This macro is used to implement global serialisation, typically by
disabling IRQs. On the unix port, if threading is enabled, use the
existing thread mutex (that protects the thread list structure) for this
purpose. Other places in the code (eg the scheduler) assume this macro
will provide serialisation.
Based on eg 1e6fd9f2b4, it's understood that
the intention for unix builds is that regular builds disable assert, but
the coverage build should set -O0 and enable asserts.
It looks like this didn't work (even before variants were introduced, eg at
v1.11) -- coverage always built with -Os and -DNDEBUG.
This commit makes it possible for variants to have finer-grained control
over COPT flags, and enables assert() and -O0 on coverage builds.
Other variants already match the defaults so they have been updated.
TimeoutError was added back in 077812b2ab for
the cc3200 port. In f522849a4d the cc3200
port enabled use of it in the socket module aliased to socket.timeout. So
it was never added to the builtins. Then it was replaced by
OSError(ETIMEDOUT) in 047af9b10b.
The esp32 port enables this exception, since the very beginning of that
port, but it could never be accessed because it's not in builtins.
It's being removed: 1) to not encourage its use; 2) because there are a lot
of other OSError subclasses which are not defined at all, and having
TimeoutError is a bit inconsistent.
Note that ports can add anything to the builtins via MICROPY_PORT_BUILTINS.
And they can also define their own exceptions using the
MP_DEFINE_EXCEPTION() macro.
This commit makes all functions and function wrappers in modubinascii.c
STATIC and conditional on the MICROPY_PY_UBINASCII setting, which will
exclude the file from qstr/ compressed-string searching when ubinascii is
not enabled. The now-unused modubinascii.h header file is also removed.
The cc3200 port is updated accordingly to use this module in its entirety
instead of providing its own top-level definition of ubinascii.
This was originally like this because the cc3200 port has its own ubinascii
module which referenced these methods. The plan appeared to be that the
API might diverge (e.g. hardware crc), but this should be done similar to
I2C/SPI via a port-specific handler, rather than the port having its own
definition of the module. Having a centralised module definition also
enforces consistency of the API among ports.
This commit changes the default filesystem type for esp32 to littlefs v2.
This port already enables both VfsFat and VfsLfs2, so either can be used
for the filesystem, and existing systems that use FAT will still work.
This commit changes the esp8266 boards to use littlefs v2 as the
filesystem, rather than FAT. Since the esp8266 doesn't expose the
filesystem to the PC over USB there's no strong reason to keep it as FAT.
Littlefs is smaller in code size, is more efficient in use of flash to
store data, is resilient over power failure, and using it saves about 4k of
heap RAM, which can now be used for other things.
This is a backwards incompatible change because all existing esp8266 boards
will need to update their filesystem after installing new firmware (eg
backup old files, install firmware, restore files to new filesystem).
As part of this commit the memory layout of the default board (GENERIC) has
changed. It now allocates all 1M of memory-mapped flash to the firmware,
so the filesystem area starts at the 2M point. This is done to allow more
frozen bytecode to be stored in the 1M of memory-mapped flash. This
requires an esp8266 module with 2M or more of flash to work, so a new board
called GENERIC_1M is added which has the old memory-mapping (but still
changed to use littlefs for the filesystem).
In summary there are now 3 esp8266 board definitions:
- GENERIC_512K: for 512k modules, doesn't have a filesystem.
- GENERIC_1M: for 1M modules, 572k for firmware+frozen code, 396k for
filesystem (littlefs).
- GENERIC: for 2M (or greater) modules, 968k for firmware+frozen code,
1M+ for filesystem (littlefs), FAT driver also included in firmware for
use on, eg, external SD cards.
Following up to 5e6cee07ab, some systems (eg
FreeBSD 12.0 64-bit) will crash if the stack-overflow margin is too small.
It seems the margin of 8192 bytes (or thereabouts) is always needed. This
commit adds this much margin if the requested stack size is too small.
Fixes issue #5824.
These were found by buiding the unix coverage variant on macOS (so clang
compiler). Mostly, these are fixing implicit cast of float/double to
mp_float_t which is one of those two and one mp_int_t to size_t fix for
good measure.
These are mainly used by the previous version of uasyncio which is now
replaced by a newer version, with built-in C module _uasyncio. Saves about
1300 bytes of flash.
https://www.python.org/dev/peps/pep-0475/
This implements something similar to PEP 475 on the unix port, and for the
VfsPosix class.
