qemu/semihosting/arm-compat-semi.c

1291 lines
37 KiB
C
Raw Normal View History

/*
* Semihosting support for systems modeled on the Arm "Angel"
* semihosting syscalls design. This includes Arm and RISC-V processors
*
* Copyright (c) 2005, 2007 CodeSourcery.
* Copyright (c) 2019 Linaro
* Written by Paul Brook.
*
* Copyright © 2020 by Keith Packard <keithp@keithp.com>
* Adapted for systems other than ARM, including RISC-V, by Keith Packard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* ARM Semihosting is documented in:
* Semihosting for AArch32 and AArch64 Release 2.0
* https://static.docs.arm.com/100863/0200/semihosting.pdf
*
* RISC-V Semihosting is documented in:
* RISC-V Semihosting
* https://github.com/riscv/riscv-semihosting-spec/blob/main/riscv-semihosting-spec.adoc
*/
#include "qemu/osdep.h"
#include "semihosting/semihost.h"
#include "semihosting/console.h"
#include "semihosting/common-semi.h"
#include "qemu/timer.h"
#include "exec/gdbstub.h"
#ifdef CONFIG_USER_ONLY
#include "qemu.h"
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
#define COMMON_SEMI_HEAP_SIZE (128 * 1024 * 1024)
#else
#include "qemu/cutils.h"
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
#ifdef TARGET_ARM
#include "hw/arm/boot.h"
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
#endif
#include "hw/boards.h"
#endif
#define TARGET_SYS_OPEN 0x01
#define TARGET_SYS_CLOSE 0x02
#define TARGET_SYS_WRITEC 0x03
#define TARGET_SYS_WRITE0 0x04
#define TARGET_SYS_WRITE 0x05
#define TARGET_SYS_READ 0x06
#define TARGET_SYS_READC 0x07
#define TARGET_SYS_ISERROR 0x08
#define TARGET_SYS_ISTTY 0x09
#define TARGET_SYS_SEEK 0x0a
#define TARGET_SYS_FLEN 0x0c
#define TARGET_SYS_TMPNAM 0x0d
#define TARGET_SYS_REMOVE 0x0e
#define TARGET_SYS_RENAME 0x0f
#define TARGET_SYS_CLOCK 0x10
#define TARGET_SYS_TIME 0x11
#define TARGET_SYS_SYSTEM 0x12
#define TARGET_SYS_ERRNO 0x13
#define TARGET_SYS_GET_CMDLINE 0x15
#define TARGET_SYS_HEAPINFO 0x16
#define TARGET_SYS_EXIT 0x18
#define TARGET_SYS_SYNCCACHE 0x19
#define TARGET_SYS_EXIT_EXTENDED 0x20
#define TARGET_SYS_ELAPSED 0x30
#define TARGET_SYS_TICKFREQ 0x31
/* ADP_Stopped_ApplicationExit is used for exit(0),
* anything else is implemented as exit(1) */
#define ADP_Stopped_ApplicationExit (0x20026)
#ifndef O_BINARY
#define O_BINARY 0
#endif
#define GDB_O_RDONLY 0x000
#define GDB_O_WRONLY 0x001
#define GDB_O_RDWR 0x002
#define GDB_O_APPEND 0x008
#define GDB_O_CREAT 0x200
#define GDB_O_TRUNC 0x400
#define GDB_O_BINARY 0
static int gdb_open_modeflags[12] = {
GDB_O_RDONLY,
GDB_O_RDONLY | GDB_O_BINARY,
GDB_O_RDWR,
GDB_O_RDWR | GDB_O_BINARY,
GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC,
GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC | GDB_O_BINARY,
GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC,
GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC | GDB_O_BINARY,
GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND,
GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND | GDB_O_BINARY,
GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND,
GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND | GDB_O_BINARY
};
static int open_modeflags[12] = {
O_RDONLY,
O_RDONLY | O_BINARY,
O_RDWR,
O_RDWR | O_BINARY,
O_WRONLY | O_CREAT | O_TRUNC,
O_WRONLY | O_CREAT | O_TRUNC | O_BINARY,
O_RDWR | O_CREAT | O_TRUNC,
O_RDWR | O_CREAT | O_TRUNC | O_BINARY,
O_WRONLY | O_CREAT | O_APPEND,
O_WRONLY | O_CREAT | O_APPEND | O_BINARY,
O_RDWR | O_CREAT | O_APPEND,
O_RDWR | O_CREAT | O_APPEND | O_BINARY
};
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
typedef enum GuestFDType {
GuestFDUnused = 0,
GuestFDHost = 1,
GuestFDGDB = 2,
GuestFDFeatureFile = 3,
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
} GuestFDType;
/*
* Guest file descriptors are integer indexes into an array of
* these structures (we will dynamically resize as necessary).
*/
typedef struct GuestFD {
GuestFDType type;
union {
int hostfd;
target_ulong featurefile_offset;
};
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
} GuestFD;
static GArray *guestfd_array;
#ifndef CONFIG_USER_ONLY
#include "exec/address-spaces.h"
/*
* Find the base of a RAM region containing the specified address
*/
static inline hwaddr
common_semi_find_region_base(hwaddr addr)
{
MemoryRegion *subregion;
/*
* Find the chunk of R/W memory containing the address. This is
* used for the SYS_HEAPINFO semihosting call, which should
* probably be using information from the loaded application.
