mimalloc/src/os.c

541 lines
19 KiB
C
Raw Normal View History

2019-06-20 02:26:12 +03:00
/* ----------------------------------------------------------------------------
Copyright (c) 2018, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
2019-06-20 02:26:12 +03:00
-----------------------------------------------------------------------------*/
#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE // ensure mmap flags are defined
#endif
#include "mimalloc.h"
#include "mimalloc-internal.h"
#include <string.h> // memset
#include <errno.h>
/* -----------------------------------------------------------
Initialization.
On windows initializes support for aligned allocation and
large OS pages (if MIMALLOC_LARGE_OS_PAGES is true).
2019-06-20 02:26:12 +03:00
----------------------------------------------------------- */
#if defined(_WIN32)
#include <windows.h>
2019-06-20 02:26:12 +03:00
#else
#include <sys/mman.h> // mmap
#include <unistd.h> // sysconf
#endif
// page size (initialized properly in `os_init`)
static size_t os_page_size = 4096;
// minimal allocation granularity
static size_t os_alloc_granularity = 4096;
// if non-zero, use large page allocation
static size_t large_os_page_size = 0;
// OS (small) page size
size_t _mi_os_page_size() {
return os_page_size;
}
// if large OS pages are supported (2 or 4MiB), then return the size, otherwise return the small page size (4KiB)
size_t _mi_os_large_page_size() {
return (large_os_page_size != 0 ? large_os_page_size : _mi_os_page_size());
}
static bool use_large_os_page(size_t size, size_t alignment) {
// if we have access, check the size and alignment requirements
if (large_os_page_size == 0) return false;
return ((size % large_os_page_size) == 0 && (alignment % large_os_page_size) == 0);
}
// round to a good allocation size
static size_t mi_os_good_alloc_size(size_t size, size_t alignment) {
UNUSED(alignment);
if (size >= (SIZE_MAX - os_alloc_granularity)) return size; // possible overflow?
return _mi_align_up(size, os_alloc_granularity);
}
#if defined(_WIN32)
// We use VirtualAlloc2 for aligned allocation, but it is only supported on Windows 10 and Windows Server 2016.
// So, we need to look it up dynamically to run on older systems.
typedef PVOID (*VirtualAlloc2Ptr)(HANDLE, PVOID, SIZE_T, ULONG, ULONG, MEM_EXTENDED_PARAMETER*, ULONG );
static VirtualAlloc2Ptr pVirtualAlloc2 = NULL;
void _mi_os_init(void) {
// get the page size
SYSTEM_INFO si;
GetSystemInfo(&si);
if (si.dwPageSize > 0) os_page_size = si.dwPageSize;
if (si.dwAllocationGranularity > 0) os_alloc_granularity = si.dwAllocationGranularity;
// get the VirtualAlloc2 function
HINSTANCE hDll;
hDll = LoadLibrary("kernelbase.dll");
if (hDll!=NULL) {
// use VirtualAlloc2FromApp as it is available to Windows store apps
pVirtualAlloc2 = (VirtualAlloc2Ptr)GetProcAddress(hDll, "VirtualAlloc2FromApp");
FreeLibrary(hDll);
}
// Try to see if large OS pages are supported
unsigned long err = 0;
bool ok = mi_option_is_enabled(mi_option_large_os_pages);
if (ok) {
// To use large pages on Windows, we first need access permission
// Set "Lock pages in memory" permission in the group policy editor
// <https://devblogs.microsoft.com/oldnewthing/20110128-00/?p=11643>
HANDLE token = NULL;
ok = OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token);
if (ok) {
TOKEN_PRIVILEGES tp;
ok = LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &tp.Privileges[0].Luid);
if (ok) {
tp.PrivilegeCount = 1;
tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
ok = AdjustTokenPrivileges(token, FALSE, &tp, 0, (PTOKEN_PRIVILEGES)NULL, 0);
if (ok) {
err = GetLastError();
ok = (err == ERROR_SUCCESS);
if (ok) {
large_os_page_size = GetLargePageMinimum();
}
}
}
CloseHandle(token);
}
if (!ok) {
if (err==0) err = GetLastError();
_mi_warning_message("cannot enable large OS page support, error %lu\n", err);
}
}
}
#else
void _mi_os_init() {
// get the page size
long result = sysconf(_SC_PAGESIZE);
if (result > 0) {
os_page_size = (size_t)result;
os_alloc_granularity = os_page_size;
}
if (mi_option_is_enabled(mi_option_large_os_pages)) {
large_os_page_size = (1UL<<21); // 2MiB
}
}
#endif
/* -----------------------------------------------------------
Raw allocation on Windows (VirtualAlloc) and Unix's (mmap).