There are a few differences from the CPython implementation:
- Since we call mp_handle_pending() between any ENITR's, additional
functions could be called if MICROPY_ENABLE_SCHEDULER is enabled, not
just signal handlers.
- CPython only handles signal on the main thread, so other threads will
raise InterruptedError instead of retrying. On MicroPython,
mp_handle_pending() will currently raise exceptions on any thread.
A new macro MP_HAL_RETRY_SYSCALL is introduced to reduce duplicated code
and ensure that all instances behave the same. This will also allow other
ports that use POSIX-like system calls (and use, eg, VfsPosix) to provide
their own implementation if needed.
The stack size adjustment for detecting stack overflow in threads was not
taking into account that the requested stack size could be <= 8k, in which
case the subtraction would overflow. This is fixed in this commit by
ensuring that the adjustment can't be more than the available size.
This fixes the test tests/thread/thread_stacksize1.py which sometimes
crashes with a segmentation fault because of an uncaught NLR jump, which is
a "maximum recursion depth exceeded" exception.
Suggested-by: @dpgeorge
To enable lazy loading of submodules (among other things), which is very
useful for MicroPython libraries that want to have optional subcomponents.
Disabled explicitly on minimal ports.
This function is not used by the core but having it as part of the build
allows it to be used by user C modules, or board extensions. The linker
won't include it in the final firmware if it remains unused.
This removes the port-specific definition of MP_PLAT_PRINT_STRN on the
windows port, so that the default mp_hal_stdout_tx_strn_cooked() is always
used. This fixes releasing the GIL during the call to write() (this was
missed in bc3499f010).
Also, mp_hal_dupterm_tx_strn() was defined but never used anywhere so it is
safe to delete it.
This removes the port-specific definition of MP_PLAT_PRINT_STRN on the unix
port. Since fee7e5617f this is no longer a
single function call so we are not really optimising anything over using
the default definition of MP_PLAT_PRINT_STRN which calls
mp_hal_stdout_tx_strn_cooked().
Zephyr v2.2 reworked its gpio api to support linux device tree bindings and
pin logical levels. This commit updates the zephyr port's machine.Pin
class to replace the deprecated gpio api calls with the new supported gpio
api. This resolves several build warnings.
Tested on frdm_k64f and mimxrt1050_evk boards.
The "led" argument is always a pointer to the GPIO port, or'd with the pin
that the LED is on, so testing that it is "1" is unnecessary. The type of
"led" is also changed to uint32_t so it can properly hold a 32-bit pointer.
Updating the LED0 state from systick handler ensures LED0 is always
consistent with its flash rate regardless of other processing going on in
either interrupts or main. This improves the visible stability of the
bootloader, rather than LED0 flashing somewhat randomly at times.
This commit also changes the LED0 flash rate depending on the current state
of DFU, giving slightly more visual feedback on what the device is doing.
Adds support in the zephyr port to execute main.py if the file system is
enabled and the file exists. Existing support for executing a main.py
frozen module is preserved, since pyexec_file_if_exists() works just
like pyexec_frozen_module() if there's no vfs.
Enables the zephyr usb device stack and mass storage class on the
mimxrt1050_evk board. The mass storage class is backed by the sdhc disk
access driver, so it's now possible to browse and modify the contents of
the SD card from a USB host (your PC). This is in preparation to support
writing a main.py script to the SD card, and then executing it after the
next reset.
Adds support in the zephyr port to mount a file system if a block device
(sdhc disk access or flash area) is available. The mount point is either
"/sd" or "/flash" depending on the type of block device.
Tested with an sdhc disk access block device and fatfs on the
mimxrt1050_evk board.
Tested with a flash area block device and littlefs on the reel_board.
This commit adds micropython.heap_locked() which returns the current
lock-depth of the heap, and can be used by Python code to check if the heap
is locked or not. This new function is configured via
MICROPY_PY_MICROPYTHON_HEAP_LOCKED and is disabled by default.
This commit also changes the return value of micropython.heap_unlock() so
it returns the current lock-depth as well.
This is an extremely minimal port to the NXP i.MX RT, in the style of the
SAMD port It's largely based on the TinyUSB mimxrt implementation, using
the NXP SDK. It currently supports the Teensy 4.0 board with a REPL over
the USB-VCP interface.
This commit also adds the NXP SDK submodule (also from TinyUSB) to
lib/nxp_driver.
