Previously, each pair of capturing parentheses gave rise to a separate
subre tree node, whose only function was to identify that we ought to
capture the match details for this particular sub-expression. In
most cases we don't really need that, since we can perfectly well
put a "capture this" annotation on the child node that does the real
matching work. As with the two preceding commits, the main value
of this is to avoid generating and optimizing an NFA for a tree node
that's not really pulling its weight.
The chosen data representation only allows one capture annotation
per subre node. In the legal-per-spec, but seemingly not very useful,
case where there are multiple capturing parens around the exact same
bit of the regex (i.e. "((xyz))"), wrap the child node in N-1 capture
nodes that act the same as before. We could work harder at that but
I'll refrain, pending some evidence that such cases are worth troubling
over.
In passing, improve the comments in regex.h to say what all the
different re_info bits mean. Some of them were pretty obvious
but others not so much, so reverse-engineer some documentation.
This is part of a patch series that in total reduces the regex engine's
runtime by about a factor of four on a large corpus of real-world regexes.
Patch by me, reviewed by Joel Jacobson
Discussion: https://postgr.es/m/1340281.1613018383@sss.pgh.pa.us
Instead of having left and right child links in subre structs,
have a single child link plus a sibling link. Multiple children
of a tree node are now reached by chasing the sibling chain.
The beneficiary of this is alternation tree nodes. A regular
expression with N (>1) branches is now represented by one alternation
node with N children, rather than a tree that includes N alternation
nodes as well as N children. While the old representation didn't
really cost anything extra at execution time, it was pretty horrid
for compilation purposes, because each of the alternation nodes had
its own NFA, which we were too stupid not to separately optimize.
(To make matters worse, all of those NFAs described the entire
alternation pattern, not just the portion of it that one might
expect from the tree structure.)
We continue to require concatenation nodes to have exactly two
children. This data structure is now prepared to support more,
but the executor's logic would need some careful redesign, and
it's not clear that a lot of benefit could be had.
This is part of a patch series that in total reduces the regex engine's
runtime by about a factor of four on a large corpus of real-world regexes.
Patch by me, reviewed by Joel Jacobson
Discussion: https://postgr.es/m/1340281.1613018383@sss.pgh.pa.us
The comment for parsebranch() claims that it avoids generating
unnecessary concatenation nodes in the "subre" tree, but it missed
some significant cases. Once we've decided that a given atom is
"messy" and can't be bundled with the preceding atom(s) of the
current regex branch, parseqatom() always generated two new concat
nodes, one to concat the messy atom to what follows it in the branch,
and an upper node to concatenate the preceding part of the branch
to that one. But one or both of these could be unnecessary, if the
messy atom is the first, last, or only one in the branch. Improve
the code to suppress such useless concat nodes, along with the
no-op child nodes representing empty chunks of a branch.
Reducing the number of subre tree nodes offers significant savings
not only at execution but during compilation, because each subre node
has its own NFA that has to be separately optimized. (Maybe someday
we'll figure out how to share the optimization work across multiple
tree nodes, but it doesn't look easy.) Eliminating upper tree nodes
is especially useful because they tend to have larger NFAs.
This is part of a patch series that in total reduces the regex engine's
runtime by about a factor of four on a large corpus of real-world regexes.
Patch by me, reviewed by Joel Jacobson
Discussion: https://postgr.es/m/1340281.1613018383@sss.pgh.pa.us
This builds on the previous "rainbow" patch to detect NFAs that will
match any string, though possibly with constraints on the string length.
This definition is chosen to match constructs such as ".*", ".+", and
".{1,100}". Recognizing such an NFA after the optimization pass is
fairly cheap, since we basically just have to verify that all arcs
are RAINBOW arcs and count the number of steps to the end state.
(Well, there's a bit of complication with pseudo-color arcs for string
boundary conditions, but not much.)
Once we have these markings, the regex executor functions longest(),
shortest(), and matchuntil() don't have to expend per-character work
to determine whether a given substring satisfies such an NFA; they
just need to check its length against the bounds. Since some matching
problems require O(N) invocations of these functions, we've reduced
the runtime for an N-character string from O(N^2) to O(N). Of course,
this is no help for non-matchall sub-patterns, but those usually have
constraints that allow us to avoid needing O(N) substring checks in the
first place. It's precisely the unconstrained "match-all" cases that
cause the most headaches.
This is part of a patch series that in total reduces the regex engine's
runtime by about a factor of four on a large corpus of real-world regexes.