Defines a portable `mmap`, `munmap` and `mmap_trim`.
----------------------------------------------------------- */
2019-06-20 02:26:12 +03:00
uintptr_t _mi_align_up(uintptr_t sz, size_t alignment) {
uintptr_t x = (sz / alignment) * alignment;
if (x < sz) x += alignment;
if (x < sz) return 0; // overflow
return x;
}
static void* mi_align_up_ptr(void* p, size_t alignment) {
return (void*)_mi_align_up((uintptr_t)p, alignment);
}
static uintptr_t _mi_align_down(uintptr_t sz, size_t alignment) {
return (sz / alignment) * alignment;
}
static void* mi_align_down_ptr(void* p, size_t alignment) {
return (void*)_mi_align_down((uintptr_t)p, alignment);
}
static bool mi_os_mem_free(void* addr, size_t size, mi_stats_t* stats)
2019-06-20 02:26:12 +03:00
{
if (addr == NULL || size == 0) return true;
2019-06-20 02:26:12 +03:00
bool err = false;
#if defined(_WIN32)
err = (VirtualFree(addr, 0, MEM_RELEASE) == 0);
#else
err = (munmap(addr, size) == -1);
#endif
_mi_stat_decrease(&stats->committed, size); // TODO: what if never committed?
_mi_stat_decrease(&stats->reserved, size);
2019-06-20 02:26:12 +03:00
if (err) {
#pragma warning(suppress:4996)
_mi_warning_message("munmap failed: %s, addr 0x%8li, size %lu\n", strerror(errno), (size_t)addr, size);
return false;
}
else {
return true;
2019-06-20 02:26:12 +03:00
}
}
static void* mi_os_mem_alloc(void* addr, size_t size, bool commit, int extra_flags, mi_stats_t* stats) {
2019-06-20 02:26:12 +03:00
UNUSED(stats);
if (size == 0) return NULL;
void* p = NULL;
2019-06-20 02:26:12 +03:00
#if defined(_WIN32)
int flags = MEM_RESERVE | extra_flags;
if (commit) flags |= MEM_COMMIT;
if (use_large_os_page(size, 0)) {
p = VirtualAlloc(addr, size, MEM_LARGE_PAGES | flags, PAGE_READWRITE);
}
if (p == NULL) {
p = VirtualAlloc(addr, size, flags, PAGE_READWRITE);
}
2019-06-20 02:26:12 +03:00
#else
#if !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
int flags = MAP_PRIVATE | MAP_ANONYMOUS | extra_flags;
if (addr != NULL) {
#if defined(MAP_EXCL)
flags |= MAP_FIXED | MAP_EXCL; // BSD
#elif defined(MAP_FIXED_NOREPLACE)
flags |= MAP_FIXED_NOREPLACE; // Linux
#elif defined(MAP_FIXED)
flags |= MAP_FIXED;
#endif
}
int pflags = (commit ? (PROT_READ | PROT_WRITE) : PROT_NONE);
#if defined(PROT_MAX)
pflags |= PROT_MAX(PROT_READ | PROT_WRITE); // BSD
#endif
if (large_os_page_size > 0 && use_large_os_page(size, 0) && ((uintptr_t)addr % large_os_page_size) == 0) {
int lflags = flags;
#ifdef MAP_ALIGNED_SUPER
lflags |= MAP_ALIGNED_SUPER;
#endif
#ifdef MAP_HUGETLB
lflags |= MAP_HUGETLB;
#endif
#ifdef MAP_HUGE_2MB
lflags |= MAP_HUGE_2MB;
#endif
if (lflags != flags) {
// try large page allocation
p = mmap(addr, size, pflags, lflags, -1, 0);
if (p == MAP_FAILED) p = NULL; // fall back to regular mmap if large is exhausted or no permission
