bgfx/src/renderer_vk.cpp
Branimir Karadžić 9eaa42adc8 Fixed issue #1489.
2018-09-18 17:25:05 -07:00

4622 lines
149 KiB
C++

/*
* Copyright 2011-2018 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
#include "bgfx_p.h"
#if BGFX_CONFIG_RENDERER_VULKAN
# include "renderer_vk.h"
namespace bgfx { namespace vk
{
static char s_viewName[BGFX_CONFIG_MAX_VIEWS][256];
struct PrimInfo
{
VkPrimitiveTopology m_topology;
uint32_t m_min;
uint32_t m_div;
uint32_t m_sub;
};
static const PrimInfo s_primInfo[] =
{
{ VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 3, 3, 0 },
{ VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 3, 1, 2 },
{ VK_PRIMITIVE_TOPOLOGY_LINE_LIST, 2, 2, 0 },
{ VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, 2, 1, 1 },
{ VK_PRIMITIVE_TOPOLOGY_POINT_LIST, 1, 1, 0 },
{ VK_PRIMITIVE_TOPOLOGY_MAX_ENUM, 0, 0, 0 },
};
BX_STATIC_ASSERT(Topology::Count == BX_COUNTOF(s_primInfo)-1);
static const uint32_t s_checkMsaa[] =
{
0,
2,
4,
8,
16,
};
// static DXGI_SAMPLE_DESC s_msaa[] =
// {
// { 1, 0 },
// { 2, 0 },
// { 4, 0 },
// { 8, 0 },
// { 16, 0 },
// };
static const VkBlendFactor s_blendFactor[][2] =
{
{ VkBlendFactor(0), VkBlendFactor(0) }, // ignored
{ VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ZERO }, // ZERO
{ VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_ONE }, // ONE
{ VK_BLEND_FACTOR_SRC_COLOR, VK_BLEND_FACTOR_SRC_ALPHA }, // SRC_COLOR
{ VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA }, // INV_SRC_COLOR
{ VK_BLEND_FACTOR_SRC_ALPHA, VK_BLEND_FACTOR_SRC_ALPHA }, // SRC_ALPHA
{ VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA }, // INV_SRC_ALPHA
{ VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_DST_ALPHA }, // DST_ALPHA
{ VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA }, // INV_DST_ALPHA
{ VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_DST_ALPHA }, // DST_COLOR
{ VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA }, // INV_DST_COLOR
{ VK_BLEND_FACTOR_SRC_ALPHA, VK_BLEND_FACTOR_ONE }, // SRC_ALPHA_SAT
{ VK_BLEND_FACTOR_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_COLOR }, // FACTOR
{ VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR }, // INV_FACTOR
};
static const VkBlendOp s_blendEquation[] =
{
VK_BLEND_OP_ADD,
VK_BLEND_OP_SUBTRACT,
VK_BLEND_OP_REVERSE_SUBTRACT,
VK_BLEND_OP_MIN,
VK_BLEND_OP_MAX,
};
static const VkCompareOp s_cmpFunc[] =
{
VkCompareOp(0), // ignored
VK_COMPARE_OP_LESS,
VK_COMPARE_OP_LESS_OR_EQUAL,
VK_COMPARE_OP_EQUAL,
VK_COMPARE_OP_GREATER_OR_EQUAL,
VK_COMPARE_OP_GREATER,
VK_COMPARE_OP_NOT_EQUAL,
VK_COMPARE_OP_NEVER,
VK_COMPARE_OP_ALWAYS,
};
static const VkStencilOp s_stencilOp[] =
{
VK_STENCIL_OP_ZERO,
VK_STENCIL_OP_KEEP,
VK_STENCIL_OP_REPLACE,
VK_STENCIL_OP_INCREMENT_AND_WRAP,
VK_STENCIL_OP_INCREMENT_AND_CLAMP,
VK_STENCIL_OP_DECREMENT_AND_WRAP,
VK_STENCIL_OP_DECREMENT_AND_CLAMP,
VK_STENCIL_OP_INVERT,
};
static const VkCullModeFlagBits s_cullMode[] =
{
VK_CULL_MODE_NONE,
VK_CULL_MODE_FRONT_BIT,
VK_CULL_MODE_BACK_BIT,
};
static const VkSamplerAddressMode s_textureAddress[] =
{
VK_SAMPLER_ADDRESS_MODE_REPEAT,
VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
};
#define VK_IMPORT_FUNC(_optional, _func) PFN_##_func _func
#define VK_IMPORT_INSTANCE_FUNC VK_IMPORT_FUNC
#define VK_IMPORT_DEVICE_FUNC VK_IMPORT_FUNC
VK_IMPORT
VK_IMPORT_INSTANCE
VK_IMPORT_DEVICE
#undef VK_IMPORT_DEVICE_FUNC
#undef VK_IMPORT_INSTANCE_FUNC
#undef VK_IMPORT_FUNC
struct TextureFormatInfo
{
VkFormat m_fmt;
VkFormat m_fmtSrv;
VkFormat m_fmtDsv;
VkFormat m_fmtSrgb;
};
static const TextureFormatInfo s_textureFormat[] =
{
{ VK_FORMAT_BC1_RGB_UNORM_BLOCK, VK_FORMAT_BC1_RGB_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_BC1_RGB_SRGB_BLOCK }, // BC1
{ VK_FORMAT_BC2_UNORM_BLOCK, VK_FORMAT_BC2_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_BC2_SRGB_BLOCK }, // BC2
{ VK_FORMAT_BC3_UNORM_BLOCK, VK_FORMAT_BC3_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_BC3_SRGB_BLOCK }, // BC3
{ VK_FORMAT_BC4_UNORM_BLOCK, VK_FORMAT_BC4_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // BC4
{ VK_FORMAT_BC5_UNORM_BLOCK, VK_FORMAT_BC5_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // BC5
{ VK_FORMAT_BC6H_SFLOAT_BLOCK, VK_FORMAT_BC6H_SFLOAT_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // BC6H
{ VK_FORMAT_BC7_UNORM_BLOCK, VK_FORMAT_BC7_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_BC7_SRGB_BLOCK }, // BC7
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // ETC1
{ VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK }, // ETC2
{ VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK }, // ETC2A
{ VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK }, // ETC2A1
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // PTC12
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // PTC14
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // PTC12A
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // PTC14A
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // PTC22
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // PTC24
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // ATC
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // ATCE
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // ATCI
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // ASTC4x4
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // ASTC5x5
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // ASTC6x6
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // ASTC8x5
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // ASTC8x6
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // ASTC10x5
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // Unknown
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // R1
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // A8
{ VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_R8_SRGB }, // R8
{ VK_FORMAT_R8_SINT, VK_FORMAT_R8_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // R8I
{ VK_FORMAT_R8_UINT, VK_FORMAT_R8_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // R8U
{ VK_FORMAT_R8_SNORM, VK_FORMAT_R8_SNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // R8S
{ VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // R16
{ VK_FORMAT_R16_SINT, VK_FORMAT_R16_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // R16I
{ VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // R16U
{ VK_FORMAT_R16_SFLOAT, VK_FORMAT_R16_SFLOAT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // R16F
{ VK_FORMAT_R16_SNORM, VK_FORMAT_R16_SNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // R16S
{ VK_FORMAT_R32_SINT, VK_FORMAT_R32_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // R32I
{ VK_FORMAT_R32_UINT, VK_FORMAT_R32_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // R32U
{ VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // R32F
{ VK_FORMAT_R8G8_UNORM, VK_FORMAT_R8G8_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_R8G8_SRGB }, // RG8
{ VK_FORMAT_R8G8_SINT, VK_FORMAT_R8G8_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RG8I
{ VK_FORMAT_R8G8_UINT, VK_FORMAT_R8G8_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RG8U
{ VK_FORMAT_R8G8_SNORM, VK_FORMAT_R8G8_SNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RG8S
{ VK_FORMAT_R16G16_UNORM, VK_FORMAT_R16G16_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RG16
{ VK_FORMAT_R16G16_SINT, VK_FORMAT_R16G16_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RG16I
{ VK_FORMAT_R16G16_UINT, VK_FORMAT_R16G16_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RG16U
{ VK_FORMAT_R16G16_SFLOAT, VK_FORMAT_R16G16_SFLOAT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RG16F
{ VK_FORMAT_R16G16_SNORM, VK_FORMAT_R16G16_SNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RG16S
{ VK_FORMAT_R32G32_SINT, VK_FORMAT_R32G32_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RG32I
{ VK_FORMAT_R32G32_UINT, VK_FORMAT_R32G32_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RG32U
{ VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RG32F
{ VK_FORMAT_R8G8B8_UNORM, VK_FORMAT_R8G8B8_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_R8G8B8_SRGB }, // RGB8
{ VK_FORMAT_R8G8B8_SINT, VK_FORMAT_R8G8B8_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_R8G8B8_SRGB }, // RGB8I
{ VK_FORMAT_R8G8B8_UINT, VK_FORMAT_R8G8B8_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_R8G8B8_SRGB }, // RGB8U
{ VK_FORMAT_R8G8B8_SNORM, VK_FORMAT_R8G8B8_SNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RGB8S
{ VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RGB9E5F
{ VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_B8G8R8A8_SRGB }, // BGRA8
{ VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_R8G8B8A8_SRGB }, // RGBA8
{ VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_R8G8B8A8_SRGB }, // RGBA8I
{ VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_R8G8B8A8_SRGB }, // RGBA8U
{ VK_FORMAT_R8G8B8A8_SNORM, VK_FORMAT_R8G8B8A8_SNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RGBA8S
{ VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RGBA16
{ VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RGBA16I
{ VK_FORMAT_R16G16B16A16_UINT, VK_FORMAT_R16G16B16A16_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RGBA16U
{ VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RGBA16F
{ VK_FORMAT_R16G16B16A16_SNORM, VK_FORMAT_R16G16B16A16_SNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RGBA16S
{ VK_FORMAT_R32G32B32A32_SINT, VK_FORMAT_R32G32B32A32_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RGBA32I
{ VK_FORMAT_R32G32B32A32_UINT, VK_FORMAT_R32G32B32A32_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RGBA32U
{ VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RGBA32F
{ VK_FORMAT_B5G6R5_UNORM_PACK16, VK_FORMAT_B5G6R5_UNORM_PACK16, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // R5G6B5
{ VK_FORMAT_B4G4R4A4_UNORM_PACK16, VK_FORMAT_B4G4R4A4_UNORM_PACK16, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RGBA4
{ VK_FORMAT_B5G5R5A1_UNORM_PACK16, VK_FORMAT_B5G5R5A1_UNORM_PACK16, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RGB5A1
{ VK_FORMAT_A2R10G10B10_UNORM_PACK32, VK_FORMAT_A2R10G10B10_UNORM_PACK32, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RGB10A2
{ VK_FORMAT_B10G11R11_UFLOAT_PACK32, VK_FORMAT_B10G11R11_UFLOAT_PACK32, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // RG11B10F
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED }, // UnknownDepth
{ VK_FORMAT_UNDEFINED, VK_FORMAT_R16_UNORM, VK_FORMAT_D16_UNORM, VK_FORMAT_UNDEFINED }, // D16
{ VK_FORMAT_UNDEFINED, VK_FORMAT_X8_D24_UNORM_PACK32, VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_UNDEFINED }, // D24
{ VK_FORMAT_UNDEFINED, VK_FORMAT_X8_D24_UNORM_PACK32, VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_UNDEFINED }, // D24S8
{ VK_FORMAT_UNDEFINED, VK_FORMAT_X8_D24_UNORM_PACK32, VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_UNDEFINED }, // D32
{ VK_FORMAT_UNDEFINED, VK_FORMAT_R32_SFLOAT, VK_FORMAT_D32_SFLOAT, VK_FORMAT_UNDEFINED }, // D16F
{ VK_FORMAT_UNDEFINED, VK_FORMAT_R32_SFLOAT, VK_FORMAT_D32_SFLOAT, VK_FORMAT_UNDEFINED }, // D24F
{ VK_FORMAT_UNDEFINED, VK_FORMAT_R32_SFLOAT, VK_FORMAT_D32_SFLOAT, VK_FORMAT_UNDEFINED }, // D32F
{ VK_FORMAT_UNDEFINED, VK_FORMAT_X8_D24_UNORM_PACK32, VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_UNDEFINED }, // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormat) );
static const VkFormat s_attribType[][4][2] =
{
{ // Uint8
{ VK_FORMAT_R8_UINT, VK_FORMAT_R8_UNORM },
{ VK_FORMAT_R8G8_UINT, VK_FORMAT_R8G8_UNORM },
{ VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_R8G8B8A8_UNORM },
{ VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_R8G8B8A8_UNORM },
},
{ // Uint10
{ VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_UNORM_PACK32 },
{ VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_UNORM_PACK32 },
{ VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_UNORM_PACK32 },
{ VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_UNORM_PACK32 },
},
{ // Int16
{ VK_FORMAT_R16_SINT, VK_FORMAT_R16_SNORM },
{ VK_FORMAT_R16G16_SINT, VK_FORMAT_R16G16_SNORM },
{ VK_FORMAT_R16G16B16_SINT, VK_FORMAT_R16G16B16_SNORM },
{ VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R16G16B16A16_SNORM },
},
{ // Half
{ VK_FORMAT_R16_SFLOAT, VK_FORMAT_R16_SFLOAT },
{ VK_FORMAT_R16G16_SFLOAT, VK_FORMAT_R16G16_SFLOAT },
{ VK_FORMAT_R16G16B16_SFLOAT, VK_FORMAT_R16G16B16_SFLOAT },
{ VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R16G16B16A16_SFLOAT },
},
{ // Float
{ VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT },
{ VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R32G32_SFLOAT },
{ VK_FORMAT_R32G32B32_SFLOAT, VK_FORMAT_R32G32B32_SFLOAT },
{ VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R32G32B32A32_SFLOAT },
},
};
BX_STATIC_ASSERT(AttribType::Count == BX_COUNTOF(s_attribType) );
uint32_t fillVertexDecl(const ShaderVK* _vsh, VkPipelineVertexInputStateCreateInfo& _vertexInputState, const VertexDecl& _decl)
{
VkVertexInputBindingDescription* inputBinding = const_cast<VkVertexInputBindingDescription*>(_vertexInputState.pVertexBindingDescriptions);
