bgfx/examples/common/debugdraw/debugdraw.cpp
Бранимир Караџић 567c7c097f Adding more bounds overlap tests.
2019-02-09 21:22:45 -08:00

2577 lines
62 KiB
C++

/*
* Copyright 2011-2019 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
#include <bgfx/bgfx.h>
#include <bgfx/embedded_shader.h>
#include "debugdraw.h"
#include "../bgfx_utils.h"
#include "../packrect.h"
#include <bx/mutex.h>
#include <bx/math.h>
#include <bx/sort.h>
#include <bx/uint32_t.h>
#include <bx/handlealloc.h>
#ifndef DEBUG_DRAW_CONFIG_MAX_GEOMETRY
# define DEBUG_DRAW_CONFIG_MAX_GEOMETRY 256
#endif // DEBUG_DRAW_CONFIG_MAX_GEOMETRY
struct DebugVertex
{
float m_x;
float m_y;
float m_z;
float m_len;
uint32_t m_abgr;
static void init()
{
ms_decl
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.add(bgfx::Attrib::TexCoord0, 1, bgfx::AttribType::Float)
.add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true)
.end();
}
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl DebugVertex::ms_decl;
struct DebugUvVertex
{
float m_x;
float m_y;
float m_z;
float m_u;
float m_v;
uint32_t m_abgr;
static void init()
{
ms_decl
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float)
.add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true)
.end();
}
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl DebugUvVertex::ms_decl;
struct DebugShapeVertex
{
float m_x;
float m_y;
float m_z;
uint8_t m_indices[4];
static void init()
{
ms_decl
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.add(bgfx::Attrib::Indices, 4, bgfx::AttribType::Uint8)
.end();
}
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl DebugShapeVertex::ms_decl;
struct DebugMeshVertex
{
float m_x;
float m_y;
float m_z;
static void init()
{
ms_decl
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.end();
}
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl DebugMeshVertex::ms_decl;
static DebugShapeVertex s_quadVertices[4] =
{
{-1.0f, 0.0f, 1.0f, { 0, 0, 0, 0 } },
{ 1.0f, 0.0f, 1.0f, { 0, 0, 0, 0 } },
{-1.0f, 0.0f, -1.0f, { 0, 0, 0, 0 } },
{ 1.0f, 0.0f, -1.0f, { 0, 0, 0, 0 } },
};
static const uint16_t s_quadIndices[6] =
{
0, 1, 2,
1, 3, 2,
};
static DebugShapeVertex s_cubeVertices[8] =
{
{-1.0f, 1.0f, 1.0f, { 0, 0, 0, 0 } },
{ 1.0f, 1.0f, 1.0f, { 0, 0, 0, 0 } },
{-1.0f, -1.0f, 1.0f, { 0, 0, 0, 0 } },
{ 1.0f, -1.0f, 1.0f, { 0, 0, 0, 0 } },
{-1.0f, 1.0f, -1.0f, { 0, 0, 0, 0 } },
{ 1.0f, 1.0f, -1.0f, { 0, 0, 0, 0 } },
{-1.0f, -1.0f, -1.0f, { 0, 0, 0, 0 } },
{ 1.0f, -1.0f, -1.0f, { 0, 0, 0, 0 } },
};
static const uint16_t s_cubeIndices[36] =
{
0, 1, 2, // 0
1, 3, 2,
4, 6, 5, // 2
5, 6, 7,
0, 2, 4, // 4
4, 2, 6,
1, 5, 3, // 6
5, 7, 3,
0, 4, 1, // 8
4, 5, 1,
2, 3, 6, // 10
6, 3, 7,
};
static const uint8_t s_circleLod[] =
{
37,
29,
23,
17,
11,
};
static uint8_t getCircleLod(uint8_t _lod)
{
_lod = _lod > BX_COUNTOF(s_circleLod)-1 ? BX_COUNTOF(s_circleLod)-1 : _lod;
return s_circleLod[_lod];
}
static void circle(float* _out, float _angle)
{
float sa = bx::sin(_angle);
float ca = bx::cos(_angle);
_out[0] = sa;
_out[1] = ca;
}
static void squircle(float* _out, float _angle)
{
float sa = bx::sin(_angle);
float ca = bx::cos(_angle);
_out[0] = bx::sqrt(bx::abs(sa) ) * bx::sign(sa);
_out[1] = bx::sqrt(bx::abs(ca) ) * bx::sign(ca);
}
uint32_t genSphere(uint8_t _subdiv0, void* _pos0 = NULL, uint16_t _posStride0 = 0, void* _normals0 = NULL, uint16_t _normalStride0 = 0)
{
if (NULL != _pos0)
{
struct Gen
{
Gen(void* _pos, uint16_t _posStride, void* _normals, uint16_t _normalStride, uint8_t _subdiv)
: m_pos( (uint8_t*)_pos)
, m_normals( (uint8_t*)_normals)
, m_posStride(_posStride)
, m_normalStride(_normalStride)
{
static const float scale = 1.0f;
static const float golden = 1.6180339887f;
static const float len = bx::sqrt(golden*golden + 1.0f);
static const float ss = 1.0f/len * scale;
static const float ll = ss*golden;
static const bx::Vec3 vv[] =
{
{ -ll, 0.0f, -ss },
{ ll, 0.0f, -ss },
{ ll, 0.0f, ss },
{ -ll, 0.0f, ss },
{ -ss, ll, 0.0f },
{ ss, ll, 0.0f },
{ ss, -ll, 0.0f },
{ -ss, -ll, 0.0f },
{ 0.0f, -ss, ll },
{ 0.0f, ss, ll },
{ 0.0f, ss, -ll },
{ 0.0f, -ss, -ll },
};
m_numVertices = 0;
triangle(vv[ 0], vv[ 4], vv[ 3], scale, _subdiv);
triangle(vv[ 0], vv[10], vv[ 4], scale, _subdiv);
triangle(vv[ 4], vv[10], vv[ 5], scale, _subdiv);
triangle(vv[ 5], vv[10], vv[ 1], scale, _subdiv);
triangle(vv[ 5], vv[ 1], vv[ 2], scale, _subdiv);
triangle(vv[ 5], vv[ 2], vv[ 9], scale, _subdiv);
triangle(vv[ 5], vv[ 9], vv[ 4], scale, _subdiv);
triangle(vv[ 3], vv[ 4], vv[ 9], scale, _subdiv);
triangle(vv[ 0], vv[ 3], vv[ 7], scale, _subdiv);
triangle(vv[ 0], vv[ 7], vv[11], scale, _subdiv);
triangle(vv[11], vv[ 7], vv[ 6], scale, _subdiv);
triangle(vv[11], vv[ 6], vv[ 1], scale, _subdiv);
triangle(vv[ 1], vv[ 6], vv[ 2], scale, _subdiv);
triangle(vv[ 2], vv[ 6], vv[ 8], scale, _subdiv);
triangle(vv[ 8], vv[ 6], vv[ 7], scale, _subdiv);
triangle(vv[ 8], vv[ 7], vv[ 3], scale, _subdiv);
triangle(vv[ 0], vv[11], vv[10], scale, _subdiv);
triangle(vv[ 1], vv[10], vv[11], scale, _subdiv);
triangle(vv[ 2], vv[ 8], vv[ 9], scale, _subdiv);
triangle(vv[ 3], vv[ 9], vv[ 8], scale, _subdiv);
}
void addVert(const bx::Vec3& _v)
{
bx::store(m_pos, _v);
m_pos += m_posStride;
if (NULL != m_normals)
{
const bx::Vec3 normal = bx::normalize(_v);
bx::store(m_normals, normal);
m_normals += m_normalStride;
}
m_numVertices++;
}
void triangle(const bx::Vec3& _v0, const bx::Vec3& _v1, const bx::Vec3& _v2, float _scale, uint8_t _subdiv)
{
if (0 == _subdiv)
{
addVert(_v0);
addVert(_v1);
addVert(_v2);
}
else
{
const bx::Vec3 v01 = bx::mul(bx::normalize(bx::add(_v0, _v1) ), _scale);
const bx::Vec3 v12 = bx::mul(bx::normalize(bx::add(_v1, _v2) ), _scale);
const bx::Vec3 v20 = bx::mul(bx::normalize(bx::add(_v2, _v0) ), _scale);
--_subdiv;
triangle(_v0, v01, v20, _scale, _subdiv);
triangle(_v1, v12, v01, _scale, _subdiv);
triangle(_v2, v20, v12, _scale, _subdiv);
triangle(v01, v12, v20, _scale, _subdiv);
}
}
uint8_t* m_pos;
uint8_t* m_normals;
uint16_t m_posStride;
uint16_t m_normalStride;
uint32_t m_numVertices;
} gen(_pos0, _posStride0, _normals0, _normalStride0, _subdiv0);
}
uint32_t numVertices = 20*3*bx::uint32_max(1, (uint32_t)bx::pow(4.0f, _subdiv0) );
return numVertices;
}
bx::Vec3 getPoint(Axis::Enum _axis, float _x, float _y)
{
bx::Vec3 result;
switch (_axis)
{
case Axis::X:
result.x = 0.0f;
result.y = _x;
result.z = _y;
break;
case Axis::Y:
result.x = _y;
result.y = 0.0f;
result.z = _x;
break;
default:
result.x = _x;
result.y = _y;
result.z = 0.0f;
break;
}
return result;
}
#include "vs_debugdraw_lines.bin.h"
#include "fs_debugdraw_lines.bin.h"
#include "vs_debugdraw_lines_stipple.bin.h"
#include "fs_debugdraw_lines_stipple.bin.h"
#include "vs_debugdraw_fill.bin.h"
#include "vs_debugdraw_fill_mesh.bin.h"
#include "fs_debugdraw_fill.bin.h"
#include "vs_debugdraw_fill_lit.bin.h"
#include "vs_debugdraw_fill_lit_mesh.bin.h"
#include "fs_debugdraw_fill_lit.bin.h"
#include "vs_debugdraw_fill_texture.bin.h"
#include "fs_debugdraw_fill_texture.bin.h"
static const bgfx::EmbeddedShader s_embeddedShaders[] =
{
BGFX_EMBEDDED_SHADER(vs_debugdraw_lines),
BGFX_EMBEDDED_SHADER(fs_debugdraw_lines),
BGFX_EMBEDDED_SHADER(vs_debugdraw_lines_stipple),
