to beat-wise
* execution, and the mask is updated on the odd-numbered beats.
* So if PSR.ECI says we should skip beat 1, we mustn't update the
* 01 mask field.
*/
vpr = load_cpu_field(v7m.vpr);
switch (s->eci) {
case ECI_NONE:
case ECI_A0:
/* Update both 01 and 23 fields */
tcg_gen_deposit_i32(vpr, vpr,
tcg_constant_i32(a->mask | (a->mask << 4)),
R_V7M_VPR_MASK01_SHIFT,
R_V7M_VPR_MASK01_LENGTH + R_V7M_VPR_MASK23_LENGTH);
break;
case ECI_A0A1:
case ECI_A0A1A2:
case ECI_A0A1A2B0:
/* Update only the 23 mask field */
tcg_gen_deposit_i32(vpr, vpr,
tcg_constant_i32(a->mask),
R_V7M_VPR_MASK23_SHIFT, R_V7M_VPR_MASK23_LENGTH);
break;
default:
g_assert_not_reached();
}
store_cpu_field(vpr, v7m.vpr);
mve_update_and_store_eci(s);
return true;
}
static bool trans_VADDV(DisasContext *s, arg_VADDV *a)
{
/* VADDV: vector add across vector */
static MVEGenVADDVFn * const fns[4][2] = {
{ gen_helper_mve_vaddvsb, gen_helper_mve_vaddvub },
{ gen_helper_mve_vaddvsh, gen_helper_mve_vaddvuh },
{ gen_helper_mve_vaddvsw, gen_helper_mve_vaddvuw },
{ NULL, NULL }
};
TCGv_ptr qm;
TCGv_i32 rda;
if (!dc_isar_feature(aa32_mve, s) ||
a->size == 3) {
return false;
}
if (!mve_eci_check(s) || !vfp_access_check(s)) {
return true;
}
/*
* This insn is subject to beat-wise execution. Partial execution
* of an A=0 (no-accumulate) insn which does not execute the first
* beat must start with the current value of Rda, not zero.
*/
if (a->a || mve_skip_first_beat(s)) {
/* Accumulate input from Rda */
rda = load_reg(s, a->rda);
} else {
/* Accumulate starting at zero */
rda = tcg_const_i32(0);
}
qm = mve_qreg_ptr(a->qm);
fns[a->size][a->u](rda, cpu_env, qm, rda);
store_reg(s, a->rda, rda);
tcg_temp_free_ptr(qm);
mve_update_eci(s);
return true;
}
static bool trans_VADDLV(DisasContext *s, arg_VADDLV *a)
{
/*
* Vector Add Long Across Vector: accumulate the 32-bit
* elements of the vector into a 64-bit result stored in
* a pair of general-purpose registers.
* No need to check Qm's bank: it is only 3 bits in decode.
*/
TCGv_ptr qm;
TCGv_i64 rda;
TCGv_i32 rdalo, rdahi;
if (!dc_isar_feature(aa32_mve, s)) {
return false;
}
/*
* rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related
* encoding; rdalo always has bit 0 clear so cannot be 13 or 15.
*/
if (a->rdahi == 13 || a->rdahi == 15) {
return false;
}
if (!mve_eci_check(s) || !vfp_access_check(s)) {
return true;
}
/*
* This insn is subject to beat-wise execution. Partial execution
* of an A=0 (no-accumulate) insn which does not execute the first
* beat must start with the current value of RdaHi:RdaLo, not zero.
*/
if (a->a || mve_skip_first_beat(s)) {
/* Accumulate input from RdaHi:RdaLo */
rda = tcg_temp_new_i64();
rdalo = load_reg(s, a->rdalo);
rdahi = load_reg(s, a->rdahi);
tcg_gen_concat_i32_i64(rda, rdalo, rdahi);
tcg_temp_free_i32(rdalo);
tcg_temp_free_i32(rdahi);
} else {
/* Accumulate starting at zero */
rda = tcg_const_i64(0);
}
qm = mve_qreg_ptr(a->qm);
if (a->u) {
gen_helper_mve_vaddlv_u(rda, cpu_env, qm, rda);
} else {
gen_helper_mve_vaddlv_s(rda, cpu_env, qm, rda);
}
tcg_temp_free_ptr(qm);
rdalo = tcg_temp_new_i32();
rdahi = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(rdalo, rda);
tcg_gen_extrh_i64_i32(rdahi, rda);
store_reg(s, a->rdalo, rdalo);
store_reg(s, a->rdahi, rdahi);
tcg_temp_free_i64(rda);
mve_update_eci(s);
return true;
}
static bool do_1imm(DisasContext *s, arg_1imm *a, MVEGenOneOpImmFn *fn)
{
TCGv_ptr qd;
uint64_t imm;
if (!dc_isar_feature(aa32_mve, s) ||
!mve_check_qreg_bank(s, a->qd) ||
!fn) {
return false;
}
if (!mve_eci_check(s) || !vfp_access_check(s)) {
return true;
}
imm = asimd_imm_const(a->imm, a->cmode, a->op);
qd = mve_qreg_ptr(a->qd);
fn(cpu_env, qd, tcg_constant_i64(imm));
tcg_temp_free_ptr(qd);
mve_update_eci(s);
return true;
}
static bool trans_Vimm_1r(DisasContext *s, arg_1imm *a)
{
/* Handle decode of cmode/op here between VORR/VBIC/VMOV */
MVEGenOneOpImmFn *fn;
if ((a->cmode & 1) && a->cmode < 12) {
if (a->op) {
/*
* For op=1, the immediate will be inverted by asimd_imm_const(),
* so the VBIC becomes a logical AND operation.