VkVertexInputAttributeDescription* inputAttrib = const_cast<VkVertexInputAttributeDescription*>(_vertexInputState.pVertexAttributeDescriptions);
inputBinding->binding = 0;
inputBinding->stride = _decl.m_stride;
inputBinding->inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
_vertexInputState.vertexBindingDescriptionCount = 1;
uint32_t numAttribs = 0;
for (uint32_t attr = 0; attr < Attrib::Count; ++attr)
{
if (UINT16_MAX != _decl.m_attributes[attr])
{
inputAttrib->location = _vsh->m_attrRemap[attr];
inputAttrib->binding = 0;
if (0 == _decl.m_attributes[attr])
{
inputAttrib->format = VK_FORMAT_R32G32B32_SFLOAT;
inputAttrib->offset = 0;
}
else
{
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_decl.decode(Attrib::Enum(attr), num, type, normalized, asInt);
inputAttrib->format = s_attribType[type][num-1][normalized];
inputAttrib->offset = _decl.m_offset[attr];
}
++inputAttrib;
++numAttribs;
}
}
_vertexInputState.vertexAttributeDescriptionCount = numAttribs;
return numAttribs;
}
static const char* s_allocScopeName[] =
{
"vkCommand",
"vkObject",
"vkCache",
"vkDevice",
"vkInstance",
};
BX_STATIC_ASSERT(VK_SYSTEM_ALLOCATION_SCOPE_RANGE_SIZE == BX_COUNTOF(s_allocScopeName) );
static void* VKAPI_PTR allocationFunction(void* _userData, size_t _size, size_t _alignment, VkSystemAllocationScope _allocationScope)
{
BX_UNUSED(_userData, _allocationScope);
return bx::alignedAlloc(g_allocator, _size, _alignment, s_allocScopeName[_allocationScope]);
}
static void* VKAPI_PTR reallocationFunction(void* _userData, void* _original, size_t _size, size_t _alignment, VkSystemAllocationScope _allocationScope)
{
BX_UNUSED(_userData, _allocationScope);
return bx::alignedRealloc(g_allocator, _original, _size, _alignment, s_allocScopeName[_allocationScope]);
}
static void VKAPI_PTR freeFunction(void* _userData, void* _memory)
{
BX_UNUSED(_userData);
if (NULL == _memory)
{
return;
}
bx::alignedFree(g_allocator, _memory, 8);
}
static void VKAPI_PTR internalAllocationNotification(void* _userData, size_t _size, VkInternalAllocationType _allocationType, VkSystemAllocationScope _allocationScope)
{
BX_UNUSED(_userData, _size, _allocationType, _allocationScope);
}
static void VKAPI_PTR internalFreeNotification(void* _userData, size_t _size, VkInternalAllocationType _allocationType, VkSystemAllocationScope _allocationScope)
{
BX_UNUSED(_userData, _size, _allocationType, _allocationScope);
}
static VkAllocationCallbacks s_allocationCb =
{
NULL,
allocationFunction,
reallocationFunction,
freeFunction,
internalAllocationNotification,
internalFreeNotification,
};
static const char* s_debugReportObjectType[] =
{
"Unknown",
"Instance",
"PhysicalDevice",
"Device",
"Queue",
"Semaphore",
"CommandBuffer",
"Fence",
"DeviceMemory",
"Buffer",
"Image",
"Event",
"QueryPool",
"BufferView",
"ImageView",
"ShaderModule",
"PipelineCache",
"PipelineLayout",
"RenderPass",
"Pipeline",
"DescriptorSetLayout",
"Sampler",
"DescriptorPool",
"DescriptorSet",
"Framebuffer",
"CommandPool",
"SurfaceKHR",
"SwapchainKHR",
"DebugReport",
};
VkBool32 VKAPI_PTR debugReportCb(
VkDebugReportFlagsEXT _flags,
VkDebugReportObjectTypeEXT _objectType,
uint64_t _object,
size_t _location,
int32_t _messageCode,
const char* _layerPrefix,
const char* _message,
void* _userData
)
{
BX_UNUSED(_flags
, _objectType
, _object
, _location
, _messageCode
, _layerPrefix
, _message
, _userData
, s_debugReportObjectType
);
BX_TRACE("%c%c%c%c%c %19s, %s, %d: %s"
, 0 != (_flags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT ) ? 'I' : '-'
, 0 != (_flags & VK_DEBUG_REPORT_WARNING_BIT_EXT ) ? 'W' : '-'
, 0 != (_flags & VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT) ? 'P' : '-'
, 0 != (_flags & VK_DEBUG_REPORT_ERROR_BIT_EXT ) ? 'E' : '-'
, 0 != (_flags & VK_DEBUG_REPORT_DEBUG_BIT_EXT ) ? 'D' : '-'
, s_debugReportObjectType[_objectType]
, _layerPrefix
, _messageCode
, _message
);
return VK_TRUE;
}
VkResult enumerateLayerProperties(VkPhysicalDevice _physicalDevice, uint32_t* _propertyCount, VkLayerProperties* _properties)
{
return (VK_NULL_HANDLE == _physicalDevice)
? vkEnumerateInstanceLayerProperties(_propertyCount, _properties)
: vkEnumerateDeviceLayerProperties(_physicalDevice, _propertyCount, _properties)
;
}
VkResult enumerateExtensionProperties(VkPhysicalDevice _physicalDevice, const char* _layerName, uint32_t* _propertyCount, VkExtensionProperties* _properties)
{
return (VK_NULL_HANDLE == _physicalDevice)
? vkEnumerateInstanceExtensionProperties(_layerName, _propertyCount, _properties)
: vkEnumerateDeviceExtensionProperties(_physicalDevice, _layerName, _propertyCount, _properties)
;
}
void dumpExtensions(VkPhysicalDevice _physicalDevice = VK_NULL_HANDLE)
{
{ // Global extensions.
uint32_t numExtensionProperties;
VkResult result = enumerateExtensionProperties(_physicalDevice
, NULL
, &numExtensionProperties
, NULL
);
if (VK_SUCCESS == result
&& 0 < numExtensionProperties)
{
VkExtensionProperties extensionProperties[64];
numExtensionProperties = bx::uint32_min(numExtensionProperties, BX_COUNTOF(extensionProperties) );
result = enumerateExtensionProperties(_physicalDevice
, NULL
, &numExtensionProperties
, extensionProperties
);
BX_TRACE("\tGlobal extensions (%d):"
, numExtensionProperties
);
for (uint32_t extension = 0; extension < numExtensionProperties; ++extension)
{
BX_TRACE("\t\t%s (s: 0x%08x)"
, extensionProperties[extension].extensionName
, extensionProperties[extension].specVersion
);
}
}
}
// Layer extensions.
uint32_t numLayerProperties;
VkResult result = enumerateLayerProperties(_physicalDevice, &numLayerProperties, NULL);
if (VK_SUCCESS == result
&& 0 < numLayerProperties)
{
VkLayerProperties layerProperties[64];
numLayerProperties = bx::uint32_min(numLayerProperties, BX_COUNTOF(layerProperties) );
result = enumerateLayerProperties(_physicalDevice, &numLayerProperties, layerProperties);
char indent = VK_NULL_HANDLE == _physicalDevice ? ' ' : '\t';
BX_UNUSED(indent);
BX_TRACE("%cLayer extensions (%d):"
, indent
, numLayerProperties
);
for (uint32_t layer = 0; layer < numLayerProperties; ++layer)
{
BX_TRACE("%c\t%s (s: 0x%08x, i: 0x%08x), %s"
, indent
, layerProperties[layer].layerName
, layerProperties[layer].specVersion
, layerProperties[layer].implementationVersion
, layerProperties[layer].description
);
uint32_t numExtensionProperties;
result = enumerateExtensionProperties(_physicalDevice
, layerProperties[layer].layerName
, &numExtensionProperties
, NULL
);
if (VK_SUCCESS == result
&& 0 < numExtensionProperties)
{
VkExtensionProperties extensionProperties[64];
numExtensionProperties = bx::uint32_min(numExtensionProperties, BX_COUNTOF(extensionProperties) );
result = enumerateExtensionProperties(_physicalDevice
, layerProperties[layer].layerName
, &numExtensionProperties
, extensionProperties
);
for (uint32_t extension = 0; extension < numExtensionProperties; ++extension)
{
BX_TRACE("%c\t\t%s (s: 0x%08x)"
, indent
, extensionProperties[extension].extensionName
, extensionProperties[extension].specVersion
);
}
}
}
}
}
const char* getName(VkResult _result)
{
switch (_result)
{
#define VKENUM(_ty) case _ty: return #_ty
VKENUM(VK_SUCCESS);
VKENUM(VK_NOT_READY);
VKENUM(VK_TIMEOUT);
VKENUM(VK_EVENT_SET);
VKENUM(VK_EVENT_RESET);
VKENUM(VK_INCOMPLETE);
VKENUM(VK_ERROR_OUT_OF_HOST_MEMORY);
VKENUM(VK_ERROR_OUT_OF_DEVICE_MEMORY);
VKENUM(VK_ERROR_INITIALIZATION_FAILED);
VKENUM(VK_ERROR_DEVICE_LOST);
VKENUM(VK_ERROR_MEMORY_MAP_FAILED);
VKENUM(VK_ERROR_LAYER_NOT_PRESENT);
VKENUM(VK_ERROR_EXTENSION_NOT_PRESENT);
VKENUM(VK_ERROR_FEATURE_NOT_PRESENT);
VKENUM(VK_ERROR_INCOMPATIBLE_DRIVER);
VKENUM(VK_ERROR_TOO_MANY_OBJECTS);
VKENUM(VK_ERROR_FORMAT_NOT_SUPPORTED);
VKENUM(VK_ERROR_SURFACE_LOST_KHR);
VKENUM(VK_ERROR_NATIVE_WINDOW_IN_USE_KHR);
VKENUM(VK_SUBOPTIMAL_KHR);
VKENUM(VK_ERROR_OUT_OF_DATE_KHR);
VKENUM(VK_ERROR_INCOMPATIBLE_DISPLAY_KHR);
VKENUM(VK_ERROR_VALIDATION_FAILED_EXT);
#undef VKENUM
default: break;
}
BX_WARN(false, "Unknown VkResult? %x", _result);
return "<VkResult?>";
}
void setImageMemoryBarrier(VkCommandBuffer _commandBuffer, VkImage _image, VkImageLayout _oldLayout, VkImageLayout _newLayout)
{
BX_CHECK(true
&& _newLayout != VK_IMAGE_LAYOUT_UNDEFINED
&& _newLayout != VK_IMAGE_LAYOUT_PREINITIALIZED
, "_newLayout cannot use VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED."
);
VkAccessFlags srcAccessMask = 0;
VkAccessFlags dstAccessMask = 0;
VkImageAspectFlags aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
switch (_oldLayout)
{
case VK_IMAGE_LAYOUT_UNDEFINED:
// srcAccessMask |= VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_GENERAL:
break;
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
srcAccessMask |= VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
srcAccessMask |= VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
srcAccessMask |= VK_ACCESS_SHADER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
srcAccessMask |= VK_ACCESS_TRANSFER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
break;
case VK_IMAGE_LAYOUT_PREINITIALIZED:
srcAccessMask |= VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
srcAccessMask |= VK_ACCESS_MEMORY_READ_BIT;
break;
default:
break;
}
switch (_newLayout)
{
case VK_IMAGE_LAYOUT_UNDEFINED:
break;
case VK_IMAGE_LAYOUT_GENERAL:
break;
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
dstAccessMask |= VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
dstAccessMask |= VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
dstAccessMask |= VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
dstAccessMask |= VK_ACCESS_SHADER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
dstAccessMask |= VK_ACCESS_TRANSFER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_PREINITIALIZED:
break;
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
dstAccessMask |= VK_ACCESS_MEMORY_READ_BIT;
break;
default:
break;
}
VkImageMemoryBarrier imb;
imb.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imb.pNext = NULL;
imb.srcAccessMask = srcAccessMask;
imb.dstAccessMask = dstAccessMask;
imb.oldLayout = _oldLayout;
imb.newLayout = _newLayout;
imb.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imb.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imb.image = _image;
imb.subresourceRange.aspectMask = aspectMask;
imb.subresourceRange.baseMipLevel = 0;
imb.subresourceRange.levelCount = 1;
imb.subresourceRange.baseArrayLayer = 0;
imb.subresourceRange.layerCount = 1;
vkCmdPipelineBarrier(_commandBuffer
, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT
, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT
, 0
, 0
, NULL
, 0
, NULL
, 1
, &imb
);
}
struct RendererContextVK : public RendererContextI
{
RendererContextVK()
: m_allocatorCb(NULL)
, m_renderDocDll(NULL)
, m_vulkan1Dll(NULL)
, m_maxAnisotropy(1)
, m_depthClamp(false)
, m_wireframe(false)
{
}
~RendererContextVK()
{
}
bool init(const Init& _init)
{
BX_UNUSED(s_checkMsaa, s_textureAddress);
struct ErrorState
{
enum Enum
{
Default,
LoadedVulkan1,
InstanceCreated,
DeviceCreated,
RenderPassCreated,
SurfaceCreated,
SwapchainCreated,
CommandBuffersCreated,
DescriptorCreated,
};
};
ErrorState::Enum errorState = ErrorState::Default;
m_fbh.idx = kInvalidHandle;
bx::memSet(m_uniforms, 0, sizeof(m_uniforms) );
bx::memSet(&m_resolution, 0, sizeof(m_resolution) );
bool imported = true;
VkResult result;
m_qfiGraphics = UINT32_MAX;
m_qfiCompute = UINT32_MAX;
if (_init.debug
|| _init.profile)
{
m_renderDocDll = loadRenderDoc();
}
m_vulkan1Dll = bx::dlopen(
#if BX_PLATFORM_WINDOWS
"vulkan-1.dll"
#elif BX_PLATFORM_ANDROID
"libvulkan.so"
#else
"libvulkan.so.1"
#endif // BX_PLATFORM_*
);
if (NULL == m_vulkan1Dll)
{
BX_TRACE("Init error: Failed to load vulkan dynamic library.");
goto error;
}
errorState = ErrorState::LoadedVulkan1;
BX_TRACE("Shared library functions:");
#define VK_IMPORT_FUNC(_optional, _func) \
_func = (PFN_##_func)bx::dlsym(m_vulkan1Dll, #_func); \
BX_TRACE("\t%p " #_func, _func); \
imported &= _optional || NULL != _func
VK_IMPORT
#undef VK_IMPORT_FUNC
if (!imported)
{
BX_TRACE("Init error: Failed to load shared library functions.");
goto error;
}
{
dumpExtensions();
VkApplicationInfo appInfo;
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pNext = NULL;
appInfo.pApplicationName = "bgfx";
appInfo.applicationVersion = BGFX_API_VERSION;
appInfo.pEngineName = "bgfx";
appInfo.engineVersion = BGFX_API_VERSION;
appInfo.apiVersion = VK_MAKE_VERSION(1, 0, 0); //VK_HEADER_VERSION);
const char* enabledLayerNames[] =
{
#if BGFX_CONFIG_DEBUG
// "VK_LAYER_GOOGLE_threading",
// "VK_LAYER_GOOGLE_unique_objects",
// "VK_LAYER_LUNARG_device_limits",
// "VK_LAYER_LUNARG_standard_validation",
// "VK_LAYER_LUNARG_image",
// "VK_LAYER_LUNARG_mem_tracker",
// "VK_LAYER_LUNARG_object_tracker",
// "VK_LAYER_LUNARG_parameter_validation",
// "VK_LAYER_LUNARG_swapchain",
// "VK_LAYER_LUNARG_vktrace",
// "VK_LAYER_RENDERDOC_Capture",
#endif // BGFX_CONFIG_DEBUG
/*not used*/ ""
};
const char* enabledExtension[] =
{
VK_KHR_SURFACE_EXTENSION_NAME,
KHR_SURFACE_EXTENSION_NAME,
#if BGFX_CONFIG_DEBUG
VK_EXT_DEBUG_REPORT_EXTENSION_NAME,
#endif // BGFX_CONFIG_DEBUG
/*not used*/ ""
};
VkInstanceCreateInfo ici;
ici.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
ici.pNext = NULL;
ici.flags = 0;
ici.pApplicationInfo = &appInfo;
ici.enabledLayerCount = BX_COUNTOF(enabledLayerNames) - 1;
