906 lines
25 KiB
C
906 lines
25 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* nodeHashjoin.c
|
|
* Routines to handle hash join nodes
|
|
*
|
|
* Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/executor/nodeHashjoin.c,v 1.102 2009/09/27 21:10:53 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "executor/executor.h"
|
|
#include "executor/hashjoin.h"
|
|
#include "executor/nodeHash.h"
|
|
#include "executor/nodeHashjoin.h"
|
|
#include "utils/memutils.h"
|
|
|
|
|
|
/* Returns true for JOIN_LEFT and JOIN_ANTI jointypes */
|
|
#define HASHJOIN_IS_OUTER(hjstate) ((hjstate)->hj_NullInnerTupleSlot != NULL)
|
|
|
|
static TupleTableSlot *ExecHashJoinOuterGetTuple(PlanState *outerNode,
|
|
HashJoinState *hjstate,
|
|
uint32 *hashvalue);
|
|
static TupleTableSlot *ExecHashJoinGetSavedTuple(HashJoinState *hjstate,
|
|
BufFile *file,
|
|
uint32 *hashvalue,
|
|
TupleTableSlot *tupleSlot);
|
|
static int ExecHashJoinNewBatch(HashJoinState *hjstate);
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecHashJoin
|
|
*
|
|
* This function implements the Hybrid Hashjoin algorithm.
|
|
*
|
|
* Note: the relation we build hash table on is the "inner"
|
|
* the other one is "outer".
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
TupleTableSlot * /* return: a tuple or NULL */
|
|
ExecHashJoin(HashJoinState *node)
|
|
{
|
|
EState *estate;
|
|
PlanState *outerNode;
|
|
HashState *hashNode;
|
|
List *joinqual;
|
|
List *otherqual;
|
|
TupleTableSlot *inntuple;
|
|
ExprContext *econtext;
|
|
ExprDoneCond isDone;
|
|
HashJoinTable hashtable;
|
|
HashJoinTuple curtuple;
|
|
TupleTableSlot *outerTupleSlot;
|
|
uint32 hashvalue;
|
|
int batchno;
|
|
|
|
/*
|
|
* get information from HashJoin node
|
|
*/
|
|
estate = node->js.ps.state;
|
|
joinqual = node->js.joinqual;
|
|
otherqual = node->js.ps.qual;
|
|
hashNode = (HashState *) innerPlanState(node);
|
|
outerNode = outerPlanState(node);
|
|
|
|
/*
|
|
* get information from HashJoin state
|
|
*/
|
|
hashtable = node->hj_HashTable;
|
|
econtext = node->js.ps.ps_ExprContext;
|
|
|
|
/*
|
|
* Check to see if we're still projecting out tuples from a previous join
|
|
* tuple (because there is a function-returning-set in the projection
|
|
* expressions). If so, try to project another one.
|
|
*/
|
|
if (node->js.ps.ps_TupFromTlist)
|
|
{
|
|
TupleTableSlot *result;
|
|
|
|
result = ExecProject(node->js.ps.ps_ProjInfo, &isDone);
|
|
if (isDone == ExprMultipleResult)
|
|
return result;
|
|
/* Done with that source tuple... */
|
|
node->js.ps.ps_TupFromTlist = false;
|
|
}
|
|
|
|
/*
|
|
* Reset per-tuple memory context to free any expression evaluation
|
|
* storage allocated in the previous tuple cycle. Note this can't happen
|
|
* until we're done projecting out tuples from a join tuple.
|
|
*/
|
|
ResetExprContext(econtext);
|
|
|
|
/*
|
|
* if this is the first call, build the hash table for inner relation
|
|
*/
|
|
if (hashtable == NULL)
|
|
{
|
|
/*
|
|
* If the outer relation is completely empty, we can quit without
|
|
* building the hash table. However, for an inner join it is only a
|
|
* win to check this when the outer relation's startup cost is less
|
|
* than the projected cost of building the hash table. Otherwise it's
|
|
* best to build the hash table first and see if the inner relation is
|
|
* empty. (When it's an outer join, we should always make this check,
|
|
* since we aren't going to be able to skip the join on the strength
|
|
* of an empty inner relation anyway.)
|
|
*
|
|
* If we are rescanning the join, we make use of information gained on
|
|
* the previous scan: don't bother to try the prefetch if the previous
|
|
* scan found the outer relation nonempty. This is not 100% reliable
|
|
* since with new parameters the outer relation might yield different
|
|
* results, but it's a good heuristic.
