/* * Copyright 2011-2019 Branimir Karadzic. All rights reserved. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause */ #include #include #include "debugdraw.h" #include "../bgfx_utils.h" #include "../packrect.h" #include #include #include #include #include #ifndef DEBUG_DRAW_CONFIG_MAX_GEOMETRY # define DEBUG_DRAW_CONFIG_MAX_GEOMETRY 256 #endif // DEBUG_DRAW_CONFIG_MAX_GEOMETRY struct DebugVertex { float m_x; float m_y; float m_z; float m_len; uint32_t m_abgr; static void init() { ms_decl .begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .add(bgfx::Attrib::TexCoord0, 1, bgfx::AttribType::Float) .add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true) .end(); } static bgfx::VertexDecl ms_decl; }; bgfx::VertexDecl DebugVertex::ms_decl; struct DebugUvVertex { float m_x; float m_y; float m_z; float m_u; float m_v; uint32_t m_abgr; static void init() { ms_decl .begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float) .add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true) .end(); } static bgfx::VertexDecl ms_decl; }; bgfx::VertexDecl DebugUvVertex::ms_decl; struct DebugShapeVertex { float m_x; float m_y; float m_z; uint8_t m_indices[4]; static void init() { ms_decl .begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .add(bgfx::Attrib::Indices, 4, bgfx::AttribType::Uint8) .end(); } static bgfx::VertexDecl ms_decl; }; bgfx::VertexDecl DebugShapeVertex::ms_decl; struct DebugMeshVertex { float m_x; float m_y; float m_z; static void init() { ms_decl .begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .end(); } static bgfx::VertexDecl ms_decl; }; bgfx::VertexDecl DebugMeshVertex::ms_decl; static DebugShapeVertex s_quadVertices[4] = { {-1.0f, 0.0f, 1.0f, { 0, 0, 0, 0 } }, { 1.0f, 0.0f, 1.0f, { 0, 0, 0, 0 } }, {-1.0f, 0.0f, -1.0f, { 0, 0, 0, 0 } }, { 1.0f, 0.0f, -1.0f, { 0, 0, 0, 0 } }, }; static const uint16_t s_quadIndices[6] = { 0, 1, 2, 1, 3, 2, }; static DebugShapeVertex s_cubeVertices[8] = { {-1.0f, 1.0f, 1.0f, { 0, 0, 0, 0 } }, { 1.0f, 1.0f, 1.0f, { 0, 0, 0, 0 } }, {-1.0f, -1.0f, 1.0f, { 0, 0, 0, 0 } }, { 1.0f, -1.0f, 1.0f, { 0, 0, 0, 0 } }, {-1.0f, 1.0f, -1.0f, { 0, 0, 0, 0 } }, { 1.0f, 1.0f, -1.0f, { 0, 0, 0, 0 } }, {-1.0f, -1.0f, -1.0f, { 0, 0, 0, 0 } }, { 1.0f, -1.0f, -1.0f, { 0, 0, 0, 0 } }, }; static const uint16_t s_cubeIndices[36] = { 0, 1, 2, // 0 1, 3, 2, 4, 6, 5, // 2 5, 6, 7, 0, 2, 4, // 4 4, 2, 6, 1, 5, 3, // 6 5, 7, 3, 0, 4, 1, // 8 4, 5, 1, 2, 3, 6, // 10 6, 3, 7, }; static const uint8_t s_circleLod[] = { 37, 29, 23, 17, 11, }; static uint8_t getCircleLod(uint8_t _lod) { _lod = _lod > BX_COUNTOF(s_circleLod)-1 ? BX_COUNTOF(s_circleLod)-1 : _lod; return s_circleLod[_lod]; } static void circle(float* _out, float _angle) { float sa = bx::sin(_angle); float ca = bx::cos(_angle); _out[0] = sa; _out[1] = ca; } static void squircle(float* _out, float _angle) { float sa = bx::sin(_angle); float ca = bx::cos(_angle); _out[0] = bx::sqrt(bx::abs(sa) ) * bx::sign(sa); _out[1] = bx::sqrt(bx::abs(ca) ) * bx::sign(ca); } uint32_t genSphere(uint8_t _subdiv0, void* _pos0 = NULL, uint16_t _posStride0 = 0, void* _normals0 = NULL, uint16_t _normalStride0 = 0) { if (NULL != _pos0) { struct Gen { Gen(void* _pos, uint16_t _posStride, void* _normals, uint16_t _normalStride, uint8_t _subdiv) : m_pos( (uint8_t*)_pos) , m_normals( (uint8_t*)_normals) , m_posStride(_posStride) , m_normalStride(_normalStride) { static const float scale = 1.0f; static const float golden = 1.6180339887f; static const float len = bx::sqrt(golden*golden + 1.0f); static const float ss = 1.0f/len * scale; static const float ll = ss*golden; static const bx::Vec3 vv[] = { { -ll, 0.0f, -ss }, { ll, 0.0f, -ss }, { ll, 0.0f, ss }, { -ll, 0.0f, ss }, { -ss, ll, 0.0f }, { ss, ll, 0.0f }, { ss, -ll, 0.0f }, { -ss, -ll, 0.0f }, { 0.0f, -ss, ll }, { 0.0f, ss, ll }, { 0.0f, ss, -ll }, { 0.0f, -ss, -ll }, }; m_numVertices = 0; triangle(vv[ 0], vv[ 4], vv[ 3], scale, _subdiv); triangle(vv[ 0], vv[10], vv[ 4], scale, _subdiv); triangle(vv[ 4], vv[10], vv[ 5], scale, _subdiv); triangle(vv[ 5], vv[10], vv[ 1], scale, _subdiv); triangle(vv[ 5], vv[ 1], vv[ 2], scale, _subdiv); triangle(vv[ 5], vv[ 2], vv[ 9], scale, _subdiv); triangle(vv[ 5], vv[ 9], vv[ 4], scale, _subdiv); triangle(vv[ 3], vv[ 4], vv[ 9], scale, _subdiv); triangle(vv[ 0], vv[ 3], vv[ 7], scale, _subdiv); triangle(vv[ 0], vv[ 7], vv[11], scale, _subdiv); triangle(vv[11], vv[ 7], vv[ 6], scale, _subdiv); triangle(vv[11], vv[ 6], vv[ 1], scale, _subdiv); triangle(vv[ 1], vv[ 6], vv[ 2], scale, _subdiv); triangle(vv[ 2], vv[ 6], vv[ 8], scale, _subdiv); triangle(vv[ 8], vv[ 6], vv[ 7], scale, _subdiv); triangle(vv[ 8], vv[ 7], vv[ 3], scale, _subdiv); triangle(vv[ 0], vv[11], vv[10], scale, _subdiv); triangle(vv[ 1], vv[10], vv[11], scale, _subdiv); triangle(vv[ 2], vv[ 8], vv[ 9], scale, _subdiv); triangle(vv[ 3], vv[ 9], vv[ 8], scale, _subdiv); } void addVert(const bx::Vec3& _v) { bx::store(m_pos, _v); m_pos += m_posStride; if (NULL != m_normals) { const bx::Vec3 normal = bx::normalize(_v); bx::store(m_normals, normal); m_normals += m_normalStride; } m_numVertices++; } void triangle(const bx::Vec3& _v0, const bx::Vec3& _v1, const bx::Vec3& _v2, float _scale, uint8_t _subdiv) { if (0 == _subdiv) { addVert(_v0); addVert(_v1); addVert(_v2); } else { const bx::Vec3 v01 = bx::mul(bx::normalize(bx::add(_v0, _v1) ), _scale); const bx::Vec3 v12 = bx::mul(bx::normalize(bx::add(_v1, _v2) ), _scale); const bx::Vec3 v20 = bx::mul(bx::normalize(bx::add(_v2, _v0) ), _scale); --_subdiv; triangle(_v0, v01, v20, _scale, _subdiv); triangle(_v1, v12, v01, _scale, _subdiv); triangle(_v2, v20, v12, _scale, _subdiv); triangle(v01, v12, v20, _scale, _subdiv); } } uint8_t* m_pos; uint8_t* m_normals; uint16_t m_posStride; uint16_t m_normalStride; uint32_t m_numVertices; } gen(_pos0, _posStride0, _normals0, _normalStride0, _subdiv0); } uint32_t numVertices = 20*3*bx::uint32_max(1, (uint32_t)bx::pow(4.0f, _subdiv0) ); return numVertices; } bx::Vec3 getPoint(Axis::Enum _axis, float _x, float _y) { bx::Vec3 result; switch (_axis) { case Axis::X: result.x = 0.0f; result.y = _x; result.z = _y; break; case Axis::Y: result.x = _y; result.y = 0.0f; result.z = _x; break; default: result.x = _x; result.y = _y; result.z = 0.0f; break; } return result; } #include "vs_debugdraw_lines.bin.h" #include "fs_debugdraw_lines.bin.h" #include "vs_debugdraw_lines_stipple.bin.h" #include "fs_debugdraw_lines_stipple.bin.h" #include "vs_debugdraw_fill.bin.h" #include "vs_debugdraw_fill_mesh.bin.h" #include "fs_debugdraw_fill.bin.h" #include "vs_debugdraw_fill_lit.bin.h" #include "vs_debugdraw_fill_lit_mesh.bin.h" #include "fs_debugdraw_fill_lit.bin.h" #include "vs_debugdraw_fill_texture.bin.h" #include "fs_debugdraw_fill_texture.bin.h" static const bgfx::EmbeddedShader s_embeddedShaders[] = { BGFX_EMBEDDED_SHADER(vs_debugdraw_lines), BGFX_EMBEDDED_SHADER(fs_debugdraw_lines), BGFX_EMBEDDED_SHADER(vs_debugdraw_lines_stipple), BGFX_EMBEDDED_SHADER(fs_debugdraw_lines_stipple), BGFX_EMBEDDED_SHADER(vs_debugdraw_fill), BGFX_EMBEDDED_SHADER(vs_debugdraw_fill_mesh), BGFX_EMBEDDED_SHADER(fs_debugdraw_fill), BGFX_EMBEDDED_SHADER(vs_debugdraw_fill_lit), BGFX_EMBEDDED_SHADER(vs_debugdraw_fill_lit_mesh), BGFX_EMBEDDED_SHADER(fs_debugdraw_fill_lit), BGFX_EMBEDDED_SHADER(vs_debugdraw_fill_texture), BGFX_EMBEDDED_SHADER(fs_debugdraw_fill_texture), BGFX_EMBEDDED_SHADER_END() }; #define