Patch by me, reviewed by Joel Jacobson
Discussion: https://postgr.es/m/1340281.1613018383@sss.pgh.pa.us
Some regular expression constructs, most notably the "." match-anything
metacharacter, produce a sheaf of parallel NFA arcs covering all
possible colors (that is, character equivalence classes). We can make
a noticeable improvement in the space and time needed to process large
regexes by replacing such cases with a single arc bearing the special
color code "RAINBOW". This requires only minor additional complication
in places such as pull() and push().
Callers of pg_reg_getoutarcs() must now be prepared for the possibility
of seeing a RAINBOW arc. For the one known user, contrib/pg_trgm,
that's a net benefit since it cuts the number of arcs to be dealt with,
and the handling isn't any different than for other colors that contain
too many characters to be dealt with individually.
This is part of a patch series that in total reduces the regex engine's
runtime by about a factor of four on a large corpus of real-world regexes.
Patch by me, reviewed by Joel Jacobson
Discussion: https://postgr.es/m/1340281.1613018383@sss.pgh.pa.us
While poking at the regex code, I happened to notice that the bug
squashed in commit afcc8772e had a sibling: next() failed to return
a specific value associated with the '}' token for a "\{m,n\}"
quantifier when parsing in basic RE mode. Again, this could result
in treating the quantifier as non-greedy, which it never should be in
basic mode. For that to happen, the last character before "\}" that
sets "nextvalue" would have to set it to zero, or it'd have to have
accidentally been zero from the start. The failure can be provoked
repeatably with, for example, a bound ending in digit "0".
Like the previous patch, back-patch all the way.
Push some hopefully-uncontroversial bits extracted from an upcoming
patch series, to remove non-relevant clutter from the main patches.
In compact(), return immediately after setting REG_ASSERT error;
continuing the loop would just lead to assertion failure below.
(Ask me how I know.)
In parseqatom(), remove assertion that moresubs() did its job.
When moresubs actually did its job, this is redundant with that
function's final assert; but when it failed on OOM, this is an
assertion crash. We could avoid the crash by adding a NOERR()
check before the assertion, but it seems better to subtract code
than add it. (Note that there's a NOERR exit a few lines further
down, and nothing else between here and there requires moresubs
to have succeeded. So we don't really need an extra error exit.)
This is a live bug in assert-enabled builds, but given the very
low likelihood of OOM in moresub's tiny allocation, I don't think
it's worth back-patching.
On the other hand, it seems worthwhile to add an assertion that
our intended v->subs[subno] target is still null by the time we
are ready to insert into it, since there's a recursion in between.
In pg_regexec, ensure we fflush any debug output on the way out,
and try to make MDEBUG messages more uniform and helpful. (In
particular, ensure that all of them are prefixed with the subre's
id number, so one can match up entry and exit reports.)
Add some test cases in test_regex to improve coverage of lookahead
and lookbehind constraints. Adding these now is mainly to establish
that this is indeed the existing behavior.
Discussion: https://postgr.es/m/1340281.1613018383@sss.pgh.pa.us
When REG_DEBUG is defined, ensure that an un-filled "struct cnfa"
is all-zeroes, not just that it has nstates == 0. This is mainly
so that looking at "struct subre" structs in gdb doesn't distract
one with a lot of garbage fields during regex compilation.
Adjust some places that print debug output to have suitable fflush
calls afterwards.
In passing, correct an erroneous ancient comment: the concatenation
subre-s created by parsebranch() have op == '.' not ','.
Noted while fooling around with some regex performance improvements.
brenext(), when parsing a '*' quantifier, forgot to return any "value"
for the token; per the equivalent case in next(), it should return
value 1 to indicate that greedy rather than non-greedy behavior is
wanted. The result is that the compiled regexp could behave like 'x*?'
rather than the intended 'x*', if we were unlucky enough to have
a zero in v->nextvalue at this point. That seems to happen with some
reliability if we have '.*' at the beginning of a BRE-mode regexp,
although that depends on the initial contents of a stack-allocated
struct, so it's not guaranteed to fail.
Found by Alexander Lakhin using valgrind testing. This bug seems
to be aboriginal in Spencer's code, so back-patch all the way.
Discussion: https://postgr.es/m/16814-6c5e3edd2bdf0d50@postgresql.org
The additional pain from level 4 is excessive for the gain.
Also revert all the source annotation changes to their original
wordings, to avoid back-patching pain.
Discussion: https://postgr.es/m/31166.1589378554@sss.pgh.pa.us
Use it at level 4, a bit more restrictive than the default level, and
tweak our commanding comments to FALLTHROUGH.
(However, leave zic.c alone, since it's external code; to avoid the
warnings that would appear there, change CFLAGS for that file in the
Makefile.)
