fltk/src/Fl_Bitmap.cxx

283 lines
7.9 KiB
C++
Raw Normal View History

//
// "$Id: Fl_Bitmap.cxx,v 1.5.2.4.2.6 2001/11/24 02:46:19 easysw Exp $"
//
// Bitmap drawing routines for the Fast Light Tool Kit (FLTK).
//
// Copyright 1998-2001 by Bill Spitzak and others.
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Library General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems to "fltk-bugs@fltk.org".
//
#include <FL/Fl.H>
#include <FL/x.H>
#include <FL/fl_draw.H>
#include <FL/Fl_Widget.H>
#include <FL/Fl_Menu_Item.H>
#include <FL/Fl_Bitmap.H>
#include <string.h>
#ifdef WIN32 // Windows bitmask functions...
// 'fl_create_bitmap()' - Create a 1-bit bitmap for drawing...
static Fl_Bitmask fl_create_bitmap(int w, int h, const uchar *data) {
// we need to pad the lines out to words & swap the bits
// in each byte.
int w1 = (w+7)/8;
int w2 = ((w+15)/16)*2;
uchar* newarray = new uchar[w2*h];
const uchar* src = data;
uchar* dest = newarray;
Fl_Bitmask id;
static uchar reverse[16] = /* Bit reversal lookup table */
{ 0x00, 0x88, 0x44, 0xcc, 0x22, 0xaa, 0x66, 0xee,
0x11, 0x99, 0x55, 0xdd, 0x33, 0xbb, 0x77, 0xff };
for (int y=0; y < h; y++) {
for (int n = 0; n < w1; n++, src++)
*dest++ = (reverse[*src & 0x0f] & 0xf0) |
(reverse[(*src >> 4) & 0x0f] & 0x0f);
dest += w2-w1;
}
id = CreateBitmap(w, h, 1, 1, newarray);
delete[] newarray;
return id;
}
// 'fl_create_bitmask()' - Create an N-bit bitmap for masking...
Fl_Bitmask fl_create_bitmask(int w, int h, const uchar *data) {
// this won't work when the user changes display mode during run or
// has two screens with differnet depths
Fl_Bitmask id;
static uchar hiNibble[16] =
{ 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0 };
static uchar loNibble[16] =
{ 0x00, 0x08, 0x04, 0x0c, 0x02, 0x0a, 0x06, 0x0e,
0x01, 0x09, 0x05, 0x0d, 0x03, 0x0b, 0x07, 0x0f };
int np = GetDeviceCaps(fl_gc, PLANES); //: was always one on sample machines
int bpp = GetDeviceCaps(fl_gc, BITSPIXEL);//: 1,4,8,16,24,32 and more odd stuff?
int Bpr = (bpp*w+7)/8; //: bytes per row
int pad = Bpr&1, w1 = (w+7)/8, shr = ((w-1)&7)+1;
if (bpp==4) shr = (shr+1)/2;
uchar *newarray = new uchar[(Bpr+pad)*h];
uchar *dst = newarray;
const uchar *src = data;
for (int i=0; i<h; i++) {
// This is slooow, but we do it only once per pixmap
for (int j=w1; j>0; j--) {
uchar b = *src++;
if (bpp==1) {
*dst++ = ( hiNibble[b&15] ) | ( loNibble[(b>>4)&15] );
} else if (bpp==4) {
for (int k=(j==1)?shr:4; k>0; k--) {
*dst++ = "\377\360\017\000"[b&3];
b = b >> 2;
}
} else {
for (int k=(j==1)?shr:8; k>0; k--) {
if (b&1) {
*dst++=0;
if (bpp>8) *dst++=0;
if (bpp>16) *dst++=0;
if (bpp>24) *dst++=0;
} else {
*dst++=0xff;
if (bpp>8) *dst++=0xff;
if (bpp>16) *dst++=0xff;
if (bpp>24) *dst++=0xff;
}
b = b >> 1;
}
}
}
dst += pad;
}
id = CreateBitmap(w, h, np, bpp, newarray);
delete[] newarray;
return id;
}
Fl_Bitmask fl_create_bitmask(int w, int h, const uchar *data, int for_mask) {
// we need to pad the lines out to words & swap the bits
// in each byte.