|
|
*
|
|
* The only way to make the check is to try to fetch a tuple from the
|
|
* outer plan node. If we succeed, we have to stash it away for later
|
|
* consumption by ExecHashJoinOuterGetTuple.
|
|
*/
|
|
if (HASHJOIN_IS_OUTER(node) ||
|
|
(outerNode->plan->startup_cost < hashNode->ps.plan->total_cost &&
|
|
!node->hj_OuterNotEmpty))
|
|
{
|
|
node->hj_FirstOuterTupleSlot = ExecProcNode(outerNode);
|
|
if (TupIsNull(node->hj_FirstOuterTupleSlot))
|
|
{
|
|
node->hj_OuterNotEmpty = false;
|
|
return NULL;
|
|
}
|
|
else
|
|
node->hj_OuterNotEmpty = true;
|
|
}
|
|
else
|
|
node->hj_FirstOuterTupleSlot = NULL;
|
|
|
|
/*
|
|
* create the hash table
|
|
*/
|
|
hashtable = ExecHashTableCreate((Hash *) hashNode->ps.plan,
|
|
node->hj_HashOperators);
|
|
node->hj_HashTable = hashtable;
|
|
|
|
/*
|
|
* execute the Hash node, to build the hash table
|
|
*/
|
|
hashNode->hashtable = hashtable;
|
|
(void) MultiExecProcNode((PlanState *) hashNode);
|
|
|
|
/*
|
|
* If the inner relation is completely empty, and we're not doing an
|
|
* outer join, we can quit without scanning the outer relation.
|
|
*/
|
|
if (hashtable->totalTuples == 0 && !HASHJOIN_IS_OUTER(node))
|
|
return NULL;
|
|
|
|
/*
|
|
* need to remember whether nbatch has increased since we began
|
|
* scanning the outer relation
|
|
*/
|
|
hashtable->nbatch_outstart = hashtable->nbatch;
|
|
|
|
/*
|
|
* Reset OuterNotEmpty for scan. (It's OK if we fetched a tuple
|
|
* above, because ExecHashJoinOuterGetTuple will immediately set it
|
|
* again.)
|
|
*/
|
|
node->hj_OuterNotEmpty = false;
|
|
}
|
|
|
|
/*
|
|
* run the hash join process
|
|
*/
|
|
for (;;)
|
|
{
|
|
/*
|
|
* If we don't have an outer tuple, get the next one
|
|
*/
|
|
if (node->hj_NeedNewOuter)
|
|
{
|
|
outerTupleSlot = ExecHashJoinOuterGetTuple(outerNode,
|
|
node,
|
|
&hashvalue);
|
|
if (TupIsNull(outerTupleSlot))
|
|
{
|
|
/* end of join */
|
|
return NULL;
|
|
}
|
|
|
|
econtext->ecxt_outertuple = outerTupleSlot;
|
|
node->hj_NeedNewOuter = false;
|
|
node->hj_MatchedOuter = false;
|
|
|
|
/*
|
|
* Now we have an outer tuple; find the corresponding bucket for
|
|
* this tuple in the main hash table or skew hash table.
|
|
*/
|
|
node->hj_CurHashValue = hashvalue;
|
|
ExecHashGetBucketAndBatch(hashtable, hashvalue,
|
|
&node->hj_CurBucketNo, &batchno);
|
|
node->hj_CurSkewBucketNo = ExecHashGetSkewBucket(hashtable,
|
|
hashvalue);
|
|
node->hj_CurTuple = NULL;
|
|
|
|
/*
|
|
* Now we've got an outer tuple and the corresponding hash bucket,
|
|
* but it might not belong to the current batch, or it might match
|
|
* a skew bucket.
|
|
*/
|
|
if (batchno != hashtable->curbatch &&
|
|
node->hj_CurSkewBucketNo == INVALID_SKEW_BUCKET_NO)
|
|
{
|
|
/*
|
|
* Need to postpone this outer tuple to a later batch. Save it
|
|
* in the corresponding outer-batch file.