Author: Julien Rouhaud <rjuju123@gmail.com>
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://postgr.es/m/20200412081825.qyo5vwwco3fv4gdo@nol
Discussion: https://postgr.es/m/flat/E1fDenm-0000C8-IJ@gemulon.postgresql.org
When maintaining or merging patches, one of the most common sources
for conflicts are the list of objects in makefiles. Especially when
the split across lines has been changed on both sides, which is
somewhat common due to attempting to stay below 80 columns, those
conflicts are unnecessarily laborious to resolve.
By splitting, and alphabetically sorting, OBJS style lines into one
object per line, conflicts should be less frequent, and easier to
resolve when they still occur.
Author: Andres Freund
Discussion: https://postgr.es/m/20191029200901.vww4idgcxv74cwes@alap3.anarazel.de
A bounded quantifier with m = n = 1 might be thought a no-op. But
according to our documentation (which traces back to Henry Spencer's
original man page) it still imposes greediness, or non-greediness in the
case of the non-greedy variant "{1,1}?", on whatever it's attached to.
This turns out not to work though, because parseqatom() optimizes away
the m = n = 1 case without regard for whether it's supposed to change
the greediness of the argument RE.
We can fix this by just not applying the optimization when the greediness
needs to change; the subsequent general cases handle it fine.
The three cases in which we can still apply the optimization are
(a) no quantifier, or quantifier does not impose a preference;
(b) atom has no greediness property, implying it cannot match a
variable amount of text anyway; or
(c) quantifier's greediness is same as atom's.
Note that in most cases where one of these applies, we'd have exited
earlier in the "not a messy case" fast path. I think it's now only
possible to get to the optimization when the atom involves capturing
parentheses or a non-top-level backref.
Back-patch to all supported branches. I'd ordinarily be hesitant to
put a subtle behavioral change into back branches, but in this case
it's very hard to see a reason why somebody would write "{1,1}?" unless
they're trying to get the documented change-of-greediness behavior.
Discussion: https://postgr.es/m/5bb27a41-350d-37bf-901e-9d26f5592dd0@charter.net
This adds a flag "deterministic" to collations. If that is false,
such a collation disables various optimizations that assume that
strings are equal only if they are byte-wise equal. That then allows
use cases such as case-insensitive or accent-insensitive comparisons
or handling of strings with different Unicode normal forms.
This functionality is only supported with the ICU provider. At least
glibc doesn't appear to have any locales that work in a
nondeterministic way, so it's not worth supporting this for the libc
provider.
The term "deterministic comparison" in this context is from Unicode
Technical Standard #10
(https://unicode.org/reports/tr10/#Deterministic_Comparison).
This patch makes changes in three areas:
- CREATE COLLATION DDL changes and system catalog changes to support
this new flag.
- Many executor nodes and auxiliary code are extended to track
collations. Previously, this code would just throw away collation
information, because the eventually-called user-defined functions
didn't use it since they only cared about equality, which didn't
need collation information.
- String data type functions that do equality comparisons and hashing
are changed to take the (non-)deterministic flag into account. For
comparison, this just means skipping various shortcuts and tie
breakers that use byte-wise comparison. For hashing, we first need
to convert the input string to a canonical "sort key" using the ICU
analogue of strxfrm().
Reviewed-by: Daniel Verite <daniel@manitou-mail.org>
Reviewed-by: Peter Geoghegan <pg@bowt.ie>
Discussion: https://www.postgresql.org/message-id/flat/1ccc668f-4cbc-0bef-af67-450b47cdfee7@2ndquadrant.com
Recent gcc can warn about switch-case fall throughs that are not
explicitly labeled as intentional. This seems like a good thing,
so clean up the warnings exposed thereby by labeling all such
cases with comments that gcc will recognize.
In files that already had one or more suitable comments, I generally
matched the existing style of those. Otherwise I went with
/* FALLTHROUGH */, which is one of the spellings approved at the
more-restrictive-than-default level -Wimplicit-fallthrough=4.
(At the default level you can also spell it /* FALL ?THRU */,
and it's not picky about case. What you can't do is include
additional text in the same comment, so some existing comments
containing versions of this aren't good enough.)
Testing with gcc 8.0.1 (Fedora 28's current version), I found that
I also had to put explicit "break"s after elog(ERROR) or ereport(ERROR);
apparently, for this purpose gcc doesn't recognize that those don't
return. That seems like possibly a gcc bug, but it's fine because
in most places we did that anyway; so this amounts to a visit from the
style police.
Discussion: https://postgr.es/m/15083.1525207729@sss.pgh.pa.us
Adjust commentary in regc_pg_locale.c to remove mention of the possibility
of not having <wctype.h> functions, since we no longer consider that.
