qemu/hw/ssi/aspeed_smc.c

1711 lines
55 KiB
C
Raw Normal View History

/*
* ASPEED AST2400 SMC Controller (SPI Flash Only)
*
* Copyright (C) 2016 IBM Corp.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "qemu/units.h"
#include "trace.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/ssi/aspeed_smc.h"
/* CE Type Setting Register */
#define R_CONF (0x00 / 4)
#define CONF_LEGACY_DISABLE (1 << 31)
#define CONF_ENABLE_W4 20
#define CONF_ENABLE_W3 19
#define CONF_ENABLE_W2 18
#define CONF_ENABLE_W1 17
#define CONF_ENABLE_W0 16
#define CONF_FLASH_TYPE4 8
#define CONF_FLASH_TYPE3 6
#define CONF_FLASH_TYPE2 4
#define CONF_FLASH_TYPE1 2
#define CONF_FLASH_TYPE0 0
#define CONF_FLASH_TYPE_NOR 0x0
#define CONF_FLASH_TYPE_NAND 0x1
#define CONF_FLASH_TYPE_SPI 0x2 /* AST2600 is SPI only */
/* CE Control Register */
#define R_CE_CTRL (0x04 / 4)
#define CTRL_EXTENDED4 4 /* 32 bit addressing for SPI */
#define CTRL_EXTENDED3 3 /* 32 bit addressing for SPI */
#define CTRL_EXTENDED2 2 /* 32 bit addressing for SPI */
#define CTRL_EXTENDED1 1 /* 32 bit addressing for SPI */
#define CTRL_EXTENDED0 0 /* 32 bit addressing for SPI */
/* Interrupt Control and Status Register */
#define R_INTR_CTRL (0x08 / 4)
#define INTR_CTRL_DMA_STATUS (1 << 11)
#define INTR_CTRL_CMD_ABORT_STATUS (1 << 10)
#define INTR_CTRL_WRITE_PROTECT_STATUS (1 << 9)
#define INTR_CTRL_DMA_EN (1 << 3)
#define INTR_CTRL_CMD_ABORT_EN (1 << 2)
#define INTR_CTRL_WRITE_PROTECT_EN (1 << 1)
/* Command Control Register */
#define R_CE_CMD_CTRL (0x0C / 4)
#define CTRL_ADDR_BYTE0_DISABLE_SHIFT 4
#define CTRL_DATA_BYTE0_DISABLE_SHIFT 0
#define aspeed_smc_addr_byte_enabled(s, i) \
(!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i)))))
#define aspeed_smc_data_byte_enabled(s, i) \
(!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i)))))
/* CEx Control Register */
#define R_CTRL0 (0x10 / 4)
#define CTRL_IO_QPI (1 << 31)
#define CTRL_IO_QUAD_DATA (1 << 30)
#define CTRL_IO_DUAL_DATA (1 << 29)
#define CTRL_IO_DUAL_ADDR_DATA (1 << 28) /* Includes dummies */
#define CTRL_IO_QUAD_ADDR_DATA (1 << 28) /* Includes dummies */
#define CTRL_CMD_SHIFT 16
#define CTRL_CMD_MASK 0xff
#define CTRL_DUMMY_HIGH_SHIFT 14
#define CTRL_AST2400_SPI_4BYTE (1 << 13)
#define CE_CTRL_CLOCK_FREQ_SHIFT 8
#define CE_CTRL_CLOCK_FREQ_MASK 0xf
#define CE_CTRL_CLOCK_FREQ(div) \
(((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
#define CTRL_DUMMY_LOW_SHIFT 6 /* 2 bits [7:6] */
#define CTRL_CE_STOP_ACTIVE (1 << 2)
#define CTRL_CMD_MODE_MASK 0x3
#define CTRL_READMODE 0x0
#define CTRL_FREADMODE 0x1
#define CTRL_WRITEMODE 0x2
#define CTRL_USERMODE 0x3
#define R_CTRL1 (0x14 / 4)
#define R_CTRL2 (0x18 / 4)
#define R_CTRL3 (0x1C / 4)
#define R_CTRL4 (0x20 / 4)
/* CEx Segment Address Register */
#define R_SEG_ADDR0 (0x30 / 4)
#define SEG_END_SHIFT 24 /* 8MB units */
#define SEG_END_MASK 0xff
#define SEG_START_SHIFT 16 /* address bit [A29-A23] */
#define SEG_START_MASK 0xff
#define R_SEG_ADDR1 (0x34 / 4)
#define R_SEG_ADDR2 (0x38 / 4)
#define R_SEG_ADDR3 (0x3C / 4)
#define R_SEG_ADDR4 (0x40 / 4)
/* Misc Control Register #1 */
#define R_MISC_CTRL1 (0x50 / 4)
/* SPI dummy cycle data */
#define R_DUMMY_DATA (0x54 / 4)
/* FMC_WDT2 Control/Status Register for Alternate Boot (AST2600) */
#define R_FMC_WDT2_CTRL (0x64 / 4)
#define FMC_WDT2_CTRL_ALT_BOOT_MODE BIT(6) /* O: 2 chips 1: 1 chip */
#define FMC_WDT2_CTRL_SINGLE_BOOT_MODE BIT(5)
#define FMC_WDT2_CTRL_BOOT_SOURCE BIT(4) /* O: primary 1: alternate */
#define FMC_WDT2_CTRL_EN BIT(0)
/* DMA Control/Status Register */
#define R_DMA_CTRL (0x80 / 4)
#define DMA_CTRL_REQUEST (1 << 31)
#define DMA_CTRL_GRANT (1 << 30)
#define DMA_CTRL_DELAY_MASK 0xf
#define DMA_CTRL_DELAY_SHIFT 8
#define DMA_CTRL_FREQ_MASK 0xf
#define DMA_CTRL_FREQ_SHIFT 4
#define DMA_CTRL_CALIB (1 << 3)
#define DMA_CTRL_CKSUM (1 << 2)
#define DMA_CTRL_WRITE (1 << 1)
#define DMA_CTRL_ENABLE (1 << 0)
/* DMA Flash Side Address */
#define R_DMA_FLASH_ADDR (0x84 / 4)
/* DMA DRAM Side Address */
#define R_DMA_DRAM_ADDR (0x88 / 4)
/* DMA Length Register */
#define R_DMA_LEN (0x8C / 4)
/* Checksum Calculation Result */
#define R_DMA_CHECKSUM (0x90 / 4)
/* Read Timing Compensation Register */
#define R_TIMINGS (0x94 / 4)
/* SPI controller registers and bits (AST2400) */
#define R_SPI_CONF (0x00 / 4)
#define SPI_CONF_ENABLE_W0 0
#define R_SPI_CTRL0 (0x4 / 4)
#define R_SPI_MISC_CTRL (0x10 / 4)
#define R_SPI_TIMINGS (0x14 / 4)
#define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
#define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
/*
* DMA DRAM addresses should be 4 bytes aligned and the valid address
* range is 0x40000000 - 0x5FFFFFFF (AST2400)
* 0x80000000 - 0xBFFFFFFF (AST2500)
*
* DMA flash addresses should be 4 bytes aligned and the valid address
* range is 0x20000000 - 0x2FFFFFFF.