BGFX_EMBEDDED_SHADER(fs_debugdraw_lines_stipple),
BGFX_EMBEDDED_SHADER(vs_debugdraw_fill),
BGFX_EMBEDDED_SHADER(vs_debugdraw_fill_mesh),
BGFX_EMBEDDED_SHADER(fs_debugdraw_fill),
BGFX_EMBEDDED_SHADER(vs_debugdraw_fill_lit),
BGFX_EMBEDDED_SHADER(vs_debugdraw_fill_lit_mesh),
BGFX_EMBEDDED_SHADER(fs_debugdraw_fill_lit),
BGFX_EMBEDDED_SHADER(vs_debugdraw_fill_texture),
BGFX_EMBEDDED_SHADER(fs_debugdraw_fill_texture),
BGFX_EMBEDDED_SHADER_END()
};
#define SPRITE_TEXTURE_SIZE 1024
template<uint16_t MaxHandlesT = 256, uint16_t TextureSizeT = 1024>
struct SpriteT
{
SpriteT()
: m_ra(TextureSizeT, TextureSizeT)
{
}
SpriteHandle create(uint16_t _width, uint16_t _height)
{
bx::MutexScope lock(m_lock);
SpriteHandle handle = { bx::kInvalidHandle };
if (m_handleAlloc.getNumHandles() < m_handleAlloc.getMaxHandles() )
{
Pack2D pack;
if (m_ra.find(_width, _height, pack) )
{
handle.idx = m_handleAlloc.alloc();
if (isValid(handle) )
{
m_pack[handle.idx] = pack;
}
else
{
m_ra.clear(pack);
}
}
}
return handle;
}
void destroy(SpriteHandle _sprite)
{
const Pack2D& pack = m_pack[_sprite.idx];
m_ra.clear(pack);
m_handleAlloc.free(_sprite.idx);
}
const Pack2D& get(SpriteHandle _sprite) const
{
return m_pack[_sprite.idx];
}
bx::Mutex m_lock;
bx::HandleAllocT<MaxHandlesT> m_handleAlloc;
Pack2D m_pack[MaxHandlesT];
RectPack2DT<256> m_ra;
};
template<uint16_t MaxHandlesT = DEBUG_DRAW_CONFIG_MAX_GEOMETRY>
struct GeometryT
{
GeometryT()
{
}
GeometryHandle create(uint32_t _numVertices, const DdVertex* _vertices, uint32_t _numIndices, const void* _indices, bool _index32)
{
BX_UNUSED(_numVertices, _vertices, _numIndices, _indices, _index32);
GeometryHandle handle;
{
bx::MutexScope lock(m_lock);
handle = { m_handleAlloc.alloc() };
}
if (isValid(handle) )
{
Geometry& geometry = m_geometry[handle.idx];
geometry.m_vbh = bgfx::createVertexBuffer(
bgfx::copy(_vertices, _numVertices*sizeof(DdVertex) )
, DebugMeshVertex::ms_decl
);
geometry.m_topologyNumIndices[0] = _numIndices;
geometry.m_topologyNumIndices[1] = bgfx::topologyConvert(
bgfx::TopologyConvert::TriListToLineList
, NULL
, 0
, _indices
, _numIndices
, _index32
);
const uint32_t indexSize = _index32 ? sizeof(uint32_t) : sizeof(uint16_t);
const uint32_t numIndices = 0
+ geometry.m_topologyNumIndices[0]
+ geometry.m_topologyNumIndices[1]
;
const bgfx::Memory* mem = bgfx::alloc(numIndices*indexSize );
uint8_t* indexData = mem->data;
bx::memCopy(indexData, _indices, _numIndices*indexSize );
bgfx::topologyConvert(
bgfx::TopologyConvert::TriListToLineList
, &indexData[geometry.m_topologyNumIndices[0]*indexSize ]
, geometry.m_topologyNumIndices[1]*indexSize
, _indices
, _numIndices
, _index32
);
geometry.m_ibh = bgfx::createIndexBuffer(
mem
, _index32 ? BGFX_BUFFER_INDEX32 : BGFX_BUFFER_NONE
);
}
return handle;
}
void destroy(GeometryHandle _handle)
{
bx::MutexScope lock(m_lock);
Geometry& geometry = m_geometry[_handle.idx];
bgfx::destroy(geometry.m_vbh);
bgfx::destroy(geometry.m_ibh);
m_handleAlloc.free(_handle.idx);
}
struct Geometry
{
Geometry()
{
m_vbh.idx = bx::kInvalidHandle;
m_ibh.idx = bx::kInvalidHandle;
m_topologyNumIndices[0] = 0;
m_topologyNumIndices[1] = 0;
}
bgfx::VertexBufferHandle m_vbh;
bgfx::IndexBufferHandle m_ibh;
uint32_t m_topologyNumIndices[2];
};
bx::Mutex m_lock;
bx::HandleAllocT<MaxHandlesT> m_handleAlloc;
Geometry m_geometry[MaxHandlesT];
};
struct Attrib
{
uint64_t m_state;
float m_offset;
float m_scale;
float m_spin;
uint32_t m_abgr;
bool m_stipple;
bool m_wireframe;
uint8_t m_lod;
};
struct Program
{
enum Enum
{
Lines,
LinesStipple,
Fill,
FillMesh,
FillLit,
FillLitMesh,
FillTexture,
Count
};
};
struct Mesh
{
enum Enum
{
Sphere0,
Sphere1,
Sphere2,
Sphere3,
Cone0,
Cone1,
Cone2,
Cone3,
Cylinder0,
Cylinder1,
Cylinder2,
Cylinder3,
Capsule0,
Capsule1,
Capsule2,
Capsule3,
Quad,
Cube,
Count,
SphereMaxLod = Sphere3 - Sphere0,
ConeMaxLod = Cone3 - Cone0,
CylinderMaxLod = Cylinder3 - Cylinder0,
CapsuleMaxLod = Capsule3 - Capsule0,
};
uint32_t m_startVertex;
uint32_t m_numVertices;
uint32_t m_startIndex[2];
uint32_t m_numIndices[2];
};
typedef SpriteT<256, SPRITE_TEXTURE_SIZE> Sprite;
typedef GeometryT<DEBUG_DRAW_CONFIG_MAX_GEOMETRY> Geometry;
struct DebugDrawShared
{
void init(bx::AllocatorI* _allocator)
{
if (NULL == _allocator)
{
static bx::DefaultAllocator allocator;
m_allocator = &allocator;
}
else
{
m_allocator = _allocator;
}
DebugVertex::init();
DebugUvVertex::init();
DebugShapeVertex::init();
DebugMeshVertex::init();
bgfx::RendererType::Enum type = bgfx::getRendererType();
m_program[Program::Lines] = bgfx::createProgram(
bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_debugdraw_lines")
, bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_debugdraw_lines")
, true
);
m_program[Program::LinesStipple] = bgfx::createProgram(
bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_debugdraw_lines_stipple")
, bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_debugdraw_lines_stipple")
, true
);
m_program[Program::Fill] = bgfx::createProgram(
bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_debugdraw_fill")
, bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_debugdraw_fill")
, true
);
m_program[Program::FillMesh] = bgfx::createProgram(
bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_debugdraw_fill_mesh")
, bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_debugdraw_fill")
, true
);
m_program[Program::FillLit] = bgfx::createProgram(
bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_debugdraw_fill_lit")
, bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_debugdraw_fill_lit")
, true
);
m_program[Program::FillLitMesh] = bgfx::createProgram(
bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_debugdraw_fill_lit_mesh")
, bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_debugdraw_fill_lit")
, true
);
m_program[Program::FillTexture] = bgfx::createProgram(
bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_debugdraw_fill_texture")
, bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_debugdraw_fill_texture")
, true
);
u_params = bgfx::createUniform("u_params", bgfx::UniformType::Vec4, 4);
s_texColor = bgfx::createUniform("s_texColor", bgfx::UniformType::Sampler);
m_texture = bgfx::createTexture2D(SPRITE_TEXTURE_SIZE, SPRITE_TEXTURE_SIZE, false, 1, bgfx::TextureFormat::BGRA8);
void* vertices[Mesh::Count] = {};
uint16_t* indices[Mesh::Count] = {};
uint16_t stride = DebugShapeVertex::ms_decl.getStride();
uint32_t startVertex = 0;
uint32_t startIndex = 0;
for (uint32_t mesh = 0; mesh < 4; ++mesh)
{
Mesh::Enum id = Mesh::Enum(Mesh::Sphere0+mesh);
const uint8_t tess = uint8_t(3-mesh);
const uint32_t numVertices = genSphere(tess);
const uint32_t numIndices = numVertices;
vertices[id] = BX_ALLOC(m_allocator, numVertices*stride);
bx::memSet(vertices[id], 0, numVertices*stride);
genSphere(tess, vertices[id], stride);
uint16_t* trilist = (uint16_t*)BX_ALLOC(m_allocator, numIndices*sizeof(uint16_t) );
for (uint32_t ii = 0; ii < numIndices; ++ii)
{
trilist[ii] = uint16_t(ii);
}
uint32_t numLineListIndices = bgfx::topologyConvert(
bgfx::TopologyConvert::TriListToLineList
, NULL
, 0
, trilist
, numIndices
, false
);
indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) );
uint16_t* indicesOut = indices[id];