Eliminate duplicate code in wparser_def.c by generalizing the p_iswhat
macro to take a parameter saying what to return for non-ASCII chars
in C locale. (That's not really a consequence of the
USE_WIDE_UPPER_LOWER-ectomy, but I noticed it while doing that.)
These functions are required by SUS v2, which is our minimum baseline
for Unix platforms, and are present on all interesting Windows versions
as well. Even our oldest buildfarm members have them. Thus, we were not
testing the "!USE_WIDE_UPPER_LOWER" code paths, which explains why the bug
fixed in commit e6023ee7f escaped detection. Per discussion, there seems
to be no more real-world value in maintaining this option. Hence, remove
the configure-time tests for wcstombs() and towlower(), remove the
USE_WIDE_UPPER_LOWER symbol, and remove all the !USE_WIDE_UPPER_LOWER code.
There's not actually all that much of the latter, but simplifying the #if
nests is a win in itself.
Discussion: https://postgr.es/m/20170921052928.GA188913@rfd.leadboat.com
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
The new indent version includes numerous fixes thanks to Piotr Stefaniak.
The main changes visible in this commit are:
* Nicer formatting of function-pointer declarations.
* No longer unexpectedly removes spaces in expressions using casts,
sizeof, or offsetof.
* No longer wants to add a space in "struct structname *varname", as
well as some similar cases for const- or volatile-qualified pointers.
* Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely.
* Fixes bug where comments following declarations were sometimes placed
with no space separating them from the code.
* Fixes some odd decisions for comments following case labels.
* Fixes some cases where comments following code were indented to less
than the expected column 33.
On the less good side, it now tends to put more whitespace around typedef
names that are not listed in typedefs.list. This might encourage us to
put more effort into typedef name collection; it's not really a bug in
indent itself.
There are more changes coming after this round, having to do with comment
indentation and alignment of lines appearing within parentheses. I wanted
to limit the size of the diffs to something that could be reviewed without
one's eyes completely glazing over, so it seemed better to split up the
changes as much as practical.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
regexport.c thought it could just ignore LACON arcs, but the correct
behavior is to treat them as satisfiable while consuming zero input
(rather reminiscently of commit 9f1e642d5). Otherwise, the emitted
simplified-NFA representation may contain no paths leading from initial
to final state, which unsurprisingly confuses pg_trgm, as seen in
bug #14623 from Jeff Janes.
Since regexport's output representation has no concept of an arc that
consumes zero input, recurse internally to find the next normal arc(s)
after any LACON transitions. We'd be forced into changing that
representation if a LACON could be the last arc reaching the final
state, but fortunately the regex library never builds NFAs with such
a configuration, so there always is a next normal arc.
Back-patch to 9.3 where this logic was introduced.
Discussion: https://postgr.es/m/20170413180503.25948.94871@wrigleys.postgresql.org
Add a column collprovider to pg_collation that determines which library
provides the collation data. The existing choices are default and libc,
and this adds an icu choice, which uses the ICU4C library.
The pg_locale_t type is changed to a union that contains the
provider-specific locale handles. Users of locale information are
changed to look into that struct for the appropriate handle to use.
Also add a collversion column that records the version of the collation
when it is created, and check at run time whether it is still the same.
This detects potentially incompatible library upgrades that can corrupt
indexes and other structures. This is currently only supported by
ICU-provided collations.
initdb initializes the default collation set as before from the `locale
-a` output but also adds all available ICU locales with a "-x-icu"
appended.
Currently, ICU-provided collations can only be explicitly named
collations. The global database locales are still always libc-provided.
ICU support is enabled by configure --with-icu.
Reviewed-by: Thomas Munro <thomas.munro@enterprisedb.com>
Reviewed-by: Andreas Karlsson <andreas@proxel.se>
Although there are good reasons for our policy of including postgres.h
as the first #include in every .c file, never from .h files, there are
two places where it seems expedient to violate the policy because the
alternative is to modify externally-supplied .c files. (In the case
of the regexp library, the idea that it's externally-supplied is kind
of at odds with reality, but I haven't entirely given up hope that it
will become a standalone project some day.) Add some comments to make
it explicit that this is a policy violation and provide the reasoning.
In passing, move #include "miscadmin.h" out of regcomp.c and into
regcustom.h, which is where it should be if we're taking this reasoning
seriously at all.
Discussion: https://postgr.es/m/CAEepm=2zCoeq3QxVwhS5DFeUh=yU6z81pbWMgfOB8OzyiBwxzw@mail.gmail.com
Discussion: https://postgr.es/m/11634.1488932128@sss.pgh.pa.us
Previously, we failed to recognize Unicode characters above U+7FF as
being members of locale-dependent character classes such as [[:alpha:]].