*
* DMA length is from 4 bytes to 32MB
* 0: 4 bytes
* 0x7FFFFF: 32M bytes
*/
#define DMA_DRAM_ADDR(asc, val) ((val) & (asc)->dma_dram_mask)
#define DMA_FLASH_ADDR(asc, val) ((val) & (asc)->dma_flash_mask)
#define DMA_LENGTH(val) ((val) & 0x01FFFFFC)
/* Flash opcodes. */
#define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */
#define SNOOP_OFF 0xFF
#define SNOOP_START 0x0
/*
* Default segments mapping addresses and size for each peripheral per
* controller. These can be changed when board is initialized with the
* Segment Address Registers.
*/
static const AspeedSegments aspeed_2500_spi1_segments[];
static const AspeedSegments aspeed_2500_spi2_segments[];
#define ASPEED_SMC_FEATURE_DMA 0x1
#define ASPEED_SMC_FEATURE_DMA_GRANT 0x2
#define ASPEED_SMC_FEATURE_WDT_CONTROL 0x4
static inline bool aspeed_smc_has_dma(const AspeedSMCClass *asc)
{
return !!(asc->features & ASPEED_SMC_FEATURE_DMA);
}
static inline bool aspeed_smc_has_wdt_control(const AspeedSMCClass *asc)
{
return !!(asc->features & ASPEED_SMC_FEATURE_WDT_CONTROL);
}
#define aspeed_smc_error(fmt, ...) \
qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## __VA_ARGS__)
static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
const AspeedSegments *new,
int cs)
{
AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
AspeedSegments seg;
int i;
for (i = 0; i < asc->max_peripherals; i++) {
if (i == cs) {
continue;
}
asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
if (new->addr + new->size > seg.addr &&
new->addr < seg.addr + seg.size) {
aspeed_smc_error("new segment CS%d [ 0x%"
HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
"CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
cs, new->addr, new->addr + new->size,
i, seg.addr, seg.addr + seg.size);
return true;
}
}
return false;
}
static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
uint64_t regval)
{
AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
AspeedSMCFlash *fl = &s->flashes[cs];
AspeedSegments seg;
asc->reg_to_segment(s, regval, &seg);
memory_region_transaction_begin();
memory_region_set_size(&fl->mmio, seg.size);
memory_region_set_address(&fl->mmio, seg.addr - asc->flash_window_base);
memory_region_set_enabled(&fl->mmio, !!seg.size);
memory_region_transaction_commit();
s->regs[R_SEG_ADDR0 + cs] = regval;
}
static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
uint64_t new)
{
AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
AspeedSegments seg;
asc->reg_to_segment(s, new, &seg);
trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
/* The start address of CS0 is read-only */
if (cs == 0 && seg.addr != asc->flash_window_base) {
aspeed_smc_error("Tried to change CS0 start address to 0x%"
HWADDR_PRIx, seg.addr);
seg.addr = asc->flash_window_base;
new = asc->segment_to_reg(s, &seg);
}
/*
* The end address of the AST2500 spi controllers is also
* read-only.
*/
if ((asc->segments == aspeed_2500_spi1_segments ||
asc->segments == aspeed_2500_spi2_segments) &&
cs == asc->max_peripherals &&
seg.addr + seg.size != asc->segments[cs].addr +
asc->segments[cs].size) {
aspeed_smc_error("Tried to change CS%d end address to 0x%"
HWADDR_PRIx, cs, seg.addr + seg.size);
seg.size = asc->segments[cs].addr + asc->segments[cs].size -
seg.addr;
new = asc->segment_to_reg(s, &seg);
}
/* Keep the segment in the overall flash window */
if (seg.size &&
(seg.addr + seg.size <= asc->flash_window_base ||
seg.addr > asc->flash_window_base + asc->flash_window_size)) {
aspeed_smc_error("new segment for CS%d is invalid : "
"[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
cs, seg.addr, seg.addr + seg.size);
return;
}
/* Check start address vs. alignment */
if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
aspeed_smc_error("new segment for CS%d is not "
"aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
cs, seg.addr, seg.addr + seg.size);
}
/* And segments should not overlap (in the specs) */
aspeed_smc_flash_overlap(s, &seg, cs);
/* All should be fine now to move the region */
aspeed_smc_flash_set_segment_region(s, cs, new);
}
static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
unsigned size)
{
aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u" PRIx64, addr, size);
return 0;
}
static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u: 0x%" PRIx64,
addr, size, data);
}
static const MemoryRegionOps aspeed_smc_flash_default_ops = {
.read = aspeed_smc_flash_default_read,
.write = aspeed_smc_flash_default_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
},
};
static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
{
const AspeedSMCState *s = fl->controller;
return s->regs[s->r_ctrl0 + fl->cs] & CTRL_CMD_MODE_MASK;
}
static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
{
const AspeedSMCState *s = fl->controller;