SPRITE_TEXTURE_SIZE 1024 template struct SpriteT { SpriteT() : m_ra(TextureSizeT, TextureSizeT) { } SpriteHandle create(uint16_t _width, uint16_t _height) { bx::MutexScope lock(m_lock); SpriteHandle handle = { bx::kInvalidHandle }; if (m_handleAlloc.getNumHandles() < m_handleAlloc.getMaxHandles() ) { Pack2D pack; if (m_ra.find(_width, _height, pack) ) { handle.idx = m_handleAlloc.alloc(); if (isValid(handle) ) { m_pack[handle.idx] = pack; } else { m_ra.clear(pack); } } } return handle; } void destroy(SpriteHandle _sprite) { const Pack2D& pack = m_pack[_sprite.idx]; m_ra.clear(pack); m_handleAlloc.free(_sprite.idx); } const Pack2D& get(SpriteHandle _sprite) const { return m_pack[_sprite.idx]; } bx::Mutex m_lock; bx::HandleAllocT m_handleAlloc; Pack2D m_pack[MaxHandlesT]; RectPack2DT<256> m_ra; }; template struct GeometryT { GeometryT() { } GeometryHandle create(uint32_t _numVertices, const DdVertex* _vertices, uint32_t _numIndices, const void* _indices, bool _index32) { BX_UNUSED(_numVertices, _vertices, _numIndices, _indices, _index32); GeometryHandle handle; { bx::MutexScope lock(m_lock); handle = { m_handleAlloc.alloc() }; } if (isValid(handle) ) { Geometry& geometry = m_geometry[handle.idx]; geometry.m_vbh = bgfx::createVertexBuffer( bgfx::copy(_vertices, _numVertices*sizeof(DdVertex) ) , DebugMeshVertex::ms_decl ); geometry.m_topologyNumIndices[0] = _numIndices; geometry.m_topologyNumIndices[1] = bgfx::topologyConvert( bgfx::TopologyConvert::TriListToLineList , NULL , 0 , _indices , _numIndices , _index32 ); const uint32_t indexSize = _index32 ? sizeof(uint32_t) : sizeof(uint16_t); const uint32_t numIndices = 0 + geometry.m_topologyNumIndices[0] + geometry.m_topologyNumIndices[1] ; const bgfx::Memory* mem = bgfx::alloc(numIndices*indexSize ); uint8_t* indexData = mem->data; bx::memCopy(indexData, _indices, _numIndices*indexSize ); bgfx::topologyConvert( bgfx::TopologyConvert::TriListToLineList , &indexData[geometry.m_topologyNumIndices[0]*indexSize ] , geometry.m_topologyNumIndices[1]*indexSize , _indices , _numIndices , _index32 ); geometry.m_ibh = bgfx::createIndexBuffer( mem , _index32 ? BGFX_BUFFER_INDEX32 : BGFX_BUFFER_NONE ); } return handle; } void destroy(GeometryHandle _handle) { bx::MutexScope lock(m_lock); Geometry& geometry = m_geometry[_handle.idx]; bgfx::destroy(geometry.m_vbh); bgfx::destroy(geometry.m_ibh); m_handleAlloc.free(_handle.idx); } struct Geometry { Geometry() { m_vbh.idx = bx::kInvalidHandle; m_ibh.idx = bx::kInvalidHandle; m_topologyNumIndices[0] = 0; m_topologyNumIndices[1] = 0; } bgfx::VertexBufferHandle m_vbh; bgfx::IndexBufferHandle m_ibh; uint32_t m_topologyNumIndices[2]; }; bx::Mutex m_lock; bx::HandleAllocT m_handleAlloc; Geometry m_geometry[MaxHandlesT]; }; struct Attrib { uint64_t m_state; float m_offset; float m_scale; float m_spin; uint32_t m_abgr; bool m_stipple; bool m_wireframe; uint8_t m_lod; }; struct Program { enum Enum { Lines, LinesStipple, Fill, FillMesh, FillLit, FillLitMesh, FillTexture, Count }; }; struct Mesh { enum Enum { Sphere0, Sphere1, Sphere2, Sphere3, Cone0, Cone1, Cone2, Cone3, Cylinder0, Cylinder1, Cylinder2, Cylinder3, Capsule0, Capsule1, Capsule2, Capsule3, Quad, Cube, Count, SphereMaxLod = Sphere3 - Sphere0, ConeMaxLod = Cone3 - Cone0, CylinderMaxLod = Cylinder3 - Cylinder0, CapsuleMaxLod = Capsule3 - Capsule0, }; uint32_t m_startVertex; uint32_t m_numVertices; uint32_t m_startIndex[2]; uint32_t m_numIndices[2]; }; typedef SpriteT<256, SPRITE_TEXTURE_SIZE> Sprite; typedef GeometryT Geometry; struct DebugDrawShared { void init(bx::AllocatorI* _allocator) { if (NULL == _allocator) { static bx::DefaultAllocator allocator; m_allocator = &allocator; } else { m_allocator = _allocator; } DebugVertex::init(); DebugUvVertex::init(); DebugShapeVertex::init(); DebugMeshVertex::init(); bgfx::RendererType::Enum type = bgfx::getRendererType(); m_program[Program::Lines] = bgfx::createProgram( bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_debugdraw_lines") , bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_debugdraw_lines") , true ); m_program[Program::LinesStipple] = bgfx::createProgram( bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_debugdraw_lines_stipple") , bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_debugdraw_lines_stipple") , true ); m_program[Program::Fill] = bgfx::createProgram( bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_debugdraw_fill") , bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_debugdraw_fill") , true ); m_program[Program::FillMesh] = bgfx::createProgram( bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_debugdraw_fill_mesh") , bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_debugdraw_fill") , true ); m_program[Program::FillLit] = bgfx::createProgram( bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_debugdraw_fill_lit") , bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_debugdraw_fill_lit") , true ); m_program[Program::FillLitMesh] = bgfx::createProgram( bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_debugdraw_fill_lit_mesh") , bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_debugdraw_fill_lit") , true ); m_program[Program::FillTexture] = bgfx::createProgram( bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_debugdraw_fill_texture") , bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_debugdraw_fill_texture") , true ); u_params = bgfx::createUniform("u_params", bgfx::UniformType::Vec4, 4); s_texColor = bgfx::createUniform("s_texColor", bgfx::UniformType::Sampler); m_texture = bgfx::createTexture2D(SPRITE_TEXTURE_SIZE, SPRITE_TEXTURE_SIZE, false, 1, bgfx::TextureFormat::BGRA8); void* vertices[Mesh::Count] = {}; uint16_t* indices[Mesh::Count] = {}; uint16_t stride = DebugShapeVertex::ms_decl.getStride(); uint32_t startVertex = 0; uint32_t startIndex = 0; for (uint32_t mesh = 0; mesh < 4; ++mesh) { Mesh::Enum id = Mesh::Enum(Mesh::Sphere0+mesh); const uint8_t tess = uint8_t(3-mesh); const uint32_t numVertices = genSphere(tess); const uint32_t numIndices = numVertices; vertices[id] = BX_ALLOC(m_allocator, numVertices*stride); bx::memSet(vertices[id], 0, numVertices*stride); genSphere(tess, vertices[id], stride); uint16_t* trilist = (uint16_t*)BX_ALLOC(m_allocator, numIndices*sizeof(uint16_t) ); for (uint32_t ii = 0; ii < numIndices; ++ii) { trilist[ii] = uint16_t(ii); } uint32_t numLineListIndices = bgfx::topologyConvert( bgfx::TopologyConvert::TriListToLineList , NULL , 0 , trilist , numIndices , false ); indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) ); uint16_t* indicesOut = indices[id]; bx::memCopy(indicesOut, trilist, numIndices*sizeof(uint16_t) ); bgfx::topologyConvert( bgfx::TopologyConvert::TriListToLineList , &indicesOut[numIndices] , numLineListIndices*sizeof(uint16_t) , trilist , numIndices , false ); m_mesh[id].m_startVertex = startVertex; m_mesh[id].m_numVertices = numVertices; m_mesh[id].m_startIndex[0] = startIndex; m_mesh[id].m_numIndices[0] = numIndices; m_mesh[id].m_startIndex[1] = startIndex+numIndices; m_mesh[id].m_numIndices[1] = numLineListIndices; startVertex += numVertices; startIndex += numIndices + numLineListIndices; BX_FREE(m_allocator, trilist); } for (uint32_t mesh = 0; mesh < 4; ++mesh) { Mesh::Enum id = Mesh::Enum(Mesh::Cone0+mesh); const uint32_t num = getCircleLod(uint8_t(mesh) ); const float step = bx::kPi * 2.0f / num; const uint32_t numVertices = num+1; const uint32_t numIndices = num*6; const uint32_t numLineListIndices = num*4; vertices[id] = BX_ALLOC(m_allocator, numVertices*stride); indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) ); bx::memSet(indices[id], 0, (numIndices + numLineListIndices)*sizeof(uint16_t) ); DebugShapeVertex* vertex = (DebugShapeVertex*)vertices[id]; uint16_t* index = indices[id]; vertex[num].m_x = 0.0f; vertex[num].m_y = 0.0f; vertex[num].m_z = 0.0f; vertex[num].m_indices[0] = 1; for (uint32_t ii = 0; ii < num; ++ii) { const float angle = step * ii; float xy[2]; circle(xy, angle); vertex[ii].m_x = xy[1]; vertex[ii].m_y = 0.0f; vertex[ii].m_z = xy[0]; vertex[ii].m_indices[0] = 0; index[ii*3+0] = uint16_t(num); index[ii*3+1] = uint16_t( (ii+1)%num); index[ii*3+2] = uint16_t(ii); index[num*3+ii*3+0] = 0; index[num*3+ii*3+1] = uint16_t(ii); index[num*3+ii*3+2] = uint16_t( (ii+1)%num); index[numIndices+ii*2+0] = uint16_t(ii); index[numIndices+ii*2+1] = uint16_t(num); index[numIndices+num*2+ii*2+0] = uint16_t(ii); index[numIndices+num*2+ii*2+1] = uint16_t( (ii+1)%num); } m_mesh[id].m_startVertex = startVertex; m_mesh[id].m_numVertices = numVertices; m_mesh[id].m_startIndex[0] = startIndex; m_mesh[id].m_numIndices[0] = numIndices; m_mesh[id].m_startIndex[1] = startIndex+numIndices; m_mesh[id].m_numIndices[1] = numLineListIndices; startVertex += numVertices; startIndex += numIndices + numLineListIndices; } for (uint32_t mesh = 0; mesh < 4; ++mesh) { Mesh::Enum id = Mesh::Enum(Mesh::Cylinder0+mesh); const uint32_t num = getCircleLod(uint8_t(mesh) ); const float step = bx::kPi * 2.0f / num; const uint32_t numVertices = num*2; const uint32_t numIndices = num*12; const uint32_t numLineListIndices = num*6; vertices[id] = BX_ALLOC(m_allocator, numVertices*stride); indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) ); bx::memSet(indices[id], 0, (numIndices + numLineListIndices)*sizeof(uint16_t) ); DebugShapeVertex* vertex = (DebugShapeVertex*)vertices[id]; uint16_t* index = indices[id]; for (uint32_t ii = 0; ii < num; ++ii) { const float angle = step * ii; float xy[2]; circle(xy, angle); vertex[ii].m_x = xy[1]; vertex[ii].m_y = 0.0f; vertex[ii].m_z = xy[0]; vertex[ii].m_indices[0] = 0; vertex[ii+num].m_x = xy[1]; vertex[ii+num].m_y = 0.0f; vertex[ii+num].m_z = xy[0]; vertex[ii+num].m_indices[0] = 1; index[ii*6+0] = uint16_t(ii+num); index[ii*6+1] = uint16_t( (ii+1)%num); index[ii*6+2] = uint16_t(ii); index[ii*6+3] = uint16_t(ii+num); index[ii*6+4] = uint16_t( (ii+1)%num+num); index[ii*6+5] = uint16_t( (ii+1)%num); index[num*6+ii*6+0] = uint16_t(0); index[num*6+ii*6+1] = uint16_t(ii); index[num*6+ii*6+2] = uint16_t( (ii+1)%num); index[num*6+ii*6+3] = uint16_t(num); index[num*6+ii*6+4] = uint16_t( (ii+1)%num+num); index[num*6+ii*6+5] = uint16_t(ii+num); index[numIndices+ii*2+0] = uint16_t(ii); index[numIndices+ii*2+1] = uint16_t(ii+num); index[numIndices+num*2+ii*2+0] = uint16_t(ii); index[numIndices+num*2+ii*2+1] = uint16_t( (ii+1)%num); index[numIndices+num*4+ii*2+0] = uint16_t(num + ii); index[numIndices+num*4+ii*2+1] = uint16_t(num + (ii+1)%num); } m_mesh[id].m_startVertex = startVertex; m_mesh[id].m_numVertices = numVertices; m_mesh[id].m_startIndex[0] = startIndex; m_mesh[id].m_numIndices[0] = numIndices; m_mesh[id].m_startIndex[1] = startIndex+numIndices; m_mesh[id].m_numIndices[1] = numLineListIndices; startVertex += numVertices; startIndex += numIndices + numLineListIndices; } for (uint32_t mesh = 0; mesh < 4; ++mesh) { Mesh::Enum id = Mesh::Enum(Mesh::Capsule0+mesh); const uint32_t num = getCircleLod(uint8_t(mesh) ); const float step = bx::kPi * 2.0f / num; const uint32_t numVertices = num*2; const uint32_t numIndices = num*6; const uint32_t numLineListIndices = num*6; vertices[id] = BX_ALLOC(m_allocator, numVertices*stride); indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) ); bx::memSet(indices[id], 0, (numIndices + numLineListIndices)*sizeof(uint16_t) ); DebugShapeVertex* vertex = (DebugShapeVertex*)vertices[id]; uint16_t* index = indices[id]; for (uint32_t ii = 0; ii < num; ++ii) { const float angle = step * ii; float xy[2]; circle(xy, angle); vertex[ii].m_x = xy[1]; vertex[ii].m_y = 0.0f; vertex[ii].m_z = xy[0]; vertex[ii].m_indices[0] = 0; vertex[ii+num].m_x = xy[1]; vertex[ii+num].m_y = 0.0f; vertex[ii+num].m_z = xy[0]; vertex[ii+num].m_indices[0] = 1; index[ii*6+0] = uint16_t(ii+num); index[ii*6+1] = uint16_t( (ii+1)%num); index[ii*6+2] = uint16_t(ii); index[ii*6+3] = uint16_t(ii+num); index[ii*6+4] = uint16_t( (ii+1)%num+num); index[ii*6+5] = uint16_t( (ii+1)%num); // index[num*6+ii*6+0] = uint16_t(0); // index[num*6+ii*6+1] = uint16_t(ii); // index[num*6+ii*6+2] = uint16_t( (ii+1)%num); // index[num*6+ii*6+3] = uint16_t(num); // index[num*6+ii*6+4] = uint16_t( (ii+1)%num+num); // index[num*6+ii*6+5] = uint16_t(ii+num); index[numIndices+ii*2+0] = uint16_t(ii); index[numIndices+ii*2+1] = uint16_t(ii+num); index[numIndices+num*2+ii*2+0] = uint16_t(ii); index[numIndices+num*2+ii*2+1] = uint16_t( (ii+1)%num); index[numIndices+num*4+ii*2+0] = uint16_t(num + ii); index[numIndices+num*4+ii*2+1] = uint16_t(num + (ii+1)%num); } m_mesh[id].m_startVertex = startVertex; m_mesh[id].m_numVertices = numVertices; m_mesh[id].m_startIndex[0] = startIndex; m_mesh[id].m_numIndices[0] = numIndices; m_mesh[id].m_startIndex[1] = startIndex+numIndices; m_mesh[id].m_numIndices[1] = numLineListIndices; startVertex += numVertices; startIndex += numIndices + numLineListIndices; } m_mesh[Mesh::Quad].m_startVertex = startVertex; m_mesh[Mesh::Quad].m_numVertices = BX_COUNTOF(s_quadVertices); m_mesh[Mesh::Quad].m_startIndex[0] = startIndex; m_mesh[Mesh::Quad].m_numIndices[0] = BX_COUNTOF(s_quadIndices); m_mesh[Mesh::Quad].m_startIndex[1] = 0; m_mesh[Mesh::Quad].m_numIndices[1] = 0; startVertex += BX_COUNTOF(s_quadVertices); startIndex += BX_COUNTOF(s_quadIndices); m_mesh[Mesh::Cube].m_startVertex = startVertex; m_mesh[Mesh::Cube].m_numVertices = BX_COUNTOF(s_cubeVertices); m_mesh[Mesh::Cube].m_startIndex[0] = startIndex; m_mesh[Mesh::Cube].m_numIndices[0] = BX_COUNTOF(s_cubeIndices); m_mesh[Mesh::Cube].m_startIndex[1] = 0; m_mesh[Mesh::Cube].m_numIndices[1] = 0; startVertex += m_mesh[Mesh::Cube].m_numVertices; startIndex += m_mesh[Mesh::Cube].m_numIndices[0]; const bgfx::Memory* vb = bgfx::alloc(startVertex*stride); const bgfx::Memory* ib = bgfx::alloc(startIndex*sizeof(uint16_t) ); for (uint32_t mesh = Mesh::Sphere0; mesh < Mesh::Quad; ++mesh) { Mesh::Enum id = Mesh::Enum(mesh); bx::memCopy(&vb->data[m_mesh[id].m_startVertex * stride] , vertices[id] , m_mesh[id].m_numVertices*stride ); bx::memCopy(&ib->data[m_mesh[id].m_startIndex[0] * sizeof(uint16_t)] , indices[id] , (m_mesh[id].m_numIndices[0]+m_mesh[id].m_numIndices[1])*sizeof(uint16_t) ); BX_FREE(m_allocator, vertices[id]); BX_FREE(m_allocator, indices[id]); } bx::memCopy(&vb->data[m_mesh[Mesh::Quad].m_startVertex * stride] , s_quadVertices , sizeof(s_quadVertices) ); bx::memCopy(&ib->data[m_mesh[Mesh::Quad].m_startIndex[0] * sizeof(uint16_t)] , s_quadIndices , sizeof(s_quadIndices) ); bx::memCopy(&vb->data[m_mesh[Mesh::Cube].m_startVertex * stride] , s_cubeVertices , sizeof(s_cubeVertices) ); bx::memCopy(&ib->data[m_mesh[Mesh::Cube].m_startIndex[0] * sizeof(uint16_t)] , s_cubeIndices , sizeof(s_cubeIndices) ); m_vbh = bgfx::createVertexBuffer(vb, DebugShapeVertex::ms_decl); m_ibh = bgfx::createIndexBuffer(ib); } void shutdown() { bgfx::destroy(m_ibh); bgfx::destroy(m_vbh); for (uint32_t ii = 0; ii < Program::Count; ++ii) { bgfx::destroy(m_program[ii]); } bgfx::destroy(u_params); bgfx::destroy(s_texColor); bgfx::destroy(m_texture); } SpriteHandle createSprite(uint16_t _width, uint16_t _height, const void* _data) { SpriteHandle handle = m_sprite.create(_width, _height); if (isValid(handle) ) { const Pack2D& pack = m_sprite.get(handle); bgfx::updateTexture2D( m_texture , 0 , 0 , pack.m_x , pack.m_y , pack.m_width , pack.m_height , bgfx::copy(_data, pack.m_width*pack.m_height*4) ); } return handle; } void destroy(SpriteHandle _handle) { m_sprite.destroy(_handle); } GeometryHandle createGeometry(uint32_t _numVertices, const DdVertex* _vertices, uint32_t _numIndices, const void* _indices, bool _index32) { return m_geometry.create(_numVertices, _vertices, _numIndices, _indices, _index32); } void destroy(GeometryHandle _handle) { m_geometry.destroy(_handle); } bx::AllocatorI* m_allocator; Sprite m_sprite; Geometry m_geometry; Mesh m_mesh[Mesh::Count]; bgfx::UniformHandle s_texColor; bgfx::TextureHandle m_texture; bgfx::ProgramHandle m_program[Program::Count]; bgfx::UniformHandle u_params; bgfx::VertexBufferHandle m_vbh; bgfx::IndexBufferHandle m_ibh; }; static DebugDrawShared s_dds; struct DebugDrawEncoderImpl { DebugDrawEncoderImpl() : m_depthTestLess(true) , m_state(State::Count) , m_defaultEncoder(NULL) { } void init(bgfx::Encoder* _encoder) { m_defaultEncoder = _encoder; } void shutdown() { } void begin(bgfx::ViewId _viewId, bool _depthTestLess, bgfx::Encoder* _encoder) { BX_CHECK(State::Count == m_state); m_viewId = _viewId; m_encoder = _encoder == NULL ? m_defaultEncoder : _encoder; m_state = State::None; m_stack = 0; m_depthTestLess = _depthTestLess; m_pos = 0; m_indexPos = 0; m_vertexPos = 0; m_posQuad = 0; Attrib& attrib = m_attrib[0]; attrib.m_state = 0 | BGFX_STATE_WRITE_RGB | (m_depthTestLess ? BGFX_STATE_DEPTH_TEST_LESS : BGFX_STATE_DEPTH_TEST_GREATER) | BGFX_STATE_CULL_CW | BGFX_STATE_WRITE_Z ; attrib.m_scale = 1.0f; attrib.m_spin = 0.0f; attrib.m_offset = 0.0f; attrib.m_abgr = UINT32_MAX; attrib.m_stipple = false; attrib.m_wireframe = false; attrib.m_lod = 0; m_mtxStackCurrent = 0; m_mtxStack[m_mtxStackCurrent].reset(); } void end() { BX_CHECK(0 == m_stack, "Invalid stack %d.", m_stack); flushQuad(); flush(); m_encoder = NULL; m_state = State::Count; } void push() { BX_CHECK(State::Count != m_state); ++m_stack; m_attrib[m_stack] = m_attrib[m_stack-1]; } void pop() { BX_CHECK(State::Count != m_state); const Attrib& curr = m_attrib[m_stack]; const Attrib& prev = m_attrib[m_stack-1]; if (curr.m_stipple != prev.m_stipple || curr.m_state != prev.m_state) { flush(); } --m_stack; } void setDepthTestLess(bool _depthTestLess) { BX_CHECK(State::Count != m_state); if (m_depthTestLess != _depthTestLess) { m_depthTestLess = _depthTestLess; Attrib& attrib = m_attrib[m_stack]; if (attrib.m_state & BGFX_STATE_DEPTH_TEST_MASK) { flush(); attrib.m_state &= ~BGFX_STATE_DEPTH_TEST_MASK; attrib.m_state |= _depthTestLess ? BGFX_STATE_DEPTH_TEST_LESS : BGFX_STATE_DEPTH_TEST_GREATER; } } } void setTransform(const void* _mtx, uint16_t _num = 1, bool _flush = true) { BX_CHECK(State::Count != m_state); if (_flush) { flush(); } MatrixStack& stack = m_mtxStack[m_mtxStackCurrent]; if (NULL == _mtx) { stack.reset(); return; } bgfx::Transform transform; stack.mtx = m_encoder->allocTransform(&transform, _num); stack.num = _num; stack.data = transform.data; bx::memCopy(transform.data, _mtx, _num*64); } void setTranslate(float _x, float _y, float _z) { float mtx[16]; bx::mtxTranslate(mtx, _x, _y, _z); setTransform(mtx); } void setTranslate(const float* _pos) { setTranslate(_pos[0], _pos[1], _pos[2]); } void pushTransform(const void* _mtx, uint16_t _num, bool _flush = true) { BX_CHECK(m_mtxStackCurrent < BX_COUNTOF(m_mtxStack), "Out of matrix stack!"); BX_CHECK(State::Count != m_state); if (_flush) { flush(); } float* mtx = NULL; const MatrixStack& stack = m_mtxStack[m_mtxStackCurrent]; if (NULL == stack.data) { mtx = (float*)_mtx; } else { mtx = (float*)alloca(_num*64); for (uint16_t ii = 0; ii < _num; ++ii) { const float* mtxTransform = (const float*)_mtx; bx::mtxMul(&mtx[ii*16], &mtxTransform[ii*16], stack.data); } } m_mtxStackCurrent++; setTransform(mtx, _num, _flush); } void popTransform(bool _flush = true) { BX_CHECK(State::Count != m_state); if (_flush) { flush(); } m_mtxStackCurrent--; } void pushTranslate(float _x, float _y, float _z) { float mtx[16]; bx::mtxTranslate(mtx, _x, _y, _z); pushTransform(mtx, 1); } void pushTranslate(const bx::Vec3& _pos) { pushTranslate(_pos.x, _pos.y, _pos.z); } void setState(bool _depthTest, bool _depthWrite, bool _clockwise) { const uint64_t depthTest = m_depthTestLess ? BGFX_STATE_DEPTH_TEST_LESS : BGFX_STATE_DEPTH_TEST_GREATER ; uint64_t state = m_attrib[m_stack].m_state & ~(0 | BGFX_STATE_DEPTH_TEST_MASK | BGFX_STATE_WRITE_Z | BGFX_STATE_CULL_CW | BGFX_STATE_CULL_CCW ); state |= _depthTest ? depthTest : 0 ; state |= _depthWrite ? BGFX_STATE_WRITE_Z : 0 ; state |= _clockwise ? BGFX_STATE_CULL_CW : BGFX_STATE_CULL_CCW ; if (m_attrib[m_stack].m_state != state) { flush(); } m_attrib[m_stack].m_state = state; } void setColor(uint32_t _abgr) { BX_CHECK(State::Count != m_state); m_attrib[m_stack].m_abgr = _abgr; } void setLod(uint8_t _lod) { BX_CHECK(State::Count != m_state); m_attrib[m_stack].m_lod = _lod; } void setWireframe(bool _wireframe) { BX_CHECK(State::Count != m_state); m_attrib[m_stack].m_wireframe = _wireframe; } void setStipple(bool _stipple, float _scale = 1.0f, float _offset = 0.0f) { BX_CHECK(State::Count != m_state); Attrib& attrib = m_attrib[m_stack]; if (attrib.m_stipple != _stipple) { flush(); } attrib.m_stipple = _stipple; attrib.m_offset = _offset; attrib.m_scale = _scale; } void setSpin(float _spin) { Attrib& attrib = m_attrib[m_stack]; attrib.m_spin = _spin; } void moveTo(float _x, float _y, float _z = 0.0f) { BX_CHECK(State::Count != m_state); softFlush(); m_state = State::MoveTo; DebugVertex& vertex = m_cache[m_pos]; vertex.m_x = _x; vertex.m_y = _y; vertex.m_z = _z; Attrib& attrib = m_attrib[m_stack]; vertex.m_abgr = attrib.m_abgr; vertex.m_len = attrib.m_offset; m_vertexPos = m_pos; } void moveTo(const bx::Vec3& _pos) { BX_CHECK(State::Count != m_state); moveTo(_pos.x, _pos.y, _pos.z); } void