}
}
if (p == NULL) {
p = mmap(addr, size, pflags, flags, -1, 0);
if (p == MAP_FAILED) p = NULL;
}
2019-06-20 02:26:12 +03:00
if (addr != NULL && p != addr) {
mi_os_mem_free(p, size, stats);
2019-06-20 02:26:12 +03:00
p = NULL;
}
#endif
UNUSED(stats);
2019-06-20 02:26:12 +03:00
mi_assert(p == NULL || (addr == NULL && p != addr) || (addr != NULL && p == addr));
if (p != NULL) {
mi_stat_increase(stats->mmap_calls, 1);
mi_stat_increase(stats->reserved, size);
if (commit) mi_stat_increase(stats->committed, size);
}
2019-06-20 02:26:12 +03:00
return p;
}
static void* mi_os_mem_alloc_aligned(size_t size, size_t alignment, bool commit, mi_stats_t* stats) {
if (alignment < _mi_os_page_size() || ((alignment & (~alignment + 1)) != alignment)) return NULL;
void* p = NULL;
#if defined(_WIN32) && defined(MEM_EXTENDED_PARAMETER_TYPE_BITS)
if (pVirtualAlloc2 != NULL) {
// on modern Windows try use VirtualAlloc2
MEM_ADDRESS_REQUIREMENTS reqs = {0};
reqs.Alignment = alignment;
MEM_EXTENDED_PARAMETER param = { 0 };
param.Type = MemExtendedParameterAddressRequirements;
param.Pointer = &reqs;
DWORD flags = MEM_RESERVE;
if (commit) flags |= MEM_COMMIT;
if (use_large_os_page(size, alignment)) flags |= MEM_LARGE_PAGES;
p = (*pVirtualAlloc2)(NULL, NULL, size, flags, PAGE_READWRITE, &param, 1);
}
#elif defined(MAP_ALIGNED)
// on BSD, use the aligned mmap api
size_t n = _mi_bsr(alignment);
if (((size_t)1 << n) == alignment && n >= 12) { // alignment is a power of 2 and >= 4096
p = mi_os_mem_alloc(suggest, size, commit, MAP_ALIGNED(n), tld->stats); // use the NetBSD/freeBSD aligned flags
}
#else
UNUSED(size);
UNUSED(alignment);
#endif
UNUSED(stats); // if !STATS
mi_assert(p == NULL || (uintptr_t)p % alignment == 0);
if (p != NULL) {
mi_stat_increase(stats->mmap_calls, 1);
mi_stat_increase(stats->reserved, size);
if (commit) mi_stat_increase(stats->committed, size);
}
return p;
}
// Conservatively OS page align within a given area
static void* mi_os_page_align_area(void* addr, size_t size, size_t* newsize) {
2019-06-20 02:26:12 +03:00
mi_assert(addr != NULL && size > 0);
if (newsize != NULL) *newsize = 0;
if (size == 0 || addr == NULL) return NULL;
// page align conservatively within the range
void* start = mi_align_up_ptr(addr, _mi_os_page_size());
void* end = mi_align_down_ptr((uint8_t*)addr + size, _mi_os_page_size());
ptrdiff_t diff = (uint8_t*)end - (uint8_t*)start;
if (diff <= 0) return NULL;
mi_assert_internal((size_t)diff <= size);
2019-06-24 06:41:34 +03:00
if (newsize != NULL) *newsize = (size_t)diff;
2019-06-20 02:26:12 +03:00
return start;
}
// Signal to the OS that the address range is no longer in use
// but may be used later again. This will release physical memory
// pages and reduce swapping while keeping the memory committed.