return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->cs));
}
static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
{
const AspeedSMCState *s = fl->controller;
int cmd = (s->regs[s->r_ctrl0 + fl->cs] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
/*
* In read mode, the default SPI command is READ (0x3). In other
* modes, the command should necessarily be defined
*
* TODO: add support for READ4 (0x13) on AST2600
*/
if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
cmd = SPI_OP_READ;
}
if (!cmd) {
aspeed_smc_error("no command defined for mode %d",
aspeed_smc_flash_mode(fl));
}
return cmd;
}
static inline int aspeed_smc_flash_addr_width(const AspeedSMCFlash *fl)
{
const AspeedSMCState *s = fl->controller;
AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
if (asc->addr_width) {
return asc->addr_width(s);
} else {
return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->cs)) ? 4 : 3;
}
}
static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
{
AspeedSMCState *s = fl->controller;
trace_aspeed_smc_flash_select(fl->cs, unselect ? "un" : "");
qemu_set_irq(s->cs_lines[fl->cs], unselect);
}
static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
{
aspeed_smc_flash_do_select(fl, false);
}
static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
{
aspeed_smc_flash_do_select(fl, true);
}
static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
uint32_t addr)
{
const AspeedSMCState *s = fl->controller;
AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
AspeedSegments seg;
asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->cs], &seg);
if ((addr % seg.size) != addr) {
aspeed_smc_error("invalid address 0x%08x for CS%d segment : "
"[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
addr, fl->cs, seg.addr, seg.addr + seg.size);
addr %= seg.size;
}
return addr;
}
static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
{
const AspeedSMCState *s = fl->controller;
uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->cs];
uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
dummies /= 2;
}
return dummies;
}
static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
{
const AspeedSMCState *s = fl->controller;
uint8_t cmd = aspeed_smc_flash_cmd(fl);
int i = aspeed_smc_flash_addr_width(fl);
/* Flash access can not exceed CS segment */
addr = aspeed_smc_check_segment_addr(fl, addr);
ssi_transfer(s->spi, cmd);
while (i--) {
if (aspeed_smc_addr_byte_enabled(s, i)) {
ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff);
}
}
/*
* Use fake transfers to model dummy bytes. The value should
* be configured to some non-zero value in fast read mode and
* zero in read mode. But, as the HW allows inconsistent
* settings, let's check for fast read mode.
*/
if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
}
}
}
static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
{
AspeedSMCFlash *fl = opaque;
AspeedSMCState *s = fl->controller;
uint64_t ret = 0;
int i;
switch (aspeed_smc_flash_mode(fl)) {
case CTRL_USERMODE:
for (i = 0; i < size; i++) {
ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
}
break;
case CTRL_READMODE:
case CTRL_FREADMODE:
aspeed_smc_flash_select(fl);
aspeed_smc_flash_setup(fl, addr);
for (i = 0; i < size; i++) {
ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
}
aspeed_smc_flash_unselect(fl);
break;
default:
aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
}
trace_aspeed_smc_flash_read(fl->cs, addr, size, ret,
aspeed_smc_flash_mode(fl));
return ret;
}
/*
* TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
* common include header.
*/
typedef enum {
READ = 0x3, READ_4 = 0x13,
FAST_READ = 0xb, FAST_READ_4 = 0x0c,
DOR = 0x3b, DOR_4 = 0x3c,
QOR = 0x6b, QOR_4 = 0x6c,
DIOR = 0xbb, DIOR_4 = 0xbc,
QIOR = 0xeb, QIOR_4 = 0xec,
PP = 0x2, PP_4 = 0x12,
DPP = 0xa2,
QPP = 0x32, QPP_4 = 0x34,
} FlashCMD;
static int aspeed_smc_num_dummies(uint8_t command)
{
switch (command) { /* check for dummies */
case READ: /* no dummy bytes/cycles */
case PP:
case DPP:
case QPP:
case READ_4:
case PP_4:
case QPP_4:
return 0;
case FAST_READ:
case DOR:
case QOR:
case FAST_READ_4:
case DOR_4:
case QOR_4:
return 1;
case DIOR:
case DIOR_4:
return 2;
case QIOR:
case QIOR_4:
return 4;
default:
return -1;
}
}
static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data,
unsigned size)
{
AspeedSMCState *s = fl->controller;
uint8_t addr_width = aspeed_smc_flash_addr_width(fl);
trace_aspeed_smc_do_snoop(fl->cs, s->snoop_index, s->snoop_dummies,
(uint8_t) data & 0xff);
if (s->snoop_index == SNOOP_OFF) {
return false; /* Do nothing */
} else if (s->snoop_index == SNOOP_START) {
uint8_t cmd = data & 0xff;
int ndummies = aspeed_smc_num_dummies(cmd);
/*
* No dummy cycles are expected with the current command. Turn
* off snooping and let the transfer proceed normally.