*/
fn = gen_helper_mve_vandi;
} else {
fn = gen_helper_mve_vorri;
}
} else {
/* There is one unallocated cmode/op combination in this space */
if (a->cmode == 15 && a->op == 1) {
return false;
}
/* asimd_imm_const() sorts out VMVNI vs VMOVI for us */
fn = gen_helper_mve_vmovi;
}
return do_1imm(s, a, fn);
}
static bool do_2shift(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn,
bool negateshift)
{
TCGv_ptr qd, qm;
int shift = a->shift;
if (!dc_isar_feature(aa32_mve, s) ||
!mve_check_qreg_bank(s, a->qd | a->qm) ||
!fn) {
return false;
}
if (!mve_eci_check(s) || !vfp_access_check(s)) {
return true;
}
/*
* When we handle a right shift insn using a left-shift helper
* which permits a negative shift count to indicate a right-shift,
* we must negate the shift count.
*/
if (negateshift) {
shift = -shift;
}
qd = mve_qreg_ptr(a->qd);
qm = mve_qreg_ptr(a->qm);
fn(cpu_env, qd, qm, tcg_constant_i32(shift));
tcg_temp_free_ptr(qd);
tcg_temp_free_ptr(qm);
mve_update_eci(s);
return true;
}
#define DO_2SHIFT(INSN, FN, NEGATESHIFT) \
static bool trans_##INSN(DisasContext *s, arg_2shift *a) \
{ \
static MVEGenTwoOpShiftFn * const fns[] = { \
gen_helper_mve_##FN##b, \
gen_helper_mve_##FN##h, \
gen_helper_mve_##FN##w, \
NULL, \
}; \
return do_2shift(s, a, fns[a->size], NEGATESHIFT); \
}
DO_2SHIFT(VSHLI, vshli_u, false)
DO_2SHIFT(VQSHLI_S, vqshli_s, false)
DO_2SHIFT(VQSHLI_U, vqshli_u, false)
DO_2SHIFT(VQSHLUI, vqshlui_s, false)
/* These right shifts use a left-shift helper with negated shift count */
DO_2SHIFT(VSHRI_S, vshli_s, true)
DO_2SHIFT(VSHRI_U, vshli_u, true)
DO_2SHIFT(VRSHRI_S, vrshli_s, true)
DO_2SHIFT(VRSHRI_U, vrshli_u, true)
DO_2SHIFT(VSRI, vsri, false)
DO_2SHIFT(VSLI, vsli, false)
#define DO_VSHLL(INSN, FN) \
static bool trans_##INSN(DisasContext *s, arg_2shift *a) \
{ \
static MVEGenTwoOpShiftFn * const fns[] = { \
gen_helper_mve_##FN##b, \
gen_helper_mve_##FN##h, \
}; \
return do_2shift(s, a, fns[a->size], false); \
}
DO_VSHLL(VSHLL_BS, vshllbs)
DO_VSHLL(VSHLL_BU, vshllbu)
DO_VSHLL(VSHLL_TS, vshllts)
DO_VSHLL(VSHLL_TU, vshlltu)
#define DO_2SHIFT_N(INSN, FN) \
static bool trans_##INSN(DisasContext *s, arg_2shift *a) \
{ \
static MVEGenTwoOpShiftFn * const fns[] = { \
gen_helper_mve_##FN##b, \
gen_helper_mve_##FN##h, \
}; \
return do_2shift(s, a, fns[a->size], false); \
}
DO_2SHIFT_N(VSHRNB, vshrnb)
DO_2SHIFT_N(VSHRNT, vshrnt)
DO_2SHIFT_N(VRSHRNB, vrshrnb)
DO_2SHIFT_N(VRSHRNT, vrshrnt)
DO_2SHIFT_N(VQSHRNB_S, vqshrnb_s)
DO_2SHIFT_N(VQSHRNT_S, vqshrnt_s)
DO_2SHIFT_N(VQSHRNB_U, vqshrnb_u)
DO_2SHIFT_N(VQSHRNT_U, vqshrnt_u)
DO_2SHIFT_N(VQSHRUNB, vqshrunb)
DO_2SHIFT_N(VQSHRUNT, vqshrunt)
DO_2SHIFT_N(VQRSHRNB_S, vqrshrnb_s)
DO_2SHIFT_N(VQRSHRNT_S, vqrshrnt_s)
DO_2SHIFT_N(VQRSHRNB_U, vqrshrnb_u)
DO_2SHIFT_N(VQRSHRNT_U, vqrshrnt_u)
DO_2SHIFT_N(VQRSHRUNB, vqrshrunb)
DO_2SHIFT_N(VQRSHRUNT, vqrshrunt)
static bool trans_VSHLC(DisasContext *s, arg_VSHLC *a)
{
/*
* Whole Vector Left Shift with Carry. The carry is taken
* from a general purpose register and written back there.
* An imm of 0 means "shift by 32".
*/
TCGv_ptr qd;
TCGv_i32 rdm;
if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
return false;
}
if (a->rdm == 13 || a->rdm == 15) {
/* CONSTRAINED UNPREDICTABLE: we UNDEF */
return false;
}
if (!mve_eci_check(s) || !vfp_access_check(s)) {
return true;
}
qd = mve_qreg_ptr(a->qd);
rdm = load_reg(s, a->rdm);
gen_helper_mve_vshlc(rdm, cpu_env, qd, rdm, tcg_constant_i32(a->imm));
store_reg(s, a->rdm, rdm);
tcg_temp_free_ptr(qd);
mve_update_eci(s);
return true;
}