*/
QTAILQ_FOREACH(subregion, &get_system_memory()->subregions,
subregions_link) {
if (subregion->ram && !subregion->readonly) {
Int128 top128 = int128_add(int128_make64(subregion->addr),
subregion->size);
Int128 addr128 = int128_make64(addr);
if (subregion->addr <= addr && int128_lt(addr128, top128)) {
return subregion->addr;
}
}
}
return 0;
}
#endif
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
#ifdef TARGET_ARM
static inline target_ulong
common_semi_arg(CPUState *cs, int argno)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (is_a64(env)) {
return env->xregs[argno];
} else {
return env->regs[argno];
}
}
static inline void
common_semi_set_ret(CPUState *cs, target_ulong ret)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (is_a64(env)) {
env->xregs[0] = ret;
} else {
env->regs[0] = ret;
}
}
static inline bool
common_semi_sys_exit_extended(CPUState *cs, int nr)
{
return (nr == TARGET_SYS_EXIT_EXTENDED || is_a64(cs->env_ptr));
}
#ifndef CONFIG_USER_ONLY
#include "hw/arm/boot.h"
static inline target_ulong
common_semi_rambase(CPUState *cs)
{
CPUArchState *env = cs->env_ptr;
const struct arm_boot_info *info = env->boot_info;
target_ulong sp;
if (info) {
return info->loader_start;
}
if (is_a64(env)) {
sp = env->xregs[31];
} else {
sp = env->regs[13];
}
return common_semi_find_region_base(sp);
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
}
#endif
#endif /* TARGET_ARM */
#ifdef TARGET_RISCV
static inline target_ulong
common_semi_arg(CPUState *cs, int argno)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
return env->gpr[xA0 + argno];
}
static inline void
common_semi_set_ret(CPUState *cs, target_ulong ret)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
env->gpr[xA0] = ret;
}
static inline bool
common_semi_sys_exit_extended(CPUState *cs, int nr)
{
return (nr == TARGET_SYS_EXIT_EXTENDED || sizeof(target_ulong) == 8);
}
#ifndef CONFIG_USER_ONLY
static inline target_ulong
common_semi_rambase(CPUState *cs)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
return common_semi_find_region_base(env->gpr[xSP]);
}
#endif
#endif
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
/*
* Allocate a new guest file descriptor and return it; if we
* couldn't allocate a new fd then return -1.
* This is a fairly simplistic implementation because we don't
* expect that most semihosting guest programs will make very
* heavy use of opening and closing fds.
*/
static int alloc_guestfd(void)
{
guint i;
if (!guestfd_array) {
/* New entries zero-initialized, i.e. type GuestFDUnused */
guestfd_array = g_array_new(FALSE, TRUE, sizeof(GuestFD));
}
target/arm/arm-semi: fix SYS_OPEN to return nonzero filehandle According to the specification "Semihosting for AArch32 and Aarch64", the SYS_OPEN operation should return: - A nonzero handle if the call is successful - -1 if the call is not successful So, it should never return 0. Prior to commit 35e9a0a8ce4b ("target/arm/arm-semi: Make semihosting code hand out its own file descriptors"), the guest fd matched to the host fd. It returned a nonzero handle on success since the fd 0 is already used for stdin. Now that the guest fd is the index of guestfd_array, it starts from 0. I noticed this issue particularly because Trusted Firmware-A built with PLAT=qemu is no longer working. Its io_semihosting driver only handles a positive return value as a valid filehandle. Basically, there are two ways to fix this: - Use (guestfd - 1) as the index of guestfs_arrary. We need to insert increment/decrement to convert the guestfd and the array index back and forth. - Keep using guestfd as the index of guestfs_array. The first entry of guestfs_array is left unused. I thought the latter is simpler. We end up with wasting a small piece of memory for the unused first entry of guestfd_array, but this is probably not a big deal. Fixes: 35e9a0a8ce4b ("target/arm/arm-semi: Make semihosting code hand out its own file descriptors") Cc: qemu-stable@nongnu.org Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20200109041228.10131-1-masahiroy@kernel.org Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2020-01-17 17:09:30 +03:00
/* SYS_OPEN should return nonzero handle on success. Start guestfd from 1 */
for (i = 1; i < guestfd_array->len; i++) {
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
GuestFD *gf = &g_array_index(guestfd_array, GuestFD, i);
if (gf->type == GuestFDUnused) {
return i;
}
}
/* All elements already in use: expand the array */
g_array_set_size(guestfd_array, i + 1);
return i;
}
/*
* Look up the guestfd in the data structure; return NULL
* for out of bounds, but don't check whether the slot is unused.
* This is used internally by the other guestfd functions.