*/
if (ndummies <= 0) {
s->snoop_index = SNOOP_OFF;
return false;
}
s->snoop_dummies = ndummies * 8;
} else if (s->snoop_index >= addr_width + 1) {
/* The SPI transfer has reached the dummy cycles sequence */
for (; s->snoop_dummies; s->snoop_dummies--) {
ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
}
/* If no more dummy cycles are expected, turn off snooping */
if (!s->snoop_dummies) {
s->snoop_index = SNOOP_OFF;
} else {
s->snoop_index += size;
}
/*
* Dummy cycles have been faked already. Ignore the current
* SPI transfer
*/
return true;
}
s->snoop_index += size;
return false;
}
static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
AspeedSMCFlash *fl = opaque;
AspeedSMCState *s = fl->controller;
int i;
trace_aspeed_smc_flash_write(fl->cs, addr, size, data,
aspeed_smc_flash_mode(fl));
if (!aspeed_smc_is_writable(fl)) {
aspeed_smc_error("flash is not writable at 0x%" HWADDR_PRIx, addr);
return;
}
switch (aspeed_smc_flash_mode(fl)) {
case CTRL_USERMODE:
if (aspeed_smc_do_snoop(fl, data, size)) {
break;
}
for (i = 0; i < size; i++) {
ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
}
break;
case CTRL_WRITEMODE:
aspeed_smc_flash_select(fl);
aspeed_smc_flash_setup(fl, addr);
for (i = 0; i < size; i++) {
ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
}
aspeed_smc_flash_unselect(fl);
break;
default:
aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
}
}
static const MemoryRegionOps aspeed_smc_flash_ops = {
.read = aspeed_smc_flash_read,
.write = aspeed_smc_flash_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
},
};
static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
{
AspeedSMCState *s = fl->controller;
bool unselect;
/* User mode selects the CS, other modes unselect */
unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
/* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
if (!(s->regs[s->r_ctrl0 + fl->cs] & CTRL_CE_STOP_ACTIVE) &&
value & CTRL_CE_STOP_ACTIVE) {
unselect = true;
}
s->regs[s->r_ctrl0 + fl->cs] = value;
s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
aspeed_smc_flash_do_select(fl, unselect);
}
static void aspeed_smc_reset(DeviceState *d)
{
AspeedSMCState *s = ASPEED_SMC(d);
AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
int i;
if (asc->resets) {
memcpy(s->regs, asc->resets, sizeof s->regs);
} else {
memset(s->regs, 0, sizeof s->regs);
}
/* Unselect all peripherals */
for (i = 0; i < s->num_cs; ++i) {
s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
qemu_set_irq(s->cs_lines[i], true);
}
/* setup the default segment register values and regions for all */
for (i = 0; i < asc->max_peripherals; ++i) {
aspeed_smc_flash_set_segment_region(s, i,
asc->segment_to_reg(s, &asc->segments[i]));
}
s->snoop_index = SNOOP_OFF;
s->snoop_dummies = 0;
}
static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
{
AspeedSMCState *s = ASPEED_SMC(opaque);
AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(opaque);
addr >>= 2;
if (addr == s->r_conf ||
(addr >= s->r_timings &&
addr < s->r_timings + asc->nregs_timings) ||
addr == s->r_ce_ctrl ||
addr == R_CE_CMD_CTRL ||
addr == R_INTR_CTRL ||
addr == R_DUMMY_DATA ||
(aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) ||
(aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) ||
(aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR) ||
(aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR) ||
(aspeed_smc_has_dma(asc) && addr == R_DMA_LEN) ||
(aspeed_smc_has_dma(asc) && addr == R_DMA_CHECKSUM) ||
(addr >= R_SEG_ADDR0 &&
addr < R_SEG_ADDR0 + asc->max_peripherals) ||
(addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->max_peripherals)) {
trace_aspeed_smc_read(addr << 2, size, s->regs[addr]);
return s->regs[addr];
} else {
qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
__func__, addr);
return -1;
}
}
static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
{
/* HCLK/1 .. HCLK/16 */
const uint8_t hclk_divisors[] = {
15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
};
int i;
for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
if (hclk_mask == hclk_divisors[i]) {
return i + 1;
}
}
aspeed_smc_error("invalid HCLK mask %x", hclk_mask);
return 0;
}
/*
* When doing calibration, the SPI clock rate in the CE0 Control
* Register and the read delay cycles in the Read Timing Compensation
* Register are set using bit[11:4] of the DMA Control Register.
*/
static void aspeed_smc_dma_calibration(AspeedSMCState *s)
{
uint8_t delay =
(s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
uint8_t hclk_mask =
(s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
uint32_t hclk_shift = (hclk_div - 1) << 2;
uint8_t cs;
/*
* The Read Timing Compensation Register values apply to all CS on
* the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
*/
if (hclk_div && hclk_div < 6) {
s->regs[s->r_timings] &= ~(0xf << hclk_shift);
s->regs[s->r_timings] |= delay << hclk_shift;
}
/*
* TODO: compute the CS from the DMA address and the segment
* registers. This is not really a problem for now because the
* Timing Register values apply to all CS and software uses CS0 to
* do calibration.
*/
cs = 0;
s->regs[s->r_ctrl0 + cs] &=
~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
}
/*
* Emulate read errors in the DMA Checksum Register for high
* frequencies and optimistic settings of the Read Timing Compensation
* Register. This will help in tuning the SPI timing calibration
* algorithm.
*/
static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
{
uint8_t delay =
(s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
uint8_t hclk_mask =
(s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
/*
* Typical values of a palmetto-bmc machine.
*/
switch (aspeed_smc_hclk_divisor(hclk_mask)) {
case 4 ... 16:
return false;
case 3: /* at least one HCLK cycle delay */
return (delay & 0x7) < 1;
case 2: /* at least two HCLK cycle delay */
return (delay & 0x7) < 2;
case 1: /* (> 100MHz) is above the max freq of the controller */
return true;
default:
g_assert_not_reached();
}
}
/*
* Accumulate the result of the reads to provide a checksum that will
* be used to validate the read timing settings.
*/
static void aspeed_smc_dma_checksum(AspeedSMCState *s)
{
MemTxResult result;
uint32_t data;
if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
aspeed_smc_error("invalid direction for DMA checksum");
return;
}
if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
aspeed_smc_dma_calibration(s);
}
while (s->regs[R_DMA_LEN]) {
data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
aspeed_smc_error("Flash read failed @%08x",
s->regs[R_DMA_FLASH_ADDR]);
return;
}
trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
/*
* When the DMA is on-going, the DMA registers are updated
* with the current working addresses and length.
*/
s->regs[R_DMA_CHECKSUM] += data;
s->regs[R_DMA_FLASH_ADDR] += 4;
s->regs[R_DMA_LEN] -= 4;
}
if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
}
}
static void aspeed_smc_dma_rw(AspeedSMCState *s)
{
MemTxResult result;
uint32_t data;
trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ?
"write" : "read",
s->regs[R_DMA_FLASH_ADDR],
s->regs[R_DMA_DRAM_ADDR],
s->regs[R_DMA_LEN]);
while (s->regs[R_DMA_LEN]) {
if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
aspeed_smc_error("DRAM read failed @%08x",
s->regs[R_DMA_DRAM_ADDR]);
return;
}
address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
data, MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
aspeed_smc_error("Flash write failed @%08x",
s->regs[R_DMA_FLASH_ADDR]);
return;
}
} else {
data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
aspeed_smc_error("Flash read failed @%08x",
s->regs[R_DMA_FLASH_ADDR]);
return;
}
address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
data, MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
aspeed_smc_error("DRAM write failed @%08x",
s->regs[R_DMA_DRAM_ADDR]);
return;
}
}
/*
* When the DMA is on-going, the DMA registers are updated
* with the current working addresses and length.