ici.ppEnabledLayerNames = enabledLayerNames;
ici.enabledExtensionCount = BX_COUNTOF(enabledExtension) - 1;
ici.ppEnabledExtensionNames = enabledExtension;
if (BX_ENABLED(BGFX_CONFIG_DEBUG) )
{
m_allocatorCb = &s_allocationCb;
BX_UNUSED(s_allocationCb);
}
result = vkCreateInstance(&ici
, m_allocatorCb
, &m_instance
);
}
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateInstance failed %d: %s.", result, getName(result) );
goto error;
}
errorState = ErrorState::InstanceCreated;
BX_TRACE("Instance functions:");
#define VK_IMPORT_INSTANCE_FUNC(_optional, _func) \
_func = (PFN_##_func)vkGetInstanceProcAddr(m_instance, #_func); \
BX_TRACE("\t%p " #_func, _func); \
imported &= _optional || NULL != _func
VK_IMPORT_INSTANCE
#undef VK_IMPORT_INSTANCE_FUNC
if (!imported)
{
BX_TRACE("Init error: Failed to load instance functions.");
goto error;
}
m_debugReportCallback = VK_NULL_HANDLE;
if (BX_ENABLED(BGFX_CONFIG_DEBUG) )
{
VkDebugReportCallbackCreateInfoEXT drcb;
drcb.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
drcb.pNext = NULL;
drcb.pfnCallback = debugReportCb;
drcb.pUserData = NULL;
drcb.flags = 0
| VK_DEBUG_REPORT_ERROR_BIT_EXT
| VK_DEBUG_REPORT_WARNING_BIT_EXT
;
result = vkCreateDebugReportCallbackEXT(m_instance
, &drcb
, m_allocatorCb
, &m_debugReportCallback
);
BX_WARN(VK_SUCCESS == result, "vkCreateDebugReportCallbackEXT failed %d: %s.", result, getName(result) );
}
{
BX_TRACE("---");
uint32_t numPhysicalDevices;
result = vkEnumeratePhysicalDevices(m_instance
, &numPhysicalDevices
, NULL
);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkEnumeratePhysicalDevices failed %d: %s.", result, getName(result) );
goto error;
}
VkPhysicalDevice physicalDevices[4];
numPhysicalDevices = bx::uint32_min(numPhysicalDevices, BX_COUNTOF(physicalDevices) );
result = vkEnumeratePhysicalDevices(m_instance
, &numPhysicalDevices
, physicalDevices
);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkEnumeratePhysicalDevices failed %d: %s.", result, getName(result) );
goto error;
}
m_physicalDevice = VK_NULL_HANDLE;
for (uint32_t ii = 0; ii < numPhysicalDevices; ++ii)
{
VkPhysicalDeviceProperties pdp;
vkGetPhysicalDeviceProperties(physicalDevices[ii], &pdp);
BX_TRACE("Physical device %d:", ii);
BX_TRACE("\t Name: %s", pdp.deviceName);
BX_TRACE("\t API version: %x", pdp.apiVersion);
BX_TRACE("\tDriver version: %x", pdp.driverVersion);
BX_TRACE("\t VendorId: %x", pdp.vendorID);
BX_TRACE("\t DeviceId: %x", pdp.deviceID);
BX_TRACE("\t Type: %d", pdp.deviceType);
g_caps.gpu[ii].vendorId = uint16_t(pdp.vendorID);
g_caps.gpu[ii].deviceId = uint16_t(pdp.deviceID);
++g_caps.numGPUs;
if ( (BGFX_PCI_ID_NONE != g_caps.vendorId || 0 != g_caps.deviceId)
&& (BGFX_PCI_ID_NONE == g_caps.vendorId || pdp.vendorID == g_caps.vendorId)
&& (0 == g_caps.deviceId || pdp.deviceID == g_caps.deviceId) )
{
m_physicalDevice = physicalDevices[ii];
}
VkPhysicalDeviceMemoryProperties pdmp;
vkGetPhysicalDeviceMemoryProperties(physicalDevices[ii], &pdmp);
BX_TRACE("\tMemory type count: %d", pdmp.memoryTypeCount);
for (uint32_t jj = 0; jj < pdmp.memoryTypeCount; ++jj)
{
BX_TRACE("\t%3d: flags 0x%08x, index %d"
, jj
, pdmp.memoryTypes[jj].propertyFlags
, pdmp.memoryTypes[jj].heapIndex
);
}
BX_TRACE("\tMemory heap count: %d", pdmp.memoryHeapCount);
for (uint32_t jj = 0; jj < pdmp.memoryHeapCount; ++jj)
{
char size[16];
bx::prettify(size, BX_COUNTOF(size), pdmp.memoryHeaps[jj].size);
BX_TRACE("\t%3d: flags 0x%08x, size %10s"
, jj
, pdmp.memoryHeaps[jj].flags
, size
);
}
dumpExtensions(physicalDevices[ii]);
}
if (VK_NULL_HANDLE == m_physicalDevice)
{
m_physicalDevice = physicalDevices[0];
}
vkGetPhysicalDeviceProperties(m_physicalDevice, &m_deviceProperties);
g_caps.vendorId = uint16_t(m_deviceProperties.vendorID);
g_caps.deviceId = uint16_t(m_deviceProperties.deviceID);
g_caps.limits.maxTextureSize = m_deviceProperties.limits.maxImageDimension2D;
g_caps.limits.maxFBAttachments = uint8_t(bx::uint32_min(m_deviceProperties.limits.maxFragmentOutputAttachments, BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS) );
g_caps.limits.maxComputeBindings = BGFX_MAX_COMPUTE_BINDINGS;
{
// VkFormatProperties fp;
// vkGetPhysicalDeviceFormatProperties(m_physicalDevice, fmt, &fp);
struct ImageTest
{
VkImageType type;
VkImageUsageFlags usage;
VkImageCreateFlags flags;
uint32_t formatCaps[2];
};
const ImageTest imageTest[] =
{
{ VK_IMAGE_TYPE_2D, VK_IMAGE_USAGE_SAMPLED_BIT, 0, { BGFX_CAPS_FORMAT_TEXTURE_2D, BGFX_CAPS_FORMAT_TEXTURE_2D_SRGB } },
{ VK_IMAGE_TYPE_3D, VK_IMAGE_USAGE_SAMPLED_BIT, 0, { BGFX_CAPS_FORMAT_TEXTURE_3D, BGFX_CAPS_FORMAT_TEXTURE_3D_SRGB } },
{ VK_IMAGE_TYPE_2D, VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, { BGFX_CAPS_FORMAT_TEXTURE_CUBE, BGFX_CAPS_FORMAT_TEXTURE_CUBE_SRGB } },
{ VK_IMAGE_TYPE_2D, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, 0, { BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER, BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER } },
};
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
uint8_t support = BGFX_CAPS_FORMAT_TEXTURE_NONE;
const bool depth = bimg::isDepth(bimg::TextureFormat::Enum(ii) );
VkFormat fmt = depth
? s_textureFormat[ii].m_fmtDsv
: s_textureFormat[ii].m_fmt
;
for (uint32_t jj = 0, num = depth ? 1 : 2; jj < num; ++jj)
{
if (VK_FORMAT_UNDEFINED != fmt)
{
for (uint32_t test = 0; test < BX_COUNTOF(imageTest); ++test)
{
const ImageTest& it = imageTest[test];
VkImageFormatProperties ifp;
result = vkGetPhysicalDeviceImageFormatProperties(m_physicalDevice
, fmt
, it.type
, VK_IMAGE_TILING_OPTIMAL
, it.usage
, it.flags
, &ifp
);
if (VK_SUCCESS == result)
{
support |= it.formatCaps[jj];
if (VK_SAMPLE_COUNT_1_BIT < ifp.sampleCounts)
{
support |= BGFX_CAPS_FORMAT_TEXTURE_MSAA;
}
}
}
}
fmt = s_textureFormat[ii].m_fmtSrgb;
}
g_caps.formats[ii] = support;
}
}
vkGetPhysicalDeviceMemoryProperties(m_physicalDevice, &m_memoryProperties);
}
{
BX_TRACE("---");
uint32_t queueFamilyPropertyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevice
, &queueFamilyPropertyCount
, NULL
);
VkQueueFamilyProperties queueFamilyPropertices[10] = {};
queueFamilyPropertyCount = bx::uint32_min(queueFamilyPropertyCount, BX_COUNTOF(queueFamilyPropertices) );
vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevice
, &queueFamilyPropertyCount
, queueFamilyPropertices
);
for (uint32_t ii = 0; ii < queueFamilyPropertyCount; ++ii)
{
const VkQueueFamilyProperties& qfp = queueFamilyPropertices[ii];
BX_UNUSED(qfp);
BX_TRACE("Queue family property %d:", ii);
BX_TRACE("\t Queue flags: 0x%08x", qfp.queueFlags);
BX_TRACE("\t Queue count: %d", qfp.queueCount);
BX_TRACE("\tTS valid bits: 0x%08x", qfp.timestampValidBits);
BX_TRACE("\t Min image: %d x %d x %d"
, qfp.minImageTransferGranularity.width
, qfp.minImageTransferGranularity.height
, qfp.minImageTransferGranularity.depth
);
}
for (uint32_t ii = 0; ii < queueFamilyPropertyCount; ++ii)
{
const VkQueueFamilyProperties& qfp = queueFamilyPropertices[ii];
if (UINT32_MAX == m_qfiGraphics
&& VK_QUEUE_GRAPHICS_BIT & qfp.queueFlags)
{
m_qfiGraphics = ii;
}
if (UINT32_MAX == m_qfiCompute
&& VK_QUEUE_COMPUTE_BIT & qfp.queueFlags)
{
m_qfiCompute = ii;
}
if (UINT32_MAX != m_qfiGraphics
&& UINT32_MAX != m_qfiCompute)
{
break;
}
}
if (UINT32_MAX == m_qfiGraphics)
{
BX_TRACE("Init error: Unable to find graphics queue.");
goto error;
}
}
{
const char* enabledLayerNames[] =
{
#if BGFX_CONFIG_DEBUG
"VK_LAYER_GOOGLE_threading",
// "VK_LAYER_GOOGLE_unique_objects",
"VK_LAYER_LUNARG_device_limits",
// "VK_LAYER_LUNARG_standard_validation",
"VK_LAYER_LUNARG_image",
"VK_LAYER_LUNARG_object_tracker",
"VK_LAYER_LUNARG_parameter_validation",
"VK_LAYER_LUNARG_swapchain",
// "VK_LAYER_LUNARG_vktrace",
// "VK_LAYER_RENDERDOC_Capture",
#endif // BGFX_CONFIG_DEBUG
/*not used*/ ""
};
const char* enabledExtension[] =
{
VK_KHR_SWAPCHAIN_EXTENSION_NAME,
// "VK_LUNARG_DEBUG_MARKER",
/*not used*/ ""
};
float queuePriorities[1] = { 0.0f };
VkDeviceQueueCreateInfo dcqi;
dcqi.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
dcqi.pNext = NULL;
dcqi.flags = 0;
dcqi.queueFamilyIndex = m_qfiGraphics;
dcqi.queueCount = 1;
dcqi.pQueuePriorities = queuePriorities;
VkDeviceCreateInfo dci;
dci.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
dci.pNext = NULL;
dci.flags = 0;
dci.queueCreateInfoCount = 1;
dci.pQueueCreateInfos = &dcqi;
dci.enabledLayerCount = BX_COUNTOF(enabledLayerNames) - 1;
dci.ppEnabledLayerNames = enabledLayerNames;
dci.enabledExtensionCount = BX_COUNTOF(enabledExtension) - 1;
dci.ppEnabledExtensionNames = enabledExtension;
dci.pEnabledFeatures = NULL;
result = vkCreateDevice(m_physicalDevice
, &dci
, m_allocatorCb
, &m_device
);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateDevice failed %d: %s.", result, getName(result) );
goto error;
}
}
errorState = ErrorState::DeviceCreated;
BX_TRACE("Device functions:");
#define VK_IMPORT_DEVICE_FUNC(_optional, _func) \
_func = (PFN_##_func)vkGetDeviceProcAddr(m_device, #_func); \
BX_TRACE("\t%p " #_func, _func); \
imported &= _optional || NULL != _func
VK_IMPORT_DEVICE
#undef VK_IMPORT_DEVICE_FUNC
if (!imported)
{
BX_TRACE("Init error: Failed to load device functions.");
goto error;
}
vkGetDeviceQueue(m_device, m_qfiGraphics, 0, &m_queueGraphics);
vkGetDeviceQueue(m_device, m_qfiCompute, 0, &m_queueCompute);
m_backBufferDepthStencilFormat =
VK_FORMAT_D32_SFLOAT_S8_UINT
// VK_FORMAT_D24_UNORM_S8_UINT
;
{
m_sci.imageFormat = VK_FORMAT_B8G8R8A8_UNORM;
VkAttachmentDescription ad[2];
ad[0].flags = 0;
ad[0].format = m_sci.imageFormat;
ad[0].samples = VK_SAMPLE_COUNT_1_BIT;
ad[0].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
ad[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
ad[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
ad[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
ad[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
ad[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
ad[1].flags = 0;
ad[1].format = m_backBufferDepthStencilFormat;
ad[1].samples = VK_SAMPLE_COUNT_1_BIT;
ad[1].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
ad[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
ad[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
ad[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
ad[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
ad[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorAr[1];
colorAr[0].attachment = 0;
colorAr[0].layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference resolveAr[1];
resolveAr[0].attachment = VK_ATTACHMENT_UNUSED;
resolveAr[0].layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depthAr[1];
depthAr[0].attachment = 1;
depthAr[0].layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription sd[1];
sd[0].flags = 0;
sd[0].pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
sd[0].inputAttachmentCount = 0;
sd[0].pInputAttachments = NULL;
sd[0].colorAttachmentCount = BX_COUNTOF(colorAr);
sd[0].pColorAttachments = colorAr;
sd[0].pResolveAttachments = resolveAr;
sd[0].pDepthStencilAttachment = depthAr;
sd[0].preserveAttachmentCount = 0;
sd[0].pPreserveAttachments = NULL;
VkRenderPassCreateInfo rpi;
rpi.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
rpi.pNext = NULL;
rpi.flags = 0;
rpi.attachmentCount = BX_COUNTOF(ad);
rpi.pAttachments = ad;
rpi.subpassCount = BX_COUNTOF(sd);
rpi.pSubpasses = sd;
rpi.dependencyCount = 0;
rpi.pDependencies = NULL;
result = vkCreateRenderPass(m_device, &rpi, m_allocatorCb, &m_renderPass);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateRenderPass failed %d: %s.", result, getName(result) );
goto error;
}
}
errorState = ErrorState::RenderPassCreated;
#if BX_PLATFORM_WINDOWS
{
VkWin32SurfaceCreateInfoKHR sci;
sci.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
sci.pNext = NULL;
sci.flags = 0;
sci.hinstance = (HINSTANCE)GetModuleHandle(NULL);
sci.hwnd = (HWND)g_platformData.nwh;
result = vkCreateWin32SurfaceKHR(m_instance, &sci, m_allocatorCb, &m_surface);
}
#elif BX_PLATFORM_ANDROID
{
VkAndroidSurfaceCreateInfoKHR sci;
sci.sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR;
sci.pNext = NULL;
sci.flags = 0;
result = vkCreateAndroidSurfaceKHR(m_instance, &sci, m_allocatorCb, &m_surface);
}
#elif BX_PLATFORM_LINUX
{
if (NULL != vkCreateXlibSurfaceKHR)
{
VkXlibSurfaceCreateInfoKHR sci;
sci.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR;
sci.pNext = NULL;
sci.flags = 0;
sci.dpy = (Display*)g_platformData.ndt;
sci.window = (Window)g_platformData.nwh;
result = vkCreateXlibSurfaceKHR(m_instance, &sci, m_allocatorCb, &m_surface);
}
else
{
result = VK_RESULT_MAX_ENUM;
}
if (VK_SUCCESS != result)
{
void* xcbdll = bx::dlopen("libX11-xcb.so.1");
if (NULL != xcbdll)
{
typedef xcb_connection_t* (*PFN_XGETXCBCONNECTION)(Display*);
PFN_XGETXCBCONNECTION XGetXCBConnection = (PFN_XGETXCBCONNECTION)bx::dlsym(xcbdll, "XGetXCBConnection");
VkXcbSurfaceCreateInfoKHR sci;
sci.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR;
sci.pNext = NULL;
sci.flags = 0;
sci.connection = XGetXCBConnection( (Display*)g_platformData.ndt);
union { void* ptr; xcb_window_t window; } cast = { g_platformData.nwh };
sci.window = cast.window;
result = vkCreateXcbSurfaceKHR(m_instance, &sci, m_allocatorCb, &m_surface);
bx::dlclose(xcbdll);