// We page align to a conservative area inside the range to reset.
bool _mi_os_reset(void* addr, size_t size, mi_stats_t* stats) {
2019-06-20 02:26:12 +03:00
// page align conservatively within the range
size_t csize;
void* start = mi_os_page_align_area(addr,size,&csize);
2019-06-20 02:26:12 +03:00
if (csize==0) return true;
UNUSED(stats); // if !STATS
mi_stat_increase(stats->reset, csize);
2019-06-20 02:26:12 +03:00
#if defined(_WIN32)
// Testing shows that for us (on `malloc-large`) MEM_RESET is 2x faster than DiscardVirtualMemory
// (but this is for an access pattern that immediately reuses the memory)
/*
DWORD ok = DiscardVirtualMemory(start, csize);
return (ok != 0);
*/
2019-06-20 02:26:12 +03:00
void* p = VirtualAlloc(start, csize, MEM_RESET, PAGE_READWRITE);
mi_assert(p == start);
if (p != start) return false;
/*
// VirtualUnlock removes the memory eagerly from the current working set (which MEM_RESET does lazily on demand)
// TODO: put this behind an option?
DWORD ok = VirtualUnlock(start, csize);
if (ok != 0) return false;
*/
return true;
2019-06-20 02:26:12 +03:00
#else
#if defined(MADV_FREE)
static int advice = MADV_FREE;
int err = madvise(start, csize, advice);
if (err!=0 && errno==EINVAL && advice==MADV_FREE) {
// if MADV_FREE is not supported, fall back to MADV_DONTNEED from now on
advice = MADV_DONTNEED;
err = madvise(start, csize, advice);
}
#else
int err = madvise(start, csize, MADV_DONTNEED);
#endif
if (err != 0) {
_mi_warning_message("madvise reset error: start: 0x%8p, csize: 0x%8zux, errno: %i\n", start, csize, errno);
}
//mi_assert(err == 0);
return (err == 0);
#endif
}
// Protect a region in memory to be not accessible.
static bool mi_os_protectx(void* addr, size_t size, bool protect) {
// page align conservatively within the range
size_t csize = 0;
void* start = mi_os_page_align_area(addr, size, &csize);
2019-06-20 02:26:12 +03:00
if (csize==0) return false;
int err = 0;
#ifdef _WIN32
DWORD oldprotect = 0;
BOOL ok = VirtualProtect(start,csize,protect ? PAGE_NOACCESS : PAGE_READWRITE,&oldprotect);
err = (ok ? 0 : GetLastError());
2019-06-20 02:26:12 +03:00
#else
2019-06-24 06:41:34 +03:00
err = mprotect(start,csize,protect ? PROT_NONE : (PROT_READ|PROT_WRITE));
2019-06-20 02:26:12 +03:00
#endif
if (err != 0) {
_mi_warning_message("mprotect error: start: 0x%8p, csize: 0x%8zux, err: %i\n", start, csize, err);
2019-06-20 02:26:12 +03:00
}
return (err==0);
}
bool _mi_os_protect(void* addr, size_t size) {
return mi_os_protectx(addr,size,true);
}
bool _mi_os_unprotect(void* addr, size_t size) {
return mi_os_protectx(addr, size, false);
}
// Commit/Decommit memory.