(Actually, the same problem occurs for large pg_wchar values in any
multibyte encoding, but UTF8 is the only case people have actually
complained about.) It's impractical to get Spencer's original code to
handle character classes or ranges containing many thousands of characters,
because it insists on considering each member character individually at
regex compile time, whether or not the character will ever be of interest
at run time. To fix, choose a cutoff point MAX_SIMPLE_CHR below which
we process characters individually as before, and deal with entire ranges
or classes as single entities above that. We can actually make things
cheaper than before for chars below the cutoff, because the color map can
now be a simple linear array for those chars, rather than the multilevel
tree structure Spencer designed. It's more expensive than before for
chars above the cutoff, because we must do a binary search in a list of
high chars and char ranges used in the regex pattern, plus call iswalpha()
and friends for each locale-dependent character class used in the pattern.
However, multibyte encodings are normally designed to give smaller codes
to popular characters, so that we can expect that the slow path will be
taken relatively infrequently. In any case, the speed penalty appears
minor except when we have to apply iswalpha() etc. to high character codes
at runtime --- and the previous coding gave wrong answers for those cases,
so whether it was faster is moot.
Tom Lane, reviewed by Heikki Linnakangas
Discussion: <15563.1471913698@sss.pgh.pa.us>
pcolor was used to represent function arguments that are nominally of
type color, but when using a pre-ANSI C compiler would be passed as the
promoted integer type. We really don't need that anymore.
The regex library used to have a notion of a "collating element" that was
distinct from a "character", but Henry Spencer never actually implemented
his planned support for multi-character collating elements, and the Tcl
crew ripped out most of the stubs for that years ago. The only thing left
that distinguished the "celt" typedef from the "chr" typedef was that
"celt" was supposed to also be able to hold the not-a-character "NOCELT"
value. However, NOCELT was not used anywhere after the MCCE stub removal
changes, which means there's no need for celt to be different from chr.
Removing the separate typedef simplifies matters and also removes a trap
for the unwary, in that celt is signed while chr may not be, so comparisons
could mean different things. There's no bug there today because we
restrict CHR_MAX to be less than INT_MAX, but I think there may have been
such bugs before we did that, and there could be again if anyone ever
decides to fool with the range of chr.
This patch also removes assorted unnecessary casts to "chr" of values
that are already chrs. Many of these seem to be leftover from days when
the code was compatible with pre-ANSI C.
Reportedly, some compilers warn about tests like "c < 0" if c is unsigned,
and hence complain about the character range checks I added in commit
3bb3f42f3749d40b8d4de65871e8d828b18d4a45. This is a bit of a pain since
the regex library doesn't really want to assume that chr is unsigned.
However, since any such reconfiguration would involve manual edits of
regcustom.h anyway, we can put it on the shoulders of whoever wants to
do that to adjust this new range-checking macro correctly.
Per gripes from Coverity and Andres.
Previously, our regex code defined CHR_MAX as 0xfffffffe, which is a
bad choice because it is outside the range of type "celt" (int32).
Characters approaching that limit could lead to infinite loops in logic
such as "for (c = a; c <= b; c++)" where c is of type celt but the
range bounds are chr. Such loops will work safely only if CHR_MAX+1
is representable in celt, since c must advance to beyond b before the
loop will exit.
Fortunately, there seems no reason not to restrict CHR_MAX to 0x7ffffffe.
It's highly unlikely that Unicode will ever assign codes that high, and
none of our other backend encodings need characters beyond that either.
In addition to modifying the macro, we have to explicitly enforce character
range restrictions on the values of \u, \U, and \x escape sequences, else
the limit is trivially bypassed.
Also, the code for expanding case-independent character ranges in bracket
expressions had a potential integer overflow in its calculation of the
number of characters it could generate, which could lead to allocating too
small a character vector and then overwriting memory. An attacker with the
ability to supply arbitrary regex patterns could easily cause transient DOS
via server crashes, and the possibility for privilege escalation has not
been ruled out.
Quite aside from the integer-overflow problem, the range expansion code was
unnecessarily inefficient in that it always produced a result consisting of
individual characters, abandoning the knowledge that we had a range to
start with. If the input range is large, this requires excessive memory.
Change it so that the original range is reported as-is, and then we add on
any case-equivalent characters that are outside that range. With this
approach, we can bound the number of individual characters allowed without
sacrificing much. This patch allows at most 100000 individual characters,
which I believe to be more than the number of case pairs existing in
Unicode, so that the restriction will never be hit in practice.