*/
s->regs[R_DMA_FLASH_ADDR] += 4;
s->regs[R_DMA_DRAM_ADDR] += 4;
s->regs[R_DMA_LEN] -= 4;
s->regs[R_DMA_CHECKSUM] += data;
}
}
static void aspeed_smc_dma_stop(AspeedSMCState *s)
{
/*
* When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
* engine is idle
*/
s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
s->regs[R_DMA_CHECKSUM] = 0;
/*
* Lower the DMA irq in any case. The IRQ control register could
* have been cleared before disabling the DMA.
*/
qemu_irq_lower(s->irq);
}
/*
* When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
* can start even if the result of the previous was not collected.
*/
static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
{
return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
!(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
}
static void aspeed_smc_dma_done(AspeedSMCState *s)
{
s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
qemu_irq_raise(s->irq);
}
}
static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
{
if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
s->regs[R_DMA_CTRL] = dma_ctrl;
aspeed_smc_dma_stop(s);
return;
}
if (aspeed_smc_dma_in_progress(s)) {
aspeed_smc_error("DMA in progress !");
return;
}
s->regs[R_DMA_CTRL] = dma_ctrl;
if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
aspeed_smc_dma_checksum(s);
} else {
aspeed_smc_dma_rw(s);
}
aspeed_smc_dma_done(s);
}
static inline bool aspeed_smc_dma_granted(AspeedSMCState *s)
{
AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
if (!(asc->features & ASPEED_SMC_FEATURE_DMA_GRANT)) {
return true;
}
if (!(s->regs[R_DMA_CTRL] & DMA_CTRL_GRANT)) {
aspeed_smc_error("DMA not granted");
return false;
}
return true;
}
static void aspeed_2600_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
{
/* Preserve DMA bits */
dma_ctrl |= s->regs[R_DMA_CTRL] & (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
if (dma_ctrl == 0xAEED0000) {
/* automatically grant request */
s->regs[R_DMA_CTRL] |= (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
return;
}
/* clear request */
if (dma_ctrl == 0xDEEA0000) {
s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
return;
}
if (!aspeed_smc_dma_granted(s)) {
aspeed_smc_error("DMA not granted");
return;
}
aspeed_smc_dma_ctrl(s, dma_ctrl);
s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
}
static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
unsigned int size)
{
AspeedSMCState *s = ASPEED_SMC(opaque);
AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
uint32_t value = data;
trace_aspeed_smc_write(addr, size, data);
addr >>= 2;
if (addr == s->r_conf ||
(addr >= s->r_timings &&
addr < s->r_timings + asc->nregs_timings) ||
addr == s->r_ce_ctrl) {
s->regs[addr] = value;
} else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
int cs = addr - s->r_ctrl0;
aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
} else if (addr >= R_SEG_ADDR0 &&
addr < R_SEG_ADDR0 + asc->max_peripherals) {
int cs = addr - R_SEG_ADDR0;
if (value != s->regs[R_SEG_ADDR0 + cs]) {
aspeed_smc_flash_set_segment(s, cs, value);
}
} else if (addr == R_CE_CMD_CTRL) {
s->regs[addr] = value & 0xff;
} else if (addr == R_DUMMY_DATA) {
s->regs[addr] = value & 0xff;
} else if (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) {
s->regs[addr] = value & FMC_WDT2_CTRL_EN;
} else if (addr == R_INTR_CTRL) {
s->regs[addr] = value;
} else if (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) {
asc->dma_ctrl(s, value);
} else if (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR &&
aspeed_smc_dma_granted(s)) {
s->regs[addr] = DMA_DRAM_ADDR(asc, value);
} else if (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR &&
aspeed_smc_dma_granted(s)) {
s->regs[addr] = DMA_FLASH_ADDR(asc, value);
} else if (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN &&
aspeed_smc_dma_granted(s)) {
s->regs[addr] = DMA_LENGTH(value);
} else {
qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
__func__, addr);
return;
}
}
static const MemoryRegionOps aspeed_smc_ops = {
.read = aspeed_smc_read,
.write = aspeed_smc_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void aspeed_smc_instance_init(Object *obj)
{
AspeedSMCState *s = ASPEED_SMC(obj);
AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
int i;
for (i = 0; i < asc->max_peripherals; i++) {
object_initialize_child(obj, "flash[*]", &s->flashes[i],
TYPE_ASPEED_SMC_FLASH);
}
}
/*
* Initialize the custom address spaces for DMAs
*/
static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
{
if (!s->dram_mr) {
error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
return;
}
address_space_init(&s->flash_as, &s->mmio_flash,
TYPE_ASPEED_SMC ".dma-flash");
address_space_init(&s->dram_as, s->dram_mr,
TYPE_ASPEED_SMC ".dma-dram");
}
static void aspeed_smc_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
AspeedSMCState *s = ASPEED_SMC(dev);
AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
int i;
hwaddr offset = 0;
/* keep a copy under AspeedSMCState to speed up accesses */
s->r_conf = asc->r_conf;
s->r_ce_ctrl = asc->r_ce_ctrl;
s->r_ctrl0 = asc->r_ctrl0;
s->r_timings = asc->r_timings;
s->conf_enable_w0 = asc->conf_enable_w0;
/* Enforce some real HW limits */
if (s->num_cs > asc->max_peripherals) {
aspeed_smc_error("num_cs cannot exceed: %d", asc->max_peripherals);
s->num_cs = asc->max_peripherals;
}
/* DMA irq. Keep it first for the initialization in the SoC */
sysbus_init_irq(sbd, &s->irq);
s->spi = ssi_create_bus(dev, "spi");
/* Setup cs_lines for peripherals */
s->cs_lines = g_new0(qemu_irq, s->num_cs);
for (i = 0; i < s->num_cs; ++i) {
sysbus_init_irq(sbd, &s->cs_lines[i]);
}
/* The memory region for the controller registers */
memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
TYPE_ASPEED_SMC, asc->nregs * 4);
sysbus_init_mmio(sbd, &s->mmio);
/*
* The container memory region representing the address space
* window in which the flash modules are mapped. The size and
* address depends on the SoC model and controller type.