|
|
*/
|
|
Assert(batchno > hashtable->curbatch);
|
|
ExecHashJoinSaveTuple(ExecFetchSlotMinimalTuple(outerTupleSlot),
|
|
hashvalue,
|
|
&hashtable->outerBatchFile[batchno]);
|
|
node->hj_NeedNewOuter = true;
|
|
continue; /* loop around for a new outer tuple */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* OK, scan the selected hash bucket for matches
|
|
*/
|
|
for (;;)
|
|
{
|
|
curtuple = ExecScanHashBucket(node, econtext);
|
|
if (curtuple == NULL)
|
|
break; /* out of matches */
|
|
|
|
/*
|
|
* we've got a match, but still need to test non-hashed quals
|
|
*/
|
|
inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(curtuple),
|
|
node->hj_HashTupleSlot,
|
|
false); /* don't pfree */
|
|
econtext->ecxt_innertuple = inntuple;
|
|
|
|
/* reset temp memory each time to avoid leaks from qual expr */
|
|
ResetExprContext(econtext);
|
|
|
|
/*
|
|
* if we pass the qual, then save state for next call and have
|
|
* ExecProject form the projection, store it in the tuple table,
|
|
* and return the slot.
|
|
*
|
|
* Only the joinquals determine MatchedOuter status, but all quals
|
|
* must pass to actually return the tuple.
|
|
*/
|
|
if (joinqual == NIL || ExecQual(joinqual, econtext, false))
|
|
{
|
|
node->hj_MatchedOuter = true;
|
|
|
|
/* In an antijoin, we never return a matched tuple */
|
|
if (node->js.jointype == JOIN_ANTI)
|
|
{
|
|
node->hj_NeedNewOuter = true;
|
|
break; /* out of loop over hash bucket */
|
|
}
|
|
|
|
/*
|
|
* In a semijoin, we'll consider returning the first match,
|
|
* but after that we're done with this outer tuple.
|
|
*/
|
|
if (node->js.jointype == JOIN_SEMI)
|
|
node->hj_NeedNewOuter = true;
|
|
|
|
if (otherqual == NIL || ExecQual(otherqual, econtext, false))
|
|
{
|
|
TupleTableSlot *result;
|
|
|
|
result = ExecProject(node->js.ps.ps_ProjInfo, &isDone);
|
|
|
|
if (isDone != ExprEndResult)
|
|
{
|
|
node->js.ps.ps_TupFromTlist =
|
|
(isDone == ExprMultipleResult);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If semijoin and we didn't return the tuple, we're still
|
|
* done with this outer tuple.
|
|
*/
|
|
if (node->js.jointype == JOIN_SEMI)
|
|
break; /* out of loop over hash bucket */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now the current outer tuple has run out of matches, so check
|
|
* whether to emit a dummy outer-join tuple. If not, loop around to
|
|
* get a new outer tuple.
|
|
*/
|
|
node->hj_NeedNewOuter = true;
|
|
|
|
if (!node->hj_MatchedOuter &&
|
|
HASHJOIN_IS_OUTER(node))
|
|
{
|
|
/*
|
|
* We are doing an outer join and there were no join matches for
|
|
* this outer tuple. Generate a fake join tuple with nulls for
|
|
* the inner tuple, and return it if it passes the non-join quals.
|
|
*/
|
|
econtext->ecxt_innertuple = node->hj_NullInnerTupleSlot;
|
|
|
|
if (otherqual == NIL || ExecQual(otherqual, econtext, false))
|
|
{
|
|
/*
|
|
* qualification was satisfied so we project and return the
|
|
* slot containing the result tuple using ExecProject().
