mimalloc/src/os.c

407 lines
14 KiB
C
Raw Normal View History

2019-06-20 02:26:12 +03:00
/* ----------------------------------------------------------------------------
Copyright (c) 2018, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
2019-06-20 02:26:12 +03:00
-----------------------------------------------------------------------------*/
#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE // ensure mmap flags are defined
#endif
#include "mimalloc.h"
#include "mimalloc-internal.h"
#include <string.h> // memset
#include <stdio.h> // debug fprintf
#include <errno.h>
/* -----------------------------------------------------------
Raw allocation on Windows (VirtualAlloc) and Unix's (mmap).
Defines a portable `mmap`, `munmap` and `mmap_trim`.
----------------------------------------------------------- */
#if defined(_WIN32)
#include <windows.h>
#if defined(MEM_EXTENDED_PARAMETER_TYPE_BITS) // rough check it VirtualAlloc2 is available (needs windows 10 or Windows server 2016)
#pragma comment(lib, "mincore.lib") // seems needed to resolve VirtualAlloc2
#define USE_VIRTUALALLOC2 // allows aligned allocation
#endif
2019-06-20 02:26:12 +03:00
#else
#include <sys/mman.h> // mmap
#include <unistd.h> // sysconf
#endif
uintptr_t _mi_align_up(uintptr_t sz, size_t alignment) {
uintptr_t x = (sz / alignment) * alignment;
if (x < sz) x += alignment;
if (x < sz) return 0; // overflow
return x;
}
static void* mi_align_up_ptr(void* p, size_t alignment) {
return (void*)_mi_align_up((uintptr_t)p, alignment);
}
static uintptr_t _mi_align_down(uintptr_t sz, size_t alignment) {
return (sz / alignment) * alignment;
}
static void* mi_align_down_ptr(void* p, size_t alignment) {
return (void*)_mi_align_down((uintptr_t)p, alignment);
}
static void* os_pool_alloc(size_t size, size_t alignment, mi_os_tld_t* tld);
// cached OS page size
2019-06-25 13:16:36 +03:00
size_t _mi_os_page_size(void) {
2019-06-20 02:26:12 +03:00
static size_t page_size = 0;
if (page_size == 0) {
#if defined(_WIN32)
SYSTEM_INFO si;
GetSystemInfo(&si);
page_size = (si.dwPageSize > 0 ? si.dwPageSize : 4096);
#else
long result = sysconf(_SC_PAGESIZE);
page_size = (result > 0 ? (size_t)result : 4096);
#endif
}
return page_size;
}
static bool mi_munmap(void* addr, size_t size)
2019-06-20 02:26:12 +03:00
{
if (addr == NULL || size == 0) return true;
2019-06-20 02:26:12 +03:00
bool err = false;
#if defined(_WIN32)
err = (VirtualFree(addr, 0, MEM_RELEASE) == 0);
#else
err = (munmap(addr, size) == -1);
#endif
if (err) {
#pragma warning(suppress:4996)
_mi_warning_message("munmap failed: %s, addr 0x%8li, size %lu\n", strerror(errno), (size_t)addr, size);
return false;
}
else {
return true;
2019-06-20 02:26:12 +03:00
}
}
static void* mi_mmap(void* addr, size_t size, int extra_flags, mi_stats_t* stats) {
UNUSED(stats);
if (size == 0) return NULL;
void* p;
#if defined(_WIN32)
p = VirtualAlloc(addr, size, MEM_RESERVE | MEM_COMMIT | extra_flags, PAGE_READWRITE);
#else
#if !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
int flags = MAP_PRIVATE | MAP_ANONYMOUS | extra_flags;
if (addr != NULL) {
#if defined(MAP_EXCL)
flags |= MAP_FIXED | MAP_EXCL; // BSD
#elif defined(MAP_FIXED_NOREPLACE)