*/
static GuestFD *do_get_guestfd(int guestfd)
{
if (!guestfd_array) {
return NULL;
}
target/arm/arm-semi: fix SYS_OPEN to return nonzero filehandle According to the specification "Semihosting for AArch32 and Aarch64", the SYS_OPEN operation should return: - A nonzero handle if the call is successful - -1 if the call is not successful So, it should never return 0. Prior to commit 35e9a0a8ce4b ("target/arm/arm-semi: Make semihosting code hand out its own file descriptors"), the guest fd matched to the host fd. It returned a nonzero handle on success since the fd 0 is already used for stdin. Now that the guest fd is the index of guestfd_array, it starts from 0. I noticed this issue particularly because Trusted Firmware-A built with PLAT=qemu is no longer working. Its io_semihosting driver only handles a positive return value as a valid filehandle. Basically, there are two ways to fix this: - Use (guestfd - 1) as the index of guestfs_arrary. We need to insert increment/decrement to convert the guestfd and the array index back and forth. - Keep using guestfd as the index of guestfs_array. The first entry of guestfs_array is left unused. I thought the latter is simpler. We end up with wasting a small piece of memory for the unused first entry of guestfd_array, but this is probably not a big deal. Fixes: 35e9a0a8ce4b ("target/arm/arm-semi: Make semihosting code hand out its own file descriptors") Cc: qemu-stable@nongnu.org Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20200109041228.10131-1-masahiroy@kernel.org Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2020-01-17 17:09:30 +03:00
if (guestfd <= 0 || guestfd >= guestfd_array->len) {
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
return NULL;
}
return &g_array_index(guestfd_array, GuestFD, guestfd);
}
/*
* Associate the specified guest fd (which must have been
* allocated via alloc_fd() and not previously used) with
* the specified host/gdb fd.
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
*/
static void associate_guestfd(int guestfd, int hostfd)
{
GuestFD *gf = do_get_guestfd(guestfd);
assert(gf);
gf->type = use_gdb_syscalls() ? GuestFDGDB : GuestFDHost;
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
gf->hostfd = hostfd;
}
/*
* Deallocate the specified guest file descriptor. This doesn't
* close the host fd, it merely undoes the work of alloc_fd().
*/
static void dealloc_guestfd(int guestfd)
{
GuestFD *gf = do_get_guestfd(guestfd);
assert(gf);
gf->type = GuestFDUnused;
}
/*
* Given a guest file descriptor, get the associated struct.
* If the fd is not valid, return NULL. This is the function
* used by the various semihosting calls to validate a handle
* from the guest.
* Note: calling alloc_guestfd() or dealloc_guestfd() will
* invalidate any GuestFD* obtained by calling this function.
*/
static GuestFD *get_guestfd(int guestfd)
{
GuestFD *gf = do_get_guestfd(guestfd);
if (!gf || gf->type == GuestFDUnused) {
return NULL;
}
return gf;
}
/*
* The semihosting API has no concept of its errno being thread-safe,
* as the API design predates SMP CPUs and was intended as a simple
* real-hardware set of debug functionality. For QEMU, we make the
* errno be per-thread in linux-user mode; in softmmu it is a simple
* global, and we assume that the guest takes care of avoiding any races.
*/
#ifndef CONFIG_USER_ONLY
static target_ulong syscall_err;
#include "exec/softmmu-semi.h"
#endif
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static inline uint32_t set_swi_errno(CPUState *cs, uint32_t code)
{
if (code == (uint32_t)-1) {
#ifdef CONFIG_USER_ONLY
TaskState *ts = cs->opaque;
ts->swi_errno = errno;
#else
syscall_err = errno;
#endif
}
return code;
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static inline uint32_t get_swi_errno(CPUState *cs)
{
#ifdef CONFIG_USER_ONLY
TaskState *ts = cs->opaque;
return ts->swi_errno;
#else
return syscall_err;
#endif
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static target_ulong common_semi_syscall_len;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static void common_semi_cb(CPUState *cs, target_ulong ret, target_ulong err)
{
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
target_ulong reg0 = common_semi_arg(cs, 0);
if (ret == (target_ulong)-1) {
errno = err;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
set_swi_errno(cs, -1);
reg0 = ret;
} else {
/* Fixup syscalls that use nonstardard return conventions. */
switch (reg0) {
case TARGET_SYS_WRITE:
case TARGET_SYS_READ:
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
reg0 = common_semi_syscall_len - ret;
break;
case TARGET_SYS_SEEK:
reg0 = 0;
break;
default:
reg0 = ret;
break;
}
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
common_semi_set_ret(cs, reg0);
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static target_ulong common_semi_flen_buf(CPUState *cs)
{
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
target_ulong sp;
#ifdef TARGET_ARM
/* Return an address in target memory of 64 bytes where the remote
* gdb should write its stat struct. (The format of this structure
* is defined by GDB's remote protocol and is not target-specific.)
* We put this on the guest's stack just below SP.
*/
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (is_a64(env)) {
sp = env->xregs[31];
} else {
sp = env->regs[13];
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
#endif
#ifdef TARGET_RISCV
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
sp = env->gpr[xSP];
#endif
return sp - 64;
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static void
common_semi_flen_cb(CPUState *cs, target_ulong ret, target_ulong err)
{
/* The size is always stored in big-endian order, extract
the value. We assume the size always fit in 32 bits. */
uint32_t size;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
cpu_memory_rw_debug(cs, common_semi_flen_buf(cs) + 32,
(uint8_t *)&size, 4, 0);
size = be32_to_cpu(size);
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
common_semi_set_ret(cs, size);
errno = err;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
set_swi_errno(cs, -1);
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static int common_semi_open_guestfd;
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static void
common_semi_open_cb(CPUState *cs, target_ulong ret, target_ulong err)
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
{
if (ret == (target_ulong)-1) {
errno = err;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
set_swi_errno(cs, -1);
dealloc_guestfd(common_semi_open_guestfd);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
} else {
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
associate_guestfd(common_semi_open_guestfd, ret);
ret = common_semi_open_guestfd;
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
common_semi_set_ret(cs, ret);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static target_ulong
common_semi_gdb_syscall(CPUState *cs, gdb_syscall_complete_cb cb,
const char *fmt, ...)