Note: if you already have the tinyusb submodule initialized recursively you
will need to run the following as the tinyusb sub-submodules have been
rearranged (upstream):
git submodule deinit lib/tinyusb
rm -rf .git/modules/lib/tinyusb
git submodule update --init lib/tinyusb
This makes a cleaner separation between the: driver, HCI UART and BT stack.
Also updated the naming to be more consistent (mp_bluetooth_hci_*).
Work done in collaboration with Jim Mussared aka @jimmo.
Move extmod/modbluetooth_nimble.* to extmod/nimble. And move common
Makefile lines to extmod/nimble/nimble.mk (which was previously only used
by stm32). This allows (upcoming) btstack to follow a similar structure.
Work done in collaboration with Jim Mussared aka @jimmo.
sys.stdout.flush() is needed on CPython to flush the output, and the change
in this commit makes such an expression also work on MicroPython (although
MicroPython doesn't actual need to do any flushing).
This string is recognised by uncrustify, to disable formatting in the
region marked by these comments. This is necessary in the qstrdef*.h files
to prevent modification of the strings within the Q(...). In other places
it is used to prevent excessive reformatting that would make the code less
readable.
If the built-in input() is enabled (which it is by default) then it needs
some form of readline, so supply it with one when MICROPY_USE_READLINE=0.
Fixes issue #5658.
This changes the signal used to trigger garbage collection from SIGUSR1 to
SIGRTMIN + 5. SIGUSR1 is quite common compared to SIGRTMIN (measured by
google search results) and is more likely to conflict with libraries that
may use the same signal.
POSIX specifies that there are at least 8 real-time signal so 5 was chosen
as a "random" number to further avoid potential conflict with libraries
that may use SIGRTMIN or SIGRTMAX.
Also, if we ever have a `usignal` module, it would be nice to leave SIGUSR1
and SIGUSR2 free for user programs.
The "random" module no longer uses the hardware RNG (the extmod version of
this module has a pseudo-random number generator), so the config option
MICROPY_PY_RANDOM_HW_RNG is no longer meaningful. This commit replaces it
with MICROPY_HW_ENABLE_RNG, which controls whether the hardware RNG is
included in the build.
The install target is current broken when PROG is used to override the
default executable name. This fixes it by removing the redundant TARGET
variable and uses PROG directly instead.
The install and uninstall targets are also moved to the common unix
Makefile so that all variants can be installed in the same way.
Currently it is not possible to override PREFIX when installing micropython
using the makefile. It is common practice to be able to run something like
this:
$ make install PREFIX=/usr DESTDIR=/tmp/staging
This fixes such usage.
This provides a more consistent C-level API to raise exceptions, ie moving
away from nlr_raise towards mp_raise_XXX. It also reduces code size by a
small amount on some ports.
The default value for MICROPYPATH used in unix/main.c is
"~/.micropython/lib:/usr/lib/micropython" which has 2 problems when used in
the Windows port:
- it has a ':' as path separator but the port uses ';' so the entire string
is effectively discarded since it gets interpreted as a single path which
doesn't exist
- /usr/lib/micropython is not a valid path in a standard Windows
environment
Override the value with a suitable default.
If the exception doesn't need printf-style formatting then calling
mp_raise_msg is more efficient. Also shorten exception messages to match
style in core and other ports.
It's not needed. The C integer implicit promotion rules mean that the
uint8_t of the incoming character is promoted to a (signed) int, matching
the type of interrupt_char. Thus the uint8_t incoming character can never
be equal to -1 (the value of interrupt_char that indicate that interruption
is disabled).
The mp_keyboard_interrupt() function does exactly what is needed here, and
using it gets ctrl-C working when MICROPY_ENABLE_SCHEDULER is enabled on
these ports (and MICROPY_ASYNC_KBD_INTR is disabled).
This is a more logical place to clear the KeyboardInterrupt traceback,
right before it is set as a pending exception. The clearing is also
optimised from a function call to a simple store of NULL.
It was originally in IRAM due to the linker script specification, but
since the function moved from lib/utils/interrupt_char.c to py/scheduler.c
it needs to be put back in IRAM.
This function is tightly coupled to the state and behaviour of the
scheduler, and is a core part of the runtime: to schedule a pending
exception. So move it there.
Pending exceptions would otherwise be handled later on where there may not
be an NLR handler in place.
A similar fix is also made to the unix port's REPL handler.
Fixes issues #4921 and #5488.