bx::memCopy(indicesOut, trilist, numIndices*sizeof(uint16_t) );
bgfx::topologyConvert(
bgfx::TopologyConvert::TriListToLineList
, &indicesOut[numIndices]
, numLineListIndices*sizeof(uint16_t)
, trilist
, numIndices
, false
);
m_mesh[id].m_startVertex = startVertex;
m_mesh[id].m_numVertices = numVertices;
m_mesh[id].m_startIndex[0] = startIndex;
m_mesh[id].m_numIndices[0] = numIndices;
m_mesh[id].m_startIndex[1] = startIndex+numIndices;
m_mesh[id].m_numIndices[1] = numLineListIndices;
startVertex += numVertices;
startIndex += numIndices + numLineListIndices;
BX_FREE(m_allocator, trilist);
}
for (uint32_t mesh = 0; mesh < 4; ++mesh)
{
Mesh::Enum id = Mesh::Enum(Mesh::Cone0+mesh);
const uint32_t num = getCircleLod(uint8_t(mesh) );
const float step = bx::kPi * 2.0f / num;
const uint32_t numVertices = num+1;
const uint32_t numIndices = num*6;
const uint32_t numLineListIndices = num*4;
vertices[id] = BX_ALLOC(m_allocator, numVertices*stride);
indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) );
bx::memSet(indices[id], 0, (numIndices + numLineListIndices)*sizeof(uint16_t) );
DebugShapeVertex* vertex = (DebugShapeVertex*)vertices[id];
uint16_t* index = indices[id];
vertex[num].m_x = 0.0f;
vertex[num].m_y = 0.0f;
vertex[num].m_z = 0.0f;
vertex[num].m_indices[0] = 1;
for (uint32_t ii = 0; ii < num; ++ii)
{
const float angle = step * ii;
float xy[2];
circle(xy, angle);
vertex[ii].m_x = xy[1];
vertex[ii].m_y = 0.0f;
vertex[ii].m_z = xy[0];
vertex[ii].m_indices[0] = 0;
index[ii*3+0] = uint16_t(num);
index[ii*3+1] = uint16_t( (ii+1)%num);
index[ii*3+2] = uint16_t(ii);
index[num*3+ii*3+0] = 0;
index[num*3+ii*3+1] = uint16_t(ii);
index[num*3+ii*3+2] = uint16_t( (ii+1)%num);
index[numIndices+ii*2+0] = uint16_t(ii);
index[numIndices+ii*2+1] = uint16_t(num);
index[numIndices+num*2+ii*2+0] = uint16_t(ii);
index[numIndices+num*2+ii*2+1] = uint16_t( (ii+1)%num);
}
m_mesh[id].m_startVertex = startVertex;
m_mesh[id].m_numVertices = numVertices;
m_mesh[id].m_startIndex[0] = startIndex;
m_mesh[id].m_numIndices[0] = numIndices;
m_mesh[id].m_startIndex[1] = startIndex+numIndices;
m_mesh[id].m_numIndices[1] = numLineListIndices;
startVertex += numVertices;
startIndex += numIndices + numLineListIndices;
}
for (uint32_t mesh = 0; mesh < 4; ++mesh)
{
Mesh::Enum id = Mesh::Enum(Mesh::Cylinder0+mesh);
const uint32_t num = getCircleLod(uint8_t(mesh) );
const float step = bx::kPi * 2.0f / num;
const uint32_t numVertices = num*2;
const uint32_t numIndices = num*12;
const uint32_t numLineListIndices = num*6;
vertices[id] = BX_ALLOC(m_allocator, numVertices*stride);
indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) );
bx::memSet(indices[id], 0, (numIndices + numLineListIndices)*sizeof(uint16_t) );
DebugShapeVertex* vertex = (DebugShapeVertex*)vertices[id];
uint16_t* index = indices[id];
for (uint32_t ii = 0; ii < num; ++ii)
{
const float angle = step * ii;
float xy[2];
circle(xy, angle);
vertex[ii].m_x = xy[1];
vertex[ii].m_y = 0.0f;
vertex[ii].m_z = xy[0];
vertex[ii].m_indices[0] = 0;
vertex[ii+num].m_x = xy[1];
vertex[ii+num].m_y = 0.0f;
vertex[ii+num].m_z = xy[0];
vertex[ii+num].m_indices[0] = 1;
index[ii*6+0] = uint16_t(ii+num);
index[ii*6+1] = uint16_t( (ii+1)%num);
index[ii*6+2] = uint16_t(ii);
index[ii*6+3] = uint16_t(ii+num);
index[ii*6+4] = uint16_t( (ii+1)%num+num);
index[ii*6+5] = uint16_t( (ii+1)%num);
index[num*6+ii*6+0] = uint16_t(0);
index[num*6+ii*6+1] = uint16_t(ii);
index[num*6+ii*6+2] = uint16_t( (ii+1)%num);
index[num*6+ii*6+3] = uint16_t(num);
index[num*6+ii*6+4] = uint16_t( (ii+1)%num+num);
index[num*6+ii*6+5] = uint16_t(ii+num);
index[numIndices+ii*2+0] = uint16_t(ii);
index[numIndices+ii*2+1] = uint16_t(ii+num);
index[numIndices+num*2+ii*2+0] = uint16_t(ii);
index[numIndices+num*2+ii*2+1] = uint16_t( (ii+1)%num);
index[numIndices+num*4+ii*2+0] = uint16_t(num + ii);
index[numIndices+num*4+ii*2+1] = uint16_t(num + (ii+1)%num);
}
m_mesh[id].m_startVertex = startVertex;
m_mesh[id].m_numVertices = numVertices;
m_mesh[id].m_startIndex[0] = startIndex;
m_mesh[id].m_numIndices[0] = numIndices;
m_mesh[id].m_startIndex[1] = startIndex+numIndices;
m_mesh[id].m_numIndices[1] = numLineListIndices;
startVertex += numVertices;
startIndex += numIndices + numLineListIndices;
}
for (uint32_t mesh = 0; mesh < 4; ++mesh)
{
Mesh::Enum id = Mesh::Enum(Mesh::Capsule0+mesh);
const uint32_t num = getCircleLod(uint8_t(mesh) );
const float step = bx::kPi * 2.0f / num;
const uint32_t numVertices = num*2;
const uint32_t numIndices = num*6;
const uint32_t numLineListIndices = num*6;
vertices[id] = BX_ALLOC(m_allocator, numVertices*stride);
indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) );
bx::memSet(indices[id], 0, (numIndices + numLineListIndices)*sizeof(uint16_t) );
DebugShapeVertex* vertex = (DebugShapeVertex*)vertices[id];
uint16_t* index = indices[id];
for (uint32_t ii = 0; ii < num; ++ii)
{
const float angle = step * ii;
float xy[2];
circle(xy, angle);
vertex[ii].m_x = xy[1];
vertex[ii].m_y = 0.0f;
vertex[ii].m_z = xy[0];
vertex[ii].m_indices[0] = 0;
vertex[ii+num].m_x = xy[1];
vertex[ii+num].m_y = 0.0f;
vertex[ii+num].m_z = xy[0];
vertex[ii+num].m_indices[0] = 1;
index[ii*6+0] = uint16_t(ii+num);
index[ii*6+1] = uint16_t( (ii+1)%num);
index[ii*6+2] = uint16_t(ii);
index[ii*6+3] = uint16_t(ii+num);
index[ii*6+4] = uint16_t( (ii+1)%num+num);
index[ii*6+5] = uint16_t( (ii+1)%num);
// index[num*6+ii*6+0] = uint16_t(0);
// index[num*6+ii*6+1] = uint16_t(ii);
// index[num*6+ii*6+2] = uint16_t( (ii+1)%num);
// index[num*6+ii*6+3] = uint16_t(num);
// index[num*6+ii*6+4] = uint16_t( (ii+1)%num+num);
// index[num*6+ii*6+5] = uint16_t(ii+num);
index[numIndices+ii*2+0] = uint16_t(ii);
index[numIndices+ii*2+1] = uint16_t(ii+num);
index[numIndices+num*2+ii*2+0] = uint16_t(ii);
index[numIndices+num*2+ii*2+1] = uint16_t( (ii+1)%num);
index[numIndices+num*4+ii*2+0] = uint16_t(num + ii);
index[numIndices+num*4+ii*2+1] = uint16_t(num + (ii+1)%num);
}
m_mesh[id].m_startVertex = startVertex;
m_mesh[id].m_numVertices = numVertices;
m_mesh[id].m_startIndex[0] = startIndex;
m_mesh[id].m_numIndices[0] = numIndices;
m_mesh[id].m_startIndex[1] = startIndex+numIndices;
m_mesh[id].m_numIndices[1] = numLineListIndices;
startVertex += numVertices;
startIndex += numIndices + numLineListIndices;
}
m_mesh[Mesh::Quad].m_startVertex = startVertex;
m_mesh[Mesh::Quad].m_numVertices = BX_COUNTOF(s_quadVertices);
m_mesh[Mesh::Quad].m_startIndex[0] = startIndex;
m_mesh[Mesh::Quad].m_numIndices[0] = BX_COUNTOF(s_quadIndices);
m_mesh[Mesh::Quad].m_startIndex[1] = 0;
m_mesh[Mesh::Quad].m_numIndices[1] = 0;
startVertex += BX_COUNTOF(s_quadVertices);
startIndex += BX_COUNTOF(s_quadIndices);
m_mesh[Mesh::Cube].m_startVertex = startVertex;
m_mesh[Mesh::Cube].m_numVertices = BX_COUNTOF(s_cubeVertices);
m_mesh[Mesh::Cube].m_startIndex[0] = startIndex;
m_mesh[Mesh::Cube].m_numIndices[0] = BX_COUNTOF(s_cubeIndices);
m_mesh[Mesh::Cube].m_startIndex[1] = 0;
m_mesh[Mesh::Cube].m_numIndices[1] = 0;
startVertex += m_mesh[Mesh::Cube].m_numVertices;
startIndex += m_mesh[Mesh::Cube].m_numIndices[0];
const bgfx::Memory* vb = bgfx::alloc(startVertex*stride);
const bgfx::Memory* ib = bgfx::alloc(startIndex*sizeof(uint16_t) );