{
va_list va;
va_start(va, fmt);
gdb_do_syscallv(cb, fmt, va);
va_end(va);
/*
* FIXME: in softmmu mode, the gdbstub will schedule our callback
* to occur, but will not actually call it to complete the syscall
* until after this function has returned and we are back in the
* CPU main loop. Therefore callers to this function must not
* do anything with its return value, because it is not necessarily
* the result of the syscall, but could just be the old value of X0.
* The only thing safe to do with this is that the callers of
* do_common_semihosting() will write it straight back into X0.
* (In linux-user mode, the callback will have happened before
* gdb_do_syscallv() returns.)
*
* We should tidy this up so neither this function nor
* do_common_semihosting() return a value, so the mistake of
* doing something with the return value is not possible to make.
*/
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return common_semi_arg(cs, 0);
}
/*
* Types for functions implementing various semihosting calls
* for specific types of guest file descriptor. These must all
* do the work and return the required return value for the guest,
* setting the guest errno if appropriate.
*/
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
typedef uint32_t sys_closefn(CPUState *cs, GuestFD *gf);
typedef uint32_t sys_writefn(CPUState *cs, GuestFD *gf,
target_ulong buf, uint32_t len);
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
typedef uint32_t sys_readfn(CPUState *cs, GuestFD *gf,
target_ulong buf, uint32_t len);
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
typedef uint32_t sys_isattyfn(CPUState *cs, GuestFD *gf);
typedef uint32_t sys_seekfn(CPUState *cs, GuestFD *gf,
target_ulong offset);
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
typedef uint32_t sys_flenfn(CPUState *cs, GuestFD *gf);
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t host_closefn(CPUState *cs, GuestFD *gf)
{
/*
* Only close the underlying host fd if it's one we opened on behalf
* of the guest in SYS_OPEN.
*/
if (gf->hostfd == STDIN_FILENO ||
gf->hostfd == STDOUT_FILENO ||
gf->hostfd == STDERR_FILENO) {
return 0;
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, close(gf->hostfd));
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t host_writefn(CPUState *cs, GuestFD *gf,
target_ulong buf, uint32_t len)
{
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
CPUArchState *env = cs->env_ptr;
uint32_t ret;
char *s = lock_user(VERIFY_READ, buf, len, 1);
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
(void) env; /* Used in arm softmmu lock_user implicitly */
if (!s) {
/* Return bytes not written on error */
return len;
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
ret = set_swi_errno(cs, write(gf->hostfd, s, len));
unlock_user(s, buf, 0);
if (ret == (uint32_t)-1) {
ret = 0;
}
/* Return bytes not written */
return len - ret;
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t host_readfn(CPUState *cs, GuestFD *gf,
target_ulong buf, uint32_t len)
{
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
CPUArchState *env = cs->env_ptr;
uint32_t ret;
char *s = lock_user(VERIFY_WRITE, buf, len, 0);
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
(void) env; /* Used in arm softmmu lock_user implicitly */
if (!s) {
/* return bytes not read */
return len;
}
do {
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
ret = set_swi_errno(cs, read(gf->hostfd, s, len));
} while (ret == -1 && errno == EINTR);
unlock_user(s, buf, len);
if (ret == (uint32_t)-1) {
ret = 0;
}
/* Return bytes not read */
return len - ret;
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t host_isattyfn(CPUState *cs, GuestFD *gf)
{
return isatty(gf->hostfd);
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t host_seekfn(CPUState *cs, GuestFD *gf, target_ulong offset)
{
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
uint32_t ret = set_swi_errno(cs, lseek(gf->hostfd, offset, SEEK_SET));
if (ret == (uint32_t)-1) {
return -1;
}
return 0;
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t host_flenfn(CPUState *cs, GuestFD *gf)
{
struct stat buf;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
uint32_t ret = set_swi_errno(cs, fstat(gf->hostfd, &buf));
if (ret == (uint32_t)-1) {
return -1;
}
return buf.st_size;
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t gdb_closefn(CPUState *cs, GuestFD *gf)
{
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return common_semi_gdb_syscall(cs, common_semi_cb, "close,%x", gf->hostfd);
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t gdb_writefn(CPUState *cs, GuestFD *gf,
target_ulong buf, uint32_t len)
{
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
common_semi_syscall_len = len;
return common_semi_gdb_syscall(cs, common_semi_cb, "write,%x,%x,%x",
gf->hostfd, buf, len);
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t gdb_readfn(CPUState *cs, GuestFD *gf,
