New instruction format 'ivABC' (a variant of iABC where parameter vC has
10 bits) allows constructors of up to 1024 elements to be coded without
EXTRAARG.
Instead of a fixed limit of 50 registers (which, in a bad worst case,
can limit the nesting of constructors to 5 levels), the compiler
computes an individual limit for each constructor based on how many
registers are available when it runs. This limit then controls the
frequency of SETLIST instructions.
Several definitions that don't need to be "global" (that is, that
concerns only specific parts of the code) moved out of llimits.h,
to more appropriate places.
Function 'leaveblock' was generating "break" label before removing
variables from the closing block. If 'createlabel' created a 'close'
instruction (which it did when matching a goto/break that exited
the scope of an upvalue), that instruction would use the wrong level.
More uses of macros 'likely'/'unlikely' (renamed to
'l_likely'/'l_unlikely'), both in range (extended to the
libraries) and in scope (extended to hooks, stack growth).
A "with stack" implementation gains too little in performance to be
worth all the noise from C-stack overflows.
This commit is almost a sketch, to test performance. There are several
pending stuff:
- review control of C-stack overflow and error messages;
- what to do with setcstacklimit;
- review comments;
- review unroll of Lua calls.
The parser were mixing compiler indices of variables with stack indices,
so that when a to-be-closed variable was used inside the scope of
compile-time constants (which may be optimized away), it might be closed
in the wrong place. (See new tests for examples.)
Besides fixing the bugs, this commit also changed comments and variable
names to avoid that kind of confusion and added tests.
The code should not compute an instruction address before checking that
it exists. (Virtually no machine complains of computing an invalid
address, as long as the address is not used, but for ISO C that is
undefined behavior.)
This function was computing invalid instruction addresses when the
expression was not a multi-return instruction. (Virtually all machines
don't raise errors when computing an invalid address, as long as the
address is not accessed, but this computation is undefined behavior in
ISO C.)
Attributes changed to posfixed ('x <const>', instead of '<const> x'),
and "toclose" renamed to "close". Posfixed attributes seem to make it
clearer that it applies to only one variable when there are multiple
variables.
- OP_NEWTABLE can use 'ra + 1' to set top (instead of ci->top);
- OP_CLOSE doesn't need to set top ('Protect' already does that);
- OP_TFORCALL must use 'ProtectNT', to preserve the top already set.
(That was a small bug, because iterators could be called with
extra parameters besides the state and the control variable.)
- Comments and an extra test for the bug in previous item.
String literal expressions have their own kind VKSTR, instead of the
generic VK. This allows strings to "cross" functions without entering
their constant tables (e.g., if they are used only by some nested
function).
Opcodes OP_NEWTABLE and OP_SETLIST use the same representation to
store the size of the array part of a table. This new representation
can go up to 2^33 (8 + 25 bits).
OP_NEWTABLE is followed by an OP_EXTRAARG, so that it can keep
the exact size of the array part of the table to be created.
(Functions 'luaO_int2fb'/'luaO_fb2int' were removed.)
In the generic for loop, it is simpler for OP_TFORLOOP to use the
same 'ra' as OP_TFORCALL. Moreover, the internal names of the loop
temporaries "(for ...)" don't need to leak internal details (even
because the numerical for loop doesn't have a fixed role for each of
its temporaries).
This commit detaches the number of active variables from the
number of variables in the stack, during compilation. Soon,
compile-time constants will be propagated and therefore will
not exist during run time (in the stack).
VLOCAL expressions keep a reference to their corresponding 'Vardesc',
and 'Upvaldesc' (for upvalues) has a field 'ro' (read-only). So, it is
easier to check whether a variable is read-only. The decoupling in
VLOCAL between 'vidx' ('Vardesc' index) and 'sidx' (stack index)
should also help the forthcoming implementation of compile-time
constant propagation.
The syntax for local attributes ('const'/'toclose') was unified with
the regular syntax for local variables, so that we can have variables
with attributes in local definitions with multiple names; for instance:
local <toclose> f, <const> err = io.open(fname)
This new syntax does not implement constant propagation, yet.
This commit also has some small improvements to the manual.
Removed the field 'name' from the structure 'Vardesc', as the name
of the local variable is already available in the prototype of the
function, through the index 'idx'.
- new error message for "attempt to assign to const variable"
- note in the manual about compatibility options
- comments
- small changes in 'read_line' and 'pushstr'
The flag for to-be-closed variables was changed from '*toclose'
to '<toclose>'. Several people found confusing the old syntax and
the new one has a clear terminator, making it more flexible for
future changes.
When calling metamethods for things like 'a < 3.0', which generates
the opcode OP_LTI, the C register tells that the operand was
converted to an integer, so that it can be corrected to float when
calling a metamethod.
This commit also includes some other stuff:
- file 'onelua.c' added to the project
- opcode OP_PREPVARARG renamed to OP_VARARGPREP
- comparison opcodes rewritten through macros
The numerical 'for' loop over integers now uses a precomputed counter
to control its number of iteractions. This change eliminates several
weird cases caused by overflows (wrap-around) in the control variable.
(It also ensures that every integer loop halts.)
Also, the special opcodes for the usual case of step==1 were removed.
(The new code is already somewhat complex for the usual case,
but efficient.)
* unification of the 'nny' and 'nCcalls' counters;
* external C functions ('lua_CFunction') count more "slots" in
the C stack (to allow for their possible use of buffers)
* added a new test script specific for C-stack overflows. (Most
of those tests were already present, but concentrating them
in a single script easies the task of checking whether
'LUAI_MAXCCALLS' is adequate in a system.)
A to-be-closed variable must be closed when a block ends, so even
a 'return foo()' cannot directly returns the results of 'foo'; the
function must close the scope before returning.