fltk/src/fl_draw_pixmap.cxx

430 lines
12 KiB
C++
Raw Normal View History

//
// "$Id$"
//
// Pixmap drawing code for the Fast Light Tool Kit (FLTK).
//
// Copyright 1998-2009 by Bill Spitzak and others.
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Library General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems on the following page:
//
// http://www.fltk.org/str.php
//
// Implemented without using the xpm library (which I can't use because
// it interferes with the color cube used by fl_draw_image).
// Current implementation is cheap and slow, and works best on a full-color
// display. Transparency is not handled, and colors are dithered to
// the color cube. Color index is achieved by adding the id
// characters together! Also mallocs a lot of temporary memory!
// Notice that there is no pixmap file interface. This is on purpose,
// as I want to discourage programs that require support files to work.
// All data needed by a program ui should be compiled in!!!
#include <FL/Fl.H>
#include <FL/fl_draw.H>
#include <FL/x.H>
#include <stdio.h>
#include "flstring.h"
static int ncolors, chars_per_pixel;
/**
Get the dimensions of a pixmap.
An XPM image contains the dimensions in its data. This function
returns te width and height.
\param[in] data pointer to XPM image data.
\param[out] w,h width and height of image
\returns non-zero if the dimensions were parsed OK
\returns 0 if there were any problems
*/
int fl_measure_pixmap(/*const*/ char* const* data, int &w, int &h) {
return fl_measure_pixmap((const char*const*)data,w,h);
}
/**
Get the dimensions of a pixmap.
\see fl_measure_pixmap(char* const* data, int &w, int &h)
*/
int fl_measure_pixmap(const char * const *cdata, int &w, int &h) {
int i = sscanf(cdata[0],"%d%d%d%d",&w,&h,&ncolors,&chars_per_pixel);
if (i<4 || w<=0 || h<=0 ||
chars_per_pixel!=1 && chars_per_pixel!=2) return w=0;
return 1;
}
#ifdef U64
// The callback from fl_draw_image to get a row of data passes this:
struct pixmap_data {
int w, h;
const uchar*const* data;
union {
U64 colors[256];
U64* byte1[256];
};
};
// callback for 1 byte per pixel:
static void cb1(void*v, int x, int y, int w, uchar* buf) {
pixmap_data& d = *(pixmap_data*)v;
const uchar* p = d.data[y]+x;
U64* q = (U64*)buf;
for (int X=w; X>0; X-=2, p += 2) {
if (X>1) {
# if WORDS_BIGENDIAN
*q++ = (d.colors[p[0]]<<32) | d.colors[p[1]];
# else
*q++ = (d.colors[p[1]]<<32) | d.colors[p[0]];
# endif
} else {
# if WORDS_BIGENDIAN
*q++ = d.colors[p[0]]<<32;
# else
*q++ = d.colors[p[0]];
# endif
}
}
}
// callback for 2 bytes per pixel:
static void cb2(void*v, int x, int y, int w, uchar* buf) {
pixmap_data& d = *(pixmap_data*)v;
const uchar* p = d.data[y]+2*x;
U64* q = (U64*)buf;
for (int X=w; X>0; X-=2) {
U64* colors = d.byte1[*p++];
int index = *p++;
if (X>1) {
U64* colors1 = d.byte1[*p++];
int index1 = *p++;
# if WORDS_BIGENDIAN
*q++ = (colors[index]<<32) | colors1[index1];
# else
*q++ = (colors1[index1]<<32) | colors[index];
# endif
} else {
# if WORDS_BIGENDIAN
*q++ = colors[index]<<32;
# else
*q++ = colors[index];
# endif
}
}
}
#else // U32
// The callback from fl_draw_image to get a row of data passes this:
struct pixmap_data {
int w, h;
const uchar*const* data;
union {
U32 colors[256];
U32* byte1[256];
};
};
// callback for 1 byte per pixel:
static void cb1(void*v, int x, int y, int w, uchar* buf) {
pixmap_data& d = *(pixmap_data*)v;
const uchar* p = d.data[y]+x;
U32* q = (U32*)buf;
for (int X=w; X--;) *q++ = d.colors[*p++];
}
// callback for 2 bytes per pixel:
static void cb2(void*v, int x, int y, int w, uchar* buf) {
pixmap_data& d = *(pixmap_data*)v;
const uchar* p = d.data[y]+2*x;
U32* q = (U32*)buf;
for (int X=w; X--;) {
U32* colors = d.byte1[*p++];
*q++ = colors[*p++];
}
}
#endif // U64 else U32
uchar **fl_mask_bitmap; // if non-zero, create bitmap and store pointer here
/**
Draw XPM image data, with the top-left corner at the given position.