Previous behaviour is when this argument is set to "true", in which case
the function will raise any pending exception. Setting it to "false" will
cancel any pending exception.
Enables the littlefs (v1 and v2) filesystems in the zephyr port.
Example usage with the internal flash on the reel_board or the
rv32m1_vega_ri5cy board:
import os
from zephyr import FlashArea
bdev = FlashArea(FlashArea.STORAGE, 4096)
os.VfsLfs2.mkfs(bdev)
os.mount(bdev, '/flash')
with open('/flash/hello.txt','w') as f:
f.write('Hello world')
print(open('/flash/hello.txt').read())
Things get a little trickier with the frdm_k64f due to the micropython
application spilling into the default flash storage partition defined
for this board. The zephyr build system doesn't enforce the flash
partitioning when mcuboot is not enabled (which it is not for
micropython). For now we can demonstrate that the littlefs filesystem
works on frdm_k64f by constructing the FlashArea block device on the
mcuboot scratch partition instead of the storage partition. Do this by
replacing the FlashArea.STORAGE constant above with the value 4.
Introduces a new zephyr.FlashArea class that uses the zephyr flash map
api to implement the uos.AbstractBlockDev protocol. The flash driver is
enabled on the frdm_k64f board, reel_board, and rv32m1_vega_ri5cy board.
The standard and extended block device protocols are both supported,
therefore this class can be used with file systems like littlefs which
require the extended interface.
Enables the fatfs filesystem in the zephyr port.
Example usage with an SD card on the mimxrt1050_evk board:
import zephyr, os
bdev = zephyr.DiskAccess('SDHC')
os.VfsFat.mkfs(bdev)
os.mount(bdev, '/sd')
with open('/sd/hello.txt','w') as f:
f.write('Hello world')
print(open('/sd/hello.txt').read())
Introduces a new zephyr.DiskAccess class that uses the zephyr disk
access api to implement the uos.AbstractBlockDev protocol. This can be
used with any type of zephyr disk access driver, which currently
includes SDHC, RAM, and FLASH implementations. The SDHC driver is
enabled on the mimxrt1050_evk board.
Only the standard block device protocol (without the offset parameter)
can be supported with the zephyr disk access api, therefore this class
cannot be used with file systems like littlefs which require the
extended interface. In the future it may be possible to implement the
extended interface in a new class using the zephyr flash api.
CPython also has os.environ, which should be used instead of os.getenv()
due to caching in the os.environ mapping. But for MicroPython it makes
sense to only implement the basic underlying methods, ie getenv/putenv/
unsetenv.
This adds a -h option to print the usage help text and adds a new, shorter
error message that is printed when invalid arguments are given. This
behaviour follows CPython (and other tools) more closely.
This commit modifies the usage() function to only print the -v option help
text when MICROPY_DEBUG_PRINTERS is enabled. The -v option requires this
build option to be enabled for it to have any effect.
The usage text is also modified to show the -i and -m options, and also
show that running a command, module or file are mutually exclusive.
This adds support for a MICROPYINSPECT environment variable that works
exactly like PYTHONINSPECT; per CPython docs:
If this is set to a non-empty string it is equivalent to specifying the
-i option.
This variable can also be modified by Python code using os.environ to
force inspect mode on program termination.
Zephyr removed the build target syscall_macros_h_target in commit
f4adf107f31674eb20881531900ff092cc40c07f. Removes reference from
MicroPython to fix build errors in the zephyr port.
This change is not compatible with zephyr v2.1 or earlier. It will be
compatible with Zephyr v2.2 when released.
The SYS_CLOCK_HW_CYCLES_TO_NS macro was deprecated in zephyr commit
8892406c1de21bd5de5877f39099e3663a5f3af1. This commit updates MicroPython
to use the new k_cyc_to_ns_floor64 api and fix build warnings in the zephyr
port.
This change is compatible with Zephyr v2.1 and later.
Zephyr restructured its includes in v2.0 and removed compatibility shims
after two releases in commit 1342dadc365ee22199e51779185899ddf7478686.
Updates include paths in MicroPython accordingly to fix build errors in
the zephyr port.
These changes are compatible with Zephyr v2.0 and later.
When stdout is redirected it is useful to have errors printed to stderr
instead of being redirected.
mp_stderr_print() can't be used in these two instances since the
MicroPython runtime is not running so we use fprintf(stderr) instead.
The ability to change the host is a frequently requested feature, so
explicitly document how it can be achieved using the existing code.