// We page align to a conservative area inside the range to reset.
static bool mi_os_commitx(void* addr, size_t size, bool commit, mi_stats_t* stats) {
// page align conservatively within the range
size_t csize;
void* start = mi_os_page_align_area(addr, size, &csize);
if (csize == 0) return true;
int err = 0;
UNUSED(stats); // if !STATS
if (commit) {
mi_stat_increase(stats->committed, csize);
mi_stat_increase(stats->commit_calls,1);
}
else {
mi_stat_decrease(stats->committed, csize);
}
#if defined(_WIN32)
if (commit) {
void* p = VirtualAlloc(start, csize, MEM_COMMIT, PAGE_READWRITE);
err = (p == start ? 0 : GetLastError());
}
else {
BOOL ok = VirtualFree(start, csize, MEM_DECOMMIT);
err = (ok ? 0 : GetLastError());
}
#else
err = mprotect(start, csize, (commit ? (PROT_READ | PROT_WRITE) : PROT_NONE));
#endif
if (err != 0) {
_mi_warning_message("commit/decommit error: start: 0x%8p, csize: 0x%8zux, err: %i\n", start, csize, err);
}
mi_assert_internal(err == 0);
return (err == 0);
}
bool _mi_os_commit(void* addr, size_t size, mi_stats_t* stats) {
return mi_os_commitx(addr, size, true, stats);
}
bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats) {
return mi_os_commitx(addr, size, false, stats);
}
bool _mi_os_shrink(void* p, size_t oldsize, size_t newsize, mi_stats_t* stats) {
// page align conservatively within the range
mi_assert_internal(oldsize > newsize && p != NULL);
if (oldsize < newsize || p==NULL) return false;
if (oldsize == newsize) return true;
// oldsize and newsize should be page aligned or we cannot shrink precisely
void* addr = (uint8_t*)p + newsize;
size_t size = 0;
void* start = mi_os_page_align_area(addr, oldsize - newsize, &size);
if (size==0 || start != addr) return false;
#ifdef _WIN32
// we cannot shrink on windows
return false;
#else
return mi_os_mem_free(start, size, stats);
#endif
}
2019-06-20 02:26:12 +03:00
/* -----------------------------------------------------------
OS allocation using mmap/munmap
----------------------------------------------------------- */
void* _mi_os_alloc(size_t size, mi_stats_t* stats) {
if (size == 0) return NULL;
size = mi_os_good_alloc_size(size, 0);
void* p = mi_os_mem_alloc(NULL, size, true, 0, stats);
2019-06-20 02:26:12 +03:00
mi_assert(p!=NULL);
return p;
}
void _mi_os_free(void* p, size_t size, mi_stats_t* stats) {
UNUSED(stats);
mi_os_mem_free(p, size, stats);
2019-06-20 02:26:12 +03:00
}
// Slow but guaranteed way to allocated aligned memory
// by over-allocating and then reallocating at a fixed aligned
// address that should be available then.
static void* mi_os_alloc_aligned_ensured(size_t size, size_t alignment, bool commit, size_t trie, mi_stats_t* stats)
2019-06-20 02:26:12 +03:00
{
if (trie >= 3) return NULL; // stop recursion (only on Windows)
size_t alloc_size = size + alignment;
mi_assert(alloc_size >= size); // overflow?
if (alloc_size < size) return NULL;
// allocate a chunk that includes the alignment
void* p = mi_os_mem_alloc(NULL, alloc_size, commit, 0, stats);
2019-06-20 02:26:12 +03:00
if (p == NULL) return NULL;
// create an aligned pointer in the allocated area
void* aligned_p = mi_align_up_ptr(p, alignment);
mi_assert(aligned_p != NULL);
2019-06-20 02:26:12 +03:00
// free it and try to allocate `size` at exactly `aligned_p`
// note: this may fail in case another thread happens to allocate
2019-06-20 02:26:12 +03:00
// concurrently at that spot. We try up to 3 times to mitigate this.