for (uint32_t mesh = Mesh::Sphere0; mesh < Mesh::Quad; ++mesh)
{
Mesh::Enum id = Mesh::Enum(mesh);
bx::memCopy(&vb->data[m_mesh[id].m_startVertex * stride]
, vertices[id]
, m_mesh[id].m_numVertices*stride
);
bx::memCopy(&ib->data[m_mesh[id].m_startIndex[0] * sizeof(uint16_t)]
, indices[id]
, (m_mesh[id].m_numIndices[0]+m_mesh[id].m_numIndices[1])*sizeof(uint16_t)
);
BX_FREE(m_allocator, vertices[id]);
BX_FREE(m_allocator, indices[id]);
}
bx::memCopy(&vb->data[m_mesh[Mesh::Quad].m_startVertex * stride]
, s_quadVertices
, sizeof(s_quadVertices)
);
bx::memCopy(&ib->data[m_mesh[Mesh::Quad].m_startIndex[0] * sizeof(uint16_t)]
, s_quadIndices
, sizeof(s_quadIndices)
);
bx::memCopy(&vb->data[m_mesh[Mesh::Cube].m_startVertex * stride]
, s_cubeVertices
, sizeof(s_cubeVertices)
);
bx::memCopy(&ib->data[m_mesh[Mesh::Cube].m_startIndex[0] * sizeof(uint16_t)]
, s_cubeIndices
, sizeof(s_cubeIndices)
);
m_vbh = bgfx::createVertexBuffer(vb, DebugShapeVertex::ms_decl);
m_ibh = bgfx::createIndexBuffer(ib);
}
void shutdown()
{
bgfx::destroy(m_ibh);
bgfx::destroy(m_vbh);
for (uint32_t ii = 0; ii < Program::Count; ++ii)
{
bgfx::destroy(m_program[ii]);
}
bgfx::destroy(u_params);
bgfx::destroy(s_texColor);
bgfx::destroy(m_texture);
}
SpriteHandle createSprite(uint16_t _width, uint16_t _height, const void* _data)
{
SpriteHandle handle = m_sprite.create(_width, _height);
if (isValid(handle) )
{
const Pack2D& pack = m_sprite.get(handle);
bgfx::updateTexture2D(
m_texture
, 0
, 0
, pack.m_x
, pack.m_y
, pack.m_width
, pack.m_height
, bgfx::copy(_data, pack.m_width*pack.m_height*4)
);
}
return handle;
}
void destroy(SpriteHandle _handle)
{
m_sprite.destroy(_handle);
}
GeometryHandle createGeometry(uint32_t _numVertices, const DdVertex* _vertices, uint32_t _numIndices, const void* _indices, bool _index32)
{
return m_geometry.create(_numVertices, _vertices, _numIndices, _indices, _index32);
}
void destroy(GeometryHandle _handle)
{
m_geometry.destroy(_handle);
}
bx::AllocatorI* m_allocator;
Sprite m_sprite;
Geometry m_geometry;
Mesh m_mesh[Mesh::Count];
bgfx::UniformHandle s_texColor;
bgfx::TextureHandle m_texture;
bgfx::ProgramHandle m_program[Program::Count];
bgfx::UniformHandle u_params;
bgfx::VertexBufferHandle m_vbh;
bgfx::IndexBufferHandle m_ibh;
};
static DebugDrawShared s_dds;
struct DebugDrawEncoderImpl
{
DebugDrawEncoderImpl()
: m_depthTestLess(true)
, m_state(State::Count)
, m_defaultEncoder(NULL)
{
}
void init(bgfx::Encoder* _encoder)
{
m_defaultEncoder = _encoder;
}
void shutdown()
{
}
void begin(bgfx::ViewId _viewId, bool _depthTestLess, bgfx::Encoder* _encoder)
{
BX_CHECK(State::Count == m_state);
m_viewId = _viewId;
m_encoder = _encoder == NULL ? m_defaultEncoder : _encoder;
m_state = State::None;
m_stack = 0;
m_depthTestLess = _depthTestLess;
m_pos = 0;
m_indexPos = 0;
m_vertexPos = 0;
m_posQuad = 0;
Attrib& attrib = m_attrib[0];
attrib.m_state = 0
| BGFX_STATE_WRITE_RGB
| (m_depthTestLess ? BGFX_STATE_DEPTH_TEST_LESS : BGFX_STATE_DEPTH_TEST_GREATER)
| BGFX_STATE_CULL_CW
| BGFX_STATE_WRITE_Z
;
attrib.m_scale = 1.0f;
attrib.m_spin = 0.0f;
attrib.m_offset = 0.0f;
attrib.m_abgr = UINT32_MAX;
attrib.m_stipple = false;
attrib.m_wireframe = false;
attrib.m_lod = 0;
m_mtxStackCurrent = 0;
m_mtxStack[m_mtxStackCurrent].reset();
}
void end()
{
BX_CHECK(0 == m_stack, "Invalid stack %d.", m_stack);
flushQuad();
flush();
m_encoder = NULL;
m_state = State::Count;
}
void push()
{
BX_CHECK(State::Count != m_state);
++m_stack;
m_attrib[m_stack] = m_attrib[m_stack-1];
}
void pop()
{
BX_CHECK(State::Count != m_state);
const Attrib& curr = m_attrib[m_stack];
const Attrib& prev = m_attrib[m_stack-1];
if (curr.m_stipple != prev.m_stipple
|| curr.m_state != prev.m_state)
{
flush();
}
--m_stack;
}
void setDepthTestLess(bool _depthTestLess)
{
BX_CHECK(State::Count != m_state);
if (m_depthTestLess != _depthTestLess)
{
m_depthTestLess = _depthTestLess;
Attrib& attrib = m_attrib[m_stack];
if (attrib.m_state & BGFX_STATE_DEPTH_TEST_MASK)
{
flush();
attrib.m_state &= ~BGFX_STATE_DEPTH_TEST_MASK;
attrib.m_state |= _depthTestLess ? BGFX_STATE_DEPTH_TEST_LESS : BGFX_STATE_DEPTH_TEST_GREATER;
}
}
}
void setTransform(const void* _mtx, uint16_t _num = 1, bool _flush = true)
{
BX_CHECK(State::Count != m_state);
if (_flush)
{
flush();
}
MatrixStack& stack = m_mtxStack[m_mtxStackCurrent];
if (NULL == _mtx)
{
stack.reset();
return;
}
bgfx::Transform transform;
stack.mtx = m_encoder->allocTransform(&transform, _num);
stack.num = _num;
stack.data = transform.data;
bx::memCopy(transform.data, _mtx, _num*64);
}
void setTranslate(float _x, float _y, float _z)
{
float mtx[16];
bx::mtxTranslate(mtx, _x, _y, _z);
setTransform(mtx);
}
void setTranslate(const float* _pos)
{
setTranslate(_pos[0], _pos[1], _pos[2]);
}
void pushTransform(const void* _mtx, uint16_t _num, bool _flush = true)
{
BX_CHECK(m_mtxStackCurrent < BX_COUNTOF(m_mtxStack), "Out of matrix stack!");
BX_CHECK(State::Count != m_state);
if (_flush)
{
flush();
}
float* mtx = NULL;
const MatrixStack& stack = m_mtxStack[m_mtxStackCurrent];
if (NULL == stack.data)
{
mtx = (float*)_mtx;
}
else
{
mtx = (float*)alloca(_num*64);
for (uint16_t ii = 0; ii < _num; ++ii)
{
const float* mtxTransform = (const float*)_mtx;
bx::mtxMul(&mtx[ii*16], &mtxTransform[ii*16], stack.data);
}
}
m_mtxStackCurrent++;
setTransform(mtx, _num, _flush);
}
void popTransform(bool _flush = true)
{
BX_CHECK(State::Count != m_state);
if (_flush)
{
flush();
}
m_mtxStackCurrent--;
}
void pushTranslate(float _x, float _y, float _z)
{
float mtx[16];
bx::mtxTranslate(mtx, _x, _y, _z);
pushTransform(mtx, 1);
}
void pushTranslate(const bx::Vec3& _pos)
{
pushTranslate(_pos.x, _pos.y, _pos.z);
}
void setState(bool _depthTest, bool _depthWrite, bool _clockwise)
{
const uint64_t depthTest = m_depthTestLess
? BGFX_STATE_DEPTH_TEST_LESS
: BGFX_STATE_DEPTH_TEST_GREATER
;
uint64_t state = m_attrib[m_stack].m_state & ~(0
| BGFX_STATE_DEPTH_TEST_MASK
| BGFX_STATE_WRITE_Z
| BGFX_STATE_CULL_CW
| BGFX_STATE_CULL_CCW
);
state |= _depthTest
? depthTest
: 0
;
state |= _depthWrite
? BGFX_STATE_WRITE_Z
: 0
;
state |= _clockwise
? BGFX_STATE_CULL_CW
: BGFX_STATE_CULL_CCW
;
if (m_attrib[m_stack].m_state != state)
{
flush();
}
m_attrib[m_stack].m_state = state;
}
void setColor(uint32_t _abgr)
{
BX_CHECK(State::Count != m_state);
m_attrib[m_stack].m_abgr = _abgr;
}
void setLod(uint8_t _lod)
{
BX_CHECK(State::Count != m_state);
m_attrib[m_stack].m_lod = _lod;
}
void setWireframe(bool _wireframe)
{
BX_CHECK(State::Count != m_state);
m_attrib[m_stack].m_wireframe = _wireframe;
}
void setStipple(bool _stipple, float _scale = 1.0f, float _offset = 0.0f)
{
BX_CHECK(State::Count != m_state);
Attrib& attrib = m_attrib[m_stack];
if (attrib.m_stipple != _stipple)
{
flush();
}
attrib.m_stipple = _stipple;
attrib.m_offset = _offset;
attrib.m_scale = _scale;
}
void setSpin(float _spin)
{
Attrib& attrib = m_attrib[m_stack];
attrib.m_spin = _spin;
}
void moveTo(float _x, float _y, float _z = 0.0f)
{
BX_CHECK(State::Count != m_state);
softFlush();
m_state = State::MoveTo;
DebugVertex& vertex = m_cache[m_pos];
vertex.m_x = _x;
vertex.m_y = _y;
vertex.m_z = _z;
Attrib& attrib = m_attrib[m_stack];
vertex.m_abgr = attrib.m_abgr;