flags |= MAP_FIXED_NOREPLACE; // Linux
#elif defined(MAP_FIXED)
flags |= MAP_FIXED;
#endif
}
p = mmap(addr, size, (PROT_READ | PROT_WRITE), flags, -1, 0);
if (p == MAP_FAILED) p = NULL;
if (addr != NULL && p != addr) {
mi_munmap(p, size);
p = NULL;
}
#endif
mi_assert(p == NULL || (addr == NULL && p != addr) || (addr != NULL && p == addr));
if (p != NULL) mi_stat_increase(stats->mmap_calls, 1);
return p;
}
static void* mi_mmap_aligned(size_t size, size_t alignment, mi_stats_t* stats) {
if (alignment < _mi_os_page_size() || ((alignment & (~alignment + 1)) != alignment)) return NULL;
void* p = NULL;
#if defined(_WIN32) && defined(USE_VIRTUALALLOC2)
// on modern Windows use VirtualAlloc2
MEM_ADDRESS_REQUIREMENTS reqs = {0};
reqs.Alignment = alignment;
MEM_EXTENDED_PARAMETER param = { 0 };
param.Type = MemExtendedParameterAddressRequirements;
param.Pointer = &reqs;
p = VirtualAlloc2(NULL, NULL, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE, &param, 1);
#elif defined(MAP_ALIGNED)
// on BSD, use the aligned mmap api
size_t n = _mi_bsr(alignment);
if ((size_t)1 << n == alignment && n >= 12) { // alignment is a power of 2 and >= 4096
p = mi_mmap(suggest, size, MAP_ALIGNED(n), tld->stats); // use the NetBSD/freeBSD aligned flags
}
#else
UNUSED(size);
UNUSED(alignment);
#endif
mi_assert(p == NULL || (uintptr_t)p % alignment == 0);
if (p != NULL) mi_stat_increase(stats->mmap_calls, 1);
return p;
}
2019-06-20 02:26:12 +03:00
static void* mi_os_page_align_region(void* addr, size_t size, size_t* newsize) {
mi_assert(addr != NULL && size > 0);
if (newsize != NULL) *newsize = 0;
if (size == 0 || addr == NULL) return NULL;
// page align conservatively within the range
void* start = mi_align_up_ptr(addr, _mi_os_page_size());
void* end = mi_align_down_ptr((uint8_t*)addr + size, _mi_os_page_size());
ptrdiff_t diff = (uint8_t*)end - (uint8_t*)start;
if (diff <= 0) return NULL;
mi_assert_internal((size_t)diff <= size);
2019-06-24 06:41:34 +03:00
if (newsize != NULL) *newsize = (size_t)diff;
2019-06-20 02:26:12 +03:00
return start;
}
// Signal to the OS that the address range is no longer in use
// but may be used later again. This will release physical memory
// pages and reduce swapping while keeping the memory committed.
// We page align to a conservative area inside the range to reset.
bool _mi_os_reset(void* addr, size_t size) {
// page align conservatively within the range
size_t csize;
void* start = mi_os_page_align_region(addr,size,&csize);
if (csize==0) return true;
#if defined(_WIN32)
void* p = VirtualAlloc(start, csize, MEM_RESET, PAGE_READWRITE);
mi_assert(p == start);
return (p == start);
#else
#if defined(MADV_FREE)
static int advice = MADV_FREE;
int err = madvise(start, csize, advice);
if (err!=0 && errno==EINVAL && advice==MADV_FREE) {
// if MADV_FREE is not supported, fall back to MADV_DONTNEED from now on
advice = MADV_DONTNEED;
err = madvise(start, csize, advice);
}
#else
int err = madvise(start, csize, MADV_DONTNEED);
#endif
if (err != 0) {
_mi_warning_message("madvise reset error: start: 0x%8p, csize: 0x%8zux, errno: %i\n", start, csize, errno);
}
//mi_assert(err == 0);
return (err == 0);
#endif
}
// Protect a region in memory to be not accessible.