}
}
}
#else
# error "Figure out KHR surface..."
#endif // BX_PLATFORM_
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateSurfaceKHR failed %d: %s.", result, getName(result) );
goto error;
}
errorState = ErrorState::SurfaceCreated;
{
VkBool32 surfaceSupported;
result = vkGetPhysicalDeviceSurfaceSupportKHR(m_physicalDevice, m_qfiGraphics, m_surface, &surfaceSupported);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkGetPhysicalDeviceSurfaceSupportKHR failed %d: %s.", result, getName(result) );
goto error;
}
VkSurfaceCapabilitiesKHR surfaceCapabilities;
result = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(m_physicalDevice, m_surface, &surfaceCapabilities);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkGetPhysicalDeviceSurfaceCapabilitiesKHR failed %d: %s.", result, getName(result) );
goto error;
}
uint32_t numSurfaceFormats;
result = vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, m_surface, &numSurfaceFormats, NULL);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkGetPhysicalDeviceSurfaceFormatsKHR failed %d: %s.", result, getName(result) );
goto error;
}
VkSurfaceFormatKHR surfaceFormats[10];
numSurfaceFormats = bx::uint32_min(numSurfaceFormats, BX_COUNTOF(surfaceFormats) );
vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, m_surface, &numSurfaceFormats, surfaceFormats);
// find the best match...
uint32_t surfaceFormatIdx = 0;
uint32_t numPresentModes;
result = vkGetPhysicalDeviceSurfacePresentModesKHR(m_physicalDevice, m_surface, &numPresentModes, NULL);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkGetPhysicalDeviceSurfacePresentModesKHR failed %d: %s.", result, getName(result) );
goto error;
}
VkPresentModeKHR presentModes[10];
numPresentModes = bx::uint32_min(numPresentModes, BX_COUNTOF(presentModes) );
vkGetPhysicalDeviceSurfacePresentModesKHR(m_physicalDevice, m_surface, &numPresentModes, presentModes);
// find the best match...
uint32_t presentModeIdx = 0;
m_sci.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
m_sci.pNext = NULL;
m_sci.flags = 0;
m_sci.surface = m_surface;
m_sci.minImageCount = BX_COUNTOF(m_backBufferColorImage);
m_sci.imageFormat = surfaceFormats[surfaceFormatIdx].format;
m_sci.imageColorSpace = surfaceFormats[surfaceFormatIdx].colorSpace;
m_sci.imageExtent.width = _init.resolution.width;
m_sci.imageExtent.height = _init.resolution.height;
m_sci.imageArrayLayers = 1;
m_sci.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
m_sci.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
m_sci.queueFamilyIndexCount = 0;
m_sci.pQueueFamilyIndices = NULL;
m_sci.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
m_sci.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
m_sci.presentMode = presentModes[presentModeIdx];
m_sci.clipped = VK_TRUE;
m_sci.oldSwapchain = VK_NULL_HANDLE;
result = vkCreateSwapchainKHR(m_device, &m_sci, m_allocatorCb, &m_swapchain);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateSwapchainKHR failed %d: %s.", result, getName(result) );
goto error;
}
uint32_t numSwapchainImages;
result = vkGetSwapchainImagesKHR(m_device, m_swapchain, &numSwapchainImages, NULL);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkGetSwapchainImagesKHR failed %d: %s.", result, getName(result) );
goto error;
}
if (numSwapchainImages < m_sci.minImageCount)
{
BX_TRACE("Init error: vkGetSwapchainImagesKHR: numSwapchainImages %d, minImageCount %d."
, numSwapchainImages
, m_sci.minImageCount
);
goto error;
}
numSwapchainImages = m_sci.minImageCount;
result = vkGetSwapchainImagesKHR(m_device, m_swapchain, &numSwapchainImages, &m_backBufferColorImage[0]);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkGetSwapchainImagesKHR failed %d: %s.", result, getName(result) );
goto error;
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_backBufferColorImageView); ++ii)
{
m_backBufferColorImageView[ii] = VK_NULL_HANDLE;
m_backBufferColor[ii] = VK_NULL_HANDLE;
}
VkImageCreateInfo ici;
ici.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
ici.pNext = NULL;
ici.flags = 0;
ici.imageType = VK_IMAGE_TYPE_2D;
ici.format = m_backBufferDepthStencilFormat;
ici.extent.width = m_sci.imageExtent.width;
ici.extent.height = m_sci.imageExtent.height;
ici.extent.depth = 1;
ici.mipLevels = 1;
ici.arrayLayers = 1;
ici.samples = VK_SAMPLE_COUNT_1_BIT;
ici.tiling = VK_IMAGE_TILING_OPTIMAL;
ici.usage = 0
| VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT
;
ici.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
ici.queueFamilyIndexCount = 0; //m_sci.queueFamilyIndexCount;
ici.pQueueFamilyIndices = NULL; //m_sci.pQueueFamilyIndices;
ici.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
result = vkCreateImage(m_device, &ici, m_allocatorCb, &m_backBufferDepthStencilImage);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateImage failed %d: %s.", result, getName(result) );
goto error;
}
VkMemoryRequirements mr;
vkGetImageMemoryRequirements(m_device, m_backBufferDepthStencilImage, &mr);
VkMemoryAllocateInfo ma;
ma.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
ma.pNext = NULL;
ma.allocationSize = mr.size;
ma.memoryTypeIndex = selectMemoryType(mr.memoryTypeBits
, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
);
result = vkAllocateMemory(m_device
, &ma
, m_allocatorCb
, &m_backBufferDepthStencilMemory
);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkAllocateMemory failed %d: %s.", result, getName(result) );
goto error;
}
result = vkBindImageMemory(m_device, m_backBufferDepthStencilImage, m_backBufferDepthStencilMemory, 0);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkBindImageMemory failed %d: %s.", result, getName(result) );
goto error;
}
VkImageViewCreateInfo ivci;
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.pNext = NULL;
ivci.flags = 0;
ivci.image = m_backBufferDepthStencilImage;
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = m_backBufferDepthStencilFormat;
ivci.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.subresourceRange.aspectMask = 0
| VK_IMAGE_ASPECT_DEPTH_BIT
| VK_IMAGE_ASPECT_STENCIL_BIT
;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.baseArrayLayer = 0;
ivci.subresourceRange.layerCount = 1;
result = vkCreateImageView(m_device, &ivci, m_allocatorCb, &m_backBufferDepthStencilImageView);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateImageView failed %d: %s.", result, getName(result) );
goto error;
}
::VkImageView attachments[] =
{
VK_NULL_HANDLE,
m_backBufferDepthStencilImageView,
};
VkFramebufferCreateInfo fci;
fci.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fci.pNext = NULL;
fci.flags = 0;
fci.renderPass = m_renderPass;
fci.attachmentCount = BX_COUNTOF(attachments);
fci.pAttachments = attachments;
fci.width = m_sci.imageExtent.width;
fci.height = m_sci.imageExtent.height;
fci.layers = 1;
VkSemaphoreCreateInfo sci;
sci.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
sci.pNext = NULL;
sci.flags = 0;
for (uint32_t ii = 0; ii < numSwapchainImages; ++ii)
{
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.pNext = NULL;
ivci.flags = 0;
ivci.image = m_backBufferColorImage[ii];
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = m_sci.imageFormat;
ivci.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.baseArrayLayer = 0;
ivci.subresourceRange.layerCount = 1;
result = vkCreateImageView(m_device, &ivci, m_allocatorCb, &m_backBufferColorImageView[ii]);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateImageView failed %d: %s.", result, getName(result) );
goto error;
}
attachments[0] = m_backBufferColorImageView[ii];
result = vkCreateFramebuffer(m_device, &fci, m_allocatorCb, &m_backBufferColor[ii]);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateFramebuffer failed %d: %s.", result, getName(result) );
goto error;
}
result = vkCreateSemaphore(m_device, &sci, m_allocatorCb, &m_presentDone[ii]);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateSemaphore failed %d: %s.", result, getName(result) );
goto error;
}
sci.flags = 0;
}
}
errorState = ErrorState::SwapchainCreated;
{
VkFenceCreateInfo fci;
fci.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fci.pNext = NULL;
fci.flags = 0;
result = vkCreateFence(m_device, &fci, m_allocatorCb, &m_fence);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateFence failed %d: %s.", result, getName(result) );
goto error;
}
VkCommandPoolCreateInfo cpci;
cpci.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cpci.pNext = NULL;
cpci.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
cpci.queueFamilyIndex = m_qfiGraphics;
result = vkCreateCommandPool(m_device, &cpci, m_allocatorCb, &m_commandPool);
if (VK_SUCCESS != result)
{
vkDestroy(m_fence);
BX_TRACE("Init error: vkCreateCommandPool failed %d: %s.", result, getName(result) );
goto error;
}
VkCommandBufferAllocateInfo cbai;
cbai.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cbai.pNext = NULL;
cbai.commandPool = m_commandPool;
cbai.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cbai.commandBufferCount = BX_COUNTOF(m_commandBuffers);
result = vkAllocateCommandBuffers(m_device, &cbai, m_commandBuffers);
if (VK_SUCCESS != result)
{
vkDestroy(m_commandPool);
vkDestroy(m_fence);
BX_TRACE("Init error: vkAllocateCommandBuffers failed %d: %s.", result, getName(result) );
goto error;
}
VkCommandBufferBeginInfo cbbi;
cbbi.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cbbi.pNext = NULL;
cbbi.flags = 0;
cbbi.pInheritanceInfo = NULL;
VkCommandBuffer commandBuffer = m_commandBuffers[0];
VK_CHECK(vkBeginCommandBuffer(commandBuffer, &cbbi) );
VkRenderPassBeginInfo rpbi;
rpbi.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
rpbi.pNext = NULL;
rpbi.renderPass = m_renderPass;
rpbi.renderArea.offset.x = 0;
rpbi.renderArea.offset.y = 0;
rpbi.renderArea.extent = m_sci.imageExtent;
rpbi.clearValueCount = 0;
rpbi.pClearValues = NULL;
setImageMemoryBarrier(commandBuffer
, m_backBufferDepthStencilImage
, VK_IMAGE_LAYOUT_UNDEFINED
, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
);
for (uint32_t ii = 0; ii < BX_COUNTOF(m_backBufferColorImage); ++ii)
{
setImageMemoryBarrier(commandBuffer
, m_backBufferColorImage[ii]
, VK_IMAGE_LAYOUT_UNDEFINED
, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
);
rpbi.framebuffer = m_backBufferColor[ii];
vkCmdBeginRenderPass(commandBuffer, &rpbi, VK_SUBPASS_CONTENTS_INLINE);
vkCmdEndRenderPass(commandBuffer);
setImageMemoryBarrier(commandBuffer
, m_backBufferColorImage[ii]
, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR
);
}
VK_CHECK(vkEndCommandBuffer(commandBuffer) );
m_backBufferColorIdx = 0;
kick();
finishAll();
VK_CHECK(vkResetCommandPool(m_device, m_commandPool, 0) );
}
errorState = ErrorState::CommandBuffersCreated;
{
VkDescriptorPoolSize dps[] =
{
// { VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS },
{ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 10<<10 },
// { VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS },
};
VkDescriptorSetLayoutBinding dslb[] =
{
// { DslBinding::CombinedImageSampler, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, VK_SHADER_STAGE_ALL, NULL },
{ DslBinding::UniformBuffer, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, NULL },
// { DslBinding::StorageBuffer, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, VK_SHADER_STAGE_ALL, NULL },
};
VkDescriptorPoolCreateInfo dpci;
dpci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
dpci.pNext = NULL;
dpci.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
dpci.maxSets = 10<<10;
dpci.poolSizeCount = BX_COUNTOF(dps);
dpci.pPoolSizes = dps;