moveTo(Axis::Enum _axis, float _x, float _y) { moveTo(getPoint(_axis, _x, _y) ); } void lineTo(float _x, float _y, float _z = 0.0f) { BX_CHECK(State::Count != m_state); if (State::None == m_state) { moveTo(_x, _y, _z); return; } if (m_pos+2 > uint16_t(BX_COUNTOF(m_cache) ) ) { uint32_t pos = m_pos; uint32_t vertexPos = m_vertexPos; flush(); bx::memCopy(&m_cache[0], &m_cache[vertexPos], sizeof(DebugVertex) ); if (vertexPos == pos) { m_pos = 1; } else { bx::memCopy(&m_cache[1], &m_cache[pos - 1], sizeof(DebugVertex) ); m_pos = 2; } m_state = State::LineTo; } else if (State::MoveTo == m_state) { ++m_pos; m_state = State::LineTo; } uint16_t prev = m_pos-1; uint16_t curr = m_pos++; DebugVertex& vertex = m_cache[curr]; vertex.m_x = _x; vertex.m_y = _y; vertex.m_z = _z; Attrib& attrib = m_attrib[m_stack]; vertex.m_abgr = attrib.m_abgr; vertex.m_len = attrib.m_offset; float len = bx::length(bx::sub(bx::load(&vertex.m_x), bx::load(&m_cache[prev].m_x) ) ) * attrib.m_scale; vertex.m_len = m_cache[prev].m_len + len; m_indices[m_indexPos++] = prev; m_indices[m_indexPos++] = curr; } void lineTo(const bx::Vec3& _pos) { BX_CHECK(State::Count != m_state); lineTo(_pos.x, _pos.y, _pos.z); } void lineTo(Axis::Enum _axis, float _x, float _y) { lineTo(getPoint(_axis, _x, _y) ); } void close() { BX_CHECK(State::Count != m_state); DebugVertex& vertex = m_cache[m_vertexPos]; lineTo(vertex.m_x, vertex.m_y, vertex.m_z); m_state = State::None; } void draw(const Aabb& _aabb) { const Attrib& attrib = m_attrib[m_stack]; if (attrib.m_wireframe) { moveTo(_aabb.min.x, _aabb.min.y, _aabb.min.z); lineTo(_aabb.max.x, _aabb.min.y, _aabb.min.z); lineTo(_aabb.max.x, _aabb.max.y, _aabb.min.z); lineTo(_aabb.min.x, _aabb.max.y, _aabb.min.z); close(); moveTo(_aabb.min.x, _aabb.min.y, _aabb.max.z); lineTo(_aabb.max.x, _aabb.min.y, _aabb.max.z); lineTo(_aabb.max.x, _aabb.max.y, _aabb.max.z); lineTo(_aabb.min.x, _aabb.max.y, _aabb.max.z); close(); moveTo(_aabb.min.x, _aabb.min.y, _aabb.min.z); lineTo(_aabb.min.x, _aabb.min.y, _aabb.max.z); moveTo(_aabb.max.x, _aabb.min.y, _aabb.min.z); lineTo(_aabb.max.x, _aabb.min.y, _aabb.max.z); moveTo(_aabb.min.x, _aabb.max.y, _aabb.min.z); lineTo(_aabb.min.x, _aabb.max.y, _aabb.max.z); moveTo(_aabb.max.x, _aabb.max.y, _aabb.min.z); lineTo(_aabb.max.x, _aabb.max.y, _aabb.max.z); } else { Obb obb; toObb(obb, _aabb); draw(Mesh::Cube, obb.mtx, 1, false); } } void draw(const Cylinder& _cylinder, bool _capsule) { drawCylinder(_cylinder.pos, _cylinder.end, _cylinder.radius, _capsule); } void draw(const Disk& _disk) { drawCircle(_disk.normal, _disk.center, _disk.radius, 0.0f); } void draw(const Obb& _obb) { const Attrib& attrib = m_attrib[m_stack]; if (attrib.m_wireframe) { pushTransform(_obb.mtx, 1); moveTo(-1.0f, -1.0f, -1.0f); lineTo( 1.0f, -1.0f, -1.0f); lineTo( 1.0f, 1.0f, -1.0f); lineTo(-1.0f, 1.0f, -1.0f); close(); moveTo(-1.0f, 1.0f, 1.0f); lineTo( 1.0f, 1.0f, 1.0f); lineTo( 1.0f, -1.0f, 1.0f); lineTo(-1.0f, -1.0f, 1.0f); close(); moveTo( 1.0f, -1.0f, -1.0f); lineTo( 1.0f, -1.0f, 1.0f); moveTo( 1.0f, 1.0f, -1.0f); lineTo( 1.0f, 1.0f, 1.0f); moveTo(-1.0f, 1.0f, -1.0f); lineTo(-1.0f, 1.0f, 1.0f); moveTo(-1.0f, -1.0f, -1.0f); lineTo(-1.0f, -1.0f, 1.0f); popTransform(); } else { draw(Mesh::Cube, _obb.mtx, 1, false); } } void draw(const Sphere& _sphere) { const Attrib& attrib = m_attrib[m_stack]; float mtx[16]; bx::mtxSRT(mtx , _sphere.radius , _sphere.radius , _sphere.radius , 0.0f , 0.0f , 0.0f , _sphere.center.x , _sphere.center.y , _sphere.center.z ); uint8_t lod = attrib.m_lod > Mesh::SphereMaxLod ? uint8_t(Mesh::SphereMaxLod) : attrib.m_lod ; draw(Mesh::Enum(Mesh::Sphere0 + lod), mtx, 1, attrib.m_wireframe); } void draw(const Triangle& _triangle) { Attrib& attrib = m_attrib[m_stack]; if (attrib.m_wireframe) { moveTo(_triangle.v0); lineTo(_triangle.v1); lineTo(_triangle.v2); close(); } else { BX_STATIC_ASSERT(sizeof(DdVertex) == sizeof(bx::Vec3), ""); uint64_t old = attrib.m_state; attrib.m_state &= ~BGFX_STATE_CULL_MASK; draw(false, 3, reinterpret_cast(&_triangle.v0.x), 0, NULL); attrib.m_state = old; } } void setUParams(const Attrib& _attrib, bool _wireframe) { const float flip = 0 == (_attrib.m_state & BGFX_STATE_CULL_CCW) ? 1.0f : -1.0f; const uint8_t alpha = _attrib.m_abgr >> 24; float params[4][4] = { { // lightDir 0.0f * flip, -1.0f * flip, 0.0f * flip, 3.0f, // shininess }, { // skyColor 1.0f, 0.9f, 0.8f, 0.0f, // unused }, { // groundColor.xyz0 0.2f, 0.22f, 0.5f, 0.0f, // unused }, { // matColor ( (_attrib.m_abgr) & 0xff) / 255.0f, ( (_attrib.m_abgr >> 8) & 0xff) / 255.0f, ( (_attrib.m_abgr >> 16) & 0xff) / 255.0f, (alpha) / 255.0f, }, }; bx::store(params[0], bx::normalize(bx::load(params[0]) ) ); m_encoder->setUniform(s_dds.u_params, params, 4); m_encoder->setState(0 | _attrib.m_state | (_wireframe ? BGFX_STATE_PT_LINES | BGFX_STATE_LINEAA | BGFX_STATE_BLEND_ALPHA : (alpha < 0xff) ? BGFX_STATE_BLEND_ALPHA : 0) ); } void draw(GeometryHandle _handle) { const Geometry::Geometry& geometry = s_dds.m_geometry.m_geometry[_handle.idx]; m_encoder->setVertexBuffer(0, geometry.m_vbh); const Attrib& attrib = m_attrib[m_stack]; const bool wireframe = attrib.m_wireframe; setUParams(attrib, wireframe); if (wireframe) { m_encoder->setIndexBuffer( geometry.m_ibh , geometry.m_topologyNumIndices[0] , geometry.m_topologyNumIndices[1] ); } else if (0 != geometry.m_topologyNumIndices[0]) { m_encoder->setIndexBuffer( geometry.m_ibh , 0 , geometry.m_topologyNumIndices[0] ); } m_encoder->setTransform(m_mtxStack[m_mtxStackCurrent].mtx); bgfx::ProgramHandle program = s_dds.m_program[wireframe ? Program::FillMesh : Program::FillLitMesh]; m_encoder->submit(m_viewId, program); } void draw(bool _lineList, uint32_t _numVertices, const DdVertex* _vertices, uint32_t _numIndices, const uint16_t* _indices) { flush(); if (_numVertices == bgfx::getAvailTransientVertexBuffer(_numVertices, DebugMeshVertex::ms_decl) ) { bgfx::TransientVertexBuffer tvb; bgfx::allocTransientVertexBuffer(&tvb, _numVertices, DebugMeshVertex::ms_decl); bx::memCopy(tvb.data, _vertices, _numVertices * DebugMeshVertex::ms_decl.m_stride); m_encoder->setVertexBuffer(0, &tvb); const Attrib& attrib = m_attrib[m_stack]; const bool wireframe = _lineList || attrib.m_wireframe; setUParams(attrib, wireframe); if (0 < _numIndices) { uint32_t numIndices = _numIndices; bgfx::TransientIndexBuffer tib; if (!