|
|
*/
|
|
TupleTableSlot *result;
|
|
|
|
result = ExecProject(node->js.ps.ps_ProjInfo, &isDone);
|
|
|
|
if (isDone != ExprEndResult)
|
|
{
|
|
node->js.ps.ps_TupFromTlist =
|
|
(isDone == ExprMultipleResult);
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecInitHashJoin
|
|
*
|
|
* Init routine for HashJoin node.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
HashJoinState *
|
|
ExecInitHashJoin(HashJoin *node, EState *estate, int eflags)
|
|
{
|
|
HashJoinState *hjstate;
|
|
Plan *outerNode;
|
|
Hash *hashNode;
|
|
List *lclauses;
|
|
List *rclauses;
|
|
List *hoperators;
|
|
ListCell *l;
|
|
|
|
/* check for unsupported flags */
|
|
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
|
|
|
|
/*
|
|
* create state structure
|
|
*/
|
|
hjstate = makeNode(HashJoinState);
|
|
hjstate->js.ps.plan = (Plan *) node;
|
|
hjstate->js.ps.state = estate;
|
|
|
|
/*
|
|
* Miscellaneous initialization
|
|
*
|
|
* create expression context for node
|
|
*/
|
|
ExecAssignExprContext(estate, &hjstate->js.ps);
|
|
|
|
/*
|
|
* initialize child expressions
|
|
*/
|
|
hjstate->js.ps.targetlist = (List *)
|
|
ExecInitExpr((Expr *) node->join.plan.targetlist,
|
|
(PlanState *) hjstate);
|
|
hjstate->js.ps.qual = (List *)
|
|
ExecInitExpr((Expr *) node->join.plan.qual,
|
|
(PlanState *) hjstate);
|
|
hjstate->js.jointype = node->join.jointype;
|
|
hjstate->js.joinqual = (List *)
|
|
ExecInitExpr((Expr *) node->join.joinqual,
|
|
(PlanState *) hjstate);
|
|
hjstate->hashclauses = (List *)
|
|
ExecInitExpr((Expr *) node->hashclauses,
|
|
(PlanState *) hjstate);
|
|
|
|
/*
|
|
* initialize child nodes
|
|
*
|
|
* Note: we could suppress the REWIND flag for the inner input, which
|
|
* would amount to betting that the hash will be a single batch. Not
|
|
* clear if this would be a win or not.
|
|
*/
|
|
outerNode = outerPlan(node);
|
|
hashNode = (Hash *) innerPlan(node);
|
|
|
|
outerPlanState(hjstate) = ExecInitNode(outerNode, estate, eflags);
|
|
innerPlanState(hjstate) = ExecInitNode((Plan *) hashNode, estate, eflags);
|
|
|
|
/*
|
|
* tuple table initialization
|
|
*/
|
|
ExecInitResultTupleSlot(estate, &hjstate->js.ps);
|
|
hjstate->hj_OuterTupleSlot = ExecInitExtraTupleSlot(estate);
|
|
|
|
/* note: HASHJOIN_IS_OUTER macro depends on this initialization */
|
|
switch (node->join.jointype)
|
|
{
|
|
case JOIN_INNER:
|
|
case JOIN_SEMI:
|
|
break;
|
|
case JOIN_LEFT:
|
|
case JOIN_ANTI:
|
|
hjstate->hj_NullInnerTupleSlot =
|
|
ExecInitNullTupleSlot(estate,
|
|
ExecGetResultType(innerPlanState(hjstate)));
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized join type: %d",
|
|
(int) node->join.jointype);
|
|
}
|
|
|
|
/*
|
|
* now for some voodoo. our temporary tuple slot is actually the result
|
|
* tuple slot of the Hash node (which is our inner plan). we do this
|
|
* because Hash nodes don't return tuples via ExecProcNode() -- instead
|
|
* the hash join node uses ExecScanHashBucket() to get at the contents of
|
|
* the hash table. -cim 6/9/91
|
|
*/
|
|
{
|
|
HashState *hashstate = (HashState *) innerPlanState(hjstate);
|
|
TupleTableSlot *slot = hashstate->ps.ps_ResultTupleSlot;
|
|
|
|
hjstate->hj_HashTupleSlot = slot;
|
|
}
|
|
|
|
/*
|
|
* initialize tuple type and projection info
|
|
*/
|
|
ExecAssignResultTypeFromTL(&hjstate->js.ps);
|
|
ExecAssignProjectionInfo(&hjstate->js.ps, NULL);
|
|
|
|
ExecSetSlotDescriptor(hjstate->hj_OuterTupleSlot,
|
|
ExecGetResultType(outerPlanState(hjstate)));
|
|
|
|
/*
|
|
* initialize hash-specific info
|
|
*/
|
|
hjstate->hj_HashTable = NULL;
|
|
hjstate->hj_FirstOuterTupleSlot = NULL;
|
|
|
|
hjstate->hj_CurHashValue = 0;
|
|
hjstate->hj_CurBucketNo = 0;
|
|
hjstate->hj_CurSkewBucketNo = INVALID_SKEW_BUCKET_NO;
|
|
hjstate->hj_CurTuple = NULL;
|
|
|
|
/*
|
|
* Deconstruct the hash clauses into outer and inner argument values, so
|
|
* that we can evaluate those subexpressions separately. Also make a list
|
|
* of the hash operator OIDs, in preparation for looking up the hash
|
|
* functions to use.