result = vkCreateDescriptorPool(m_device, &dpci, m_allocatorCb, &m_descriptorPool);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateDescriptorPool failed %d: %s.", result, getName(result) );
goto error;
}
VkDescriptorSetLayoutCreateInfo dsl;
dsl.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
dsl.pNext = NULL;
dsl.flags = 0;
dsl.bindingCount = BX_COUNTOF(dslb);
dsl.pBindings = dslb;
result = vkCreateDescriptorSetLayout(m_device, &dsl, m_allocatorCb, &m_descriptorSetLayout);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateDescriptorSetLayout failed %d: %s.", result, getName(result) );
goto error;
}
VkPipelineLayoutCreateInfo pl;
pl.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pl.pNext = NULL;
pl.flags = 0;
pl.setLayoutCount = 1;
pl.pSetLayouts = &m_descriptorSetLayout;
pl.pushConstantRangeCount = 0;
pl.pPushConstantRanges = NULL;
result = vkCreatePipelineLayout(m_device, &pl, m_allocatorCb, &m_pipelineLayout);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreatePipelineLayout failed %d: %s.", result, getName(result) );
goto error;
}
VkPipelineCacheCreateInfo pcci;
pcci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
pcci.pNext = NULL;
pcci.flags = 0;
pcci.initialDataSize = 0;
pcci.pInitialData = NULL;
result = vkCreatePipelineCache(m_device, &pcci, m_allocatorCb, &m_pipelineCache);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreatePipelineCache failed %d: %s.", result, getName(result) );
goto error;
}
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_scratchBuffer); ++ii)
{
m_scratchBuffer[ii].create(BGFX_CONFIG_MAX_DRAW_CALLS*1024
, 1024 //BGFX_CONFIG_MAX_TEXTURES + BGFX_CONFIG_MAX_SHADERS + BGFX_CONFIG_MAX_DRAW_CALLS
);
}
errorState = ErrorState::DescriptorCreated;
return true;
error:
BX_TRACE("errorState %d", errorState);
switch (errorState)
{
case ErrorState::DescriptorCreated:
vkDestroy(m_pipelineCache);
vkDestroy(m_pipelineLayout);
vkDestroy(m_descriptorSetLayout);
vkDestroy(m_descriptorPool);
BX_FALLTHROUGH;
case ErrorState::CommandBuffersCreated:
vkFreeCommandBuffers(m_device, m_commandPool, BX_COUNTOF(m_commandBuffers), m_commandBuffers);
vkDestroy(m_commandPool);
vkDestroy(m_fence);
BX_FALLTHROUGH;
case ErrorState::SwapchainCreated:
for (uint32_t ii = 0; ii < BX_COUNTOF(m_backBufferColorImageView); ++ii)
{
if (VK_NULL_HANDLE != m_backBufferColorImageView[ii])
{
vkDestroy(m_backBufferColorImageView[ii]);
}
if (VK_NULL_HANDLE != m_backBufferColor[ii])
{
vkDestroy(m_backBufferColor[ii]);
}
if (VK_NULL_HANDLE != m_presentDone[ii])
{
vkDestroy(m_presentDone[ii]);
}
}
vkDestroy(m_swapchain);
BX_FALLTHROUGH;
case ErrorState::SurfaceCreated:
vkDestroySurfaceKHR(m_instance, m_surface, m_allocatorCb);
BX_FALLTHROUGH;
case ErrorState::RenderPassCreated:
vkDestroy(m_renderPass);
BX_FALLTHROUGH;
case ErrorState::DeviceCreated:
vkDestroyDevice(m_device, m_allocatorCb);
BX_FALLTHROUGH;
case ErrorState::InstanceCreated:
if (VK_NULL_HANDLE != m_debugReportCallback)
{
vkDestroyDebugReportCallbackEXT(m_instance, m_debugReportCallback, m_allocatorCb);
}
vkDestroyInstance(m_instance, m_allocatorCb);
BX_FALLTHROUGH;
case ErrorState::LoadedVulkan1:
bx::dlclose(m_vulkan1Dll);
m_vulkan1Dll = NULL;
m_allocatorCb = NULL;
unloadRenderDoc(m_renderDocDll);
BX_FALLTHROUGH;
case ErrorState::Default:
break;
};
BX_CHECK(false, "Failed to initialize Vulkan.");
return false;
}
void shutdown()
{
VK_CHECK(vkQueueWaitIdle(m_queueGraphics) );
VK_CHECK(vkDeviceWaitIdle(m_device) );
m_pipelineStateCache.invalidate();
for (uint32_t ii = 0; ii < BX_COUNTOF(m_scratchBuffer); ++ii)
{
m_scratchBuffer[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii)
{
m_frameBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_indexBuffers); ++ii)
{
m_indexBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_vertexBuffers); ++ii)
{
m_vertexBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_shaders); ++ii)
{
m_shaders[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii)
{
m_textures[ii].destroy();
}
vkDestroy(m_pipelineCache);
vkDestroy(m_pipelineLayout);
vkDestroy(m_descriptorSetLayout);
vkDestroy(m_descriptorPool);
vkFreeCommandBuffers(m_device, m_commandPool, BX_COUNTOF(m_commandBuffers), m_commandBuffers);
vkDestroy(m_commandPool);
vkDestroy(m_fence);
for (uint32_t ii = 0; ii < BX_COUNTOF(m_backBufferColorImageView); ++ii)
{
if (VK_NULL_HANDLE != m_backBufferColorImageView[ii])
{
vkDestroy(m_backBufferColorImageView[ii]);
}
if (VK_NULL_HANDLE != m_backBufferColor[ii])
{
vkDestroy(m_backBufferColor[ii]);
}
if (VK_NULL_HANDLE != m_presentDone[ii])
{
vkDestroy(m_presentDone[ii]);
}
}
vkDestroy(m_swapchain);
vkDestroy(m_backBufferDepthStencilImageView);
vkFreeMemory(m_device, m_backBufferDepthStencilMemory, m_allocatorCb);
vkDestroy(m_backBufferDepthStencilImage);
vkDestroySurfaceKHR(m_instance, m_surface, m_allocatorCb);
vkDestroy(m_renderPass);
vkDestroyDevice(m_device, m_allocatorCb);
if (VK_NULL_HANDLE != m_debugReportCallback)
{
vkDestroyDebugReportCallbackEXT(m_instance, m_debugReportCallback, m_allocatorCb);
}
vkDestroyInstance(m_instance, m_allocatorCb);
bx::dlclose(m_vulkan1Dll);
m_vulkan1Dll = NULL;
m_allocatorCb = NULL;
unloadRenderDoc(m_renderDocDll);
}
RendererType::Enum getRendererType() const override
{
return RendererType::Vulkan;
}
const char* getRendererName() const override
{
return BGFX_RENDERER_VULKAN_NAME;
}
bool isDeviceRemoved() override
{
return false;
}
void flip() override
{
if (VK_NULL_HANDLE != m_swapchain)
{
VkPresentInfoKHR pi;
pi.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
pi.pNext = NULL;
pi.waitSemaphoreCount = 0;
pi.pWaitSemaphores = NULL; //&m_presentDone[0];
pi.swapchainCount = 1;
pi.pSwapchains = &m_swapchain;
pi.pImageIndices = &m_backBufferColorIdx;
pi.pResults = NULL;
VK_CHECK(vkQueuePresentKHR(m_queueGraphics, &pi) );
}
}
void createIndexBuffer(IndexBufferHandle _handle, const Memory* _mem, uint16_t _flags) override
{
m_indexBuffers[_handle.idx].create(_mem->size, _mem->data, _flags, false);
}
void destroyIndexBuffer(IndexBufferHandle _handle) override
{
m_indexBuffers[_handle.idx].destroy();
}
void createVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl) override
{
VertexDecl& decl = m_vertexDecls[_handle.idx];
bx::memCopy(&decl, &_decl, sizeof(VertexDecl) );
dump(decl);
}
void destroyVertexDecl(VertexDeclHandle /*_handle*/) override
{
}
void createVertexBuffer(VertexBufferHandle _handle, const Memory* _mem, VertexDeclHandle _declHandle, uint16_t _flags) override
{
m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle, _flags);
}
void destroyVertexBuffer(VertexBufferHandle _handle) override
{
m_vertexBuffers[_handle.idx].destroy();
}
void createDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size, uint16_t _flags) override
{
m_indexBuffers[_handle.idx].create(_size, NULL, _flags, false);
}
void updateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) override
{
BX_UNUSED(_handle, _offset, _size, _mem);
// m_indexBuffers[_handle.idx].update(m_commandBuffer, _offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicIndexBuffer(IndexBufferHandle _handle) override
{
m_indexBuffers[_handle.idx].destroy();
}
void createDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size, uint16_t _flags) override
{
VertexDeclHandle decl = BGFX_INVALID_HANDLE;
m_vertexBuffers[_handle.idx].create(_size, NULL, decl, _flags);
}
void updateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) override
{
BX_UNUSED(_handle, _offset, _size, _mem);
// m_vertexBuffers[_handle.idx].update(m_commandBuffer, _offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicVertexBuffer(VertexBufferHandle _handle) override
{
m_vertexBuffers[_handle.idx].destroy();
}
void createShader(ShaderHandle _handle, const Memory* _mem) override
{
m_shaders[_handle.idx].create(_mem);
}
void destroyShader(ShaderHandle _handle) override
{
m_shaders[_handle.idx].destroy();
}
void createProgram(ProgramHandle _handle, ShaderHandle _vsh, ShaderHandle _fsh) override
{
m_program[_handle.idx].create(&m_shaders[_vsh.idx], isValid(_fsh) ? &m_shaders[_fsh.idx] : NULL);
}
void destroyProgram(ProgramHandle _handle) override
{
m_program[_handle.idx].destroy();
}
void* createTexture(TextureHandle /*_handle*/, const Memory* /*_mem*/, uint64_t /*_flags*/, uint8_t /*_skip*/) override
{
return NULL;
}
void updateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/) override
{
}
void updateTexture(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/, const Rect& /*_rect*/, uint16_t /*_z*/, uint16_t /*_depth*/, uint16_t /*_pitch*/, const Memory* /*_mem*/) override
{
}
void updateTextureEnd() override
{
}
void readTexture(TextureHandle /*_handle*/, void* /*_data*/, uint8_t /*_mip*/) override
{
}
void resizeTexture(TextureHandle /*_handle*/, uint16_t /*_width*/, uint16_t /*_height*/, uint8_t /*_numMips*/, uint16_t /*_numLayers*/) override
{
}
void overrideInternal(TextureHandle /*_handle*/, uintptr_t /*_ptr*/) override
{
}
uintptr_t getInternal(TextureHandle /*_handle*/) override
{
return 0;
}
void destroyTexture(TextureHandle /*_handle*/) override
{
}
void createFrameBuffer(FrameBufferHandle /*_handle*/, uint8_t /*_num*/, const Attachment* /*_attachment*/) override
{
}
void createFrameBuffer(FrameBufferHandle /*_handle*/, void* /*_nwh*/, uint32_t /*_width*/, uint32_t /*_height*/, TextureFormat::Enum /*_format*/, TextureFormat::Enum /*_depthFormat*/) override
{
}
void destroyFrameBuffer(FrameBufferHandle /*_handle*/) override
{
}
void createUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) override
{
if (NULL != m_uniforms[_handle.idx])
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
}
uint32_t size = BX_ALIGN_16(g_uniformTypeSize[_type] * _num);
void* data = BX_ALLOC(g_allocator, size);
bx::memSet(data, 0, size);
m_uniforms[_handle.idx] = data;
m_uniformReg.add(_handle, _name);
}
void destroyUniform(UniformHandle _handle) override
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
m_uniforms[_handle.idx] = NULL;
}
void requestScreenShot(FrameBufferHandle /*_handle*/, const char* /*_filePath*/) override
{
}
void updateViewName(ViewId _id, const char* _name) override
{
bx::strCopy(&s_viewName[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED]
, BX_COUNTOF(s_viewName[0]) - BGFX_CONFIG_MAX_VIEW_NAME_RESERVED
, _name
);
}
void updateUniform(uint16_t _loc, const void* _data, uint32_t _size) override
{
bx::memCopy(m_uniforms[_loc], _data, _size);
}
void setMarker(const char* /*_marker*/, uint32_t /*_size*/) override
{
}
void invalidateOcclusionQuery(OcclusionQueryHandle _handle) override
{
BX_UNUSED(_handle);
}
virtual void setName(Handle _handle, const char* _name) override
{
BX_UNUSED(_handle, _name)
}
void submitBlit(BlitState& _bs, uint16_t _view);
void submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) override;
void blitSetup(TextVideoMemBlitter& /*_blitter*/) override
{
}
void blitRender(TextVideoMemBlitter& /*_blitter*/, uint32_t /*_numIndices*/) override
{
}
void updateResolution(const Resolution& _resolution)
{
if (!!(_resolution.reset & BGFX_RESET_MAXANISOTROPY) )
{
m_maxAnisotropy = UINT32_MAX;
}
else
{
m_maxAnisotropy = 1;
}
bool depthClamp = !!(_resolution.reset & BGFX_RESET_DEPTH_CLAMP);
if (m_depthClamp != depthClamp)
{
m_depthClamp = depthClamp;
m_pipelineStateCache.invalidate();
}
uint32_t flags = _resolution.reset & ~(BGFX_RESET_MAXANISOTROPY | BGFX_RESET_DEPTH_CLAMP);
if (m_resolution.width != _resolution.width
|| m_resolution.height != _resolution.height
|| m_resolution.reset != flags)
{
flags &= ~BGFX_RESET_INTERNAL_FORCE;
bool resize = (m_resolution.reset&BGFX_RESET_MSAA_MASK) == (_resolution.reset&BGFX_RESET_MSAA_MASK);