int w1 = (w+7)/8;
int w2 = ((w+15)/16)*2;
uchar* newarray = new uchar[w2*h];
const uchar* src = data;
uchar* dest = newarray;
Fl_Bitmask id;
static uchar reverse[16] = /* Bit reversal lookup table */
{ 0x00, 0x88, 0x44, 0xcc, 0x22, 0xaa, 0x66, 0xee,
0x11, 0x99, 0x55, 0xdd, 0x33, 0xbb, 0x77, 0xff };
for (int y=0; y < h; y++) {
for (int n = 0; n < w1; n++, src++)
*dest++ = (reverse[*src & 0x0f] & 0xf0) |
(reverse[(*src >> 4) & 0x0f] & 0x0f);
dest += w2-w1;
}
id = CreateBitmap(w, h, 1, 1, newarray);
delete[] newarray;
return (id);
}
void fl_delete_bitmask(Fl_Bitmask bm) {
DeleteObject((HGDIOBJ)bm);
}
#else // X11 bitmask functions
Fl_Bitmask fl_create_bitmask(int w, int h, const uchar *data) {
return XCreateBitmapFromData(fl_display, fl_window, (const char *)data,
(w+7)&-8, h);
}
void fl_delete_bitmask(Fl_Bitmask bm) {
fl_delete_offscreen((Fl_Offscreen)bm);
}
#endif // WIN32
void Fl_Bitmap::draw(int XP, int YP, int WP, int HP, int cx, int cy) {
if (!array) {
draw_empty(XP, YP);
return;
}
// account for current clip region (faster on Irix):
int X,Y,W,H; fl_clip_box(XP,YP,WP,HP,X,Y,W,H);
cx += X-XP; cy += Y-YP;
// clip the box down to the size of image, quit if empty:
if (cx < 0) {W += cx; X -= cx; cx = 0;}
if ((cx+W) > w()) W = w()-cx;
if (W <= 0) return;
if (cy < 0) {H += cy; Y -= cy; cy = 0;}
if ((cy+H) > h()) H = h()-cy;
if (H <= 0) return;
#ifdef WIN32
if (!id) id = fl_create_bitmap(w(), h(), array);
HDC tempdc = CreateCompatibleDC(fl_gc);
SelectObject(tempdc, (HGDIOBJ)id);
SelectObject(fl_gc, fl_brush());
// secret bitblt code found in old MSWindows reference manual:
BitBlt(fl_gc, X, Y, W, H, tempdc, cx, cy, 0xE20746L);
DeleteDC(tempdc);
#else
if (!id) id = fl_create_bitmask(w(), h(), array);
XSetStipple(fl_display, fl_gc, id);
int ox = X-cx; if (ox < 0) ox += w();
int oy = Y-cy; if (oy < 0) oy += h();
XSetTSOrigin(fl_display, fl_gc, ox, oy);
XSetFillStyle(fl_display, fl_gc, FillStippled);
XFillRectangle(fl_display, fl_window, fl_gc, X, Y, W, H);
XSetFillStyle(fl_display, fl_gc, FillSolid);
#endif
}
Fl_Bitmap::~Fl_Bitmap() {
if (id) fl_delete_bitmask(id);
if (alloc_array) delete[] (uchar *)array;
}
void Fl_Bitmap::label(Fl_Widget* w) {
w->image(this);
}
void Fl_Bitmap::label(Fl_Menu_Item* m) {
}
Fl_Image *Fl_Bitmap::copy(int W, int H) {
// Optimize the simple copy where the width and height are the same...
if (W == w() && H == h()) return new Fl_Bitmap(array, w(), h());
// OK, need to resize the image data; allocate memory and
Fl_Bitmap *new_image; // New RGB image
uchar *new_array, // New array for image data
*new_ptr, // Pointer into new array
new_bit, // Bit for new array
old_bit; // Bit for old array
const uchar *old_ptr; // Pointer into old array
int sx, sy, // Source coordinates
dx, dy, // Destination coordinates
xerr, yerr, // X & Y errors
xmod, ymod, // X & Y moduli
xstep, ystep; // X & Y step increments
// Figure out Bresenheim step/modulus values...
xmod = w() % W;
xstep = w() / W;
ymod = h() % H;
ystep = h() / H;
// Allocate memory for the new image...
new_array = new uchar [H * (W + 7) / 8];
new_image = new Fl_Bitmap(new_array, W, H);
new_image->alloc_array = 1;
memset(new_array, 0, H * (W + 7) / 8);
// Scale the image using a nearest-neighbor algorithm...
for (dy = H, sy = 0, yerr = H / 2, new_ptr = new_array; dy > 0; dy --) {
for (dx = W, xerr = W / 2, old_ptr = array + sy * (w() + 7) / 8, sx = 0, new_bit = 128;
dx > 0;
dx --) {
old_bit = 128 >> (sx & 7);
if (old_ptr[sx / 8] & old_bit) *new_ptr |= new_bit;
if (new_bit > 1) new_bit >>= 1;
else {
new_bit = 128;
new_ptr ++;
}
sx += xstep;
xerr -= xmod;
if (xerr <= 0) {
xerr += W;
sx ++;
}
}
if (new_bit < 128) new_ptr ++;
sy += ystep;
yerr -= ymod;
if (yerr <= 0) {
yerr += H;
sy ++;
}
}
return new_image;
}
//
// End of "$Id: Fl_Bitmap.cxx,v 1.5.2.4.2.6 2001/11/24 02:46:19 easysw Exp $".
//