It's still possible for range() to take awhile given a large character code
range, so also add statement-cancel detection to its loop. The downstream
function dovec() also lacked cancel detection, and could take a long time
given a large output from range().
Per fuzz testing by Greg Stark. Back-patch to all supported branches.
Security: CVE-2016-0773
Lookahead and lookbehind constraints aren't allowed to contain backrefs,
and parentheses within them are always considered non-capturing. Or so
says the manual. But the regexp parser forgot about these rules once
inside a parenthesized subexpression, so that constructs like (\w)(?=(\1))
were accepted (but then not correctly executed --- a case like this acted
like (\w)(?=\w), without any enforcement that the two \w's match the same
text). And in (?=((foo))) the innermost parentheses would be counted as
capturing parentheses, though no text would ever be captured for them.
To fix, properly pass down the "type" argument to the recursive invocation
of parse().
Back-patch to all supported branches; it was agreed that silent
misexecution of such patterns is worse than throwing an error, even though
new errors in minor releases are generally not desirable.
A lookbehind constraint is like a lookahead constraint in that it consumes
no text; but it checks for existence (or nonexistence) of a match *ending*
at the current point in the string, rather than one *starting* at the
current point. This is a long-requested feature since it exists in many
other regex libraries, but Henry Spencer had never got around to
implementing it in the code we use.
Just making it work is actually pretty trivial; but naive copying of the
logic for lookahead constraints leads to code that often spends O(N^2) time
to scan an N-character string, because we have to run the match engine
from string start to the current probe point each time the constraint is
checked. In typical use-cases a lookbehind constraint will be written at
the start of the regex and hence will need to be checked at every character
--- so O(N^2) work overall. To fix that, I introduced a third copy of the
core DFA matching loop, paralleling the existing longest() and shortest()
loops. This version, matchuntil(), can suspend and resume matching given
a couple of pointers' worth of storage space. So we need only run it
across the string once, stopping at each interesting probe point and then
resuming to advance to the next one.
I also put in an optimization that simplifies one-character lookahead and
lookbehind constraints, such as "(?=x)" or "(?<!\w)", into AHEAD and BEHIND
constraints, which already existed in the engine. This avoids the overhead
of the LACON machinery entirely for these rather common cases.
The net result is that lookbehind constraints run a factor of three or so
slower than Perl's for multi-character constraints, but faster than Perl's
for one-character constraints ... and they work fine for variable-length
constraints, which Perl gives up on entirely. So that's not bad from a
competitive perspective, and there's room for further optimization if
anyone cares. (In reality, raw scan rate across a large input string is
probably not that big a deal for Postgres usage anyway; so I'm happy if
it's linear.)
pg_regprefix was doing nothing with lookahead constraints, which would
be fine if it were the right kind of nothing, but it isn't: we have to
terminate our search for a fixed prefix, not just pretend the LACON arc
isn't there. Otherwise, if the current state has both a LACON outarc and a
single plain-color outarc, we'd falsely conclude that the color represents
an addition to the fixed prefix, and generate an extracted index condition
that restricts the indexscan too much. (See added regression test case.)
Terminating the search is conservative: we could traverse the LACON arc
(thus assuming that the constraint can be satisfied at runtime) and then
examine the outarcs of the linked-to state. But that would be a lot more
work than it seems worth, because writing a LACON followed by a single
plain character is a pretty silly thing to do.
This makes a difference only in rather contrived cases, but it's a bug,
so back-patch to all supported branches.
Revert our previous addition of "all" flags to copyins() and copyouts();
they're no longer needed, and were never anything but an unsightly hack.
Improve a couple of infelicities in the REG_DEBUG code for dumping
the NFA data structure, including adding code to count the total
number of states and arcs.
Add a couple of missed error checks.
Add some more documentation in the README file, and some regression tests
illustrating cases that exceeded the state-count limit and/or took
unreasonable amounts of time before this set of patches.
Back-patch to all supported branches.
This code previously counted the number of NFA states it created, and
complained if a limit was exceeded, so as to prevent bizarre regex patterns
from consuming unreasonable time or memory. That's fine as far as it went,
but the code paid no attention to how many arcs linked those states. Since
regexes can be contrived that have O(N) states but will need O(N^2) arcs
after fixempties() processing, it was still possible to blow out memory,
and take a long time doing it too. To fix, modify the bookkeeping to count
space used by both states and arcs.
I did not bother with including the "color map" in the accounting; it
can only grow to a few megabytes, which is not a lot in comparison to
what we're allowing for states+arcs (about 150MB on 64-bit machines
or half that on 32-bit machines).
Looking at some of the larger real-world regexes captured in the Tcl
regression test suite suggests that the most that is likely to be needed
for regexes found in the wild is under 10MB, so I believe that the current
limit has enough headroom to make it okay to keep it as a hard-wired limit.