vertex.m_len = attrib.m_offset;
m_vertexPos = m_pos;
}
void moveTo(const bx::Vec3& _pos)
{
BX_CHECK(State::Count != m_state);
moveTo(_pos.x, _pos.y, _pos.z);
}
void moveTo(Axis::Enum _axis, float _x, float _y)
{
moveTo(getPoint(_axis, _x, _y) );
}
void lineTo(float _x, float _y, float _z = 0.0f)
{
BX_CHECK(State::Count != m_state);
if (State::None == m_state)
{
moveTo(_x, _y, _z);
return;
}
if (m_pos+2 > uint16_t(BX_COUNTOF(m_cache) ) )
{
uint32_t pos = m_pos;
uint32_t vertexPos = m_vertexPos;
flush();
bx::memCopy(&m_cache[0], &m_cache[vertexPos], sizeof(DebugVertex) );
if (vertexPos == pos)
{
m_pos = 1;
}
else
{
bx::memCopy(&m_cache[1], &m_cache[pos - 1], sizeof(DebugVertex) );
m_pos = 2;
}
m_state = State::LineTo;
}
else if (State::MoveTo == m_state)
{
++m_pos;
m_state = State::LineTo;
}
uint16_t prev = m_pos-1;
uint16_t curr = m_pos++;
DebugVertex& vertex = m_cache[curr];
vertex.m_x = _x;
vertex.m_y = _y;
vertex.m_z = _z;
Attrib& attrib = m_attrib[m_stack];
vertex.m_abgr = attrib.m_abgr;
vertex.m_len = attrib.m_offset;
float len = bx::length(bx::sub(bx::load<bx::Vec3>(&vertex.m_x), bx::load<bx::Vec3>(&m_cache[prev].m_x) ) ) * attrib.m_scale;
vertex.m_len = m_cache[prev].m_len + len;
m_indices[m_indexPos++] = prev;
m_indices[m_indexPos++] = curr;
}
void lineTo(const bx::Vec3& _pos)
{
BX_CHECK(State::Count != m_state);
lineTo(_pos.x, _pos.y, _pos.z);
}
void lineTo(Axis::Enum _axis, float _x, float _y)
{
lineTo(getPoint(_axis, _x, _y) );
}
void close()
{
BX_CHECK(State::Count != m_state);
DebugVertex& vertex = m_cache[m_vertexPos];
lineTo(vertex.m_x, vertex.m_y, vertex.m_z);
m_state = State::None;
}
void draw(const Aabb& _aabb)
{
const Attrib& attrib = m_attrib[m_stack];
if (attrib.m_wireframe)
{
moveTo(_aabb.min.x, _aabb.min.y, _aabb.min.z);
lineTo(_aabb.max.x, _aabb.min.y, _aabb.min.z);
lineTo(_aabb.max.x, _aabb.max.y, _aabb.min.z);
lineTo(_aabb.min.x, _aabb.max.y, _aabb.min.z);
close();
moveTo(_aabb.min.x, _aabb.min.y, _aabb.max.z);
lineTo(_aabb.max.x, _aabb.min.y, _aabb.max.z);
lineTo(_aabb.max.x, _aabb.max.y, _aabb.max.z);
lineTo(_aabb.min.x, _aabb.max.y, _aabb.max.z);
close();
moveTo(_aabb.min.x, _aabb.min.y, _aabb.min.z);
lineTo(_aabb.min.x, _aabb.min.y, _aabb.max.z);
moveTo(_aabb.max.x, _aabb.min.y, _aabb.min.z);
lineTo(_aabb.max.x, _aabb.min.y, _aabb.max.z);
moveTo(_aabb.min.x, _aabb.max.y, _aabb.min.z);
lineTo(_aabb.min.x, _aabb.max.y, _aabb.max.z);
moveTo(_aabb.max.x, _aabb.max.y, _aabb.min.z);
lineTo(_aabb.max.x, _aabb.max.y, _aabb.max.z);
}
else
{
Obb obb;
toObb(obb, _aabb);
draw(Mesh::Cube, obb.mtx, 1, false);
}
}
void draw(const Cylinder& _cylinder, bool _capsule)
{
drawCylinder(_cylinder.pos, _cylinder.end, _cylinder.radius, _capsule);
}
void draw(const Disk& _disk)
{
drawCircle(_disk.normal, _disk.center, _disk.radius, 0.0f);
}
void draw(const Obb& _obb)
{
const Attrib& attrib = m_attrib[m_stack];
if (attrib.m_wireframe)
{
pushTransform(_obb.mtx, 1);
moveTo(-1.0f, -1.0f, -1.0f);
lineTo( 1.0f, -1.0f, -1.0f);
lineTo( 1.0f, 1.0f, -1.0f);
lineTo(-1.0f, 1.0f, -1.0f);
close();
moveTo(-1.0f, 1.0f, 1.0f);
lineTo( 1.0f, 1.0f, 1.0f);
lineTo( 1.0f, -1.0f, 1.0f);
lineTo(-1.0f, -1.0f, 1.0f);
close();
moveTo( 1.0f, -1.0f, -1.0f);
lineTo( 1.0f, -1.0f, 1.0f);
moveTo( 1.0f, 1.0f, -1.0f);
lineTo( 1.0f, 1.0f, 1.0f);
moveTo(-1.0f, 1.0f, -1.0f);
lineTo(-1.0f, 1.0f, 1.0f);
moveTo(-1.0f, -1.0f, -1.0f);
lineTo(-1.0f, -1.0f, 1.0f);
popTransform();
}
else
{
draw(Mesh::Cube, _obb.mtx, 1, false);
}
}
void draw(const Sphere& _sphere)
{
const Attrib& attrib = m_attrib[m_stack];
float mtx[16];
bx::mtxSRT(mtx
, _sphere.radius
, _sphere.radius
, _sphere.radius
, 0.0f
, 0.0f
, 0.0f
, _sphere.center.x
, _sphere.center.y
, _sphere.center.z
);
uint8_t lod = attrib.m_lod > Mesh::SphereMaxLod
? uint8_t(Mesh::SphereMaxLod)
: attrib.m_lod
;
draw(Mesh::Enum(Mesh::Sphere0 + lod), mtx, 1, attrib.m_wireframe);
}
void draw(const Triangle& _triangle)
{
Attrib& attrib = m_attrib[m_stack];
if (attrib.m_wireframe)
{
moveTo(_triangle.v0);
lineTo(_triangle.v1);
lineTo(_triangle.v2);
close();
}
else
{
BX_STATIC_ASSERT(sizeof(DdVertex) == sizeof(bx::Vec3), "");
uint64_t old = attrib.m_state;
attrib.m_state &= ~BGFX_STATE_CULL_MASK;
draw(false, 3, reinterpret_cast<const DdVertex*>(&_triangle.v0.x), 0, NULL);
attrib.m_state = old;
}
}
void setUParams(const Attrib& _attrib, bool _wireframe)
{
const float flip = 0 == (_attrib.m_state & BGFX_STATE_CULL_CCW) ? 1.0f : -1.0f;
const uint8_t alpha = _attrib.m_abgr >> 24;
float params[4][4] =
{
{ // lightDir
0.0f * flip,
-1.0f * flip,
0.0f * flip,
3.0f, // shininess
},
{ // skyColor
1.0f,
0.9f,
0.8f,
0.0f, // unused
},
{ // groundColor.xyz0
0.2f,
0.22f,
0.5f,
0.0f, // unused
},
{ // matColor
( (_attrib.m_abgr) & 0xff) / 255.0f,
( (_attrib.m_abgr >> 8) & 0xff) / 255.0f,
( (_attrib.m_abgr >> 16) & 0xff) / 255.0f,
(alpha) / 255.0f,
},
};
bx::store(params[0], bx::normalize(bx::load<bx::Vec3>(params[0]) ) );
m_encoder->setUniform(s_dds.u_params, params, 4);
m_encoder->setState(0
| _attrib.m_state
| (_wireframe ? BGFX_STATE_PT_LINES | BGFX_STATE_LINEAA | BGFX_STATE_BLEND_ALPHA
: (alpha < 0xff) ? BGFX_STATE_BLEND_ALPHA : 0)
);
}
void draw(GeometryHandle _handle)
{
const Geometry::Geometry& geometry = s_dds.m_geometry.m_geometry[_handle.idx];
m_encoder->setVertexBuffer(0, geometry.m_vbh);
const Attrib& attrib = m_attrib[m_stack];
const bool wireframe = attrib.m_wireframe;
setUParams(attrib, wireframe);
if (wireframe)
{
m_encoder->setIndexBuffer(
geometry.m_ibh
, geometry.m_topologyNumIndices[0]
, geometry.m_topologyNumIndices[1]
);
}
else if (0 != geometry.m_topologyNumIndices[0])
{
m_encoder->setIndexBuffer(
geometry.m_ibh
, 0
, geometry.m_topologyNumIndices[0]
);
}
m_encoder->setTransform(m_mtxStack[m_mtxStackCurrent].mtx);
bgfx::ProgramHandle program = s_dds.m_program[wireframe ? Program::FillMesh : Program::FillLitMesh];
m_encoder->submit(m_viewId, program);
}
void draw(bool _lineList, uint32_t _numVertices, const DdVertex* _vertices, uint32_t _numIndices, const uint16_t* _indices)
{
flush();
if (_numVertices == bgfx::getAvailTransientVertexBuffer(_numVertices, DebugMeshVertex::ms_decl) )
{
bgfx::TransientVertexBuffer tvb;
bgfx::allocTransientVertexBuffer(&tvb, _numVertices, DebugMeshVertex::ms_decl);
bx::memCopy(tvb.data, _vertices, _numVertices * DebugMeshVertex::ms_decl.m_stride);
m_encoder->setVertexBuffer(0, &tvb);
const Attrib& attrib = m_attrib[m_stack];
const bool wireframe = _lineList || attrib.m_wireframe;
setUParams(attrib, wireframe);
if (0 < _numIndices)
{
uint32_t numIndices = _numIndices;
bgfx::TransientIndexBuffer tib;
if (!_lineList && wireframe)
{
numIndices = bgfx::topologyConvert(
bgfx::TopologyConvert::TriListToLineList
, NULL
, 0
, _indices
, _numIndices
, false
);
bgfx::allocTransientIndexBuffer(&tib, numIndices);
bgfx::topologyConvert(
bgfx::TopologyConvert::TriListToLineList
, tib.data
, numIndices * sizeof(uint16_t)
, _indices
, _numIndices
, false
);
}
else
{
bgfx::allocTransientIndexBuffer(&tib, numIndices);
bx::memCopy(tib.data, _indices, numIndices * sizeof(uint16_t) );
}
m_encoder->setIndexBuffer(&tib);
}
m_encoder->setTransform(m_mtxStack[m_mtxStackCurrent].mtx);
bgfx::ProgramHandle program = s_dds.m_program[wireframe