See issues #2121, #4385, #4622, #5122, #5536.
This commit improves pllvalues.py to generate PLL values for H7 MCUs that
are valid (VCO in and out are in range) and extend for the entire range of
SYSCLK values up to 400MHz (up to 480MHz is currently unsupported).
This board now has the following 3 build configurations:
- mboot + external QSPI in XIP mode + internal filesystem
- mboot + external QSPI with filesystem (the default)
- no mboot + external QSPI with filesystem
With a SPI flash that has more than 16MB, 32-bit addressing is required
rather than the standard 24-bit. This commit adds support for 32-bit
addressing so that the SPI flash commands (read/write/erase) are selected
automatically depending on the size of the address being used at each
operation.
This modifies the signature of mp_thread_set_state() to use
mp_state_thread_t* instead of void*. This matches the return type of
mp_thread_get_state(), which returns the same value.
`struct _mp_state_thread_t;` had to be moved before
`#include <mpthreadport.h>` since the stm32 port uses it in its
mpthreadport.h file.
PLLM is shared among all PLL blocks on F7 MCUs, and this calculation to
configure PLLSAI to have 48MHz on the P output previously assumed that PLLM
is equal to HSE (eg PLLM=25 for HSE=25MHz). This commit relaxes this
assumption to allow other values of PLLM.
It is not safe to enable MICROPY_ASYNC_KBD_INTR and MICROPY_PY_THREAD_GIL
at the same time. This will trigger a compiler error to ensure that it
is not possible to make this mistake.
Addition of GIL EXIT/ENTER pairs are:
- modos: release the GIL during system calls. CPython does this as well.
- moduselect: release the GIL during the poll() syscall. This call can be
blocking, so it is important to allow other threads to run at this time.
- modusocket: release the GIL during system calls. Many of these calls can
be blocking, so it is important to allow other threads to run.
- unix_mphal: release the GIL during the read and write syscalls in
mp_hal_stdin_rx_chr and mp_hal_stdout_tx_strn. If we don't do this
threads are blocked when the REPL or the builtin input function are used.
- file, main, mpconfigport.h: release GIL during syscalls in built-in
functions that could block.
When CFLAGS_EXTRA/LDFLAGS_EXTRA (or anything) is set on the command line of
a make invocation then it will completely override any setting or appending
of these variables in the makefile(s). This means builds like the coverage
variant will have their mpconfigvariant.mk settings overridden. Fix this
by using CFLAGS/LDFLAGS exclusively in the makefile(s), reserving the
CFLAGS_EXTRA/LDFLAGS_EXTRA variables for external command-line use only.
Translate common Ctrl-Left/Right/Delete/Backspace to the EMACS-style
sequences (i.e. Alt key based) for forward-word, backward-word, forwad-kill
and backward-kill. Requires MICROPY_REPL_EMACS_WORDS_MOVE to be defined so
the readline implementation interprets these.
Prior to this commit, if the flash filesystem was not formatted then it
would error: "AttributeError: 'FlashBdev' object has no attribute 'mount'".
That is due to it not being able to detect the filesystem on the block
device and just trying to mount the block device directly.
This commit fixes the issue by just catching all exceptions. Also it's not
needed to try the mount if `flashbdev.bdev` is None.
This commit adds backward-word, backward-kill-word, forward-word,
forward-kill-word sequences for the REPL, with bindings to Alt+F, Alt+B,
Alt+D and Alt+Backspace respectively. It is disabled by default and can be
enabled via MICROPY_REPL_EMACS_WORDS_MOVE.
Further enabling MICROPY_REPL_EMACS_EXTRA_WORDS_MOVE adds extra bindings
for these new sequences: Ctrl+Right, Ctrl+Left and Ctrl+W.
The features are enabled on unix micropython-coverage and micropython-dev.
Invoking "make" will still build the standard "micropython" executable, but
other variants are now build using, eg, "make VARIANT=minimal". This
follows how bare-metal ports specify a particular board, and allows running
any make target (eg clean, test) with any variant.
Convenience targets (eg "make coverage") are provided to retain the old
behaviour, at least for now.
See issue #3043.
Most types are in rodata/ROM, and mp_obj_base_t.type is a constant pointer,
so enforce this const-ness throughout the code base. If a type ever needs
to be modified (eg a user type) then a simple cast can be used.
This change has the following effects:
- Reduces the resolution of the RTC sub-second counter from 30.52us to
122.07us.