In connection with this, redefine REG_ETOOBIG as meaning "regular
expression is too complex"; the previous wording of "nfa has too many
states" was already somewhat inapropos because of the error code's use
for stack depth overrun, and it was not very user-friendly either.
Back-patch to all supported branches.
The previous coding would create a new intermediate state every time it
wanted to interchange the ordering of two constraint arcs. Certain regex
features such as \Y can generate large numbers of parallel constraint arcs,
and if we needed to reorder the results of that, we created unreasonable
numbers of intermediate states. To improve matters, keep a list of
already-created intermediate states associated with the state currently
being considered by the outer loop; we can re-use such states to place all
the new arcs leading to the same destination or source.
I also took the trouble to redefine push() and pull() to have a less risky
API: they no longer delete any state or arc that the caller might possibly
have a pointer to, except for the specifically-passed constraint arc.
This reduces the risk of re-introducing the same type of error seen in
the failed patch for CVE-2007-4772.
Back-patch to all supported branches.
The previous coding took something like O(N^4) time to fully process a
chain of N EMPTY arcs. We can't really do much better than O(N^2) because
we have to insert about that many arcs, but we can do lots better than
what's there now. The win comes partly from using mergeins() to amortize
de-duplication of arcs across multiple source states, and partly from
exploiting knowledge of the ordering of arcs for each state to avoid
looking at arcs we don't need to consider during the scan. We do have
to be a bit careful of the possible reordering of arcs introduced by
the sort-merge coding of the previous commit, but that's not hard to
deal with.
Back-patch to all supported branches.
Change the singly-linked in-arc and out-arc lists to be doubly-linked,
so that arc deletion is constant time rather than having worst-case time
proportional to the number of other arcs on the connected states.
Modify the bulk arc transfer operations copyins(), copyouts(), moveins(),
moveouts() so that they use a sort-and-merge algorithm whenever there's
more than a small number of arcs to be copied or moved. The previous
method is O(N^2) in the number of arcs involved, because it performs
duplicate checking independently for each copied arc. The new method may
change the ordering of existing arcs for the destination state, but nothing
really cares about that.
Provide another bulk arc copying method mergeins(), which is unused as
of this commit but is needed for the next one. It basically is like
copyins(), but the source arcs might not all come from the same state.
Replace the O(N^2) bubble-sort algorithm used in carcsort() with a qsort()
call.
These changes greatly improve the performance of regex compilation for
large or complex regexes, at the cost of extra space for arc storage during
compilation. The original tradeoff was probably fine when it was made, but
now we care more about speed and less about memory consumption.
Back-patch to all supported branches.
It's possible to construct regular expressions that contain loops of
constraint arcs (that is, ^ $ AHEAD BEHIND or LACON arcs). There's no use
in fully traversing such a loop at execution, since you'd just end up in
the same NFA state without having consumed any input. Worse, such a loop
leads to infinite looping in the pullback/pushfwd stage of compilation,
because we keep pushing or pulling the same constraints around the loop
in a vain attempt to move them to the pre or post state. Such looping was
previously recognized in CVE-2007-4772; but the fix only handled the case
of trivial single-state loops (that is, a constraint arc leading back to
its source state) ... and not only that, it was incorrect even for that
case, because it broke the admittedly-not-very-clearly-stated API contract
of the pull() and push() subroutines. The first two regression test cases
added by this commit exhibit patterns that result in assertion failures
because of that (though there seem to be no ill effects in non-assert
builds). The other new test cases exhibit multi-state constraint loops;
in an unpatched build they will run until the NFA state-count limit is
exceeded.
To fix, remove the code added for CVE-2007-4772, and instead create a
general-purpose constraint-loop-breaking phase of regex compilation that
executes before we do pullback/pushfwd. Since we never need to traverse
a constraint loop fully, we can just break the loop at any chosen spot,
if we add clone states that can replicate any sequence of arc transitions
that would've traversed just part of the loop.
Also add some commentary clarifying why we have to have all these
machinations in the first place.
This class of problems has been known for some time --- we had a report
from Marc Mamin about two years ago, for example, and there are related
complaints in the Tcl bug tracker. I had discussed a fix of this kind
off-list with Henry Spencer, but didn't get around to doing something
about it until the issue was rediscovered by Greg Stark recently.
Back-patch to all supported branches.