|
|
*/
|
|
lclauses = NIL;
|
|
rclauses = NIL;
|
|
hoperators = NIL;
|
|
foreach(l, hjstate->hashclauses)
|
|
{
|
|
FuncExprState *fstate = (FuncExprState *) lfirst(l);
|
|
OpExpr *hclause;
|
|
|
|
Assert(IsA(fstate, FuncExprState));
|
|
hclause = (OpExpr *) fstate->xprstate.expr;
|
|
Assert(IsA(hclause, OpExpr));
|
|
lclauses = lappend(lclauses, linitial(fstate->args));
|
|
rclauses = lappend(rclauses, lsecond(fstate->args));
|
|
hoperators = lappend_oid(hoperators, hclause->opno);
|
|
}
|
|
hjstate->hj_OuterHashKeys = lclauses;
|
|
hjstate->hj_InnerHashKeys = rclauses;
|
|
hjstate->hj_HashOperators = hoperators;
|
|
/* child Hash node needs to evaluate inner hash keys, too */
|
|
((HashState *) innerPlanState(hjstate))->hashkeys = rclauses;
|
|
|
|
hjstate->js.ps.ps_TupFromTlist = false;
|
|
hjstate->hj_NeedNewOuter = true;
|
|
hjstate->hj_MatchedOuter = false;
|
|
hjstate->hj_OuterNotEmpty = false;
|
|
|
|
return hjstate;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecEndHashJoin
|
|
*
|
|
* clean up routine for HashJoin node
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecEndHashJoin(HashJoinState *node)
|
|
{
|
|
/*
|
|
* Free hash table
|
|
*/
|
|
if (node->hj_HashTable)
|
|
{
|
|
ExecHashTableDestroy(node->hj_HashTable);
|
|
node->hj_HashTable = NULL;
|
|
}
|
|
|
|
/*
|
|
* Free the exprcontext
|
|
*/
|
|
ExecFreeExprContext(&node->js.ps);
|
|
|
|
/*
|
|
* clean out the tuple table
|
|
*/
|
|
ExecClearTuple(node->js.ps.ps_ResultTupleSlot);
|
|
ExecClearTuple(node->hj_OuterTupleSlot);
|
|
ExecClearTuple(node->hj_HashTupleSlot);
|
|
|
|
/*
|
|
* clean up subtrees
|
|
*/
|
|
ExecEndNode(outerPlanState(node));
|
|
ExecEndNode(innerPlanState(node));
|
|
}
|
|
|
|
/*
|
|
* ExecHashJoinOuterGetTuple
|
|
*
|
|
* get the next outer tuple for hashjoin: either by
|
|
* executing a plan node in the first pass, or from
|
|
* the temp files for the hashjoin batches.
|
|
*
|
|
* Returns a null slot if no more outer tuples. On success, the tuple's
|
|
* hash value is stored at *hashvalue --- this is either originally computed,
|
|
* or re-read from the temp file.
|
|
*/
|
|
static TupleTableSlot *
|
|
ExecHashJoinOuterGetTuple(PlanState *outerNode,
|
|
HashJoinState *hjstate,
|
|
uint32 *hashvalue)
|
|
{
|
|
HashJoinTable hashtable = hjstate->hj_HashTable;
|
|
int curbatch = hashtable->curbatch;
|
|
TupleTableSlot *slot;
|
|
|
|
if (curbatch == 0) /* if it is the first pass */
|
|
{
|
|
/*
|
|
* Check to see if first outer tuple was already fetched by
|
|
* ExecHashJoin() and not used yet.
|
|
*/
|
|
slot = hjstate->hj_FirstOuterTupleSlot;
|
|
if (!TupIsNull(slot))
|
|
hjstate->hj_FirstOuterTupleSlot = NULL;
|
|
else
|
|
slot = ExecProcNode(outerNode);
|
|
|
|
while (!TupIsNull(slot))
|
|
{
|
|
/*
|
|
* We have to compute the tuple's hash value.
|
|
*/
|
|
ExprContext *econtext = hjstate->js.ps.ps_ExprContext;
|
|
|
|
econtext->ecxt_outertuple = slot;
|
|
if (ExecHashGetHashValue(hashtable, econtext,
|
|
hjstate->hj_OuterHashKeys,
|
|
true, /* outer tuple */
|
|
HASHJOIN_IS_OUTER(hjstate),
|
|
hashvalue))
|
|
{
|
|
/* remember outer relation is not empty for possible rescan */
|
|
hjstate->hj_OuterNotEmpty = true;
|
|
|
|
return slot;
|
|
}
|
|
|
|
/*
|
|
* That tuple couldn't match because of a NULL, so discard it and
|
|
* continue with the next one.