*/
memory_region_init(&s->mmio_flash_container, OBJECT(s),
TYPE_ASPEED_SMC ".container",
asc->flash_window_size);
sysbus_init_mmio(sbd, &s->mmio_flash_container);
memory_region_init_io(&s->mmio_flash, OBJECT(s),
&aspeed_smc_flash_default_ops, s,
TYPE_ASPEED_SMC ".flash",
asc->flash_window_size);
memory_region_add_subregion(&s->mmio_flash_container, 0x0,
&s->mmio_flash);
/*
* Let's create a sub memory region for each possible peripheral. All
* have a configurable memory segment in the overall flash mapping
* window of the controller but, there is not necessarily a flash
* module behind to handle the memory accesses. This depends on
* the board configuration.
*/
for (i = 0; i < asc->max_peripherals; ++i) {
AspeedSMCFlash *fl = &s->flashes[i];
if (!object_property_set_link(OBJECT(fl), "controller", OBJECT(s),
errp)) {
return;
}
if (!object_property_set_uint(OBJECT(fl), "cs", i, errp)) {
return;
}
if (!sysbus_realize(SYS_BUS_DEVICE(fl), errp)) {
return;
}
memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
offset += asc->segments[i].size;
}
/* DMA support */
if (aspeed_smc_has_dma(asc)) {
aspeed_smc_dma_setup(s, errp);
}
}
static const VMStateDescription vmstate_aspeed_smc = {
.name = "aspeed.smc",
.version_id = 2,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
VMSTATE_UINT8(snoop_index, AspeedSMCState),
VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
VMSTATE_END_OF_LIST()
}
};
static Property aspeed_smc_properties[] = {
DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void aspeed_smc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = aspeed_smc_realize;
dc->reset = aspeed_smc_reset;
device_class_set_props(dc, aspeed_smc_properties);
dc->vmsd = &vmstate_aspeed_smc;
}
static const TypeInfo aspeed_smc_info = {
.name = TYPE_ASPEED_SMC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = aspeed_smc_instance_init,
.instance_size = sizeof(AspeedSMCState),
.class_size = sizeof(AspeedSMCClass),
.class_init = aspeed_smc_class_init,
.abstract = true,
};
static void aspeed_smc_flash_realize(DeviceState *dev, Error **errp)
{
AspeedSMCFlash *s = ASPEED_SMC_FLASH(dev);
AspeedSMCClass *asc;
g_autofree char *name = g_strdup_printf(TYPE_ASPEED_SMC_FLASH ".%d", s->cs);
if (!s->controller) {
error_setg(errp, TYPE_ASPEED_SMC_FLASH ": 'controller' link not set");
return;
}
asc = ASPEED_SMC_GET_CLASS(s->controller);
/*
* Use the default segment value to size the memory region. This
* can be changed by FW at runtime.
*/
memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_flash_ops,
s, name, asc->segments[s->cs].size);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
}
static Property aspeed_smc_flash_properties[] = {
DEFINE_PROP_UINT8("cs", AspeedSMCFlash, cs, 0),
DEFINE_PROP_LINK("controller", AspeedSMCFlash, controller, TYPE_ASPEED_SMC,
AspeedSMCState *),
DEFINE_PROP_END_OF_LIST(),
};
static void aspeed_smc_flash_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "Aspeed SMC Flash device region";
dc->realize = aspeed_smc_flash_realize;
device_class_set_props(dc, aspeed_smc_flash_properties);
}
static const TypeInfo aspeed_smc_flash_info = {
.name = TYPE_ASPEED_SMC_FLASH,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AspeedSMCFlash),
.class_init = aspeed_smc_flash_class_init,
};
/*
* The Segment Registers of the AST2400 and AST2500 have a 8MB
* unit. The address range of a flash SPI peripheral is encoded with
* absolute addresses which should be part of the overall controller
* window.
*/
static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
const AspeedSegments *seg)
{
uint32_t reg = 0;
reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
return reg;
}
static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
uint32_t reg, AspeedSegments *seg)
{
seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
}
static const AspeedSegments aspeed_2400_smc_segments[] = {
{ 0x10000000, 32 * MiB },
};
static void aspeed_2400_smc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
dc->desc = "Aspeed 2400 SMC Controller";
asc->r_conf = R_CONF;
asc->r_ce_ctrl = R_CE_CTRL;
asc->r_ctrl0 = R_CTRL0;
asc->r_timings = R_TIMINGS;
asc->nregs_timings = 1;
asc->conf_enable_w0 = CONF_ENABLE_W0;
asc->max_peripherals = 1;
asc->segments = aspeed_2400_smc_segments;
asc->flash_window_base = 0x10000000;
asc->flash_window_size = 0x6000000;
asc->features = 0x0;
asc->nregs = ASPEED_SMC_R_SMC_MAX;
asc->segment_to_reg = aspeed_smc_segment_to_reg;
asc->reg_to_segment = aspeed_smc_reg_to_segment;
asc->dma_ctrl = aspeed_smc_dma_ctrl;
}
static const TypeInfo aspeed_2400_smc_info = {
.name = "aspeed.smc-ast2400",
.parent = TYPE_ASPEED_SMC,
.class_init = aspeed_2400_smc_class_init,
};
static const uint32_t aspeed_2400_fmc_resets[ASPEED_SMC_R_MAX] = {
/*
* CE0 and CE1 types are HW strapped in SCU70. Do it here to
* simplify the model.