target_ulong buf, uint32_t len)
{
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
common_semi_syscall_len = len;
return common_semi_gdb_syscall(cs, common_semi_cb, "read,%x,%x,%x",
gf->hostfd, buf, len);
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t gdb_isattyfn(CPUState *cs, GuestFD *gf)
{
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return common_semi_gdb_syscall(cs, common_semi_cb, "isatty,%x", gf->hostfd);
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t gdb_seekfn(CPUState *cs, GuestFD *gf, target_ulong offset)
{
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return common_semi_gdb_syscall(cs, common_semi_cb, "lseek,%x,%x,0",
gf->hostfd, offset);
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t gdb_flenfn(CPUState *cs, GuestFD *gf)
{
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return common_semi_gdb_syscall(cs, common_semi_flen_cb, "fstat,%x,%x",
gf->hostfd, common_semi_flen_buf(cs));
}
#define SHFB_MAGIC_0 0x53
#define SHFB_MAGIC_1 0x48
#define SHFB_MAGIC_2 0x46
#define SHFB_MAGIC_3 0x42
/* Feature bits reportable in feature byte 0 */
#define SH_EXT_EXIT_EXTENDED (1 << 0)
#define SH_EXT_STDOUT_STDERR (1 << 1)
static const uint8_t featurefile_data[] = {
SHFB_MAGIC_0,
SHFB_MAGIC_1,
SHFB_MAGIC_2,
SHFB_MAGIC_3,
SH_EXT_EXIT_EXTENDED | SH_EXT_STDOUT_STDERR, /* Feature byte 0 */
};
static void init_featurefile_guestfd(int guestfd)
{
GuestFD *gf = do_get_guestfd(guestfd);
assert(gf);
gf->type = GuestFDFeatureFile;
gf->featurefile_offset = 0;
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t featurefile_closefn(CPUState *cs, GuestFD *gf)
{
/* Nothing to do */
return 0;
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t featurefile_writefn(CPUState *cs, GuestFD *gf,
target_ulong buf, uint32_t len)
{
/* This fd can never be open for writing */
errno = EBADF;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t featurefile_readfn(CPUState *cs, GuestFD *gf,
target_ulong buf, uint32_t len)
{
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
CPUArchState *env = cs->env_ptr;
uint32_t i;
char *s;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
(void) env; /* Used in arm softmmu lock_user implicitly */
s = lock_user(VERIFY_WRITE, buf, len, 0);
if (!s) {
return len;
}
for (i = 0; i < len; i++) {
if (gf->featurefile_offset >= sizeof(featurefile_data)) {
break;
}
s[i] = featurefile_data[gf->featurefile_offset];
gf->featurefile_offset++;
}
unlock_user(s, buf, len);
/* Return number of bytes not read */
return len - i;
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t featurefile_isattyfn(CPUState *cs, GuestFD *gf)
{
return 0;
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t featurefile_seekfn(CPUState *cs, GuestFD *gf,
target_ulong offset)
{
gf->featurefile_offset = offset;
return 0;
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
static uint32_t featurefile_flenfn(CPUState *cs, GuestFD *gf)
{
return sizeof(featurefile_data);
}
typedef struct GuestFDFunctions {
sys_closefn *closefn;
sys_writefn *writefn;
sys_readfn *readfn;
sys_isattyfn *isattyfn;
sys_seekfn *seekfn;
sys_flenfn *flenfn;
} GuestFDFunctions;
static const GuestFDFunctions guestfd_fns[] = {
[GuestFDHost] = {
.closefn = host_closefn,
.writefn = host_writefn,
.readfn = host_readfn,
.isattyfn = host_isattyfn,
.seekfn = host_seekfn,
.flenfn = host_flenfn,
},
[GuestFDGDB] = {
.closefn = gdb_closefn,
.writefn = gdb_writefn,
.readfn = gdb_readfn,
.isattyfn = gdb_isattyfn,
.seekfn = gdb_seekfn,
.flenfn = gdb_flenfn,
},
[GuestFDFeatureFile] = {
.closefn = featurefile_closefn,
.writefn = featurefile_writefn,
.readfn = featurefile_readfn,
.isattyfn = featurefile_isattyfn,
.seekfn = featurefile_seekfn,
.flenfn = featurefile_flenfn,
},
};
/*
* Read the input value from the argument block; fail the semihosting
* call if the memory read fails. Eventually we could use a generic
* CPUState helper function here.
*/
static inline bool is_64bit_semihosting(CPUArchState *env)
{
#if defined(TARGET_ARM)
return is_a64(env);
#elif defined(TARGET_RISCV)
return riscv_cpu_mxl(env) != MXL_RV32;
#else
#error un-handled architecture
#endif
}
#define GET_ARG(n) do { \
if (is_64bit_semihosting(env)) { \
if (get_user_u64(arg ## n, args + (n) * 8)) { \
errno = EFAULT; \
return set_swi_errno(cs, -1); \
} \
} else { \
if (get_user_u32(arg ## n, args + (n) * 4)) { \
errno = EFAULT; \
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1); \
} \
} \
} while (0)
#define SET_ARG(n, val) \
(is_64bit_semihosting(env) ? \
put_user_u64(val, args + (n) * 8) : \
put_user_u32(val, args + (n) * 4))
/*
* Do a semihosting call.
*
* The specification always says that the "return register" either
* returns a specific value or is corrupted, so we don't need to
* report to our caller whether we are returning a value or trying to
* leave the register unchanged. We use 0xdeadbeef as the return value
* when there isn't a defined return value for the call.