Some of the functions in regex compilation and execution recurse, and
therefore could in principle be driven to stack overflow. The Tcl crew
has seen this happen in practice in duptraverse(), though their fix was
to put in a hard-wired limit on the number of recursive levels, which is
not too appetizing --- fortunately, we have enough infrastructure to check
the actually available stack. Greg Stark has also seen it in other places
while fuzz testing on a machine with limited stack space. Let's put guards
in to prevent crashes in all these places.
Since the regex code would leak memory if we simply threw elog(ERROR),
we have to introduce an API that checks for stack depth without throwing
such an error. Fortunately that's not difficult.
In cfindloop(), if the initial call to shortest() reports that a
zero-length match is possible at the current search start point, but then
it is unable to construct any actual match to that, it'll just loop around
with the same start point, and thus make no progress. We need to force the
start point to be advanced. This is safe because the loop over "begin"
points has already tried and failed to match starting at "close", so there
is surely no need to try that again.
This bug was introduced in commit e2bd904955e2221eddf01110b1f25002de2aaa83,
wherein we allowed continued searching after we'd run out of match
possibilities, but evidently failed to think hard enough about exactly
where we needed to search next.
Because of the way this code works, such a match failure is only possible
in the presence of backrefs --- otherwise, shortest()'s judgment that a
match is possible should always be correct. That probably explains how
come the bug has escaped detection for several years.
The actual fix is a one-liner, but I took the trouble to add/improve some
comments related to the loop logic.
After fixing that, the submitted test case "()*\1" didn't loop anymore.
But it reported failure, though it seems like it ought to match a
zero-length string; both Tcl and Perl think it does. That seems to be from
overenthusiastic optimization on my part when I rewrote the iteration match
logic in commit 173e29aa5deefd9e71c183583ba37805c8102a72: we can't just
"declare victory" for a zero-length match without bothering to set match
data for capturing parens inside the iterator node.
Per fuzz testing by Greg Stark. The first part of this is a bug in all
supported branches, and the second part is a bug since 9.2 where the
iteration rewrite happened.
Commit 9662143f0c35d64d7042fbeaf879df8f0b54be32 added infrastructure to
allow regular-expression operations to be terminated early in the event
of SIGINT etc. However, fuzz testing by Greg Stark disclosed that there
are still cases where regex compilation could run for a long time without
noticing a cancel request. Specifically, the fixempties() phase never
adds new states, only new arcs, so it doesn't hit the cancel check I'd put
in newstate(). Add one to newarc() as well to cover that.
Some experimentation of my own found that regex execution could also run
for a long time despite a pending cancel. We'd put a high-level cancel
check into cdissect(), but there was none inside the core text-matching
routines longest() and shortest(). Ordinarily those inner loops are very
very fast ... but in the presence of lookahead constraints, not so much.
As a compromise, stick a cancel check into the stateset cache-miss
function, which is enough to guarantee a cancel check at least once per
lookahead constraint test.
Making this work required more attention to error handling throughout the
regex executor. Henry Spencer had apparently originally intended longest()
and shortest() to be incapable of incurring errors while running, so
neither they nor their subroutines had well-defined error reporting
behaviors. However, that was already broken by the lookahead constraint
feature, since lacon() can surely suffer an out-of-memory failure ---
which, in the code as it stood, might never be reported to the user at all,
but just silently be treated as a non-match of the lookahead constraint.
Normalize all that by inserting explicit error tests as needed. I took the
opportunity to add some more comments to the code, too.
Back-patch to all supported branches, like the previous patch.
After an internal failure in shortest() or longest() while pinning down the
exact location of a match, find() forgot to free the DFA structure before
returning. This is pretty unlikely to occur, since we just successfully
ran the "search" variant of the DFA; but it could happen, and it would
result in a session-lifespan memory leak since this code uses malloc()
directly. Problem seems to have been aboriginal in Spencer's library,
so back-patch all the way.
In passing, correct a thinko in a comment I added awhile back about the
meaning of the "ntree" field.
I happened across these issues while comparing our code to Tcl's version
of the library.
Sync our regex code with upstream changes since last time we did this,
which was Tcl 8.5.11 (see commit 08fd6ff37f71485e2fc04bc6ce07d2a483c36702).
The only functional change here is to disbelieve that an octal escape is
three digits long if it would exceed \377. That's a bug fix, but it's
a minor one and could change the interpretation of working regexes, so
don't back-patch.
In addition to that, s/INFINITY/DUPINF/ to eliminate the risk of collisions
with <math.h>'s macro, and s/LOCAL/NOPROP/ because that also seems like
an unnecessarily collision-prone macro name.
There were some other cosmetic changes in their copy that I did not adopt,
notably a rather half-hearted attempt at renaming some of the C functions
in a more verbose style. (I'm not necessarily against the concept, but
renaming just a few functions in the package is not an improvement.)