The image is dithered on 8-bit displays so you won't lose color
space for programs displaying both images and pixmaps.
\param[in] data pointer to XPM image data
\param[in] x,y position of top-left corner
\param[in] bg background color
\returns 0 if there was any error decoding the XPM data.
*/
int fl_draw_pixmap(/*const*/ char* const* data, int x,int y,Fl_Color bg) {
return fl_draw_pixmap((const char*const*)data,x,y,bg);
}
#ifdef WIN32
// to compute an unused color to be used for the pixmap background
FL_EXPORT UINT win_pixmap_bg_color; // the RGB() of the pixmap background color
static int color_count; // # of non-transparent colors used in pixmap
static uchar *used_colors; // used_colors[3*i+j] j=0,1,2 are the RGB values of the ith used color
static void make_unused_color(uchar &r, uchar &g, uchar &b)
// makes an RGB triplet different from all the colors used in the pixmap
// and compute win_pixmap_bg_color from this triplet
{
int i;
r = 2; g = 3; b = 4;
while (1) {
for ( i = 0; i < color_count; i++) {
if(used_colors[3*i] == r && used_colors[3*i+1] == g && used_colors[3*i+2] == b) break;
}
if (i >= color_count) {
free(used_colors);
win_pixmap_bg_color = RGB(r, g, b);
return;
}
if (r < 255) r++;
else {
r = 0;
if (g < 255) g++;
else {
g = 0;
b++;
}
}
}
}
#endif
/**
Draw XPM image data, with the top-left corner at the given position.
\see fl_draw_pixmap(char* const* data, int x, int y, Fl_Color bg)
*/
int fl_draw_pixmap(const char*const* cdata, int x, int y, Fl_Color bg) {
pixmap_data d;
if (!fl_measure_pixmap(cdata, d.w, d.h)) return 0;
const uchar*const* data = (const uchar*const*)(cdata+1);
int transparent_index = -1;
uchar *transparent_c = (uchar *)0; // such that transparent_c[0,1,2] are the RGB of the transparent color
#ifdef WIN32
color_count = 0;
used_colors = (uchar *)malloc(abs(ncolors)*3*sizeof(uchar));
#endif
if (ncolors < 0) { // FLTK (non standard) compressed colormap
ncolors = -ncolors;
const uchar *p = *data++;
// if first color is ' ' it is transparent (put it later to make
// it not be transparent):
if (*p == ' ') {
uchar* c = (uchar*)&d.colors[(int)' '];
#ifdef U64
*(U64*)c = 0;
# if WORDS_BIGENDIAN
c += 4;
# endif
#endif
transparent_index = ' ';
Fl::get_color(bg, c[0], c[1], c[2]); c[3] = 0;
transparent_c = c;
p += 4;
ncolors--;
}
// read all the rest of the colors:
for (int i=0; i < ncolors; i++) {
uchar* c = (uchar*)&d.colors[*p++];
#ifdef U64
*(U64*)c = 0;
# if WORDS_BIGENDIAN
c += 4;
# endif
#endif
#ifdef WIN32
used_colors[3*color_count] = *p;
used_colors[3*color_count+1] = *(p+1);
used_colors[3*color_count+2] = *(p+2);
color_count++;
#endif
*c++ = *p++;
*c++ = *p++;
*c++ = *p++;
#ifdef __APPLE_QUARTZ__
*c = 255;
#else
*c = 0;
#endif
}
} else { // normal XPM colormap with names
if (chars_per_pixel>1) memset(d.byte1, 0, sizeof(d.byte1));
for (int i=0; i<ncolors; i++) {
const uchar *p = *data++;
// the first 1 or 2 characters are the color index:
int ind = *p++;
uchar* c;
if (chars_per_pixel>1) {
#ifdef U64
U64* colors = d.byte1[ind];
if (!colors) colors = d.byte1[ind] = new U64[256];
#else
U32* colors = d.byte1[ind];
if (!colors) colors = d.byte1[ind] = new U32[256];
#endif
c = (uchar*)&colors[*p];
ind = (ind<<8)|*p++;
} else {
c = (uchar *)&d.colors[ind];
}
// look for "c word", or last word if none:
const uchar *previous_word = p;
for (;;) {
while (*p && isspace(*p)) p++;
uchar what = *p++;
while (*p && !isspace(*p)) p++;
while (*p && isspace(*p)) p++;
if (!*p) {p = previous_word; break;}
if (what == 'c') break;
previous_word = p;
while (*p && !isspace(*p)) p++;
}
#ifdef U64
*(U64*)c = 0;
# if WORDS_BIGENDIAN
c += 4;
# endif
#endif
#ifdef __APPLE_QUARTZ__
c[3] = 255;
#endif
int parse = fl_parse_color((const char*)p, c[0], c[1], c[2]);
if (parse) {
#ifdef WIN32
used_colors[3*color_count] = c[0];
used_colors[3*color_count+1] = c[1];
used_colors[3*color_count+2] = c[2];
color_count++;
#endif
}
else {
// assume "None" or "#transparent" for any errors
// "bg" should be transparent...