? Program::FillMesh
: Program::FillLitMesh
];
m_encoder->submit(m_viewId, program);
}
}
void drawFrustum(const float* _viewProj)
{
bx::Plane planes[6];
buildFrustumPlanes(planes, _viewProj);
const bx::Vec3 points[8] =
{
intersectPlanes(planes[0], planes[2], planes[4]),
intersectPlanes(planes[0], planes[3], planes[4]),
intersectPlanes(planes[0], planes[3], planes[5]),
intersectPlanes(planes[0], planes[2], planes[5]),
intersectPlanes(planes[1], planes[2], planes[4]),
intersectPlanes(planes[1], planes[3], planes[4]),
intersectPlanes(planes[1], planes[3], planes[5]),
intersectPlanes(planes[1], planes[2], planes[5]),
};
moveTo(points[0]);
lineTo(points[1]);
lineTo(points[2]);
lineTo(points[3]);
close();
moveTo(points[4]);
lineTo(points[5]);
lineTo(points[6]);
lineTo(points[7]);
close();
moveTo(points[0]);
lineTo(points[4]);
moveTo(points[1]);
lineTo(points[5]);
moveTo(points[2]);
lineTo(points[6]);
moveTo(points[3]);
lineTo(points[7]);
}
void drawFrustum(const void* _viewProj)
{
drawFrustum( (const float*)_viewProj);
}
void drawArc(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _degrees)
{
const Attrib& attrib = m_attrib[m_stack];
const uint32_t num = getCircleLod(attrib.m_lod);
const float step = bx::kPi * 2.0f / num;
_degrees = bx::wrap(_degrees, 360.0f);
bx::Vec3 pos = getPoint(
_axis
, bx::sin(step * 0)*_radius
, bx::cos(step * 0)*_radius
);
moveTo({pos.x + _x, pos.y + _y, pos.z + _z});
uint32_t n = uint32_t(num*_degrees/360.0f);
for (uint32_t ii = 1; ii < n+1; ++ii)
{
pos = getPoint(
_axis
, bx::sin(step * ii)*_radius
, bx::cos(step * ii)*_radius
);
lineTo({pos.x + _x, pos.y + _y, pos.z + _z});
}
moveTo(_x, _y, _z);
pos = getPoint(
_axis
, bx::sin(step * 0)*_radius
, bx::cos(step * 0)*_radius
);
lineTo({pos.x + _x, pos.y + _y, pos.z + _z});
pos = getPoint(
_axis
, bx::sin(step * n)*_radius
, bx::cos(step * n)*_radius
);
moveTo({pos.x + _x, pos.y + _y, pos.z + _z});
lineTo(_x, _y, _z);
}
void drawCircle(const bx::Vec3& _normal, const bx::Vec3& _center, float _radius, float _weight)
{
const Attrib& attrib = m_attrib[m_stack];
const uint32_t num = getCircleLod(attrib.m_lod);
const float step = bx::kPi * 2.0f / num;
_weight = bx::clamp(_weight, 0.0f, 2.0f);
bx::Vec3 udir;
bx::Vec3 vdir;
bx::calcTangentFrame(udir, vdir, _normal, attrib.m_spin);
float xy0[2];
float xy1[2];
circle(xy0, 0.0f);
squircle(xy1, 0.0f);
bx::Vec3 pos = bx::mul(udir, bx::lerp(xy0[0], xy1[0], _weight)*_radius);
bx::Vec3 tmp0 = bx::mul(vdir, bx::lerp(xy0[1], xy1[1], _weight)*_radius);
bx::Vec3 tmp1 = bx::add(pos, tmp0);
bx::Vec3 tmp2 = bx::add(tmp1, _center);
moveTo(tmp2);
for (uint32_t ii = 1; ii < num; ++ii)
{
float angle = step * ii;
circle(xy0, angle);
squircle(xy1, angle);
pos = bx::mul(udir, bx::lerp(xy0[0], xy1[0], _weight)*_radius);
tmp0 = bx::mul(vdir, bx::lerp(xy0[1], xy1[1], _weight)*_radius);
tmp1 = bx::add(pos, tmp0);
tmp2 = bx::add(tmp1, _center);
lineTo(tmp2);
}
close();
}
void drawCircle(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _weight)
{
const Attrib& attrib = m_attrib[m_stack];
const uint32_t num = getCircleLod(attrib.m_lod);
const float step = bx::kPi * 2.0f / num;
_weight = bx::clamp(_weight, 0.0f, 2.0f);
float xy0[2];
float xy1[2];
circle(xy0, 0.0f);
squircle(xy1, 0.0f);
bx::Vec3 pos = getPoint(
_axis
, bx::lerp(xy0[0], xy1[0], _weight)*_radius
, bx::lerp(xy0[1], xy1[1], _weight)*_radius
);
moveTo({pos.x + _x, pos.y + _y, pos.z + _z});
for (uint32_t ii = 1; ii < num; ++ii)
{
float angle = step * ii;
circle(xy0, angle);
squircle(xy1, angle);
pos = getPoint(
_axis
, bx::lerp(xy0[0], xy1[0], _weight)*_radius
, bx::lerp(xy0[1], xy1[1], _weight)*_radius
);
lineTo({pos.x + _x, pos.y + _y, pos.z + _z});
}
close();
}
void drawQuad(const bx::Vec3& _normal, const bx::Vec3& _center, float _size)
{
const Attrib& attrib = m_attrib[m_stack];
if (attrib.m_wireframe)
{
bx::Vec3 udir, vdir;
bx::calcTangentFrame(udir, vdir, _normal, attrib.m_spin);
const float halfExtent = _size*0.5f;
const bx::Vec3 umin = bx::mul(udir, -halfExtent);
const bx::Vec3 umax = bx::mul(udir, halfExtent);
const bx::Vec3 vmin = bx::mul(vdir, -halfExtent);
const bx::Vec3 vmax = bx::mul(vdir, halfExtent);
const bx::Vec3 center = _center;
moveTo(bx::add(center, bx::add(umin, vmin) ) );
lineTo(bx::add(center, bx::add(umax, vmin) ) );
lineTo(bx::add(center, bx::add(umax, vmax) ) );
lineTo(bx::add(center, bx::add(umin, vmax) ) );
close();
}
else
{
float mtx[16];
bx::mtxFromNormal(mtx, _normal, _size*0.5f, _center, attrib.m_spin);
draw(Mesh::Quad, mtx, 1, false);
}
}
void drawQuad(SpriteHandle _handle, const bx::Vec3& _normal, const bx::Vec3& _center, float _size)
{
if (!isValid(_handle) )
{
drawQuad(_normal, _center, _size);
return;
}
if (m_posQuad == BX_COUNTOF(m_cacheQuad) )
{
flushQuad();
}
const Attrib& attrib = m_attrib[m_stack];
bx::Vec3 udir, vdir;
bx::calcTangentFrame(udir, vdir, _normal, attrib.m_spin);
const Pack2D& pack = s_dds.m_sprite.get(_handle);
const float invTextureSize = 1.0f/SPRITE_TEXTURE_SIZE;
const float us = pack.m_x * invTextureSize;
const float vs = pack.m_y * invTextureSize;
const float ue = (pack.m_x + pack.m_width ) * invTextureSize;
const float ve = (pack.m_y + pack.m_height) * invTextureSize;
const float aspectRatio = float(pack.m_width)/float(pack.m_height);
const float halfExtentU = aspectRatio*_size*0.5f;
const float halfExtentV = 1.0f/aspectRatio*_size*0.5f;
const bx::Vec3 umin = bx::mul(udir, -halfExtentU);
const bx::Vec3 umax = bx::mul(udir, halfExtentU);
const bx::Vec3 vmin = bx::mul(vdir, -halfExtentV);
const bx::Vec3 vmax = bx::mul(vdir, halfExtentV);
const bx::Vec3 center = _center;
DebugUvVertex* vertex = &m_cacheQuad[m_posQuad];
m_posQuad += 4;
bx::store(&vertex->m_x, bx::add(center, bx::add(umin, vmin) ) );
vertex->m_u = us;
vertex->m_v = vs;
vertex->m_abgr = attrib.m_abgr;
++vertex;
bx::store(&vertex->m_x, bx::add(center, bx::add(umax, vmin) ) );
vertex->m_u = ue;
vertex->m_v = vs;
vertex->m_abgr = attrib.m_abgr;
++vertex;
bx::store(&vertex->m_x, bx::add(center, bx::add(umin, vmax) ) );
vertex->m_u = us;
vertex->m_v = ve;
vertex->m_abgr = attrib.m_abgr;
++vertex;
bx::store(&vertex->m_x, bx::add(center, bx::add(umax, vmax) ) );
vertex->m_u = ue;
vertex->m_v = ve;
vertex->m_abgr = attrib.m_abgr;
++vertex;
}
void drawQuad(bgfx::TextureHandle _handle, const bx::Vec3& _normal, const bx::Vec3& _center, float _size)
{
BX_UNUSED(_handle, _normal, _center, _size);
}
void drawCone(const bx::Vec3& _from, const bx::Vec3& _to, float _radius)
{
const Attrib& attrib = m_attrib[m_stack];
const bx::Vec3 normal = bx::normalize(bx::sub(_from, _to) );
float mtx[2][16];
bx::mtxFromNormal(mtx[0], normal, _radius, _from, attrib.m_spin);
bx::memCopy(mtx[1], mtx[0], 64);
mtx[1][12] = _to.x;
mtx[1][13] = _to.y;
mtx[1][14] = _to.z;
uint8_t lod = attrib.m_lod > Mesh::ConeMaxLod
? uint8_t(Mesh::ConeMaxLod)
: attrib.m_lod
;
draw(Mesh::Enum(Mesh::Cone0 + lod), mtx[0], 2, attrib.m_wireframe);
}
void drawCylinder(const bx::Vec3& _from, const bx::Vec3& _to, float _radius, bool _capsule)
{
const Attrib& attrib = m_attrib[m_stack];
const bx::Vec3 normal = bx::normalize(bx::sub(_from, _to) );
float mtx[2][16];
bx::mtxFromNormal(mtx[0], normal, _radius, _from, attrib.m_spin);