|
|
*/
|
|
slot = ExecProcNode(outerNode);
|
|
}
|
|
|
|
/*
|
|
* We have just reached the end of the first pass. Try to switch to a
|
|
* saved batch.
|
|
*/
|
|
curbatch = ExecHashJoinNewBatch(hjstate);
|
|
}
|
|
|
|
/*
|
|
* Try to read from a temp file. Loop allows us to advance to new batches
|
|
* as needed. NOTE: nbatch could increase inside ExecHashJoinNewBatch, so
|
|
* don't try to optimize this loop.
|
|
*/
|
|
while (curbatch < hashtable->nbatch)
|
|
{
|
|
slot = ExecHashJoinGetSavedTuple(hjstate,
|
|
hashtable->outerBatchFile[curbatch],
|
|
hashvalue,
|
|
hjstate->hj_OuterTupleSlot);
|
|
if (!TupIsNull(slot))
|
|
return slot;
|
|
curbatch = ExecHashJoinNewBatch(hjstate);
|
|
}
|
|
|
|
/* Out of batches... */
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ExecHashJoinNewBatch
|
|
* switch to a new hashjoin batch
|
|
*
|
|
* Returns the number of the new batch (1..nbatch-1), or nbatch if no more.
|
|
* We will never return a batch number that has an empty outer batch file.
|
|
*/
|
|
static int
|
|
ExecHashJoinNewBatch(HashJoinState *hjstate)
|
|
{
|
|
HashJoinTable hashtable = hjstate->hj_HashTable;
|
|
int nbatch;
|
|
int curbatch;
|
|
BufFile *innerFile;
|
|
TupleTableSlot *slot;
|
|
uint32 hashvalue;
|
|
|
|
start_over:
|
|
nbatch = hashtable->nbatch;
|
|
curbatch = hashtable->curbatch;
|
|
|
|
if (curbatch > 0)
|
|
{
|
|
/*
|
|
* We no longer need the previous outer batch file; close it right
|
|
* away to free disk space.
|
|
*/
|
|
if (hashtable->outerBatchFile[curbatch])
|
|
BufFileClose(hashtable->outerBatchFile[curbatch]);
|
|
hashtable->outerBatchFile[curbatch] = NULL;
|
|
}
|
|
else /* we just finished the first batch */
|
|
{
|
|
/*
|
|
* Reset some of the skew optimization state variables, since we no
|
|
* longer need to consider skew tuples after the first batch. The
|
|
* memory context reset we are about to do will release the skew
|
|
* hashtable itself.
|
|
*/
|
|
hashtable->skewEnabled = false;
|
|
hashtable->skewBucket = NULL;
|
|
hashtable->skewBucketNums = NULL;
|
|
hashtable->spaceUsedSkew = 0;
|
|
}
|
|
|
|
/*
|
|
* We can always skip over any batches that are completely empty on both
|
|
* sides. We can sometimes skip over batches that are empty on only one
|
|
* side, but there are exceptions:
|
|
*
|
|
* 1. In an outer join, we have to process outer batches even if the inner
|
|
* batch is empty.
|
|
*
|
|
* 2. If we have increased nbatch since the initial estimate, we have to
|
|
* scan inner batches since they might contain tuples that need to be
|
|
* reassigned to later inner batches.
|
|
*
|
|
* 3. Similarly, if we have increased nbatch since starting the outer
|
|
* scan, we have to rescan outer batches in case they contain tuples that
|
|
* need to be reassigned.