m_resolution = _resolution;
m_resolution.reset = flags;
m_textVideoMem.resize(false, _resolution.width, _resolution.height);
m_textVideoMem.clear();
#if 1
BX_UNUSED(resize);
#else
m_scd.BufferDesc.Width = _resolution.m_width;
m_scd.BufferDesc.Height = _resolution.m_height;
preReset();
if (resize)
{
uint32_t nodeMask[] = { 1, 1, 1, 1 };
BX_STATIC_ASSERT(BX_COUNTOF(m_backBufferColor) == BX_COUNTOF(nodeMask) );
IUnknown* presentQueue[] ={ m_cmd.m_commandQueue, m_cmd.m_commandQueue, m_cmd.m_commandQueue, m_cmd.m_commandQueue };
BX_STATIC_ASSERT(BX_COUNTOF(m_backBufferColor) == BX_COUNTOF(presentQueue) );
DX_CHECK(m_swapChain->ResizeBuffers1(m_scd.BufferCount
, m_scd.BufferDesc.Width
, m_scd.BufferDesc.Height
, m_scd.BufferDesc.Format
, m_scd.Flags
, nodeMask
, presentQueue
) );
}
else
{
updateMsaa();
m_scd.SampleDesc = s_msaa[(m_resolution.m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT];
DX_RELEASE(m_swapChain, 0);
HRESULT hr;
hr = m_factory->CreateSwapChain(m_cmd.m_commandQueue
, &m_scd
, reinterpret_cast<IDXGISwapChain**>(&m_swapChain)
);
BGFX_FATAL(SUCCEEDED(hr), bgfx::Fatal::UnableToInitialize, "Failed to create swap chain.");
}
postReset();
#endif // 0
}
}
void setShaderUniform(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
BX_UNUSED(_flags, _regIndex, _val, _numRegs);
if (_flags&BGFX_UNIFORM_FRAGMENTBIT)
{
bx::memCopy(&m_fsScratch[_regIndex], _val, _numRegs*16);
m_fsChanges += _numRegs;
}
else
{
bx::memCopy(&m_vsScratch[_regIndex], _val, _numRegs*16);
m_vsChanges += _numRegs;
}
}
void setShaderUniform4f(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
setShaderUniform(_flags, _regIndex, _val, _numRegs);
}
void setShaderUniform4x4f(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
setShaderUniform(_flags, _regIndex, _val, _numRegs);
}
void commitShaderUniforms(VkCommandBuffer _commandBuffer, uint16_t _programIdx)
{
const ProgramVK& program = m_program[_programIdx];
VkDescriptorBufferInfo descriptorBufferInfo;
uint32_t total = 0
+ program.m_vsh->m_size
+ (NULL != program.m_fsh ? program.m_fsh->m_size : 0)
;
if (0 < total)
{
uint8_t* data = (uint8_t*)m_scratchBuffer[m_backBufferColorIdx].allocUbv(descriptorBufferInfo, total);
uint32_t size = program.m_vsh->m_size;
bx::memCopy(data, m_vsScratch, size);
data += size;
if (NULL != program.m_fsh)
{
bx::memCopy(data, m_fsScratch, program.m_fsh->m_size);
}
vkCmdBindDescriptorSets(_commandBuffer
, VK_PIPELINE_BIND_POINT_GRAPHICS
, m_pipelineLayout
, 0
, 1
, &m_scratchBuffer[m_backBufferColorIdx].m_descriptorSet
[m_scratchBuffer[m_backBufferColorIdx].m_currentDs - 1]
, 0
, NULL
);
}
m_vsChanges = 0;
m_fsChanges = 0;
}
void setFrameBuffer(FrameBufferHandle _fbh, bool _msaa = true)
{
BX_UNUSED(_msaa);
if (isValid(m_fbh)
&& m_fbh.idx != _fbh.idx)
{
const FrameBufferVK& frameBuffer = m_frameBuffers[m_fbh.idx];
BX_UNUSED(frameBuffer);
// for (uint8_t ii = 0, num = frameBuffer.m_num; ii < num; ++ii)
// {
// TextureVK& texture = m_textures[frameBuffer.m_texture[ii].idx];
// texture.setState(m_commandList, D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE);
// }
//
// if (isValid(frameBuffer.m_depth) )
// {
// TextureVK& texture = m_textures[frameBuffer.m_depth.idx];
// const bool writeOnly = 0 != (texture.m_flags&BGFX_TEXTURE_RT_WRITE_ONLY);
// if (!writeOnly)
// {
// texture.setState(m_commandList, D3D12_RESOURCE_STATE_DEPTH_READ);
// }
// }
}
if (!isValid(_fbh) )
{
// m_rtvHandle = m_rtvDescriptorHeap->GetCPUDescriptorHandleForHeapStart();
// uint32_t rtvDescriptorSize = m_device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_RTV);
// m_rtvHandle.ptr += m_backBufferColorIdx * rtvDescriptorSize;
// m_dsvHandle = m_dsvDescriptorHeap->GetCPUDescriptorHandleForHeapStart();
//
// m_currentColor = &m_rtvHandle;
// m_currentDepthStencil = &m_dsvHandle;
// m_commandList->OMSetRenderTargets(1, m_currentColor, true, m_currentDepthStencil);
}
else
{
const FrameBufferVK& frameBuffer = m_frameBuffers[_fbh.idx];
BX_UNUSED(frameBuffer);
if (0 < frameBuffer.m_num)
{
// D3D12_CPU_DESCRIPTOR_HANDLE rtvDescriptor = m_rtvDescriptorHeap->GetCPUDescriptorHandleForHeapStart();
// uint32_t rtvDescriptorSize = m_device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_RTV);
// m_rtvHandle.ptr = rtvDescriptor.ptr + (BX_COUNTOF(m_backBufferColor) + _fbh.idx * BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS) * rtvDescriptorSize;
// m_currentColor = &m_rtvHandle;
}
else
{
// m_currentColor = NULL;
}
if (isValid(frameBuffer.m_depth) )
{
// D3D12_CPU_DESCRIPTOR_HANDLE dsvDescriptor = m_dsvDescriptorHeap->GetCPUDescriptorHandleForHeapStart();
// uint32_t dsvDescriptorSize = m_device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_DSV);
// m_dsvHandle.ptr = dsvDescriptor.ptr + (1 + _fbh.idx) * dsvDescriptorSize;
// m_currentDepthStencil = &m_dsvHandle;
}
else
{
// m_currentDepthStencil = NULL;
}
for (uint8_t ii = 0, num = frameBuffer.m_num; ii < num; ++ii)
{
TextureVK& texture = m_textures[frameBuffer.m_texture[ii].idx];
BX_UNUSED(texture);
// texture.setState(m_commandList, D3D12_RESOURCE_STATE_RENDER_TARGET);
}
if (isValid(frameBuffer.m_depth) )
{
TextureVK& texture = m_textures[frameBuffer.m_depth.idx];
BX_UNUSED(texture);
// texture.setState(m_commandList, D3D12_RESOURCE_STATE_DEPTH_WRITE);
}
// m_commandList->OMSetRenderTargets(frameBuffer.m_num
// , m_currentColor
// , true
// , m_currentDepthStencil
// );
}
m_fbh = _fbh;
// m_rtMsaa = _msaa;
}
void setBlendState(VkPipelineColorBlendStateCreateInfo& _desc, uint64_t _state, uint32_t _rgba = 0)
{
VkPipelineColorBlendAttachmentState* bas = const_cast<VkPipelineColorBlendAttachmentState*>(_desc.pAttachments);
uint8_t writeMask = 0;
writeMask |= (_state & BGFX_STATE_WRITE_R) ? VK_COLOR_COMPONENT_R_BIT : 0;
writeMask |= (_state & BGFX_STATE_WRITE_G) ? VK_COLOR_COMPONENT_G_BIT : 0;
writeMask |= (_state & BGFX_STATE_WRITE_B) ? VK_COLOR_COMPONENT_B_BIT : 0;
writeMask |= (_state & BGFX_STATE_WRITE_A) ? VK_COLOR_COMPONENT_A_BIT : 0;
bas->blendEnable = !!(BGFX_STATE_BLEND_MASK & _state);
{
const uint32_t blend = uint32_t( (_state & BGFX_STATE_BLEND_MASK ) >> BGFX_STATE_BLEND_SHIFT);
const uint32_t equation = uint32_t( (_state & BGFX_STATE_BLEND_EQUATION_MASK) >> BGFX_STATE_BLEND_EQUATION_SHIFT);
const uint32_t srcRGB = (blend ) & 0xf;
const uint32_t dstRGB = (blend >> 4) & 0xf;
const uint32_t srcA = (blend >> 8) & 0xf;
const uint32_t dstA = (blend >> 12) & 0xf;
const uint32_t equRGB = (equation ) & 0x7;
const uint32_t equA = (equation >> 3) & 0x7;
bas->srcColorBlendFactor = s_blendFactor[srcRGB][0];
bas->dstColorBlendFactor = s_blendFactor[dstRGB][0];
bas->colorBlendOp = s_blendEquation[equRGB];
bas->srcAlphaBlendFactor = s_blendFactor[srcA][1];
bas->dstAlphaBlendFactor = s_blendFactor[dstA][1];
bas->alphaBlendOp = s_blendEquation[equA];
bas->colorWriteMask = writeMask;
}
uint32_t numAttachments = 1;
if (isValid(m_fbh) )
{
const FrameBufferVK& frameBuffer = m_frameBuffers[m_fbh.idx];
numAttachments = frameBuffer.m_num;
}
if (!!(BGFX_STATE_BLEND_INDEPENDENT & _state) )
{
for (uint32_t ii = 1, rgba = _rgba; ii < numAttachments; ++ii, rgba >>= 11)
{
++bas;
bas->blendEnable = 0 != (rgba & 0x7ff);
const uint32_t src = (rgba ) & 0xf;
const uint32_t dst = (rgba >> 4) & 0xf;
const uint32_t equation = (rgba >> 8) & 0x7;
bas->srcColorBlendFactor = s_blendFactor[src][0];
bas->dstColorBlendFactor = s_blendFactor[dst][0];
bas->colorBlendOp = s_blendEquation[equation];
bas->srcAlphaBlendFactor = s_blendFactor[src][1];
bas->dstAlphaBlendFactor = s_blendFactor[dst][1];
bas->alphaBlendOp = s_blendEquation[equation];
bas->colorWriteMask = writeMask;
}
}
else
{
for (uint32_t ii = 1; ii < numAttachments; ++ii)
{
bx::memCopy(&bas[ii], bas, sizeof(VkPipelineColorBlendAttachmentState) );
}
}
_desc.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
_desc.pNext = NULL;
_desc.flags = 0;
_desc.logicOpEnable = VK_FALSE;
_desc.logicOp = VK_LOGIC_OP_CLEAR;
_desc.attachmentCount = numAttachments;
_desc.blendConstants[0] = 0.0f;
_desc.blendConstants[1] = 0.0f;
_desc.blendConstants[2] = 0.0f;
_desc.blendConstants[3] = 0.0f;
}
void setRasterizerState(VkPipelineRasterizationStateCreateInfo& _desc, uint64_t _state, bool _wireframe = false)
{
const uint32_t cull = (_state&BGFX_STATE_CULL_MASK) >> BGFX_STATE_CULL_SHIFT;
_desc.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
_desc.pNext = NULL;
_desc.flags = 0;
_desc.depthClampEnable = m_depthClamp;
_desc.rasterizerDiscardEnable = VK_FALSE;
_desc.polygonMode = _wireframe
? VK_POLYGON_MODE_LINE
: VK_POLYGON_MODE_FILL
;
_desc.cullMode = s_cullMode[cull];
_desc.frontFace = VK_FRONT_FACE_CLOCKWISE;
_desc.depthBiasEnable = VK_FALSE;
_desc.depthBiasConstantFactor = 0.0f;
_desc.depthBiasClamp = 0.0f;
_desc.depthBiasSlopeFactor = 0.0f;
_desc.lineWidth = 1.0f;
}
void setDepthStencilState(VkPipelineDepthStencilStateCreateInfo& _desc, uint64_t _state, uint64_t _stencil = 0)
{
const uint32_t fstencil = unpackStencil(0, _stencil);
uint32_t func = (_state&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT;
_desc.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
_desc.pNext = NULL;
_desc.flags = 0;
_desc.depthTestEnable = 0 != func;
_desc.depthWriteEnable = !!(BGFX_STATE_WRITE_Z & _state);
_desc.depthCompareOp = s_cmpFunc[func];
_desc.depthBoundsTestEnable = VK_FALSE;
_desc.stencilTestEnable = 0 != _stencil;
uint32_t bstencil = unpackStencil(1, _stencil);
uint32_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != fstencil;
bstencil = frontAndBack ? bstencil : fstencil;
_desc.front.failOp = s_stencilOp[(fstencil & BGFX_STENCIL_OP_FAIL_S_MASK) >> BGFX_STENCIL_OP_FAIL_S_SHIFT];
_desc.front.passOp = s_stencilOp[(fstencil & BGFX_STENCIL_OP_PASS_Z_MASK) >> BGFX_STENCIL_OP_PASS_Z_SHIFT];
_desc.front.depthFailOp = s_stencilOp[(fstencil & BGFX_STENCIL_OP_FAIL_Z_MASK) >> BGFX_STENCIL_OP_FAIL_Z_SHIFT];
_desc.front.compareOp = s_cmpFunc[(fstencil & BGFX_STENCIL_TEST_MASK) >> BGFX_STENCIL_TEST_SHIFT];
_desc.front.compareMask = UINT32_MAX;
_desc.front.writeMask = UINT32_MAX;
_desc.front.reference = 0;
_desc.back.failOp = s_stencilOp[(bstencil & BGFX_STENCIL_OP_FAIL_S_MASK) >> BGFX_STENCIL_OP_FAIL_S_SHIFT];
_desc.back.passOp = s_stencilOp[(bstencil & BGFX_STENCIL_OP_PASS_Z_MASK) >> BGFX_STENCIL_OP_PASS_Z_SHIFT];
_desc.back.depthFailOp = s_stencilOp[(bstencil & BGFX_STENCIL_OP_FAIL_Z_MASK) >> BGFX_STENCIL_OP_FAIL_Z_SHIFT];
_desc.back.compareOp = s_cmpFunc[(bstencil&BGFX_STENCIL_TEST_MASK) >> BGFX_STENCIL_TEST_SHIFT];
_desc.back.compareMask = UINT32_MAX;
_desc.back.writeMask = UINT32_MAX;
_desc.back.reference = 0;
_desc.minDepthBounds = 0.0f;
_desc.maxDepthBounds = 1.0f;
}
uint32_t setInputLayout(VkPipelineVertexInputStateCreateInfo& _vertexInputState, const VertexDecl& _vertexDecl, const ProgramVK& _program, uint8_t _numInstanceData)
{
_vertexInputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
_vertexInputState.pNext = NULL;
_vertexInputState.flags = 0;
VertexDecl decl;
bx::memCopy(&decl, &_vertexDecl, sizeof(VertexDecl) );
const uint16_t* attrMask = _program.m_vsh->m_attrMask;
for (uint32_t ii = 0; ii < Attrib::Count; ++ii)
{
uint16_t mask = attrMask[ii];
uint16_t attr = (decl.m_attributes[ii] & mask);
decl.m_attributes[ii] = attr == 0 ? UINT16_MAX : attr == UINT16_MAX ? 0 : attr;
}
uint32_t num = fillVertexDecl(_program.m_vsh, _vertexInputState, decl);
// const D3D12_INPUT_ELEMENT_DESC inst = { "TEXCOORD", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_INSTANCE_DATA, 1 };
// VK_VERTEX_INPUT_RATE_INSTANCE
for (uint32_t ii = 0; ii < _numInstanceData; ++ii)
{
uint32_t index = 7 - ii; // TEXCOORD7 = i_data0, TEXCOORD6 = i_data1, etc.