- Allows RTC.calibration() to now support positive values (as well as
negative values).
- Reduces VBAT current consumption in standby mode by a small amount.
For general purpose use 122us resolution of the sub-second counter is
good enough, and the benefits of full range calibration and minor reduction
in VBAT consumption are worth the change.
Make version 4.1 and lower does not allow $call as the main expression on a
line, so assign the result of the $call to a dummy variable.
Fixes issue #5426.
Instances of the slice class are passed to __getitem__() on objects when
the user indexes them with a slice. In practice the majority of the time
(other than passing it on untouched) is to work out what the slice means in
the context of an array dimension of a particular length. Since Python 2.3
there has been a method on the slice class, indices(), that takes a
dimension length and returns the real start, stop and step, accounting for
missing or negative values in the slice spec. This commit implements such
a indices() method on the slice class.
It is configurable at compile-time via MICROPY_PY_BUILTINS_SLICE_INDICES,
disabled by default, enabled on unix, stm32 and esp32 ports.
This commit also adds new tests for slice indices and for slicing unicode
strings.
The existing uos.remove cannot be used to remove directories, instead
uos.rmdir is needed. And also provide uos.rename to get a good set of
filesystem functionality without requiring additional Python-level os
functions (eg using ffi).
For the 3 ports that already make use of this feature (stm32, nrf and
teensy) this doesn't make any difference, it just allows to disable it from
now on.
For other ports that use pyexec, this decreases code size because the debug
printing code is dead (it can't be enabled) but the compiler can't deduce
that, so code is still emitted.
Most stm32 boards can now be built in nan-boxing mode via:
$ make NANBOX=1
Note that if float is enabled then it will be forced to double-precision.
Also, native emitters will be disabled.
Move webrepl support code from ports/esp8266/modules into extmod/webrepl
(to be alongside extmod/modwebrepl.c), and use frozen manifests to include
it in the build on esp8266 and esp32.
A small modification is made to webrepl.py to make it work on non-ESP
ports, i.e. don't call dupterm_notify if not available.
- Corrected pin assignments and checked with CubeMX.
- Added additional I2C and UARTs.
- Added Ethernet interface definitions with lwIP and SSL support (but
Ethernet is currently unsupported on H7 MCUs so not fully enabled).
- Removed remarks on DFU/OCD in mpconfigboard.h because deploy-stlink works
fine too.
- Added more UARTs, I2C, corrected SPI, CAN, etc; verified against CubeMX.
- Adapted pins.csv to remove errors, add omissions, etc. according to
NUCLEO-144 User Manual.
- Changed linker file stm32f767.ld to reflect correct size of the Flash.
- Tested with LAN and SD card.
The Nucleo board does not have an SD card slot but does have the requisite
pins next to each other and labelled, so provide the configuration for
convenience.
Implements text, rodata and bss generalised relocations, as well as generic
qstr-object linking. This allows importing dynamic native modules on all
supported architectures in a unified way.
The default protection for the BLE ringbuf is to use
MICROPY_BEGIN_ATOMIC_SECTION, which disables all interrupts. On stm32 it
only needs to disable the lowest priority IRQ, pendsv, because that's the
IRQ level at which the BLE stack is driven.
qstrs in this file are always included in all builds, even if not used
anywhere. So remove those that are never needed, and make USB names
conditional on having USB enabled.
And return -MP_EIO if calling storage_read_block/storage_write_block fails.
This lines up with the return type and value (negative for error) of the
calls to MICROPY_HW_BDEV_READBLOCKS (and WRITEBLOCKS, and BDEV2 versions).
The pyb.Flash() class can now be used to construct objects which reference
sections of the flash storage, starting at a certain offset and going for a
certain length. Such objects also support the extended block protocol.
The signature for the constructor is: pyb.Flash(start=-1, len=-1).
This commit refactors and generalises the boot-mount routine on stm32 so
that it can mount filesystems of arbitrary type. That is, it no longer
assumes that the filesystem is FAT. It does this by using mp_vfs_mount()
which does auto-detection of the filesystem type.
Using mp_hal_delay_ms allows the scheduler to run, which might result in
another transmit operation happening, which would bypass the sleep (and
fail). Use mp_hal_delay_us instead.
The compile-time configuration value MICROPY_HW_RTC_USER_MEM_MAX can now be
used to define the amount of memory set aside for RTC.memory(). If this
value is configured to zero then the RTC.memory functionality is not
included in the build.