bx::memCopy(mtx[1], mtx[0], 64);
mtx[1][12] = _to.x;
mtx[1][13] = _to.y;
mtx[1][14] = _to.z;
if (_capsule)
{
uint8_t lod = attrib.m_lod > Mesh::CapsuleMaxLod
? uint8_t(Mesh::CapsuleMaxLod)
: attrib.m_lod
;
draw(Mesh::Enum(Mesh::Capsule0 + lod), mtx[0], 2, attrib.m_wireframe);
Sphere sphere;
sphere.center = _from;
sphere.radius = _radius;
draw(sphere);
sphere.center = _to;
draw(sphere);
}
else
{
uint8_t lod = attrib.m_lod > Mesh::CylinderMaxLod
? uint8_t(Mesh::CylinderMaxLod)
: attrib.m_lod
;
draw(Mesh::Enum(Mesh::Cylinder0 + lod), mtx[0], 2, attrib.m_wireframe);
}
}
void drawAxis(float _x, float _y, float _z, float _len, Axis::Enum _highlight, float _thickness)
{
push();
if (_thickness > 0.0f)
{
const bx::Vec3 from = { _x, _y, _z };
bx::Vec3 mid;
bx::Vec3 to;
setColor(Axis::X == _highlight ? 0xff00ffff : 0xff0000ff);
mid = { _x + _len - _thickness, _y, _z };
to = { _x + _len, _y, _z };
drawCylinder(from, mid, _thickness, false);
drawCone(mid, to, _thickness);
setColor(Axis::Y == _highlight ? 0xff00ffff : 0xff00ff00);
mid = { _x, _y + _len - _thickness, _z };
to = { _x, _y + _len, _z };
drawCylinder(from, mid, _thickness, false);
drawCone(mid, to, _thickness);
setColor(Axis::Z == _highlight ? 0xff00ffff : 0xffff0000);
mid = { _x, _y, _z + _len - _thickness };
to = { _x, _y, _z + _len };
drawCylinder(from, mid, _thickness, false);
drawCone(mid, to, _thickness);
}
else
{
setColor(Axis::X == _highlight ? 0xff00ffff : 0xff0000ff);
moveTo(_x, _y, _z);
lineTo(_x + _len, _y, _z);
setColor(Axis::Y == _highlight ? 0xff00ffff : 0xff00ff00);
moveTo(_x, _y, _z);
lineTo(_x, _y + _len, _z);
setColor(Axis::Z == _highlight ? 0xff00ffff : 0xffff0000);
moveTo(_x, _y, _z);
lineTo(_x, _y, _z + _len);
}
pop();
}
void drawGrid(const bx::Vec3& _normal, const bx::Vec3& _center, uint32_t _size, float _step)
{
const Attrib& attrib = m_attrib[m_stack];
bx::Vec3 udir;
bx::Vec3 vdir;
bx::calcTangentFrame(udir, vdir, _normal, attrib.m_spin);
udir = bx::mul(udir, _step);
vdir = bx::mul(vdir, _step);
const uint32_t num = (_size/2)*2+1;
const float halfExtent = float(_size/2);
const bx::Vec3 umin = bx::mul(udir, -halfExtent);
const bx::Vec3 umax = bx::mul(udir, halfExtent);
const bx::Vec3 vmin = bx::mul(vdir, -halfExtent);
const bx::Vec3 vmax = bx::mul(vdir, halfExtent);
bx::Vec3 xs = bx::add(_center, bx::add(umin, vmin) );
bx::Vec3 xe = bx::add(_center, bx::add(umax, vmin) );
bx::Vec3 ys = bx::add(_center, bx::add(umin, vmin) );
bx::Vec3 ye = bx::add(_center, bx::add(umin, vmax) );
for (uint32_t ii = 0; ii < num; ++ii)
{
moveTo(xs);
lineTo(xe);
xs = bx::add(xs, vdir);
xe = bx::add(xe, vdir);
moveTo(ys);
lineTo(ye);
ys = bx::add(ys, udir);
ye = bx::add(ye, udir);
}
}
void drawGrid(Axis::Enum _axis, const bx::Vec3& _center, uint32_t _size, float _step)
{
push();
pushTranslate(_center);
const uint32_t num = (_size/2)*2-1;
const float halfExtent = float(_size/2) * _step;
setColor(0xff606060);
float yy = -halfExtent + _step;
for (uint32_t ii = 0; ii < num; ++ii)
{
moveTo(_axis, -halfExtent, yy);
lineTo(_axis, halfExtent, yy);
moveTo(_axis, yy, -halfExtent);
lineTo(_axis, yy, halfExtent);
yy += _step;
}
setColor(0xff101010);
moveTo(_axis, -halfExtent, -halfExtent);
lineTo(_axis, -halfExtent, halfExtent);
lineTo(_axis, halfExtent, halfExtent);
lineTo(_axis, halfExtent, -halfExtent);
close();
moveTo(_axis, -halfExtent, 0.0f);
lineTo(_axis, halfExtent, 0.0f);
moveTo(_axis, 0.0f, -halfExtent);
lineTo(_axis, 0.0f, halfExtent);
popTransform();
pop();
}
void drawOrb(float _x, float _y, float _z, float _radius, Axis::Enum _hightlight)
{
push();
setColor(Axis::X == _hightlight ? 0xff00ffff : 0xff0000ff);
drawCircle(Axis::X, _x, _y, _z, _radius, 0.0f);
setColor(Axis::Y == _hightlight ? 0xff00ffff : 0xff00ff00);
drawCircle(Axis::Y, _x, _y, _z, _radius, 0.0f);
setColor(Axis::Z == _hightlight ? 0xff00ffff : 0xffff0000);
drawCircle(Axis::Z, _x, _y, _z, _radius, 0.0f);
pop();
}
void draw(Mesh::Enum _mesh, const float* _mtx, uint16_t _num, bool _wireframe)
{
pushTransform(_mtx, _num, false /* flush */);
const Mesh& mesh = s_dds.m_mesh[_mesh];
if (0 != mesh.m_numIndices[_wireframe])
{
m_encoder->setIndexBuffer(s_dds.m_ibh
, mesh.m_startIndex[_wireframe]
, mesh.m_numIndices[_wireframe]
);
}
const Attrib& attrib = m_attrib[m_stack];
setUParams(attrib, _wireframe);
MatrixStack& stack = m_mtxStack[m_mtxStackCurrent];
m_encoder->setTransform(stack.mtx, stack.num);
m_encoder->setVertexBuffer(0, s_dds.m_vbh, mesh.m_startVertex, mesh.m_numVertices);
m_encoder->submit(m_viewId, s_dds.m_program[_wireframe ? Program::Fill : Program::FillLit]);
popTransform(false /* flush */);
}
void softFlush()
{
if (m_pos == uint16_t(BX_COUNTOF(m_cache) ) )
{
flush();
}
}
void flush()
{
if (0 != m_pos)
{
if (checkAvailTransientBuffers(m_pos, DebugVertex::ms_decl, m_indexPos) )
{
bgfx::TransientVertexBuffer tvb;
bgfx::allocTransientVertexBuffer(&tvb, m_pos, DebugVertex::ms_decl);
bx::memCopy(tvb.data, m_cache, m_pos * DebugVertex::ms_decl.m_stride);
bgfx::TransientIndexBuffer tib;
bgfx::allocTransientIndexBuffer(&tib, m_indexPos);
bx::memCopy(tib.data, m_indices, m_indexPos * sizeof(uint16_t) );
const Attrib& attrib = m_attrib[m_stack];
m_encoder->setVertexBuffer(0, &tvb);
m_encoder->setIndexBuffer(&tib);
m_encoder->setState(0
| BGFX_STATE_WRITE_RGB
| BGFX_STATE_PT_LINES
| attrib.m_state
| BGFX_STATE_LINEAA
| BGFX_STATE_BLEND_ALPHA
);
m_encoder->setTransform(m_mtxStack[m_mtxStackCurrent].mtx);
bgfx::ProgramHandle program = s_dds.m_program[attrib.m_stipple ? 1 : 0];
m_encoder->submit(m_viewId, program);
}
m_state = State::None;
m_pos = 0;
m_indexPos = 0;
m_vertexPos = 0;
}
}
void flushQuad()
{
if (0 != m_posQuad)
{
const uint32_t numIndices = m_posQuad/4*6;
if (checkAvailTransientBuffers(m_posQuad, DebugUvVertex::ms_decl, numIndices) )
{
bgfx::TransientVertexBuffer tvb;
bgfx::allocTransientVertexBuffer(&tvb, m_posQuad, DebugUvVertex::ms_decl);
bx::memCopy(tvb.data, m_cacheQuad, m_posQuad * DebugUvVertex::ms_decl.m_stride);
bgfx::TransientIndexBuffer tib;
bgfx::allocTransientIndexBuffer(&tib, numIndices);
uint16_t* indices = (uint16_t*)tib.data;
for (uint16_t ii = 0, num = m_posQuad/4; ii < num; ++ii)
{
uint16_t startVertex = ii*4;
indices[0] = startVertex+0;
indices[1] = startVertex+1;
indices[2] = startVertex+2;
indices[3] = startVertex+1;
indices[4] = startVertex+3;
indices[5] = startVertex+2;
indices += 6;
}
const Attrib& attrib = m_attrib[m_stack];
m_encoder->setVertexBuffer(0, &tvb);
m_encoder->setIndexBuffer(&tib);
m_encoder->setState(0
| (attrib.m_state & ~BGFX_STATE_CULL_MASK)
);
m_encoder->setTransform(m_mtxStack[m_mtxStackCurrent].mtx);
m_encoder->setTexture(0, s_dds.s_texColor, s_dds.m_texture);
m_encoder->submit(m_viewId, s_dds.m_program[Program::FillTexture]);
}
m_posQuad = 0;
}
}
struct State
{
enum Enum
{
None,
MoveTo,
LineTo,
Count
};
};
static const uint32_t kCacheSize = 1024;
static const uint32_t kStackSize = 16;
static const uint32_t kCacheQuadSize = 1024;
BX_STATIC_ASSERT(kCacheSize >= 3, "Cache must be at least 3 elements.");
DebugVertex m_cache[kCacheSize+1];
DebugUvVertex m_cacheQuad[kCacheQuadSize];
uint16_t m_indices[kCacheSize*2];
uint16_t m_pos;
uint16_t m_posQuad;
uint16_t m_indexPos;
uint16_t m_vertexPos;