|
|
*/
|
|
curbatch++;
|
|
while (curbatch < nbatch &&
|
|
(hashtable->outerBatchFile[curbatch] == NULL ||
|
|
hashtable->innerBatchFile[curbatch] == NULL))
|
|
{
|
|
if (hashtable->outerBatchFile[curbatch] &&
|
|
HASHJOIN_IS_OUTER(hjstate))
|
|
break; /* must process due to rule 1 */
|
|
if (hashtable->innerBatchFile[curbatch] &&
|
|
nbatch != hashtable->nbatch_original)
|
|
break; /* must process due to rule 2 */
|
|
if (hashtable->outerBatchFile[curbatch] &&
|
|
nbatch != hashtable->nbatch_outstart)
|
|
break; /* must process due to rule 3 */
|
|
/* We can ignore this batch. */
|
|
/* Release associated temp files right away. */
|
|
if (hashtable->innerBatchFile[curbatch])
|
|
BufFileClose(hashtable->innerBatchFile[curbatch]);
|
|
hashtable->innerBatchFile[curbatch] = NULL;
|
|
if (hashtable->outerBatchFile[curbatch])
|
|
BufFileClose(hashtable->outerBatchFile[curbatch]);
|
|
hashtable->outerBatchFile[curbatch] = NULL;
|
|
curbatch++;
|
|
}
|
|
|
|
if (curbatch >= nbatch)
|
|
return curbatch; /* no more batches */
|
|
|
|
hashtable->curbatch = curbatch;
|
|
|
|
/*
|
|
* Reload the hash table with the new inner batch (which could be empty)
|
|
*/
|
|
ExecHashTableReset(hashtable);
|
|
|
|
innerFile = hashtable->innerBatchFile[curbatch];
|
|
|
|
if (innerFile != NULL)
|
|
{
|
|
if (BufFileSeek(innerFile, 0, 0L, SEEK_SET))
|
|
ereport(ERROR,
|
|
(errcode_for_file_access(),
|
|
errmsg("could not rewind hash-join temporary file: %m")));
|
|
|
|
while ((slot = ExecHashJoinGetSavedTuple(hjstate,
|
|
innerFile,
|
|
&hashvalue,
|
|
hjstate->hj_HashTupleSlot)))
|
|
{
|
|
/*
|
|
* NOTE: some tuples may be sent to future batches. Also, it is
|
|
* possible for hashtable->nbatch to be increased here!
|
|
*/
|
|
ExecHashTableInsert(hashtable, slot, hashvalue);
|
|
}
|
|
|
|
/*
|
|
* after we build the hash table, the inner batch file is no longer
|
|
* needed
|
|
*/
|
|
BufFileClose(innerFile);
|
|
hashtable->innerBatchFile[curbatch] = NULL;
|
|
}
|
|
|
|
/*
|
|
* If there's no outer batch file, advance to next batch.
|
|
*/
|
|
if (hashtable->outerBatchFile[curbatch] == NULL)
|
|
goto start_over;
|
|
|
|
/*
|
|
* Rewind outer batch file, so that we can start reading it.
|
|
*/
|
|
if (BufFileSeek(hashtable->outerBatchFile[curbatch], 0, 0L, SEEK_SET))
|
|
ereport(ERROR,
|
|
(errcode_for_file_access(),
|
|
errmsg("could not rewind hash-join temporary file: %m")));
|
|
|
|
return curbatch;
|
|
}
|
|
|
|
/*
|
|
* ExecHashJoinSaveTuple
|
|
* save a tuple to a batch file.
|
|
*
|
|
* The data recorded in the file for each tuple is its hash value,
|
|
* then the tuple in MinimalTuple format.
|
|
*
|
|
* Note: it is important always to call this in the regular executor
|
|
* context, not in a shorter-lived context; else the temp file buffers
|
|
* will get messed up.
|
|
*/
|
|
void
|
|
ExecHashJoinSaveTuple(MinimalTuple tuple, uint32 hashvalue,
|
|
BufFile **fileptr)
|
|
{
|
|
BufFile *file = *fileptr;
|
|
size_t written;
|
|
|
|
if (file == NULL)
|
|
{
|
|
/* First write to this batch file, so open it. */
|
|
file = BufFileCreateTemp(false);
|
|
*fileptr = file;
|
|
}
|
|
|
|
written = BufFileWrite(file, (void *) &hashvalue, sizeof(uint32));
|
|
if (written != sizeof(uint32))
|
|
ereport(ERROR,
|
|
(errcode_for_file_access(),
|
|
errmsg("could not write to hash-join temporary file: %m")));
|
|
|
|
written = BufFileWrite(file, (void *) tuple, tuple->t_len);
|
|
if (written != tuple->t_len)
|
|
ereport(ERROR,
|
|
(errcode_for_file_access(),
|
|
errmsg("could not write to hash-join temporary file: %m")));
|
|
}
|
|
|
|
/*
|
|
* ExecHashJoinGetSavedTuple
|
|
* read the next tuple from a batch file. Return NULL if no more.
|
|
*
|
|
* On success, *hashvalue is set to the tuple's hash value, and the tuple
|
|
* itself is stored in the given slot.