static bool mi_os_protectx(void* addr, size_t size, bool protect) {
// page align conservatively within the range
size_t csize = 0;
void* start = mi_os_page_align_region(addr, size, &csize);
if (csize==0) return false;
int err = 0;
#ifdef _WIN32
DWORD oldprotect = 0;
BOOL ok = VirtualProtect(start,csize,protect ? PAGE_NOACCESS : PAGE_READWRITE,&oldprotect);
err = (ok ? 0 : -1);
#else
2019-06-24 06:41:34 +03:00
err = mprotect(start,csize,protect ? PROT_NONE : (PROT_READ|PROT_WRITE));
2019-06-20 02:26:12 +03:00
#endif
if (err != 0) {
_mi_warning_message("mprotect error: start: 0x%8p, csize: 0x%8zux, errno: %i\n", start, csize, errno);
}
return (err==0);
}
bool _mi_os_protect(void* addr, size_t size) {
return mi_os_protectx(addr,size,true);
}
bool _mi_os_unprotect(void* addr, size_t size) {
return mi_os_protectx(addr, size, false);
}
bool _mi_os_shrink(void* p, size_t oldsize, size_t newsize) {
// page align conservatively within the range
mi_assert_internal(oldsize > newsize && p != NULL);
if (oldsize < newsize || p==NULL) return false;
if (oldsize == newsize) return true;
// oldsize and newsize should be page aligned or we cannot shrink precisely
void* addr = (uint8_t*)p + newsize;
size_t size = 0;
void* start = mi_os_page_align_region(addr, oldsize - newsize, &size);
if (size==0 || start != addr) return false;
#ifdef _WIN32
// we cannot shrink on windows
return false;
#else
return mi_munmap( start, size );
#endif
}
2019-06-20 02:26:12 +03:00
/* -----------------------------------------------------------
OS allocation using mmap/munmap
----------------------------------------------------------- */
void* _mi_os_alloc(size_t size, mi_stats_t* stats) {
if (size == 0) return NULL;
void* p = mi_mmap(NULL, size, 0, stats);
mi_assert(p!=NULL);
if (p != NULL) mi_stat_increase(stats->reserved, size);
return p;
}
void _mi_os_free(void* p, size_t size, mi_stats_t* stats) {
UNUSED(stats);
mi_munmap(p, size);
mi_stat_decrease(stats->reserved, size);
}
// Slow but guaranteed way to allocated aligned memory
// by over-allocating and then reallocating at a fixed aligned
// address that should be available then.
static void* mi_os_alloc_aligned_ensured(size_t size, size_t alignment, size_t trie, mi_stats_t* stats)
{
if (trie >= 3) return NULL; // stop recursion (only on Windows)
size_t alloc_size = size + alignment;
mi_assert(alloc_size >= size); // overflow?
if (alloc_size < size) return NULL;
// allocate a chunk that includes the alignment
void* p = mi_mmap(NULL, alloc_size, 0, stats);
if (p == NULL) return NULL;
// create an aligned pointer in the allocated area
void* aligned_p = mi_align_up_ptr(p, alignment);
mi_assert(aligned_p != NULL);
#if defined(_WIN32)
// free it and try to allocate `size` at exactly `aligned_p`
// note: this may fail in case another thread happens to VirtualAlloc
// concurrently at that spot. We try up to 3 times to mitigate this.
mi_munmap(p, alloc_size);
p = mi_mmap(aligned_p, size, 0, stats);
if (p != aligned_p) {
if (p != NULL) mi_munmap(p, size);
return mi_os_alloc_aligned_ensured(size, alignment, trie++, stats);
}
#else
// we selectively unmap parts around the over-allocated area.
size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p;
size_t mid_size = _mi_align_up(size, _mi_os_page_size());
size_t post_size = alloc_size - pre_size - mid_size;
if (pre_size > 0) mi_munmap(p, pre_size);
if (post_size > 0) mi_munmap((uint8_t*)aligned_p + mid_size, post_size);
#endif
mi_assert(((uintptr_t)aligned_p) % alignment == 0);
return aligned_p;
}
// Allocate an aligned block.
// Since `mi_mmap` is relatively slow we try to allocate directly at first and
// hope to get an aligned address; only when that fails we fall back
// to a guaranteed method by overallocating at first and adjusting.