*/
target_ulong do_common_semihosting(CPUState *cs)
{
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
CPUArchState *env = cs->env_ptr;
target_ulong args;
target_ulong arg0, arg1, arg2, arg3;
target_ulong ul_ret;
char * s;
int nr;
uint32_t ret;
uint32_t len;
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
GuestFD *gf;
int64_t elapsed;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
(void) env; /* Used implicitly by arm lock_user macro */
nr = common_semi_arg(cs, 0) & 0xffffffffU;
args = common_semi_arg(cs, 1);
switch (nr) {
case TARGET_SYS_OPEN:
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
{
int guestfd;
GET_ARG(0);
GET_ARG(1);
GET_ARG(2);
s = lock_user_string(arg0);
if (!s) {
errno = EFAULT;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
}
if (arg1 >= 12) {
unlock_user(s, arg0, 0);
errno = EINVAL;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
}
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
guestfd = alloc_guestfd();
if (guestfd < 0) {
unlock_user(s, arg0, 0);
errno = EMFILE;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
}
if (strcmp(s, ":tt") == 0) {
int result_fileno;
/*
* We implement SH_EXT_STDOUT_STDERR, so:
* open for read == stdin
* open for write == stdout
* open for append == stderr
*/
if (arg1 < 4) {
result_fileno = STDIN_FILENO;
} else if (arg1 < 8) {
result_fileno = STDOUT_FILENO;
} else {
result_fileno = STDERR_FILENO;
}
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
associate_guestfd(guestfd, result_fileno);
unlock_user(s, arg0, 0);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
return guestfd;
}
if (strcmp(s, ":semihosting-features") == 0) {
unlock_user(s, arg0, 0);
/* We must fail opens for modes other than 0 ('r') or 1 ('rb') */
if (arg1 != 0 && arg1 != 1) {
dealloc_guestfd(guestfd);
errno = EACCES;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
}
init_featurefile_guestfd(guestfd);
return guestfd;
}
if (use_gdb_syscalls()) {
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
common_semi_open_guestfd = guestfd;
ret = common_semi_gdb_syscall(cs, common_semi_open_cb,
"open,%s,%x,1a4", arg0, (int)arg2 + 1,
gdb_open_modeflags[arg1]);
} else {
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
ret = set_swi_errno(cs, open(s, open_modeflags[arg1], 0644));
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
if (ret == (uint32_t)-1) {
dealloc_guestfd(guestfd);
} else {
associate_guestfd(guestfd, ret);
ret = guestfd;
}
}
unlock_user(s, arg0, 0);
return ret;
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
}
case TARGET_SYS_CLOSE:
GET_ARG(0);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
gf = get_guestfd(arg0);
if (!gf) {
errno = EBADF;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
ret = guestfd_fns[gf->type].closefn(cs, gf);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
dealloc_guestfd(arg0);
return ret;
case TARGET_SYS_WRITEC:
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
qemu_semihosting_console_outc(cs->env_ptr, args);
return 0xdeadbeef;
case TARGET_SYS_WRITE0:
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return qemu_semihosting_console_outs(cs->env_ptr, args);
case TARGET_SYS_WRITE:
GET_ARG(0);
GET_ARG(1);
GET_ARG(2);
len = arg2;
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
gf = get_guestfd(arg0);
if (!gf) {
errno = EBADF;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return guestfd_fns[gf->type].writefn(cs, gf, arg1, len);
case TARGET_SYS_READ:
GET_ARG(0);
GET_ARG(1);
GET_ARG(2);
len = arg2;
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
gf = get_guestfd(arg0);
if (!gf) {
errno = EBADF;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return guestfd_fns[gf->type].readfn(cs, gf, arg1, len);
case TARGET_SYS_READC:
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return qemu_semihosting_console_inc(cs->env_ptr);
case TARGET_SYS_ISERROR:
GET_ARG(0);
return (target_long) arg0 < 0 ? 1 : 0;
case TARGET_SYS_ISTTY:
GET_ARG(0);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
gf = get_guestfd(arg0);
if (!gf) {
errno = EBADF;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return guestfd_fns[gf->type].isattyfn(cs, gf);
case TARGET_SYS_SEEK:
GET_ARG(0);
GET_ARG(1);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
gf = get_guestfd(arg0);
if (!gf) {
errno = EBADF;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return guestfd_fns[gf->type].seekfn(cs, gf, arg1);
case TARGET_SYS_FLEN:
GET_ARG(0);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
gf = get_guestfd(arg0);
if (!gf) {
errno = EBADF;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
target/arm/arm-semi: Make semihosting code hand out its own file descriptors Currently the Arm semihosting code returns the guest file descriptors (handles) which are simply the fd values from the host OS or the remote gdbstub. Part of the semihosting 2.0 specification requires that we implement special handling of opening a ":semihosting-features" filename. Guest fds which result from opening the special file won't correspond to host fds, so to ensure that we don't end up with duplicate fds we need to have QEMU code control the allocation of the fd values we give the guest. Add in an abstraction layer which lets us allocate new guest FD values, and translate from a guest FD value back to the host one. This also fixes an odd hole where a semihosting guest could use the semihosting API to read, write or close file descriptors that it had never allocated but which were being used by QEMU itself. (This isn't a security hole, because enabling semihosting permits the guest to do arbitrary file access to the whole host filesystem, and so should only be done if the guest is completely trusted.) Currently the only kind of guest fd is one which maps to a host fd, but in a following commit we will add one which maps to the :semihosting-features magic data. If the guest is migrated with an open semihosting file descriptor then subsequent attempts to use the fd will all fail; this is not a change from the previous situation (where the host fd being used on the source end would not be re-opened on the destination end). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20190916141544.17540-5-peter.maydell@linaro.org
