distribution, by creating a special fast path for the (first few) most common
values of the outer relation. Tuples having hashvalues matching the MCVs
are effectively forced to be in the first batch, so that we never write
them out to the batch temp files.
Bryce Cutt and Ramon Lawrence, with some editorialization by me.
match in antijoin mode, we should advance to next outer tuple not next inner.
We know we don't want to return this outer tuple, and there is no point in
advancing over matching inner tuples now, because we'd just have to do it
again if the next outer tuple has the same merge key. This makes a noticeable
difference if there are lots of duplicate keys in both inputs.
Similarly, after finding a match in semijoin mode, arrange to advance to
the next outer tuple after returning the current match; or immediately,
if it fails the extra quals. The rationale is the same. (This is a
performance bug in existing releases; perhaps worth back-patching? The
planner tries to avoid using mergejoin with lots of duplicates, so it may
not be a big issue in practice.)
Nestloop and hash got this right to start with, but I made some cosmetic
adjustments there to make the corresponding bits of logic look more similar.
the old JOIN_IN code, but antijoins are new functionality.) Teach the planner
to convert appropriate EXISTS and NOT EXISTS subqueries into semi and anti
joins respectively. Also, LEFT JOINs with suitable upper-level IS NULL
filters are recognized as being anti joins. Unify the InClauseInfo and
OuterJoinInfo infrastructure into "SpecialJoinInfo". With that change,
it becomes possible to associate a SpecialJoinInfo with every join attempt,
which permits some cleanup of join selectivity estimation. That needs to be
taken much further than this patch does, but the next step is to change the
API for oprjoin selectivity functions, which seems like material for a
separate patch. So for the moment the output size estimates for semi and
especially anti joins are quite bogus.
for each temp file, rather than once per sort or hashjoin; this allows
spreading the data of a large sort or join across multiple tablespaces.
(I remain dubious that this will make any difference in practice, but certain
people insisted.) Arrange to cache the results of parsing the GUC variable
instead of recomputing from scratch on every demand, and push usage of the
cache down to the bottommost fd.c level.
tablespace(s) in which to store temp tables and temporary files. This is a
list to allow spreading the load across multiple tablespaces (a random list
element is chosen each time a temp object is to be created). Temp files are
not stored in per-database pgsql_tmp/ directories anymore, but per-tablespace
directories.
Jaime Casanova and Albert Cervera, with review by Bernd Helmle and Tom Lane.
made query plan. Use of ALTER COLUMN TYPE creates a hazard for cached
query plans: they could contain Vars that claim a column has a different
type than it now has. Fix this by checking during plan startup that Vars
at relation scan level match the current relation tuple descriptor. Since
at that point we already have at least AccessShareLock, we can be sure the
column type will not change underneath us later in the query. However,
since a backend's locks do not conflict against itself, there is still a
hole for an attacker to exploit: he could try to execute ALTER COLUMN TYPE
while a query is in progress in the current backend. Seal that hole by
rejecting ALTER TABLE whenever the target relation is already open in
the current backend.
This is a significant security hole: not only can one trivially crash the
backend, but with appropriate misuse of pass-by-reference datatypes it is
possible to read out arbitrary locations in the server process's memory,
which could allow retrieving database content the user should not be able
to see. Our thanks to Jeff Trout for the initial report.
Security: CVE-2007-0556
Hashing for aggregation purposes still needs work, so it's not time to
mark any cross-type operators as hashable for general use, but these cases
work if the operators are so marked by hand in the system catalogs.
match because they contain a null join key (and the join operator is
known strict). Improves performance significantly when the inner
relation contains a lot of nulls, as per bug #2930.
by creating a reference-count mechanism, similar to what we did a long time
ago for catcache entries. The back branches have an ugly solution involving
lots of extra copies, but this way is more efficient. Reference counting is
only applied to tupdescs that are actually in caches --- there seems no need
to use it for tupdescs that are generated in the executor, since they'll go
away during plan shutdown by virtue of being in the per-query memory context.
Neil Conway and Tom Lane
bits indicating which optional capabilities can actually be exercised
at runtime. This will allow Sort and Material nodes, and perhaps later
other nodes, to avoid unnecessary overhead in common cases.
This commit just adds the infrastructure and arranges to pass the correct
flag values down to plan nodes; none of the actual optimizations are here
yet. I'm committing this separately in case anyone wants to measure the
added overhead. (It should be negligible.)