uint32_t m_mtxStackCurrent;
struct MatrixStack
{
void reset()
{
mtx = 0;
num = 1;
data = NULL;
}
uint32_t mtx;
uint16_t num;
float* data;
};
MatrixStack m_mtxStack[32];
bgfx::ViewId m_viewId;
uint8_t m_stack;
bool m_depthTestLess;
Attrib m_attrib[kStackSize];
State::Enum m_state;
bgfx::Encoder* m_encoder;
bgfx::Encoder* m_defaultEncoder;
};
static DebugDrawEncoderImpl s_dde;
BX_STATIC_ASSERT(sizeof(DebugDrawEncoderImpl) <= sizeof(DebugDrawEncoder), "Size must match");
void ddInit(bx::AllocatorI* _allocator)
{
s_dds.init(_allocator);
s_dde.init(bgfx::begin() );
}
void ddShutdown()
{
s_dde.shutdown();
s_dds.shutdown();
}
SpriteHandle ddCreateSprite(uint16_t _width, uint16_t _height, const void* _data)
{
return s_dds.createSprite(_width, _height, _data);
}
void ddDestroy(SpriteHandle _handle)
{
s_dds.destroy(_handle);
}
GeometryHandle ddCreateGeometry(uint32_t _numVertices, const DdVertex* _vertices, uint32_t _numIndices, const void* _indices, bool _index32)
{
return s_dds.createGeometry(_numVertices, _vertices, _numIndices, _indices, _index32);
}
void ddDestroy(GeometryHandle _handle)
{
s_dds.destroy(_handle);
}
#define DEBUG_DRAW_ENCODER(_func) reinterpret_cast<DebugDrawEncoderImpl*>(this)->_func
DebugDrawEncoder::DebugDrawEncoder()
{
DEBUG_DRAW_ENCODER(init(s_dde.m_defaultEncoder) );
}
DebugDrawEncoder::~DebugDrawEncoder()
{
DEBUG_DRAW_ENCODER(shutdown() );
}
void DebugDrawEncoder::begin(uint16_t _viewId, bool _depthTestLess, bgfx::Encoder* _encoder)
{
DEBUG_DRAW_ENCODER(begin(_viewId, _depthTestLess, _encoder) );
}
void DebugDrawEncoder::end()
{
DEBUG_DRAW_ENCODER(end() );
}
void DebugDrawEncoder::push()
{
DEBUG_DRAW_ENCODER(push() );
}
void DebugDrawEncoder::pop()
{
DEBUG_DRAW_ENCODER(pop() );
}
void DebugDrawEncoder::setDepthTestLess(bool _depthTestLess)
{
DEBUG_DRAW_ENCODER(setDepthTestLess(_depthTestLess) );
}
void DebugDrawEncoder::setState(bool _depthTest, bool _depthWrite, bool _clockwise)
{
DEBUG_DRAW_ENCODER(setState(_depthTest, _depthWrite, _clockwise) );
}
void DebugDrawEncoder::setColor(uint32_t _abgr)
{
DEBUG_DRAW_ENCODER(setColor(_abgr) );
}
void DebugDrawEncoder::setLod(uint8_t _lod)
{
DEBUG_DRAW_ENCODER(setLod(_lod) );
}
void DebugDrawEncoder::setWireframe(bool _wireframe)
{
DEBUG_DRAW_ENCODER(setWireframe(_wireframe) );
}
void DebugDrawEncoder::setStipple(bool _stipple, float _scale, float _offset)
{
DEBUG_DRAW_ENCODER(setStipple(_stipple, _scale, _offset) );
}
void DebugDrawEncoder::setSpin(float _spin)
{
DEBUG_DRAW_ENCODER(setSpin(_spin) );
}
void DebugDrawEncoder::setTransform(const void* _mtx)
{
DEBUG_DRAW_ENCODER(setTransform(_mtx) );
}
void DebugDrawEncoder::setTranslate(float _x, float _y, float _z)
{
DEBUG_DRAW_ENCODER(setTranslate(_x, _y, _z) );
}
void DebugDrawEncoder::pushTransform(const void* _mtx)
{
DEBUG_DRAW_ENCODER(pushTransform(_mtx, 1) );
}
void DebugDrawEncoder::popTransform()
{
DEBUG_DRAW_ENCODER(popTransform() );
}
void DebugDrawEncoder::moveTo(float _x, float _y, float _z)
{
DEBUG_DRAW_ENCODER(moveTo(_x, _y, _z) );
}
void DebugDrawEncoder::moveTo(const bx::Vec3& _pos)
{
DEBUG_DRAW_ENCODER(moveTo(_pos) );
}
void DebugDrawEncoder::lineTo(float _x, float _y, float _z)
{
DEBUG_DRAW_ENCODER(lineTo(_x, _y, _z) );
}
void DebugDrawEncoder::lineTo(const bx::Vec3& _pos)
{
DEBUG_DRAW_ENCODER(lineTo(_pos) );
}
void DebugDrawEncoder::close()
{
DEBUG_DRAW_ENCODER(close() );
}
void DebugDrawEncoder::draw(const Aabb& _aabb)
{
DEBUG_DRAW_ENCODER(draw(_aabb) );
}
void DebugDrawEncoder::draw(const Cylinder& _cylinder)
{
DEBUG_DRAW_ENCODER(draw(_cylinder, false) );
}
void DebugDrawEncoder::draw(const Capsule& _capsule)
{
DEBUG_DRAW_ENCODER(draw(*( (const Cylinder*)&_capsule), true) );
}
void DebugDrawEncoder::draw(const Disk& _disk)
{
DEBUG_DRAW_ENCODER(draw(_disk) );
}
void DebugDrawEncoder::draw(const Obb& _obb)
{
DEBUG_DRAW_ENCODER(draw(_obb) );
}
void DebugDrawEncoder::draw(const Sphere& _sphere)
{
DEBUG_DRAW_ENCODER(draw(_sphere) );
}
void DebugDrawEncoder::draw(const Triangle& _triangle)
{
DEBUG_DRAW_ENCODER(draw(_triangle) );
}
void DebugDrawEncoder::draw(const Cone& _cone)
{
DEBUG_DRAW_ENCODER(drawCone(_cone.pos, _cone.end, _cone.radius) );
}
void DebugDrawEncoder::draw(GeometryHandle _handle)
{
DEBUG_DRAW_ENCODER(draw(_handle) );
}
void DebugDrawEncoder::drawLineList(uint32_t _numVertices, const DdVertex* _vertices, uint32_t _numIndices, const uint16_t* _indices)
{
DEBUG_DRAW_ENCODER(draw(true, _numVertices, _vertices, _numIndices, _indices) );
}
void DebugDrawEncoder::drawTriList(uint32_t _numVertices, const DdVertex* _vertices, uint32_t _numIndices, const uint16_t* _indices)
{
DEBUG_DRAW_ENCODER(draw(false, _numVertices, _vertices, _numIndices, _indices) );
}
void DebugDrawEncoder::drawFrustum(const void* _viewProj)
{
DEBUG_DRAW_ENCODER(drawFrustum(_viewProj) );
}
void DebugDrawEncoder::drawArc(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _degrees)
{
DEBUG_DRAW_ENCODER(drawArc(_axis, _x, _y, _z, _radius, _degrees) );
}
void DebugDrawEncoder::drawCircle(const bx::Vec3& _normal, const bx::Vec3& _center, float _radius, float _weight)
{
DEBUG_DRAW_ENCODER(drawCircle(_normal, _center, _radius, _weight) );
}
void DebugDrawEncoder::drawCircle(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _weight)
{
DEBUG_DRAW_ENCODER(drawCircle(_axis, _x, _y, _z, _radius, _weight) );
}
void DebugDrawEncoder::drawQuad(const bx::Vec3& _normal, const bx::Vec3& _center, float _size)
{
DEBUG_DRAW_ENCODER(drawQuad(_normal, _center, _size) );
}
void DebugDrawEncoder::drawQuad(SpriteHandle _handle, const bx::Vec3& _normal, const bx::Vec3& _center, float _size)
{
DEBUG_DRAW_ENCODER(drawQuad(_handle, _normal, _center, _size) );
}
void DebugDrawEncoder::drawQuad(bgfx::TextureHandle _handle, const bx::Vec3& _normal, const bx::Vec3& _center, float _size)
{
DEBUG_DRAW_ENCODER(drawQuad(_handle, _normal, _center, _size) );
}
void DebugDrawEncoder::drawCone(const bx::Vec3& _from, const bx::Vec3& _to, float _radius)
{
DEBUG_DRAW_ENCODER(drawCone(_from, _to, _radius) );
}
void DebugDrawEncoder::drawCylinder(const bx::Vec3& _from, const bx::Vec3& _to, float _radius)
{
DEBUG_DRAW_ENCODER(drawCylinder(_from, _to, _radius, false) );
}
void DebugDrawEncoder::drawCapsule(const bx::Vec3& _from, const bx::Vec3& _to, float _radius)
{
DEBUG_DRAW_ENCODER(drawCylinder(_from, _to, _radius, true) );
}
void DebugDrawEncoder::drawAxis(float _x, float _y, float _z, float _len, Axis::Enum _highlight, float _thickness)
{
DEBUG_DRAW_ENCODER(drawAxis(_x, _y, _z, _len, _highlight, _thickness) );
}
void DebugDrawEncoder::drawGrid(const bx::Vec3& _normal, const bx::Vec3& _center, uint32_t _size, float _step)
{
DEBUG_DRAW_ENCODER(drawGrid(_normal, _center, _size, _step) );
}
void DebugDrawEncoder::drawGrid(Axis::Enum _axis, const bx::Vec3& _center, uint32_t _size, float _step)
{
DEBUG_DRAW_ENCODER(drawGrid(_axis, _center, _size, _step) );
}
void DebugDrawEncoder::drawOrb(float _x, float _y, float _z, float _radius, Axis::Enum _highlight)
{
DEBUG_DRAW_ENCODER(drawOrb(_x, _y, _z, _radius, _highlight) );
}
DebugDrawEncoderScopePush::DebugDrawEncoderScopePush(DebugDrawEncoder& _dde)
: m_dde(_dde)
{
m_dde.push();
}
DebugDrawEncoderScopePush::~DebugDrawEncoderScopePush()
{
m_dde.pop();
}