_lineList && wireframe) { numIndices = bgfx::topologyConvert( bgfx::TopologyConvert::TriListToLineList , NULL , 0 , _indices , _numIndices , false ); bgfx::allocTransientIndexBuffer(&tib, numIndices); bgfx::topologyConvert( bgfx::TopologyConvert::TriListToLineList , tib.data , numIndices * sizeof(uint16_t) , _indices , _numIndices , false ); } else { bgfx::allocTransientIndexBuffer(&tib, numIndices); bx::memCopy(tib.data, _indices, numIndices * sizeof(uint16_t) ); } m_encoder->setIndexBuffer(&tib); } m_encoder->setTransform(m_mtxStack[m_mtxStackCurrent].mtx); bgfx::ProgramHandle program = s_dds.m_program[wireframe ? Program::FillMesh : Program::FillLitMesh ]; m_encoder->submit(m_viewId, program); } } void drawFrustum(const float* _viewProj) { bx::Plane planes[6]; buildFrustumPlanes(planes, _viewProj); const bx::Vec3 points[8] = { intersectPlanes(planes[0], planes[2], planes[4]), intersectPlanes(planes[0], planes[3], planes[4]), intersectPlanes(planes[0], planes[3], planes[5]), intersectPlanes(planes[0], planes[2], planes[5]), intersectPlanes(planes[1], planes[2], planes[4]), intersectPlanes(planes[1], planes[3], planes[4]), intersectPlanes(planes[1], planes[3], planes[5]), intersectPlanes(planes[1], planes[2], planes[5]), }; moveTo(points[0]); lineTo(points[1]); lineTo(points[2]); lineTo(points[3]); close(); moveTo(points[4]); lineTo(points[5]); lineTo(points[6]); lineTo(points[7]); close(); moveTo(points[0]); lineTo(points[4]); moveTo(points[1]); lineTo(points[5]); moveTo(points[2]); lineTo(points[6]); moveTo(points[3]); lineTo(points[7]); } void drawFrustum(const void* _viewProj) { drawFrustum( (const float*)_viewProj); } void drawArc(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _degrees) { const Attrib& attrib = m_attrib[m_stack]; const uint32_t num = getCircleLod(attrib.m_lod); const float step = bx::kPi * 2.0f / num; _degrees = bx::wrap(_degrees, 360.0f); bx::Vec3 pos = getPoint( _axis , bx::sin(step * 0)*_radius , bx::cos(step * 0)*_radius ); moveTo({pos.x + _x, pos.y + _y, pos.z + _z}); uint32_t n = uint32_t(num*_degrees/360.0f); for (uint32_t ii = 1; ii < n+1; ++ii) { pos = getPoint( _axis , bx::sin(step * ii)*_radius , bx::cos(step * ii)*_radius ); lineTo({pos.x + _x, pos.y + _y, pos.z + _z}); } moveTo(_x, _y, _z); pos = getPoint( _axis , bx::sin(step * 0)*_radius , bx::cos(step * 0)*_radius ); lineTo({pos.x + _x, pos.y + _y, pos.z + _z}); pos = getPoint( _axis , bx::sin(step * n)*_radius , bx::cos(step * n)*_radius ); moveTo({pos.x + _x, pos.y + _y, pos.z + _z}); lineTo(_x, _y, _z); } void drawCircle(const bx::Vec3& _normal, const bx::Vec3& _center, float _radius, float _weight) { const Attrib& attrib = m_attrib[m_stack]; const uint32_t num = getCircleLod(attrib.m_lod); const float step = bx::kPi * 2.0f / num; _weight = bx::clamp(_weight, 0.0f, 2.0f); bx::Vec3 udir; bx::Vec3 vdir; bx::calcTangentFrame(udir, vdir, _normal, attrib.m_spin); float xy0[2]; float xy1[2]; circle(xy0, 0.0f); squircle(xy1, 0.0f); bx::Vec3 pos = bx::mul(udir, bx::lerp(xy0[0], xy1[0], _weight)*_radius); bx::Vec3 tmp0 = bx::mul(vdir, bx::lerp(xy0[1], xy1[1], _weight)*_radius); bx::Vec3 tmp1 = bx::add(pos, tmp0); bx::Vec3 tmp2 = bx::add(tmp1, _center); moveTo(tmp2); for (uint32_t ii = 1; ii < num; ++ii) { float angle = step * ii; circle(xy0, angle); squircle(xy1, angle); pos = bx::mul(udir, bx::lerp(xy0[0], xy1[0], _weight)*_radius); tmp0 = bx::mul(vdir, bx::lerp(xy0[1], xy1[1], _weight)*_radius); tmp1 = bx::add(pos, tmp0); tmp2 = bx::add(tmp1, _center); lineTo(tmp2); } close(); } void drawCircle(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _weight) { const Attrib& attrib = m_attrib[m_stack]; const uint32_t num = getCircleLod(attrib.m_lod); const float step = bx::kPi * 2.0f / num; _weight = bx::clamp(_weight, 0.0f, 2.0f); float xy0[2]; float xy1[2]; circle(xy0, 0.0f); squircle(xy1, 0.0f); bx::Vec3 pos = getPoint( _axis , bx::lerp(xy0[0], xy1[0], _weight)*_radius , bx::lerp(xy0[1], xy1[1], _weight)*_radius ); moveTo({pos.x + _x, pos.y + _y, pos.z + _z}); for (uint32_t ii = 1; ii < num; ++ii) { float angle = step * ii; circle(xy0, angle); squircle(xy1, angle); pos = getPoint( _axis , bx::lerp(xy0[0], xy1[0], _weight)*_radius , bx::lerp(xy0[1], xy1[1], _weight)*_radius ); lineTo({pos.x + _x, pos.y + _y, pos.z + _z}); } close(); } void drawQuad(const bx::Vec3& _normal, const bx::Vec3& _center, float _size) { const Attrib& attrib = m_attrib[m_stack]; if (attrib.m_wireframe) { bx::Vec3 udir, vdir; bx::calcTangentFrame(udir, vdir, _normal, attrib.m_spin); const float halfExtent = _size*0.5f; const bx::Vec3 umin = bx::mul(udir, -halfExtent); const bx::Vec3 umax = bx::mul(udir, halfExtent); const bx::Vec3 vmin = bx::mul(vdir, -halfExtent); const bx::Vec3 vmax = bx::mul(vdir, halfExtent); const bx::Vec3 center = _center; moveTo(bx::add(center, bx::add(umin, vmin) ) ); lineTo(bx::add(center, bx::add(umax, vmin) ) ); lineTo(bx::add(center, bx::add(umax, vmax) ) ); lineTo(bx::add(center, bx::add(umin, vmax) ) ); close(); } else { float mtx[16]; bx::mtxFromNormal(mtx, _normal, _size*0.5f, _center, attrib.m_spin); draw(Mesh::Quad, mtx, 1, false); } } void drawQuad(SpriteHandle _handle, const bx::Vec3& _normal, const bx::Vec3& _center, float _size) { if (!isValid(_handle) ) { drawQuad(_normal, _center, _size); return; } if (m_posQuad == BX_COUNTOF(m_cacheQuad) ) { flushQuad(); } const Attrib& attrib = m_attrib[m_stack]; bx::Vec3 udir, vdir; bx::calcTangentFrame(udir, vdir, _normal, attrib.m_spin); const Pack2D& pack = s_dds.m_sprite.get(_handle); const float invTextureSize = 1.0f/SPRITE_TEXTURE_SIZE; const float us = pack.m_x * invTextureSize; const float vs = pack.m_y * invTextureSize; const float ue = (pack.m_x + pack.m_width ) * invTextureSize; const float ve = (pack.m_y + pack.m_height) * invTextureSize; const float aspectRatio = float(pack.m_width)/float(pack.m_height); const float halfExtentU = aspectRatio*_size*0.5f; const float halfExtentV = 1.0f/aspectRatio*_size*0.5f; const bx::Vec3 umin = bx::mul(udir, -halfExtentU); const bx::Vec3 umax = bx::mul(udir, halfExtentU); const bx::Vec3 vmin = bx::mul(vdir, -halfExtentV); const bx::Vec3 vmax = bx::mul(vdir, halfExtentV); const bx::Vec3 center = _center; DebugUvVertex* vertex = &m_cacheQuad[m_posQuad]; m_posQuad += 4; bx::store(&vertex->m_x, bx::add(center, bx::add(umin, vmin) ) ); vertex->m_u = us; vertex->m_v = vs; vertex->m_abgr = attrib.m_abgr; ++vertex; bx::store(&vertex->m_x, bx::add(center, bx::add(umax, vmin) ) ); vertex->m_u = ue; vertex->m_v = vs; vertex->m_abgr = attrib.m_abgr; ++vertex; bx::store(&vertex->m_x, bx::add(center, bx::add(umin, vmax) ) ); vertex->m_u = us; vertex->m_v = ve; vertex->m_abgr = attrib.m_abgr; ++vertex; bx::store(&vertex->m_x, bx::add(center, bx::add(umax, vmax) ) ); vertex->m_u = ue; vertex->m_v = ve; vertex->m_abgr = attrib.m_abgr; ++vertex; } void drawQuad(bgfx::TextureHandle _handle, const bx::Vec3& _normal, const bx::Vec3& _center, float _size) { BX_UNUSED(_handle, _normal, _center, _size); } void drawCone(const bx::Vec3& _from, const bx::Vec3& _to, float _radius) { const Attrib& attrib = m_attrib[m_stack]; const bx::Vec3 normal = bx::normalize(bx::sub(_from, _to) ); float mtx[2][16]; bx::mtxFromNormal(mtx[0], normal, _radius, _from, attrib.m_spin); bx::memCopy(mtx[1], mtx[0], 64); mtx[1][12] = _to.x; mtx[1][13] = _to.y; mtx[1][14] = _to.z; uint8_t lod = attrib.m_lod > Mesh::ConeMaxLod ? uint8_t(Mesh::ConeMaxLod) : attrib.m_lod ; draw(Mesh::Enum(Mesh::Cone0 + lod), mtx[0], 2, attrib.m_wireframe); } void drawCylinder(const bx::Vec3& _from, const bx::Vec3& _to, float _radius, bool _capsule) { const Attrib& attrib = m_attrib[m_stack]; const bx::Vec3 normal = bx::normalize(bx::sub(_from, _to) ); float mtx[2][16]; bx::mtxFromNormal(mtx[0], normal, _radius, _from, attrib.m_spin); bx::memCopy(mtx[1], mtx[0], 64); mtx[1][12] = _to.x; mtx[1][13] = _to.y; mtx[1][14] = _to.z; if (_capsule) { uint8_t lod = attrib.m_lod > Mesh::CapsuleMaxLod ? uint8_t(Mesh::CapsuleMaxLod) : attrib.m_lod ; draw(Mesh::Enum(Mesh::Capsule0 + lod), mtx[0], 2, attrib.m_wireframe); Sphere sphere; sphere.center = _from; sphere.radius = _radius; draw(sphere); sphere.center = _to; draw(sphere); } else { uint8_t lod = attrib.m_lod > Mesh::CylinderMaxLod ? uint8_t(Mesh::CylinderMaxLod) : attrib.m_lod ; draw(Mesh::Enum(Mesh::Cylinder0 + lod), mtx[0], 2, attrib.m_wireframe); } } void drawAxis(float _x, float _y, float _z, float _len, Axis::Enum _highlight, float _thickness) { push(); if (_thickness > 0.0f) { const bx::Vec3 from = { _x, _y, _z }; bx::Vec3 mid; bx::Vec3 to; setColor(Axis::X == _highlight ? 