*/
[R_CONF] = CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0,
};
static const AspeedSegments aspeed_2400_fmc_segments[] = {
{ 0x20000000, 64 * MiB }, /* start address is readonly */
{ 0x24000000, 32 * MiB },
{ 0x26000000, 32 * MiB },
{ 0x28000000, 32 * MiB },
{ 0x2A000000, 32 * MiB }
};
static void aspeed_2400_fmc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
dc->desc = "Aspeed 2400 FMC Controller";
asc->r_conf = R_CONF;
asc->r_ce_ctrl = R_CE_CTRL;
asc->r_ctrl0 = R_CTRL0;
asc->r_timings = R_TIMINGS;
asc->nregs_timings = 1;
asc->conf_enable_w0 = CONF_ENABLE_W0;
asc->max_peripherals = 5;
asc->segments = aspeed_2400_fmc_segments;
asc->resets = aspeed_2400_fmc_resets;
asc->flash_window_base = 0x20000000;
asc->flash_window_size = 0x10000000;
asc->features = ASPEED_SMC_FEATURE_DMA;
asc->dma_flash_mask = 0x0FFFFFFC;
asc->dma_dram_mask = 0x1FFFFFFC;
asc->nregs = ASPEED_SMC_R_MAX;
asc->segment_to_reg = aspeed_smc_segment_to_reg;
asc->reg_to_segment = aspeed_smc_reg_to_segment;
asc->dma_ctrl = aspeed_smc_dma_ctrl;
}
static const TypeInfo aspeed_2400_fmc_info = {
.name = "aspeed.fmc-ast2400",
.parent = TYPE_ASPEED_SMC,
.class_init = aspeed_2400_fmc_class_init,
};
static const AspeedSegments aspeed_2400_spi1_segments[] = {
{ 0x30000000, 64 * MiB },
};
static int aspeed_2400_spi1_addr_width(const AspeedSMCState *s)
{
return s->regs[R_SPI_CTRL0] & CTRL_AST2400_SPI_4BYTE ? 4 : 3;
}
static void aspeed_2400_spi1_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
dc->desc = "Aspeed 2400 SPI1 Controller";
asc->r_conf = R_SPI_CONF;
asc->r_ce_ctrl = 0xff;
asc->r_ctrl0 = R_SPI_CTRL0;
asc->r_timings = R_SPI_TIMINGS;
asc->nregs_timings = 1;
asc->conf_enable_w0 = SPI_CONF_ENABLE_W0;
asc->max_peripherals = 1;
asc->segments = aspeed_2400_spi1_segments;
asc->flash_window_base = 0x30000000;
asc->flash_window_size = 0x10000000;
asc->features = 0x0;
asc->nregs = ASPEED_SMC_R_SPI_MAX;
asc->segment_to_reg = aspeed_smc_segment_to_reg;
asc->reg_to_segment = aspeed_smc_reg_to_segment;
asc->dma_ctrl = aspeed_smc_dma_ctrl;
asc->addr_width = aspeed_2400_spi1_addr_width;
}
static const TypeInfo aspeed_2400_spi1_info = {
.name = "aspeed.spi1-ast2400",
.parent = TYPE_ASPEED_SMC,
.class_init = aspeed_2400_spi1_class_init,
};
static const uint32_t aspeed_2500_fmc_resets[ASPEED_SMC_R_MAX] = {
[R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
};
static const AspeedSegments aspeed_2500_fmc_segments[] = {
{ 0x20000000, 128 * MiB }, /* start address is readonly */
{ 0x28000000, 32 * MiB },
{ 0x2A000000, 32 * MiB },
};
static void aspeed_2500_fmc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
dc->desc = "Aspeed 2600 FMC Controller";
asc->r_conf = R_CONF;
asc->r_ce_ctrl = R_CE_CTRL;
asc->r_ctrl0 = R_CTRL0;
asc->r_timings = R_TIMINGS;
asc->nregs_timings = 1;
asc->conf_enable_w0 = CONF_ENABLE_W0;
asc->max_peripherals = 3;
asc->segments = aspeed_2500_fmc_segments;
asc->resets = aspeed_2500_fmc_resets;
asc->flash_window_base = 0x20000000;
asc->flash_window_size = 0x10000000;
asc->features = ASPEED_SMC_FEATURE_DMA;
asc->dma_flash_mask = 0x0FFFFFFC;
asc->dma_dram_mask = 0x3FFFFFFC;
asc->nregs = ASPEED_SMC_R_MAX;
asc->segment_to_reg = aspeed_smc_segment_to_reg;
asc->reg_to_segment = aspeed_smc_reg_to_segment;
asc->dma_ctrl = aspeed_smc_dma_ctrl;
}
static const TypeInfo aspeed_2500_fmc_info = {
.name = "aspeed.fmc-ast2500",
.parent = TYPE_ASPEED_SMC,
.class_init = aspeed_2500_fmc_class_init,
};
static const AspeedSegments aspeed_2500_spi1_segments[] = {
{ 0x30000000, 32 * MiB }, /* start address is readonly */
{ 0x32000000, 96 * MiB }, /* end address is readonly */
};
static void aspeed_2500_spi1_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
dc->desc = "Aspeed 2600 SPI1 Controller";
asc->r_conf = R_CONF;
asc->r_ce_ctrl = R_CE_CTRL;
asc->r_ctrl0 = R_CTRL0;
asc->r_timings = R_TIMINGS;
asc->nregs_timings = 1;
asc->conf_enable_w0 = CONF_ENABLE_W0;
asc->max_peripherals = 2;
asc->segments = aspeed_2500_spi1_segments;
asc->flash_window_base = 0x30000000;
asc->flash_window_size = 0x8000000;
asc->features = 0x0;
asc->nregs = ASPEED_SMC_R_MAX;
asc->segment_to_reg = aspeed_smc_segment_to_reg;
asc->reg_to_segment = aspeed_smc_reg_to_segment;
asc->dma_ctrl = aspeed_smc_dma_ctrl;
}
static const TypeInfo aspeed_2500_spi1_info = {
.name = "aspeed.spi1-ast2500",
.parent = TYPE_ASPEED_SMC,
.class_init = aspeed_2500_spi1_class_init,
};
static const AspeedSegments aspeed_2500_spi2_segments[] = {
{ 0x38000000, 32 * MiB }, /* start address is readonly */
{ 0x3A000000, 96 * MiB }, /* end address is readonly */
};
static void aspeed_2500_spi2_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
dc->desc = "Aspeed 2600 SPI2 Controller";
asc->r_conf = R_CONF;
asc->r_ce_ctrl = R_CE_CTRL;
asc->r_ctrl0 = R_CTRL0;
asc->r_timings = R_TIMINGS;
asc->nregs_timings = 1;
asc->conf_enable_w0 = CONF_ENABLE_W0;
asc->max_peripherals = 2;
asc->segments = aspeed_2500_spi2_segments;
asc->flash_window_base = 0x38000000;
asc->flash_window_size = 0x8000000;
asc->features = 0x0;
asc->nregs = ASPEED_SMC_R_MAX;
asc->segment_to_reg = aspeed_smc_segment_to_reg;
asc->reg_to_segment = aspeed_smc_reg_to_segment;
asc->dma_ctrl = aspeed_smc_dma_ctrl;
}
static const TypeInfo aspeed_2500_spi2_info = {
.name = "aspeed.spi2-ast2500",
.parent = TYPE_ASPEED_SMC,
.class_init = aspeed_2500_spi2_class_init,
};
/*
* The Segment Registers of the AST2600 have a 1MB unit. The address
* range of a flash SPI peripheral is encoded with offsets in the overall
* controller window. The previous SoC AST2400 and AST2500 used
* absolute addresses. Only bits [27:20] are relevant and the end
* address is an upper bound limit.