Simon Riggs and Tom Lane
it's worth probing the outer relation for emptiness before building the
hash table. To wit, if we're rescanning a join previously performed,
remember whether we found it nonempty the previous time, and don't bother
with the probe if it was nonempty. This buys back the performance lost
in examples like Mario Weilguni's.
one child or the other had a problem: they did not leave the node in a
state that ExecReScanHashJoin would understand. In particular it would
tend to fail to reset the child plans when needed. Per report from
Mario Weilguni.
comment line where output as too long, and update typedefs for /lib
directory. Also fix case where identifiers were used as variable names
in the backend, but as typedefs in ecpg (favor the backend for
indenting).
Backpatch to 8.1.X.
outer relation is empty did not work, per test case from Patrick Welche.
It tried to use nodeHashjoin.c's high-level mechanisms for fetching an
outer-relation tuple, but that code expected the hash table to be filled
already. As patched, the code failed in corner cases such as having no
outer-relation tuples for the first hash batch. Revert and rewrite.
work if either of the join relations are empty. The logic is:
(1) if the inner relation's startup cost is less than the outer
relation's startup cost and this is not an outer join, read
a single tuple from the inner relation via ExecHash()
- if NULL, we're done
(2) read a single tuple from the outer relation
- if NULL, we're done
(3) build the hash table on the inner relation
- if hash table is empty and this is not an outer join,
we're done
(4) otherwise, do hash join as usual
The implementation uses the new MultiExecProcNode API, per a
suggestion from Tom: invoking ExecHash() now produces the first
tuple from the Hash node's child node, whereas MultiExecHash()
builds the hash table.
I had to put in a bit of a kludge to get the row count returned
for EXPLAIN ANALYZE to be correct: since ExecHash() is invoked to
return a tuple, and then MultiExecHash() is invoked, we would
return one too many tuples to EXPLAIN ANALYZE. I hacked around
this by just manually detecting this situation and subtracting 1
from the EXPLAIN ANALYZE row count.
return just a single tuple at a time. Currently the only such node
type is Hash, but I expect we will soon have indexscans that can return
tuple bitmaps. A side benefit is that EXPLAIN ANALYZE now shows the
correct tuple count for a Hash node.
old comment in the code claimed that this was necessary. Since it is not
actually necessary any more, it is clearer to remove the comment and
just return NULL instead -- the return value of ExecHash() is not used.
of tuples when passing data up through multiple plan nodes. A slot can now
hold either a normal "physical" HeapTuple, or a "virtual" tuple consisting
of Datum/isnull arrays. Upper plan levels can usually just copy the Datum
arrays, avoiding heap_formtuple() and possible subsequent nocachegetattr()
calls to extract the data again. This work extends Atsushi Ogawa's earlier
patch, which provided the key idea of adding Datum arrays to TupleTableSlots.
(I believe however that something like this was foreseen way back in Berkeley
days --- see the old comment on ExecProject.) A test case involving many
levels of join of fairly wide tables (about 80 columns altogether) showed
about 3x overall speedup, though simple queries will probably not be
helped very much.
I have also duplicated some code in heaptuple.c in order to provide versions
of heap_formtuple and friends that use "bool" arrays to indicate null
attributes, instead of the old convention of "char" arrays containing either
'n' or ' '. This provides a better match to the convention used by
ExecEvalExpr. While I have not made a concerted effort to get rid of uses
of the old routines, I think they should be deprecated and eventually removed.
on-the-fly, and thereby avoid blowing out memory when the planner has
underestimated the hash table size. Hash join will now obey the
work_mem limit with some faithfulness. Per my recent proposal
(hash aggregate part isn't done yet though).
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
was large enough to be batched and the tuples fell into a batch where
there were no inner tuples at all. Thanks to Xiaoyu Wang for finding a
test case that exposed this long-standing bug.
In the past, we used a 'Lispy' linked list implementation: a "list" was
merely a pointer to the head node of the list. The problem with that
design is that it makes lappend() and length() linear time. This patch
fixes that problem (and others) by maintaining a count of the list
length and a pointer to the tail node along with each head node pointer.
A "list" is now a pointer to a structure containing some meta-data
about the list; the head and tail pointers in that structure refer
to ListCell structures that maintain the actual linked list of nodes.
The function names of the list API have also been changed to, I hope,
be more logically consistent. By default, the old function names are
still available; they will be disabled-by-default once the rest of
the tree has been updated to use the new API names.
pointer type when it is not necessary to do so.
For future reference, casting NULL to a pointer type is only necessary
when (a) invoking a function AND either (b) the function has no prototype
OR (c) the function is a varargs function.
the hashclauses field of the parent HashJoin. This avoids problems with
duplicated links to SubPlans in hash clauses, as per report from
Andrew Holm-Hansen.