// TODO: use VirtualAlloc2 with alignment on Windows 10 / Windows Server 2016.
void* _mi_os_alloc_aligned(size_t size, size_t alignment, mi_os_tld_t* tld)
{
if (size == 0) return NULL;
if (alignment < 1024) return _mi_os_alloc(size, tld->stats);
void* p = os_pool_alloc(size,alignment,tld);
if (p != NULL) return p;
void* suggest = NULL;
p = mi_mmap_aligned(size,alignment,tld->stats);
2019-06-20 02:26:12 +03:00
if (p==NULL && (tld->mmap_next_probable % alignment) == 0) {
// if the next probable address is aligned,
// then try to just allocate `size` and hope it is aligned...
p = mi_mmap(suggest, size, 0, tld->stats);
if (p == NULL) return NULL;
if (((uintptr_t)p % alignment) == 0) mi_stat_increase(tld->stats->mmap_right_align, 1);
}
//fprintf(stderr, "segment address guess: %s, p=%lxu, guess:%lxu\n", (p != NULL && (uintptr_t)p % alignment ==0 ? "correct" : "incorrect"), (uintptr_t)p, next_probable);
2019-06-24 06:41:34 +03:00
2019-06-20 02:26:12 +03:00
if (p==NULL || ((uintptr_t)p % alignment) != 0) {
// if `p` is not yet aligned after all, free the block and use a slower
// but guaranteed way to allocate an aligned block
if (p != NULL) mi_munmap(p, size);
mi_stat_increase( tld->stats->mmap_ensure_aligned, 1);
//fprintf(stderr, "mimalloc: slow mmap 0x%lx\n", _mi_thread_id());
p = mi_os_alloc_aligned_ensured(size, alignment,0,tld->stats);
}
if (p != NULL) {
mi_stat_increase( tld->stats->reserved, size);
// next probable address is the page-aligned address just after the newly allocated area.
const size_t alloc_align =
#if defined(_WIN32)
64 * 1024; // Windows allocates 64kb aligned
#else
_mi_os_page_size(); // page size on other OS's
#endif
size_t probable_size = MI_SEGMENT_SIZE;
if (tld->mmap_previous > p) {
// Linux tends to allocate downward
tld->mmap_next_probable = _mi_align_down((uintptr_t)p - probable_size, alloc_align); // ((uintptr_t)previous - (uintptr_t)p);
}
else {
// Otherwise, guess the next address is page aligned `size` from current pointer
tld->mmap_next_probable = _mi_align_up((uintptr_t)p + probable_size, alloc_align);
}
tld->mmap_previous = p;
}
return p;
}
// Pooled allocation: on 64-bit systems with plenty
// of virtual addresses, we allocate 10 segments at the
// time to minimize `mmap` calls and increase aligned
// allocations. This is only good on systems that
// do overcommit so we put it behind the `MIMALLOC_POOL_COMMIT` option.
// For now, we disable it on windows as VirtualFree must
// be called on the original allocation and cannot be called
// for individual fragments.
2019-06-24 06:41:34 +03:00
#if defined(_WIN32) || (MI_INTPTR_SIZE<8)
2019-06-20 02:26:12 +03:00
static void* os_pool_alloc(size_t size, size_t alignment, mi_os_tld_t* tld) {
UNUSED(size);
UNUSED(alignment);
UNUSED(tld);
return NULL;
}
#else
#define MI_POOL_ALIGNMENT MI_SEGMENT_SIZE
#define MI_POOL_SIZE (10*MI_POOL_ALIGNMENT)
static void* os_pool_alloc(size_t size, size_t alignment, mi_os_tld_t* tld)
{
if (!mi_option_is_enabled(mi_option_pool_commit)) return NULL;
if (alignment != MI_POOL_ALIGNMENT) return NULL;
size = _mi_align_up(size,MI_POOL_ALIGNMENT);
if (size > MI_POOL_SIZE) return NULL;
if (tld->pool_available == 0) {
tld->pool = (uint8_t*)mi_os_alloc_aligned_ensured(MI_POOL_SIZE,MI_POOL_ALIGNMENT,0,tld->stats);
if (tld->pool == NULL) return NULL;
tld->pool_available += MI_POOL_SIZE;
}
if (size > tld->pool_available) return NULL;
void* p = tld->pool;
tld->pool_available -= size;
tld->pool += size;
return p;
}
#endif