Fl::get_color(bg, c[0], c[1], c[2]);
#ifdef __APPLE_QUARTZ__
c[3] = 0;
#endif
transparent_index = ind;
transparent_c = c;
}
}
}
d.data = data;
#ifdef WIN32
if (transparent_c) {
make_unused_color(transparent_c[0], transparent_c[1], transparent_c[2]);
}
else {
uchar r, g, b;
make_unused_color(r, g, b);
}
#endif
#ifdef __APPLE_QUARTZ__
if (fl_device->type() == Fl_Quartz_Graphics_Driver::device_type ) {
bool transparent = (transparent_index>=0);
transparent = true;
U32 *array = new U32[d.w * d.h], *q = array;
for (int Y = 0; Y < d.h; Y++) {
const uchar* p = data[Y];
if (chars_per_pixel <= 1) {
for (int X = 0; X < d.w; X++) {
*q++ = d.colors[*p++];
}
} else {
for (int X = 0; X < d.w; X++) {
U32* colors = (U32*)d.byte1[*p++];
*q++ = colors[*p++];
}
}
}
CGColorSpaceRef lut = CGColorSpaceCreateDeviceRGB();
CGDataProviderRef src = CGDataProviderCreateWithData( 0L, array, d.w * d.h * 4, 0L);
CGImageRef img = CGImageCreate(d.w, d.h, 8, 4*8, 4*d.w,
lut, transparent?kCGImageAlphaLast:kCGImageAlphaNoneSkipLast,
src, 0L, false, kCGRenderingIntentDefault);
CGColorSpaceRelease(lut);
CGDataProviderRelease(src);
CGRect rect = { { x, y} , { d.w, d.h } };
Fl_X::q_begin_image(rect, 0, 0, d.w, d.h);
CGContextDrawImage(fl_gc, rect, img);
Fl_X::q_end_image();
CGImageRelease(img);
delete array;
}
else {
#endif // __APPLE_QUARTZ__
// build the mask bitmap used by Fl_Pixmap:
if (fl_mask_bitmap && transparent_index >= 0) {
int W = (d.w+7)/8;
uchar* bitmap = new uchar[W * d.h];
*fl_mask_bitmap = bitmap;
for (int Y = 0; Y < d.h; Y++) {
const uchar* p = data[Y];
if (chars_per_pixel <= 1) {
int dw = d.w;
for (int X = 0; X < W; X++) {
uchar b = (dw-->0 && *p++ != transparent_index);
if (dw-->0 && *p++ != transparent_index) b |= 2;
if (dw-->0 && *p++ != transparent_index) b |= 4;
if (dw-->0 && *p++ != transparent_index) b |= 8;
if (dw-->0 && *p++ != transparent_index) b |= 16;
if (dw-->0 && *p++ != transparent_index) b |= 32;
if (dw-->0 && *p++ != transparent_index) b |= 64;
if (dw-->0 && *p++ != transparent_index) b |= 128;
*bitmap++ = b;
}
} else {
uchar b = 0, bit = 1;
for (int X = 0; X < d.w; X++) {
int ind = *p++;
ind = (ind<<8) | (*p++);
if (ind != transparent_index) b |= bit;
if (bit < 128) bit <<= 1;
else {
*bitmap++ = b;
b = 0;
bit = 1;
}
}
if (bit > 1) *bitmap++ = b;
}
}
}
fl_draw_image(chars_per_pixel==1 ? cb1 : cb2, &d, x, y, d.w, d.h, 4);
#ifdef __APPLE_QUARTZ__
}
#endif
if (chars_per_pixel > 1) for (int i = 0; i < 256; i++) delete[] d.byte1[i];
return 1;
}
//
// End of "$Id$".
//