2019-09-16 17:15:33 +03:00
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return guestfd_fns[gf->type].flenfn(cs, gf);
case TARGET_SYS_TMPNAM:
GET_ARG(0);
GET_ARG(1);
GET_ARG(2);
if (asprintf(&s, "/tmp/qemu-%x%02x", getpid(),
(int) (arg1 & 0xff)) < 0) {
return -1;
}
ul_ret = (target_ulong) -1;
/* Make sure there's enough space in the buffer */
if (strlen(s) < arg2) {
char *output = lock_user(VERIFY_WRITE, arg0, arg2, 0);
strcpy(output, s);
unlock_user(output, arg0, arg2);
ul_ret = 0;
}
free(s);
return ul_ret;
case TARGET_SYS_REMOVE:
GET_ARG(0);
GET_ARG(1);
if (use_gdb_syscalls()) {
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
ret = common_semi_gdb_syscall(cs, common_semi_cb, "unlink,%s",
arg0, (int)arg1 + 1);
} else {
s = lock_user_string(arg0);
if (!s) {
errno = EFAULT;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
ret = set_swi_errno(cs, remove(s));
unlock_user(s, arg0, 0);
}
return ret;
case TARGET_SYS_RENAME:
GET_ARG(0);
GET_ARG(1);
GET_ARG(2);
GET_ARG(3);
if (use_gdb_syscalls()) {
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return common_semi_gdb_syscall(cs, common_semi_cb, "rename,%s,%s",
arg0, (int)arg1 + 1, arg2,
(int)arg3 + 1);
} else {
char *s2;
s = lock_user_string(arg0);
s2 = lock_user_string(arg2);
if (!s || !s2) {
errno = EFAULT;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
ret = set_swi_errno(cs, -1);
} else {
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
ret = set_swi_errno(cs, rename(s, s2));
}
if (s2)
unlock_user(s2, arg2, 0);
if (s)
unlock_user(s, arg0, 0);
return ret;
}
case TARGET_SYS_CLOCK:
return clock() / (CLOCKS_PER_SEC / 100);
case TARGET_SYS_TIME:
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, time(NULL));
case TARGET_SYS_SYSTEM:
GET_ARG(0);
GET_ARG(1);
if (use_gdb_syscalls()) {
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return common_semi_gdb_syscall(cs, common_semi_cb, "system,%s",
arg0, (int)arg1 + 1);
} else {
s = lock_user_string(arg0);
if (!s) {
errno = EFAULT;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
}
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
ret = set_swi_errno(cs, system(s));
unlock_user(s, arg0, 0);
return ret;
}
case TARGET_SYS_ERRNO:
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return get_swi_errno(cs);
case TARGET_SYS_GET_CMDLINE:
{
/* Build a command-line from the original argv.
*
* The inputs are:
* * arg0, pointer to a buffer of at least the size
* specified in arg1.
* * arg1, size of the buffer pointed to by arg0 in
* bytes.
*
* The outputs are:
* * arg0, pointer to null-terminated string of the
* command line.
* * arg1, length of the string pointed to by arg0.
*/
char *output_buffer;
size_t input_size;
size_t output_size;
int status = 0;
#if !defined(CONFIG_USER_ONLY)
const char *cmdline;
#else
TaskState *ts = cs->opaque;
#endif
GET_ARG(0);
GET_ARG(1);
input_size = arg1;
/* Compute the size of the output string. */
#if !defined(CONFIG_USER_ONLY)
cmdline = semihosting_get_cmdline();
if (cmdline == NULL) {
cmdline = ""; /* Default to an empty line. */
}
output_size = strlen(cmdline) + 1; /* Count terminating 0. */
#else
unsigned int i;
output_size = ts->info->arg_end - ts->info->arg_start;
if (!output_size) {
/*
* We special-case the "empty command line" case (argc==0).
* Just provide the terminating 0.
*/
output_size = 1;
}
#endif
if (output_size > input_size) {
/* Not enough space to store command-line arguments. */
errno = E2BIG;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
}
/* Adjust the command-line length. */
if (SET_ARG(1, output_size - 1)) {
/* Couldn't write back to argument block */
errno = EFAULT;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
}
/* Lock the buffer on the ARM side. */
output_buffer = lock_user(VERIFY_WRITE, arg0, output_size, 0);
if (!output_buffer) {
errno = EFAULT;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
}
/* Copy the command-line arguments. */
#if !defined(CONFIG_USER_ONLY)
pstrcpy(output_buffer, output_size, cmdline);
#else
if (output_size == 1) {
/* Empty command-line. */
output_buffer[0] = '\0';
goto out;
}
if (copy_from_user(output_buffer, ts->info->arg_start,
output_size)) {
errno = EFAULT;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
status = set_swi_errno(cs, -1);
goto out;
}
/* Separate arguments by white spaces. */
for (i = 0; i < output_size - 1; i++) {
if (output_buffer[i] == 0) {
output_buffer[i] = ' ';
}
}
out:
#endif
/* Unlock the buffer on the ARM side. */
unlock_user(output_buffer, arg0, output_size);
return status;
}
case TARGET_SYS_HEAPINFO:
{
target_ulong retvals[4];
target_ulong limit;
int i;
#ifdef CONFIG_USER_ONLY
TaskState *ts = cs->opaque;
#else
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
target_ulong rambase = common_semi_rambase(cs);
#endif
GET_ARG(0);
#ifdef CONFIG_USER_ONLY
/*
* Some C libraries assume the heap immediately follows .bss, so
* allocate it using sbrk.