mi_os_mem_free(p, alloc_size, stats);
p = mi_os_mem_alloc(aligned_p, size, commit, 0, stats);
2019-06-20 02:26:12 +03:00
if (p != aligned_p) {
if (p != NULL) mi_os_mem_free(p, size, stats);
return mi_os_alloc_aligned_ensured(size, alignment, commit, trie++, stats);
2019-06-20 02:26:12 +03:00
}
#if 0 // could use this on mmap systems
2019-06-20 02:26:12 +03:00
// we selectively unmap parts around the over-allocated area.
size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p;
size_t mid_size = _mi_align_up(size, _mi_os_page_size());
size_t post_size = alloc_size - pre_size - mid_size;
if (pre_size > 0) mi_os_mem_free(p, pre_size, stats);
if (post_size > 0) mi_os_mem_free((uint8_t*)aligned_p + mid_size, post_size, stats);
2019-06-20 02:26:12 +03:00
#endif
mi_assert(((uintptr_t)aligned_p) % alignment == 0);
return aligned_p;
}
// Allocate an aligned block.
// Since `mi_mmap` is relatively slow we try to allocate directly at first and
// hope to get an aligned address; only when that fails we fall back
// to a guaranteed method by overallocating at first and adjusting.
void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, mi_os_tld_t* tld)
2019-06-20 02:26:12 +03:00
{
if (size == 0) return NULL;
size = mi_os_good_alloc_size(size,alignment);
if (alignment < 1024) return mi_os_mem_alloc(NULL, size, commit, 0, tld->stats);
2019-06-20 02:26:12 +03:00
// try direct OS aligned allocation; only supported on BSD and Windows 10+
2019-06-20 02:26:12 +03:00
void* suggest = NULL;
void* p = mi_os_mem_alloc_aligned(size,alignment,commit,tld->stats);
2019-06-20 02:26:12 +03:00
// Fall back
2019-06-20 02:26:12 +03:00
if (p==NULL && (tld->mmap_next_probable % alignment) == 0) {
// if the next probable address is aligned,
// then try to just allocate `size` and hope it is aligned...
p = mi_os_mem_alloc(suggest, size, commit, 0, tld->stats);
2019-06-20 02:26:12 +03:00
if (p == NULL) return NULL;
if (((uintptr_t)p % alignment) == 0) mi_stat_increase(tld->stats->mmap_right_align, 1);
}
//fprintf(stderr, "segment address guess: %s, p=%lxu, guess:%lxu\n", (p != NULL && (uintptr_t)p % alignment ==0 ? "correct" : "incorrect"), (uintptr_t)p, next_probable);
2019-06-24 06:41:34 +03:00
2019-06-20 02:26:12 +03:00
if (p==NULL || ((uintptr_t)p % alignment) != 0) {
// if `p` is not yet aligned after all, free the block and use a slower
// but guaranteed way to allocate an aligned block
if (p != NULL) mi_os_mem_free(p, size, tld->stats);
2019-06-20 02:26:12 +03:00
mi_stat_increase( tld->stats->mmap_ensure_aligned, 1);
//fprintf(stderr, "mimalloc: slow mmap 0x%lx\n", _mi_thread_id());
p = mi_os_alloc_aligned_ensured(size, alignment,commit,0,tld->stats);
2019-06-20 02:26:12 +03:00
}
if (p != NULL) {
// next probable address is the page-aligned address just after the newly allocated area.
2019-06-20 02:26:12 +03:00
size_t probable_size = MI_SEGMENT_SIZE;
if (tld->mmap_previous > p) {
// Linux tends to allocate downward
tld->mmap_next_probable = _mi_align_down((uintptr_t)p - probable_size, os_alloc_granularity); // ((uintptr_t)previous - (uintptr_t)p);
2019-06-20 02:26:12 +03:00
}
else {
// Otherwise, guess the next address is page aligned `size` from current pointer
tld->mmap_next_probable = _mi_align_up((uintptr_t)p + probable_size, os_alloc_granularity);
2019-06-20 02:26:12 +03:00
}
tld->mmap_previous = p;
}
return p;
}