0xff00ffff : 0xff0000ff); mid = { _x + _len - _thickness, _y, _z }; to = { _x + _len, _y, _z }; drawCylinder(from, mid, _thickness, false); drawCone(mid, to, _thickness); setColor(Axis::Y == _highlight ? 0xff00ffff : 0xff00ff00); mid = { _x, _y + _len - _thickness, _z }; to = { _x, _y + _len, _z }; drawCylinder(from, mid, _thickness, false); drawCone(mid, to, _thickness); setColor(Axis::Z == _highlight ? 0xff00ffff : 0xffff0000); mid = { _x, _y, _z + _len - _thickness }; to = { _x, _y, _z + _len }; drawCylinder(from, mid, _thickness, false); drawCone(mid, to, _thickness); } else { setColor(Axis::X == _highlight ? 0xff00ffff : 0xff0000ff); moveTo(_x, _y, _z); lineTo(_x + _len, _y, _z); setColor(Axis::Y == _highlight ? 0xff00ffff : 0xff00ff00); moveTo(_x, _y, _z); lineTo(_x, _y + _len, _z); setColor(Axis::Z == _highlight ? 0xff00ffff : 0xffff0000); moveTo(_x, _y, _z); lineTo(_x, _y, _z + _len); } pop(); } void drawGrid(const bx::Vec3& _normal, const bx::Vec3& _center, uint32_t _size, float _step) { const Attrib& attrib = m_attrib[m_stack]; bx::Vec3 udir; bx::Vec3 vdir; bx::calcTangentFrame(udir, vdir, _normal, attrib.m_spin); udir = bx::mul(udir, _step); vdir = bx::mul(vdir, _step); const uint32_t num = (_size/2)*2+1; const float halfExtent = float(_size/2); const bx::Vec3 umin = bx::mul(udir, -halfExtent); const bx::Vec3 umax = bx::mul(udir, halfExtent); const bx::Vec3 vmin = bx::mul(vdir, -halfExtent); const bx::Vec3 vmax = bx::mul(vdir, halfExtent); bx::Vec3 xs = bx::add(_center, bx::add(umin, vmin) ); bx::Vec3 xe = bx::add(_center, bx::add(umax, vmin) ); bx::Vec3 ys = bx::add(_center, bx::add(umin, vmin) ); bx::Vec3 ye = bx::add(_center, bx::add(umin, vmax) ); for (uint32_t ii = 0; ii < num; ++ii) { moveTo(xs); lineTo(xe); xs = bx::add(xs, vdir); xe = bx::add(xe, vdir); moveTo(ys); lineTo(ye); ys = bx::add(ys, udir); ye = bx::add(ye, udir); } } void drawGrid(Axis::Enum _axis, const bx::Vec3& _center, uint32_t _size, float _step) { push(); pushTranslate(_center); const uint32_t num = (_size/2)*2-1; const float halfExtent = float(_size/2) * _step; setColor(0xff606060); float yy = -halfExtent + _step; for (uint32_t ii = 0; ii < num; ++ii) { moveTo(_axis, -halfExtent, yy); lineTo(_axis, halfExtent, yy); moveTo(_axis, yy, -halfExtent); lineTo(_axis, yy, halfExtent); yy += _step; } setColor(0xff101010); moveTo(_axis, -halfExtent, -halfExtent); lineTo(_axis, -halfExtent, halfExtent); lineTo(_axis, halfExtent, halfExtent); lineTo(_axis, halfExtent, -halfExtent); close(); moveTo(_axis, -halfExtent, 0.0f); lineTo(_axis, halfExtent, 0.0f); moveTo(_axis, 0.0f, -halfExtent); lineTo(_axis, 0.0f, halfExtent); popTransform(); pop(); } void drawOrb(float _x, float _y, float _z, float _radius, Axis::Enum _hightlight) { push(); setColor(Axis::X == _hightlight ? 0xff00ffff : 0xff0000ff); drawCircle(Axis::X, _x, _y, _z, _radius, 0.0f); setColor(Axis::Y == _hightlight ? 0xff00ffff : 0xff00ff00); drawCircle(Axis::Y, _x, _y, _z, _radius, 0.0f); setColor(Axis::Z == _hightlight ? 0xff00ffff : 0xffff0000); drawCircle(Axis::Z, _x, _y, _z, _radius, 0.0f); pop(); } void draw(Mesh::Enum _mesh, const float* _mtx, uint16_t _num, bool _wireframe) { pushTransform(_mtx, _num, false /* flush */); const Mesh& mesh = s_dds.m_mesh[_mesh]; if (0 != mesh.m_numIndices[_wireframe]) { m_encoder->setIndexBuffer(s_dds.m_ibh , mesh.m_startIndex[_wireframe] , mesh.m_numIndices[_wireframe] ); } const Attrib& attrib = m_attrib[m_stack]; setUParams(attrib, _wireframe); MatrixStack& stack = m_mtxStack[m_mtxStackCurrent]; m_encoder->setTransform(stack.mtx, stack.num); m_encoder->setVertexBuffer(0, s_dds.m_vbh, mesh.m_startVertex, mesh.m_numVertices); m_encoder->submit(m_viewId, s_dds.m_program[_wireframe ? Program::Fill : Program::FillLit]); popTransform(false /* flush */); } void softFlush() { if (m_pos == uint16_t(BX_COUNTOF(m_cache) ) ) { flush(); } } void flush() { if (0 != m_pos) { if (checkAvailTransientBuffers(m_pos, DebugVertex::ms_decl, m_indexPos) ) { bgfx::TransientVertexBuffer tvb; bgfx::allocTransientVertexBuffer(&tvb, m_pos, DebugVertex::ms_decl); bx::memCopy(tvb.data, m_cache, m_pos * DebugVertex::ms_decl.m_stride); bgfx::TransientIndexBuffer tib; bgfx::allocTransientIndexBuffer(&tib, m_indexPos); bx::memCopy(tib.data, m_indices, m_indexPos * sizeof(uint16_t) ); const Attrib& attrib = m_attrib[m_stack]; m_encoder->setVertexBuffer(0, &tvb); m_encoder->setIndexBuffer(&tib); m_encoder->setState(0 | BGFX_STATE_WRITE_RGB | BGFX_STATE_PT_LINES | attrib.m_state | BGFX_STATE_LINEAA | BGFX_STATE_BLEND_ALPHA ); m_encoder->setTransform(m_mtxStack[m_mtxStackCurrent].mtx); bgfx::ProgramHandle program = s_dds.m_program[attrib.m_stipple ? 1 : 0]; m_encoder->submit(m_viewId, program); } m_state = State::None; m_pos = 0; m_indexPos = 0; m_vertexPos = 0; } } void flushQuad() { if (0 != m_posQuad) { const uint32_t numIndices = m_posQuad/4*6; if (checkAvailTransientBuffers(m_posQuad, DebugUvVertex::ms_decl, numIndices) ) { bgfx::TransientVertexBuffer tvb; bgfx::allocTransientVertexBuffer(&tvb, m_posQuad, DebugUvVertex::ms_decl); bx::memCopy(tvb.data, m_cacheQuad, m_posQuad * DebugUvVertex::ms_decl.m_stride); bgfx::TransientIndexBuffer tib; bgfx::allocTransientIndexBuffer(&tib, numIndices); uint16_t* indices = (uint16_t*)tib.data; for (uint16_t ii = 0, num = m_posQuad/4; ii < num; ++ii) { uint16_t startVertex = ii*4; indices[0] = startVertex+0; indices[1] = startVertex+1; indices[2] = startVertex+2; indices[3] = startVertex+1; indices[4] = startVertex+3; indices[5] = startVertex+2; indices += 6; } const Attrib& attrib = m_attrib[m_stack]; m_encoder->setVertexBuffer(0, &tvb); m_encoder->setIndexBuffer(&tib); m_encoder->setState(0 | (attrib.m_state & ~BGFX_STATE_CULL_MASK) ); m_encoder->setTransform(m_mtxStack[m_mtxStackCurrent].mtx); m_encoder->setTexture(0, s_dds.s_texColor, s_dds.m_texture); m_encoder->submit(m_viewId, s_dds.m_program[Program::FillTexture]); } m_posQuad = 0; } } struct State { enum Enum { None, MoveTo, LineTo, Count }; }; static const uint32_t kCacheSize = 1024; static const uint32_t kStackSize = 16; static const uint32_t kCacheQuadSize = 1024; BX_STATIC_ASSERT(kCacheSize >= 3, "Cache must be at least 3 elements."); DebugVertex m_cache[kCacheSize+1]; DebugUvVertex m_cacheQuad[kCacheQuadSize]; uint16_t m_indices[kCacheSize*2]; uint16_t m_pos; uint16_t m_posQuad; uint16_t m_indexPos; uint16_t m_vertexPos; uint32_t m_mtxStackCurrent; struct MatrixStack { void reset() { mtx = 0; num = 1; data = NULL; } uint32_t mtx; uint16_t num; float* data; }; MatrixStack m_mtxStack[32]; bgfx::ViewId m_viewId; uint8_t m_stack; bool m_depthTestLess; Attrib m_attrib[kStackSize]; State::Enum m_state; bgfx::Encoder* m_encoder; bgfx::Encoder* m_defaultEncoder; }; static DebugDrawEncoderImpl s_dde; BX_STATIC_ASSERT(sizeof(DebugDrawEncoderImpl) <= sizeof(DebugDrawEncoder), "Size must match"); void ddInit(bx::AllocatorI* _allocator) { s_dds.init(_allocator); s_dde.init(bgfx::begin() ); } void ddShutdown() { s_dde.shutdown(); s_dds.shutdown(); } SpriteHandle ddCreateSprite(uint16_t _width, uint16_t _height, const void* _data) { return s_dds.createSprite(_width, _height, _data); } void ddDestroy(SpriteHandle _handle) { s_dds.destroy(_handle); } GeometryHandle ddCreateGeometry(uint32_t _numVertices, const DdVertex* _vertices, uint32_t _numIndices, const void* _indices, bool _index32) { return s_dds.createGeometry(_numVertices, _vertices, _numIndices, _indices, _index32); } void ddDestroy(GeometryHandle _handle) { s_dds.destroy(_handle); } #define DEBUG_DRAW_ENCODER(_func) reinterpret_cast(this)->_func DebugDrawEncoder::DebugDrawEncoder() { DEBUG_DRAW_ENCODER(init(s_dde.m_defaultEncoder) ); } DebugDrawEncoder::~DebugDrawEncoder() { DEBUG_DRAW_ENCODER(shutdown() ); } void DebugDrawEncoder::begin(uint16_t _viewId, bool _depthTestLess, bgfx::Encoder* _encoder) { DEBUG_DRAW_ENCODER(begin(_viewId, _depthTestLess, _encoder) ); } void DebugDrawEncoder::end() { DEBUG_DRAW_ENCODER(end() ); } void DebugDrawEncoder::push() { DEBUG_DRAW_ENCODER(push() ); } void DebugDrawEncoder::pop() { DEBUG_DRAW_ENCODER(pop() ); } void DebugDrawEncoder::setDepthTestLess(bool _depthTestLess) { DEBUG_DRAW_ENCODER(setDepthTestLess(_depthTestLess) ); } void DebugDrawEncoder::setState(bool _depthTest, bool _depthWrite, bool _clockwise) { DEBUG_DRAW_ENCODER(setState(_depthTest, _depthWrite, _clockwise) ); } void DebugDrawEncoder::setColor(uint32_t _abgr) { DEBUG_DRAW_ENCODER(setColor(_abgr) ); } void DebugDrawEncoder::setLod(uint8_t _lod) { DEBUG_DRAW_ENCODER(setLod(_lod) ); } void DebugDrawEncoder::setWireframe(bool _wireframe) { DEBUG_DRAW_ENCODER(setWireframe(_wireframe) ); } void DebugDrawEncoder::setStipple(bool _stipple, float _scale, float _offset) { DEBUG_DRAW_ENCODER(setStipple(_stipple, _scale, _offset) ); } void DebugDrawEncoder::setSpin(float _spin) { DEBUG_DRAW_ENCODER(setSpin(_spin) ); } void DebugDrawEncoder::setTransform(const void* _mtx) { DEBUG_DRAW_ENCODER(setTransform(_mtx) ); } void DebugDrawEncoder::setTranslate(float _x, float _y, float _z) { DEBUG_DRAW_ENCODER(setTranslate(_x, _y, _z) ); } void DebugDrawEncoder::pushTransform(const void* _mtx) { DEBUG_DRAW_ENCODER(pushTransform(_mtx, 1) ); } void DebugDrawEncoder::popTransform() { DEBUG_DRAW_ENCODER(popTransform() ); } void DebugDrawEncoder::moveTo(float _x, float _y, float _z) { DEBUG_DRAW_ENCODER(moveTo(_x, _y, _z) ); } void DebugDrawEncoder::moveTo(const bx::Vec3& _pos) { DEBUG_DRAW_ENCODER(moveTo(_pos) ); } void DebugDrawEncoder::lineTo(float _x, float _y, float _z) { DEBUG_DRAW_ENCODER(lineTo(_x, _y, _z) ); } void DebugDrawEncoder::lineTo(const bx::Vec3& _pos) { DEBUG_DRAW_ENCODER(lineTo(_pos) ); } void DebugDrawEncoder::close() { DEBUG_DRAW_ENCODER(close() ); } void DebugDrawEncoder::draw(const Aabb& _aabb) { DEBUG_DRAW_ENCODER(draw(_aabb) ); } void DebugDrawEncoder::draw(const Cylinder& _cylinder) { DEBUG_DRAW_ENCODER(draw(_cylinder, false) ); } void DebugDrawEncoder::draw(const Capsule& _capsule) { DEBUG_DRAW_ENCODER(draw(*( (const Cylinder*)&_capsule), true) ); } void DebugDrawEncoder::draw(const Disk& _disk) { DEBUG_DRAW_ENCODER(draw(_disk) ); } void DebugDrawEncoder::draw(const Obb& _obb) { DEBUG_DRAW_ENCODER(draw(_obb) ); } void DebugDrawEncoder::draw(const Sphere& _sphere) { DEBUG_DRAW_ENCODER(draw(_sphere) ); } void DebugDrawEncoder::draw(const Triangle& _triangle) { DEBUG_DRAW_ENCODER(draw(_triangle) ); } void DebugDrawEncoder::draw(const Cone& _cone) { DEBUG_DRAW_ENCODER(drawCone(_cone.pos, _cone.end, _cone.radius) ); } void DebugDrawEncoder::draw(GeometryHandle _handle) { DEBUG_DRAW_ENCODER(draw(_handle) ); } void DebugDrawEncoder::drawLineList(uint32_t _numVertices, const DdVertex* _vertices, uint32_t _numIndices, const uint16_t* _indices) { DEBUG_DRAW_ENCODER(draw(true, _numVertices, _vertices, _numIndices, _indices) ); } void DebugDrawEncoder::drawTriList(uint32_t _numVertices, const DdVertex* _vertices, uint32_t _numIndices, const uint16_t* _indices) { DEBUG_DRAW_ENCODER(draw(false, _numVertices, _vertices, _numIndices, _indices) ); } void DebugDrawEncoder::drawFrustum(const void* _viewProj) { DEBUG_DRAW_ENCODER(drawFrustum(_viewProj) ); } void DebugDrawEncoder::drawArc(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _degrees) { DEBUG_DRAW_ENCODER(drawArc(_axis, _x, _y, _z, _radius, _degrees) ); } void DebugDrawEncoder::drawCircle(const bx::Vec3& _normal, const bx::Vec3& _center, float _radius, float _weight) { DEBUG_DRAW_ENCODER(drawCircle(_normal, _center, _radius, _weight) ); } void DebugDrawEncoder::drawCircle(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _weight) { DEBUG_DRAW_ENCODER(drawCircle(_axis, _x, _y, _z, _radius, _weight) ); } void DebugDrawEncoder::drawQuad(const bx::Vec3& _normal, const bx::Vec3& _center, float _size) { DEBUG_DRAW_ENCODER(drawQuad(_normal, _center, _size) ); } void DebugDrawEncoder::drawQuad(SpriteHandle _handle, const bx::Vec3& _normal, const bx::Vec3& _center, float _size) { DEBUG_DRAW_ENCODER(drawQuad(_handle, _normal, _center, _size) ); } void DebugDrawEncoder::drawQuad(bgfx::TextureHandle _handle, const bx::Vec3& _normal, const bx::Vec3& _center, float _size) { DEBUG_DRAW_ENCODER(drawQuad(_handle, _normal, _center, _size) ); } void DebugDrawEncoder::drawCone(const bx::Vec3& _from, const bx::Vec3& _to, float _radius) { DEBUG_DRAW_ENCODER(drawCone(_from, _to, _radius) ); } void DebugDrawEncoder::drawCylinder(const bx::Vec3& _from, const bx::Vec3& _to, float _radius) { DEBUG_DRAW_ENCODER(drawCylinder(_from, _to, _radius, false) ); } void DebugDrawEncoder::drawCapsule(const bx::Vec3& _from, const bx::Vec3& _to, float _radius) { DEBUG_DRAW_ENCODER(drawCylinder(_from, _to, _radius, true) ); } void DebugDrawEncoder::drawAxis(float _x, float _y, float _z, float _len, Axis::Enum _highlight, float _thickness) { DEBUG_DRAW_ENCODER(drawAxis(_x, _y, _z, _len, _highlight, _thickness) ); } void DebugDrawEncoder::drawGrid(const bx::Vec3& _normal, const bx::Vec3& _center, uint32_t _size, float _step) { DEBUG_DRAW_ENCODER(drawGrid(_normal, _center, _size, _step) ); } void DebugDrawEncoder::drawGrid(Axis::Enum _axis, const bx::Vec3& _center, uint32_t _size, float _step) { DEBUG_DRAW_ENCODER(drawGrid(_axis, _center, _size, _step) ); } void DebugDrawEncoder::drawOrb(float _x, float _y, float _z, float _radius, Axis::Enum _highlight) { DEBUG_DRAW_ENCODER(drawOrb(_x, _y, _z, _radius, _highlight) ); } DebugDrawEncoderScopePush::DebugDrawEncoderScopePush(DebugDrawEncoder& _dde) : m_dde(_dde) { m_dde.push(); } DebugDrawEncoderScopePush::~DebugDrawEncoderScopePush() { m_dde.pop(); }