*/
#define AST2600_SEG_ADDR_MASK 0x0ff00000
static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
const AspeedSegments *seg)
{
uint32_t reg = 0;
/* Disabled segments have a nil register */
if (!seg->size) {
return 0;
}
reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
return reg;
}
static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
uint32_t reg, AspeedSegments *seg)
{
uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
if (reg) {
seg->addr = asc->flash_window_base + start_offset;
seg->size = end_offset + MiB - start_offset;
} else {
seg->addr = asc->flash_window_base;
seg->size = 0;
}
}
static const uint32_t aspeed_2600_fmc_resets[ASPEED_SMC_R_MAX] = {
[R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1 |
CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2),
};
static const AspeedSegments aspeed_2600_fmc_segments[] = {
{ 0x0, 128 * MiB }, /* start address is readonly */
{ 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
{ 0x0, 0 }, /* disabled */
};
static void aspeed_2600_fmc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
dc->desc = "Aspeed 2600 FMC Controller";
asc->r_conf = R_CONF;
asc->r_ce_ctrl = R_CE_CTRL;
asc->r_ctrl0 = R_CTRL0;
asc->r_timings = R_TIMINGS;
asc->nregs_timings = 1;
asc->conf_enable_w0 = CONF_ENABLE_W0;
asc->max_peripherals = 3;
asc->segments = aspeed_2600_fmc_segments;
asc->resets = aspeed_2600_fmc_resets;
asc->flash_window_base = 0x20000000;
asc->flash_window_size = 0x10000000;
asc->features = ASPEED_SMC_FEATURE_DMA |
ASPEED_SMC_FEATURE_WDT_CONTROL;
asc->dma_flash_mask = 0x0FFFFFFC;
asc->dma_dram_mask = 0x3FFFFFFC;
asc->nregs = ASPEED_SMC_R_MAX;
asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
}
static const TypeInfo aspeed_2600_fmc_info = {
.name = "aspeed.fmc-ast2600",
.parent = TYPE_ASPEED_SMC,
.class_init = aspeed_2600_fmc_class_init,
};
static const AspeedSegments aspeed_2600_spi1_segments[] = {
{ 0x0, 128 * MiB }, /* start address is readonly */
{ 0x0, 0 }, /* disabled */
};
static void aspeed_2600_spi1_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
dc->desc = "Aspeed 2600 SPI1 Controller";
asc->r_conf = R_CONF;
asc->r_ce_ctrl = R_CE_CTRL;
asc->r_ctrl0 = R_CTRL0;
asc->r_timings = R_TIMINGS;
asc->nregs_timings = 2;
asc->conf_enable_w0 = CONF_ENABLE_W0;
asc->max_peripherals = 2;
asc->segments = aspeed_2600_spi1_segments;
asc->flash_window_base = 0x30000000;
asc->flash_window_size = 0x10000000;
asc->features = ASPEED_SMC_FEATURE_DMA |
ASPEED_SMC_FEATURE_DMA_GRANT;
asc->dma_flash_mask = 0x0FFFFFFC;
asc->dma_dram_mask = 0x3FFFFFFC;
asc->nregs = ASPEED_SMC_R_MAX;
asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
}
static const TypeInfo aspeed_2600_spi1_info = {
.name = "aspeed.spi1-ast2600",
.parent = TYPE_ASPEED_SMC,
.class_init = aspeed_2600_spi1_class_init,
};
static const AspeedSegments aspeed_2600_spi2_segments[] = {
{ 0x0, 128 * MiB }, /* start address is readonly */
{ 0x0, 0 }, /* disabled */
{ 0x0, 0 }, /* disabled */
};
static void aspeed_2600_spi2_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
dc->desc = "Aspeed 2600 SPI2 Controller";
asc->r_conf = R_CONF;
asc->r_ce_ctrl = R_CE_CTRL;
asc->r_ctrl0 = R_CTRL0;
asc->r_timings = R_TIMINGS;
asc->nregs_timings = 3;
asc->conf_enable_w0 = CONF_ENABLE_W0;
asc->max_peripherals = 3;
asc->segments = aspeed_2600_spi2_segments;
asc->flash_window_base = 0x50000000;
asc->flash_window_size = 0x10000000;
asc->features = ASPEED_SMC_FEATURE_DMA |
ASPEED_SMC_FEATURE_DMA_GRANT;
asc->dma_flash_mask = 0x0FFFFFFC;
asc->dma_dram_mask = 0x3FFFFFFC;
asc->nregs = ASPEED_SMC_R_MAX;
asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
}
static const TypeInfo aspeed_2600_spi2_info = {
.name = "aspeed.spi2-ast2600",
.parent = TYPE_ASPEED_SMC,
.class_init = aspeed_2600_spi2_class_init,
};
static void aspeed_smc_register_types(void)
{
type_register_static(&aspeed_smc_flash_info);
type_register_static(&aspeed_smc_info);
type_register_static(&aspeed_2400_smc_info);
type_register_static(&aspeed_2400_fmc_info);
type_register_static(&aspeed_2400_spi1_info);
type_register_static(&aspeed_2500_fmc_info);
type_register_static(&aspeed_2500_spi1_info);
type_register_static(&aspeed_2500_spi2_info);
type_register_static(&aspeed_2600_fmc_info);
type_register_static(&aspeed_2600_spi1_info);
type_register_static(&aspeed_2600_spi2_info);
}
type_init(aspeed_smc_register_types)