|
|
*/
|
|
static TupleTableSlot *
|
|
ExecHashJoinGetSavedTuple(HashJoinState *hjstate,
|
|
BufFile *file,
|
|
uint32 *hashvalue,
|
|
TupleTableSlot *tupleSlot)
|
|
{
|
|
uint32 header[2];
|
|
size_t nread;
|
|
MinimalTuple tuple;
|
|
|
|
/*
|
|
* Since both the hash value and the MinimalTuple length word are uint32,
|
|
* we can read them both in one BufFileRead() call without any type
|
|
* cheating.
|
|
*/
|
|
nread = BufFileRead(file, (void *) header, sizeof(header));
|
|
if (nread == 0) /* end of file */
|
|
{
|
|
ExecClearTuple(tupleSlot);
|
|
return NULL;
|
|
}
|
|
if (nread != sizeof(header))
|
|
ereport(ERROR,
|
|
(errcode_for_file_access(),
|
|
errmsg("could not read from hash-join temporary file: %m")));
|
|
*hashvalue = header[0];
|
|
tuple = (MinimalTuple) palloc(header[1]);
|
|
tuple->t_len = header[1];
|
|
nread = BufFileRead(file,
|
|
(void *) ((char *) tuple + sizeof(uint32)),
|
|
header[1] - sizeof(uint32));
|
|
if (nread != header[1] - sizeof(uint32))
|
|
ereport(ERROR,
|
|
(errcode_for_file_access(),
|
|
errmsg("could not read from hash-join temporary file: %m")));
|
|
return ExecStoreMinimalTuple(tuple, tupleSlot, true);
|
|
}
|
|
|
|
|
|
void
|
|
ExecReScanHashJoin(HashJoinState *node, ExprContext *exprCtxt)
|
|
{
|
|
/*
|
|
* In a multi-batch join, we currently have to do rescans the hard way,
|
|
* primarily because batch temp files may have already been released. But
|
|
* if it's a single-batch join, and there is no parameter change for the
|
|
* inner subnode, then we can just re-use the existing hash table without
|
|
* rebuilding it.
|
|
*/
|
|
if (node->hj_HashTable != NULL)
|
|
{
|
|
if (node->hj_HashTable->nbatch == 1 &&
|
|
((PlanState *) node)->righttree->chgParam == NULL)
|
|
{
|
|
/*
|
|
* okay to reuse the hash table; needn't rescan inner, either.
|
|
*
|
|
* What we do need to do is reset our state about the emptiness of
|
|
* the outer relation, so that the new scan of the outer will
|
|
* update it correctly if it turns out to be empty this time.
|
|
* (There's no harm in clearing it now because ExecHashJoin won't
|
|
* need the info. In the other cases, where the hash table
|
|
* doesn't exist or we are destroying it, we leave this state
|
|
* alone because ExecHashJoin will need it the first time
|
|
* through.)
|
|
*/
|
|
node->hj_OuterNotEmpty = false;
|
|
}
|
|
else
|
|
{
|
|
/* must destroy and rebuild hash table */
|
|
ExecHashTableDestroy(node->hj_HashTable);
|
|
node->hj_HashTable = NULL;
|
|
|
|
/*
|
|
* if chgParam of subnode is not null then plan will be re-scanned
|
|
* by first ExecProcNode.
|
|
*/
|
|
if (((PlanState *) node)->righttree->chgParam == NULL)
|
|
ExecReScan(((PlanState *) node)->righttree, exprCtxt);
|
|
}
|
|
}
|
|
|
|
/* Always reset intra-tuple state */
|
|
node->hj_CurHashValue = 0;
|
|
node->hj_CurBucketNo = 0;
|
|
node->hj_CurSkewBucketNo = INVALID_SKEW_BUCKET_NO;
|
|
node->hj_CurTuple = NULL;
|
|
|
|
node->js.ps.ps_TupFromTlist = false;
|
|
node->hj_NeedNewOuter = true;
|
|
node->hj_MatchedOuter = false;
|
|
node->hj_FirstOuterTupleSlot = NULL;
|
|
|
|
/*
|
|
* if chgParam of subnode is not null then plan will be re-scanned by
|
|
* first ExecProcNode.
|
|
*/
|
|
if (((PlanState *) node)->lefttree->chgParam == NULL)
|
|
ExecReScan(((PlanState *) node)->lefttree, exprCtxt);
|
|
}
|