BX_UNUSED(index);
// bx::memCopy(curr, &inst, sizeof(D3D12_INPUT_ELEMENT_DESC) );
// curr->InputSlot = 1;
// curr->SemanticIndex = index;
// curr->AlignedByteOffset = ii*16;
}
_vertexInputState.vertexAttributeDescriptionCount = num;
return num;
}
VkPipeline getPipeline(uint16_t _programIdx)
{
BX_UNUSED(_programIdx);
// vkCreateComputePipelines
return VK_NULL_HANDLE;
}
VkPipeline getPipeline(uint64_t _state, uint64_t _stencil, uint16_t _declIdx, uint16_t _programIdx, uint8_t _numInstanceData)
{
ProgramVK& program = m_program[_programIdx];
_state &= 0
| BGFX_STATE_WRITE_RGB
| BGFX_STATE_WRITE_A
| BGFX_STATE_WRITE_Z
| BGFX_STATE_DEPTH_TEST_MASK
| BGFX_STATE_BLEND_MASK
| BGFX_STATE_BLEND_EQUATION_MASK
| BGFX_STATE_BLEND_INDEPENDENT
| BGFX_STATE_BLEND_ALPHA_TO_COVERAGE
| BGFX_STATE_CULL_MASK
| BGFX_STATE_MSAA
| BGFX_STATE_LINEAA
| BGFX_STATE_CONSERVATIVE_RASTER
| BGFX_STATE_PT_MASK
;
_stencil &= packStencil(~BGFX_STENCIL_FUNC_REF_MASK, ~BGFX_STENCIL_FUNC_REF_MASK);
VertexDecl decl;
bx::memCopy(&decl, &m_vertexDecls[_declIdx], sizeof(VertexDecl) );
const uint16_t* attrMask = program.m_vsh->m_attrMask;
for (uint32_t ii = 0; ii < Attrib::Count; ++ii)
{
uint16_t mask = attrMask[ii];
uint16_t attr = (decl.m_attributes[ii] & mask);
decl.m_attributes[ii] = attr == 0 ? UINT16_MAX : attr == UINT16_MAX ? 0 : attr;
}
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_state);
murmur.add(_stencil);
murmur.add(program.m_vsh->m_hash);
murmur.add(program.m_vsh->m_attrMask, sizeof(program.m_vsh->m_attrMask) );
murmur.add(program.m_fsh->m_hash);
murmur.add(m_vertexDecls[_declIdx].m_hash);
murmur.add(decl.m_attributes, sizeof(decl.m_attributes) );
murmur.add(m_fbh.idx);
murmur.add(_numInstanceData);
const uint32_t hash = murmur.end();
VkPipeline pipeline = m_pipelineStateCache.find(hash);
if (VK_NULL_HANDLE != pipeline)
{
return pipeline;
}
VkPipelineColorBlendAttachmentState blendAttachmentState[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS];
VkPipelineColorBlendStateCreateInfo colorBlendState;
colorBlendState.pAttachments = blendAttachmentState;
setBlendState(colorBlendState, _state);
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState;
inputAssemblyState.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
inputAssemblyState.pNext = NULL;
inputAssemblyState.flags = 0;
inputAssemblyState.topology = s_primInfo[(_state&BGFX_STATE_PT_MASK) >> BGFX_STATE_PT_SHIFT].m_topology;
inputAssemblyState.primitiveRestartEnable = VK_FALSE;
VkPipelineRasterizationStateCreateInfo rasterizationState;
setRasterizerState(rasterizationState, _state);
VkPipelineDepthStencilStateCreateInfo depthStencilState;
setDepthStencilState(depthStencilState, _state, _stencil);
VkVertexInputBindingDescription inputBinding[Attrib::Count + 1 + BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT];
VkVertexInputAttributeDescription inputAttrib[Attrib::Count + 1 + BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT];
VkPipelineVertexInputStateCreateInfo vertexInputState;
vertexInputState.pVertexBindingDescriptions = inputBinding;
vertexInputState.pVertexAttributeDescriptions = inputAttrib;
setInputLayout(vertexInputState, m_vertexDecls[_declIdx], program, _numInstanceData);
const VkDynamicState dynamicStates[] =
{
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_BLEND_CONSTANTS,
VK_DYNAMIC_STATE_STENCIL_REFERENCE,
};
VkPipelineDynamicStateCreateInfo dynamicState;
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicState.pNext = NULL;
dynamicState.flags = 0;
dynamicState.dynamicStateCount = BX_COUNTOF(dynamicStates);
dynamicState.pDynamicStates = dynamicStates;
VkPipelineShaderStageCreateInfo shaderStages[2];
shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStages[0].pNext = NULL;
shaderStages[0].flags = 0;
shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
shaderStages[0].module = program.m_vsh->m_module;
shaderStages[0].pName = "main";
shaderStages[0].pSpecializationInfo = NULL;
shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStages[1].pNext = NULL;
shaderStages[1].flags = 0;
shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderStages[1].module = program.m_fsh->m_module;
shaderStages[1].pName = "main";
shaderStages[1].pSpecializationInfo = NULL;
VkPipelineViewportStateCreateInfo viewportState;
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportState.pNext = NULL;
viewportState.flags = 0;
viewportState.viewportCount = 1;
viewportState.pViewports = NULL;
viewportState.scissorCount = 1;
viewportState.pScissors = NULL;
VkPipelineMultisampleStateCreateInfo multisampleState;
multisampleState.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampleState.pNext = NULL;
multisampleState.flags = 0;
multisampleState.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
multisampleState.sampleShadingEnable = VK_FALSE;
multisampleState.minSampleShading = !!(BGFX_STATE_CONSERVATIVE_RASTER & _state) ? 1.0f : 0.0f;
multisampleState.pSampleMask = NULL;
multisampleState.alphaToCoverageEnable = !!(BGFX_STATE_BLEND_ALPHA_TO_COVERAGE & _state);
multisampleState.alphaToOneEnable = VK_FALSE;
VkGraphicsPipelineCreateInfo graphicsPipeline;
graphicsPipeline.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
graphicsPipeline.pNext = NULL;
graphicsPipeline.flags = 0;
graphicsPipeline.stageCount = BX_COUNTOF(shaderStages);
graphicsPipeline.pStages = shaderStages;
graphicsPipeline.pVertexInputState = &vertexInputState;
graphicsPipeline.pInputAssemblyState = &inputAssemblyState;
graphicsPipeline.pTessellationState = NULL;
graphicsPipeline.pViewportState = &viewportState;
graphicsPipeline.pRasterizationState = &rasterizationState;
graphicsPipeline.pMultisampleState = &multisampleState;
graphicsPipeline.pDepthStencilState = &depthStencilState;
graphicsPipeline.pColorBlendState = &colorBlendState;
graphicsPipeline.pDynamicState = &dynamicState;
graphicsPipeline.layout = m_pipelineLayout;
graphicsPipeline.renderPass = m_renderPass;
graphicsPipeline.subpass = 0;
graphicsPipeline.basePipelineHandle = VK_NULL_HANDLE;
graphicsPipeline.basePipelineIndex = 0;
uint32_t length = g_callback->cacheReadSize(hash);
bool cached = length > 0;
void* cachedData = NULL;
VkPipelineCacheCreateInfo pcci;
pcci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
pcci.pNext = NULL;
pcci.flags = 0;
pcci.initialDataSize = 0;
pcci.pInitialData = NULL;
if (cached)
{
cachedData = BX_ALLOC(g_allocator, length);
if (g_callback->cacheRead(hash, cachedData, length) )
{
BX_TRACE("Loading cached pipeline state (size %d).", length);
bx::MemoryReader reader(cachedData, length);
pcci.initialDataSize = (size_t)reader.remaining();
pcci.pInitialData = reader.getDataPtr();
}
}
VkPipelineCache cache;
VK_CHECK(vkCreatePipelineCache(m_device, &pcci, m_allocatorCb, &cache) );
VK_CHECK(vkCreateGraphicsPipelines(m_device
, cache
, 1
, &graphicsPipeline
, m_allocatorCb
, &pipeline
) );
m_pipelineStateCache.add(hash, pipeline);
size_t dataSize;
VK_CHECK(vkGetPipelineCacheData(m_device, cache, &dataSize, NULL) );
if (0 < dataSize)
{
if (length < dataSize)
{
cachedData = BX_REALLOC(g_allocator, cachedData, dataSize);
}
VK_CHECK(vkGetPipelineCacheData(m_device, cache, &dataSize, cachedData) );
g_callback->cacheWrite(hash, cachedData, (uint32_t)dataSize);
}
VK_CHECK(vkMergePipelineCaches(m_device, m_pipelineCache, 1, &cache) );
vkDestroy(cache);
if (NULL != cachedData)
{
BX_FREE(g_allocator, cachedData);
}
return pipeline;
}
void commit(UniformBuffer& _uniformBuffer)
{
_uniformBuffer.reset();
for (;;)
{
uint32_t opcode = _uniformBuffer.read();
if (UniformType::End == opcode)
{
break;
}
UniformType::Enum type;
uint16_t loc;
uint16_t num;
uint16_t copy;
UniformBuffer::decodeOpcode(opcode, type, loc, num, copy);
const char* data;
if (copy)
{
data = _uniformBuffer.read(g_uniformTypeSize[type]*num);
}
else
{
UniformHandle handle;
bx::memCopy(&handle, _uniformBuffer.read(sizeof(UniformHandle) ), sizeof(UniformHandle) );
data = (const char*)m_uniforms[handle.idx];
}
#define CASE_IMPLEMENT_UNIFORM(_uniform, _dxsuffix, _type) \
case UniformType::_uniform: \
case UniformType::_uniform|BGFX_UNIFORM_FRAGMENTBIT: \
{ \
setShaderUniform(uint8_t(type), loc, data, num); \
} \
break;
switch ( (uint32_t)type)
{
case UniformType::Mat3:
case UniformType::Mat3|BGFX_UNIFORM_FRAGMENTBIT:
{
float* value = (float*)data;
for (uint32_t ii = 0, count = num/3; ii < count; ++ii, loc += 3*16, value += 9)
{
Matrix4 mtx;
mtx.un.val[ 0] = value[0];
mtx.un.val[ 1] = value[1];
mtx.un.val[ 2] = value[2];
mtx.un.val[ 3] = 0.0f;
mtx.un.val[ 4] = value[3];
mtx.un.val[ 5] = value[4];
mtx.un.val[ 6] = value[5];
mtx.un.val[ 7] = 0.0f;
mtx.un.val[ 8] = value[6];
mtx.un.val[ 9] = value[7];
mtx.un.val[10] = value[8];
mtx.un.val[11] = 0.0f;
setShaderUniform(uint8_t(type), loc, &mtx.un.val[0], 3);
}
}
break;
CASE_IMPLEMENT_UNIFORM(Int1, I, int);
CASE_IMPLEMENT_UNIFORM(Vec4, F, float);
CASE_IMPLEMENT_UNIFORM(Mat4, F, float);
case UniformType::End:
break;
default:
BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", _uniformBuffer.getPos(), opcode, type, loc, num, copy);
break;
}
#undef CASE_IMPLEMENT_UNIFORM
}
}
void clearQuad(const Rect& _rect, const Clear& _clear, const float _palette[][4])
{
VkClearRect rect[1];
rect[0].rect.offset.x = _rect.m_x;
rect[0].rect.offset.y = _rect.m_y;
rect[0].rect.extent.width = _rect.m_width;
rect[0].rect.extent.height = _rect.m_height;
rect[0].baseArrayLayer = 0;
rect[0].layerCount = 1;
uint32_t numMrt = 1;
// FrameBufferHandle fbh = m_fbh;
// if (isValid(fbh) )
// {
// const FrameBufferVK& fb = m_frameBuffers[fbh.idx];
// numMrt = bx::uint32_max(1, fb.m_num);
// }
VkClearAttachment attachments[BGFX_CONFIG_MAX_FRAME_BUFFERS];
uint32_t mrt = 0;
if (true //NULL != m_currentColor
&& BGFX_CLEAR_COLOR & _clear.m_flags)
{
if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags)
{
for (uint32_t ii = 0; ii < numMrt; ++ii)
{
attachments[mrt].colorAttachment = mrt;
attachments[mrt].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_COLOR_PALETTE-1, _clear.m_index[ii]);
bx::memCopy(&attachments[mrt].clearValue.color.float32, _palette[index], 16);
++mrt;
}
}
else
{
float frgba[4] =
{
_clear.m_index[0] * 1.0f / 255.0f,
_clear.m_index[1] * 1.0f / 255.0f,
_clear.m_index[2] * 1.0f / 255.0f,
_clear.m_index[3] * 1.0f / 255.0f,
};
for (uint32_t ii = 0; ii < numMrt; ++ii)
{
attachments[mrt].colorAttachment = mrt;
attachments[mrt].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bx::memCopy(&attachments[mrt].clearValue.color.float32, frgba, 16);
++mrt;
}
}
}
if (true //NULL != m_currentDepthStencil
&& (BGFX_CLEAR_DEPTH | BGFX_CLEAR_STENCIL) & _clear.m_flags)
{
attachments[mrt].colorAttachment = mrt;
attachments[mrt].aspectMask = 0;
attachments[mrt].aspectMask |= (_clear.m_flags & BGFX_CLEAR_DEPTH ) ? VK_IMAGE_ASPECT_DEPTH_BIT : 0;
attachments[mrt].aspectMask |= (_clear.m_flags & BGFX_CLEAR_STENCIL) ? VK_IMAGE_ASPECT_STENCIL_BIT : 0;
attachments[mrt].clearValue.depthStencil.stencil = _clear.m_stencil;
attachments[mrt].clearValue.depthStencil.depth = _clear.m_depth;
++mrt;
}
vkCmdClearAttachments(m_commandBuffer
, mrt
, attachments
, BX_COUNTOF(rect)
, rect
);
}
uint64_t kick(VkSemaphore _wait = VK_NULL_HANDLE, VkSemaphore _signal = VK_NULL_HANDLE)
{
VkPipelineStageFlags stageFlags = 0
| VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT
;
VkSubmitInfo si;
si.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
si.pNext = NULL;
si.waitSemaphoreCount = VK_NULL_HANDLE != _wait;
si.pWaitSemaphores = &_wait;
si.pWaitDstStageMask = &stageFlags;
si.commandBufferCount = 1;
si.pCommandBuffers = &m_commandBuffers[m_backBufferColorIdx];
si.signalSemaphoreCount = VK_NULL_HANDLE != _signal;
si.pSignalSemaphores = &_signal;
// VK_CHECK(vkResetFences(m_device, 1, &m_fence) );