*/
if (!ts->heap_limit) {
abi_ulong ret;
ts->heap_base = do_brk(0);
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
limit = ts->heap_base + COMMON_SEMI_HEAP_SIZE;
/* Try a big heap, and reduce the size if that fails. */
for (;;) {
ret = do_brk(limit);
if (ret >= limit) {
break;
}
limit = (ts->heap_base >> 1) + (limit >> 1);
}
ts->heap_limit = limit;
}
retvals[0] = ts->heap_base;
retvals[1] = ts->heap_limit;
retvals[2] = ts->stack_base;
retvals[3] = 0; /* Stack limit. */
#else
limit = current_machine->ram_size;
/* TODO: Make this use the limit of the loaded application. */
retvals[0] = rambase + limit / 2;
retvals[1] = rambase + limit;
retvals[2] = rambase + limit; /* Stack base */
retvals[3] = rambase; /* Stack limit. */
#endif
for (i = 0; i < ARRAY_SIZE(retvals); i++) {
bool fail;
if (is_64bit_semihosting(env)) {
fail = put_user_u64(retvals[i], arg0 + i * 8);
} else {
fail = put_user_u32(retvals[i], arg0 + i * 4);
}
if (fail) {
/* Couldn't write back to argument block */
errno = EFAULT;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
return set_swi_errno(cs, -1);
}
}
return 0;
}
case TARGET_SYS_EXIT:
case TARGET_SYS_EXIT_EXTENDED:
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
if (common_semi_sys_exit_extended(cs, nr)) {
/*
* The A64 version of SYS_EXIT takes a parameter block,
* so the application-exit type can return a subcode which
* is the exit status code from the application.
* SYS_EXIT_EXTENDED is an a new-in-v2.0 optional function
* which allows A32/T32 guests to also provide a status code.
*/
GET_ARG(0);
GET_ARG(1);
if (arg0 == ADP_Stopped_ApplicationExit) {
ret = arg1;
} else {
ret = 1;
}
} else {
/*
* The A32/T32 version of SYS_EXIT specifies only
* Stopped_ApplicationExit as normal exit, but does not
* allow the guest to specify the exit status code.
* Everything else is considered an error.
*/
ret = (args == ADP_Stopped_ApplicationExit) ? 0 : 1;
}
gdb_exit(ret);
exit(ret);
case TARGET_SYS_ELAPSED:
elapsed = get_clock() - clock_start;
if (sizeof(target_ulong) == 8) {
SET_ARG(0, elapsed);
} else {
SET_ARG(0, (uint32_t) elapsed);
SET_ARG(1, (uint32_t) (elapsed >> 32));
}
return 0;
case TARGET_SYS_TICKFREQ:
/* qemu always uses nsec */
return 1000000000;
case TARGET_SYS_SYNCCACHE:
/*
* Clean the D-cache and invalidate the I-cache for the specified
* virtual address range. This is a nop for us since we don't
* implement caches. This is only present on A64.
*/
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
#ifdef TARGET_ARM
if (is_a64(cs->env_ptr)) {
return 0;
}
#endif
#ifdef TARGET_RISCV
return 0;
semihosting: Change internal common-semi interfaces to use CPUState * This makes all of the internal interfaces architecture-independent and renames the internal functions to use the 'common_semi' prefix instead of 'arm' or 'arm_semi'. To do this, some new architecture-specific internal helper functions were created: static inline target_ulong common_semi_arg(CPUState *cs, int argno) Returns the argno'th semihosting argument, where argno can be either 0 or 1. static inline void common_semi_set_ret(CPUState *cs, target_ulong ret) Sets the semihosting return value. static inline bool common_semi_sys_exit_extended(CPUState *cs, int nr) This detects whether the specified semihosting call, which is either TARGET_SYS_EXIT or TARGET_SYS_EXIT_EXTENDED should be executed using the TARGET_SYS_EXIT_EXTENDED semantics. static inline target_ulong common_semi_rambase(CPUState *cs) Returns the base of RAM region used for heap and stack. This is used to construct plausible values for the SYS_HEAPINFO call. In addition, several existing functions have been changed to flag areas of code which are architecture specific: static target_ulong common_semi_flen_buf(CPUState *cs) Returns the current stack pointer minus 64, which is where a stat structure will be placed on the stack #define GET_ARG(n) This fetches arguments from the semihosting command's argument block. The address of this is available implicitly through the local 'args' variable. This is *mostly* architecture independent, but does depend on the current ABI's notion of the size of a 'long' parameter, which may need run-time checks (as it does on AARCH64) #define SET_ARG(n, val) This mirrors GET_ARG and stores data back into the argument block. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-4-keithp@keithp.com> Message-Id: <20210108224256.2321-15-alex.bennee@linaro.org>
2021-01-09 01:42:50 +03:00
#endif
/* fall through -- invalid for A32/T32 */
default:
fprintf(stderr, "qemu: Unsupported SemiHosting SWI 0x%02x\n", nr);
cpu_dump_state(cs, stderr, 0);
abort();
}
}