VK_CHECK(vkQueueSubmit(m_queueGraphics, 1, &si, VK_NULL_HANDLE) );
return 0;
}
void finish()
{
finishAll();
}
void finishAll()
{
VK_CHECK(vkQueueWaitIdle(m_queueGraphics) );
// VK_CHECK(vkWaitForFences(m_device, 1, &m_fence, true, INT64_MAX) );
}
uint32_t selectMemoryType(uint32_t _memoryTypeBits, uint32_t _propertyFlags) const
{
for (uint32_t ii = 0, num = m_memoryProperties.memoryTypeCount; ii < num; ++ii)
{
const VkMemoryType& memType = m_memoryProperties.memoryTypes[ii];
if ( (0 != ( (1<<ii) & _memoryTypeBits) )
&& ( (memType.propertyFlags & _propertyFlags) == _propertyFlags) )
{
return ii;
}
}
BX_TRACE("Failed to find memory that supports flags 0x%08x.", _propertyFlags);
return 0;
}
VkAllocationCallbacks* m_allocatorCb;
VkDebugReportCallbackEXT m_debugReportCallback;
VkInstance m_instance;
VkPhysicalDevice m_physicalDevice;
VkPhysicalDeviceProperties m_deviceProperties;
VkPhysicalDeviceMemoryProperties m_memoryProperties;
VkSwapchainCreateInfoKHR m_sci;
VkSurfaceKHR m_surface;
VkSwapchainKHR m_swapchain;
VkImage m_backBufferColorImage[4];
VkImageView m_backBufferColorImageView[4];
VkFramebuffer m_backBufferColor[4];
VkCommandBuffer m_commandBuffers[4];
VkCommandBuffer m_commandBuffer;
VkFormat m_backBufferDepthStencilFormat;
VkDeviceMemory m_backBufferDepthStencilMemory;
VkImage m_backBufferDepthStencilImage;
VkImageView m_backBufferDepthStencilImageView;
ScratchBufferVK m_scratchBuffer[4];
VkSemaphore m_presentDone[4];
uint32_t m_qfiGraphics;
uint32_t m_qfiCompute;
VkDevice m_device;
VkQueue m_queueGraphics;
VkQueue m_queueCompute;
VkFence m_fence;
VkRenderPass m_renderPass;
VkDescriptorPool m_descriptorPool;
VkDescriptorSetLayout m_descriptorSetLayout;
VkPipelineLayout m_pipelineLayout;
VkPipelineCache m_pipelineCache;
VkCommandPool m_commandPool;
void* m_renderDocDll;
void* m_vulkan1Dll;
IndexBufferVK m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS];
VertexBufferVK m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
ShaderVK m_shaders[BGFX_CONFIG_MAX_SHADERS];
ProgramVK m_program[BGFX_CONFIG_MAX_PROGRAMS];
TextureVK m_textures[BGFX_CONFIG_MAX_TEXTURES];
VertexDecl m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS];
FrameBufferVK m_frameBuffers[BGFX_CONFIG_MAX_FRAME_BUFFERS];
void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS];
Matrix4 m_predefinedUniforms[PredefinedUniform::Count];
UniformRegistry m_uniformReg;
StateCacheT<VkPipeline> m_pipelineStateCache;
Resolution m_resolution;
uint32_t m_maxAnisotropy;
bool m_depthClamp;
bool m_wireframe;
TextVideoMem m_textVideoMem;
uint8_t m_fsScratch[64<<10];
uint8_t m_vsScratch[64<<10];
uint32_t m_fsChanges;
uint32_t m_vsChanges;
uint32_t m_backBufferColorIdx;
FrameBufferHandle m_fbh;
};
static RendererContextVK* s_renderVK;
RendererContextI* rendererCreate(const Init& _init)
{
s_renderVK = BX_NEW(g_allocator, RendererContextVK);
if (!s_renderVK->init(_init) )
{
BX_DELETE(g_allocator, s_renderVK);
s_renderVK = NULL;
}
return s_renderVK;
}
void rendererDestroy()
{
s_renderVK->shutdown();
BX_DELETE(g_allocator, s_renderVK);
s_renderVK = NULL;
}
#define VK_DESTROY_FUNC(_name) \
void vkDestroy(Vk##_name& _obj) \
{ \
if (VK_NULL_HANDLE != _obj) \
{ \
vkDestroy##_name(s_renderVK->m_device, _obj, s_renderVK->m_allocatorCb); \
_obj = VK_NULL_HANDLE; \
} \
}
VK_DESTROY
#undef VK_DESTROY_FUNC
void ScratchBufferVK::create(uint32_t _size, uint32_t _maxDescriptors)
{
m_maxDescriptors = _maxDescriptors;
m_descriptorSet = (VkDescriptorSet*)BX_ALLOC(g_allocator, _maxDescriptors * sizeof(VkDescriptorSet) );
VkAllocationCallbacks* allocatorCb = s_renderVK->m_allocatorCb;
VkDevice device = s_renderVK->m_device;
VkDescriptorSetAllocateInfo dsai;
dsai.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
dsai.pNext = NULL;
dsai.descriptorPool = s_renderVK->m_descriptorPool;
dsai.descriptorSetCount = 1;
dsai.pSetLayouts = &s_renderVK->m_descriptorSetLayout;
for (uint32_t ii = 0, num = m_maxDescriptors; ii < num; ++ii)
{
VK_CHECK(vkAllocateDescriptorSets(device, &dsai, &m_descriptorSet[ii]) );
}
VkBufferCreateInfo bci;
bci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bci.pNext = NULL;
bci.flags = 0;
bci.size = _size;
bci.usage = 0
| VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT
// | VK_BUFFER_USAGE_TRANSFER_DST_BIT
;
bci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
bci.queueFamilyIndexCount = 0;
bci.pQueueFamilyIndices = NULL;
VK_CHECK(vkCreateBuffer(device
, &bci
, allocatorCb
, &m_buffer
) );
VkMemoryRequirements mr;
vkGetBufferMemoryRequirements(device
, m_buffer
, &mr
);
VkMemoryAllocateInfo ma;
ma.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
ma.pNext = NULL;
ma.allocationSize = mr.size;
ma.memoryTypeIndex = s_renderVK->selectMemoryType(mr.memoryTypeBits
, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
);
VK_CHECK(vkAllocateMemory(device
, &ma
, allocatorCb
, &m_deviceMem
) );
m_size = (uint32_t)mr.size;
m_pos = 0;
VK_CHECK(vkBindBufferMemory(device, m_buffer, m_deviceMem, 0) );
VK_CHECK(vkMapMemory(device, m_deviceMem, 0, ma.allocationSize, 0, (void**)&m_data) );
}
void ScratchBufferVK::destroy()
{
VkAllocationCallbacks* allocatorCb = s_renderVK->m_allocatorCb;
VkDevice device = s_renderVK->m_device;
vkFreeDescriptorSets(device, s_renderVK->m_descriptorPool, m_maxDescriptors, m_descriptorSet);
BX_FREE(g_allocator, m_descriptorSet);
vkUnmapMemory(device, m_deviceMem);
vkDestroy(m_buffer);
vkFreeMemory(device
, m_deviceMem
, allocatorCb
);
}
void ScratchBufferVK::reset(VkDescriptorBufferInfo& /*_descriptorBufferInfo*/)
{
m_pos = 0;
m_currentDs = 0;
}
void* ScratchBufferVK::allocUbv(VkDescriptorBufferInfo& _descriptorBufferInfo, uint32_t _size)
{
uint32_t total = bx::strideAlign(_size
, uint32_t(s_renderVK->m_deviceProperties.limits.minUniformBufferOffsetAlignment)
);
_descriptorBufferInfo.buffer = m_buffer;
_descriptorBufferInfo.offset = m_pos;
_descriptorBufferInfo.range = total;
VkWriteDescriptorSet wds[1];
wds[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
wds[0].pNext = NULL;
wds[0].dstSet = m_descriptorSet[m_currentDs];
wds[0].dstBinding = DslBinding::UniformBuffer;
wds[0].dstArrayElement = 0;
wds[0].descriptorCount = 1;
wds[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
wds[0].pImageInfo = NULL;
wds[0].pBufferInfo = &_descriptorBufferInfo;
wds[0].pTexelBufferView = NULL;
vkUpdateDescriptorSets(s_renderVK->m_device, BX_COUNTOF(wds), wds, 0, NULL);
void* data = &m_data[m_pos];
m_pos += total;
++m_currentDs;
return data;
}
VkResult ImageVK::create(VkFormat _format, const VkExtent3D& _extent)
{
VkResult result;
VkAllocationCallbacks* allocatorCb = s_renderVK->m_allocatorCb;
VkDevice device = s_renderVK->m_device;
VkImageCreateInfo ici;
ici.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
ici.pNext = NULL;
ici.flags = 0;
ici.imageType = VK_IMAGE_TYPE_2D;
ici.format = _format;
ici.extent = _extent;
ici.mipLevels = 1;
ici.arrayLayers = 1;
ici.samples = VK_SAMPLE_COUNT_1_BIT;
ici.tiling = VK_IMAGE_TILING_OPTIMAL;
ici.usage = 0
| VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT
;
ici.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
ici.queueFamilyIndexCount = 0;
ici.pQueueFamilyIndices = 0;
ici.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
result = vkCreateImage(device, &ici, allocatorCb, &m_image);
if (VK_SUCCESS != result)
{
BX_TRACE("vkCreateImage failed %d: %s.", result, getName(result) );
return result;
}
VkMemoryRequirements mr;
vkGetImageMemoryRequirements(device, m_image, &mr);
VkMemoryAllocateInfo ma;
ma.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
ma.pNext = NULL;
ma.allocationSize = mr.size;
ma.memoryTypeIndex = s_renderVK->selectMemoryType(mr.memoryTypeBits
, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
);
result = vkAllocateMemory(device
, &ma
, allocatorCb
, &m_memory
);
if (VK_SUCCESS != result)
{
BX_TRACE("vkAllocateMemory failed %d: %s.", result, getName(result) );
destroy();
return result;
}
result = vkBindImageMemory(device, m_image, m_memory, 0);
if (VK_SUCCESS != result)
{
BX_TRACE("vkBindImageMemory failed %d: %s.", result, getName(result) );
destroy();
return result;
}
VkImageViewCreateInfo ivci;
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.pNext = NULL;
ivci.flags = 0;
ivci.image = m_image;
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = _format;
ivci.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.subresourceRange.aspectMask = 0
| VK_IMAGE_ASPECT_DEPTH_BIT
| VK_IMAGE_ASPECT_STENCIL_BIT
;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.baseArrayLayer = 0;
ivci.subresourceRange.layerCount = 1;
result = vkCreateImageView(device, &ivci, allocatorCb, &m_imageView);
if (VK_SUCCESS != result)
{
BX_TRACE("vkCreateImageView failed %d: %s.", result, getName(result) );
destroy();
return result;
}
return VK_SUCCESS;
}
void ImageVK::destroy()
{
vkDestroy(m_imageView);
vkDestroy(m_image);
if (VK_NULL_HANDLE != m_memory)
{
vkFreeMemory(s_renderVK->m_device, m_memory, s_renderVK->m_allocatorCb);
m_memory = VK_NULL_HANDLE;
}
}
void BufferVK::create(uint32_t _size, void* _data, uint16_t _flags, bool _vertex, uint32_t _stride)
{
BX_UNUSED(_stride);
m_size = _size;
m_flags = _flags;
m_dynamic = NULL == _data;
VkBufferCreateInfo bci;
bci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bci.pNext = NULL;
bci.flags = 0;
bci.size = _size;
bci.usage = 0
| (m_dynamic ? VK_BUFFER_USAGE_TRANSFER_DST_BIT : 0)
| (_vertex ? VK_BUFFER_USAGE_VERTEX_BUFFER_BIT : VK_BUFFER_USAGE_INDEX_BUFFER_BIT)
;
bci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
bci.queueFamilyIndexCount = 0;
bci.pQueueFamilyIndices = NULL;
VkAllocationCallbacks* allocatorCb = s_renderVK->m_allocatorCb;
VkDevice device = s_renderVK->m_device;
VK_CHECK(vkCreateBuffer(device
, &bci
, allocatorCb
, &m_buffer
) );
VkMemoryRequirements mr;
vkGetBufferMemoryRequirements(device
, m_buffer
, &mr
);
VkMemoryAllocateInfo ma;
ma.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
ma.pNext = NULL;
ma.allocationSize = mr.size;
ma.memoryTypeIndex = s_renderVK->selectMemoryType(mr.memoryTypeBits
, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
);
VK_CHECK(vkAllocateMemory(device
, &ma
, allocatorCb
, &m_deviceMem
) );
if (!m_dynamic)
{
void* dst;
VK_CHECK(vkMapMemory(device, m_deviceMem, 0, ma.allocationSize, 0, &dst) );
bx::memCopy(dst, _data, _size);
vkUnmapMemory(device, m_deviceMem);
}
VK_CHECK(vkBindBufferMemory(device, m_buffer, m_deviceMem, 0) );
}
void BufferVK::update(VkCommandBuffer _commandBuffer, uint32_t _offset, uint32_t _size, void* _data, bool _discard)
{
BX_UNUSED(_commandBuffer, _offset, _size, _data, _discard);
}
void BufferVK::destroy()
{
if (VK_NULL_HANDLE != m_buffer)
{
VkAllocationCallbacks* allocatorCb = s_renderVK->m_allocatorCb;
VkDevice device = s_renderVK->m_device;
vkDestroy(m_buffer);
vkFreeMemory(device
, m_deviceMem
, allocatorCb
);
m_dynamic = false;
}
}
void VertexBufferVK::create(uint32_t _size, void* _data, VertexDeclHandle _declHandle, uint16_t _flags)
{
BufferVK::create(_size, _data, _flags, true);
m_decl = _declHandle;
}
void ShaderVK::create(const Memory* _mem)
{
bx::MemoryReader reader(_mem->data, _mem->size);
uint32_t magic;
bx::read(&reader, magic);
VkShaderStageFlagBits shaderStage;
BX_UNUSED(shaderStage);
switch (magic)
{
case BGFX_CHUNK_MAGIC_CSH: shaderStage = VK_SHADER_STAGE_COMPUTE_BIT; break;
case BGFX_CHUNK_MAGIC_FSH: shaderStage = VK_SHADER_STAGE_FRAGMENT_BIT; break;
case BGFX_CHUNK_MAGIC_VSH: shaderStage = VK_SHADER_STAGE_VERTEX_BIT; break;
default:
BGFX_FATAL(false, Fatal::InvalidShader, "Unknown shader format %x.", magic);
break;
}
bool fragment = BGFX_CHUNK_MAGIC_FSH == magic;
uint32_t iohash;
bx::read(&reader, iohash);
uint16_t count;
bx::read(&reader, count);
m_numPredefined = 0;
m_numUniforms = count;
BX_TRACE("%s Shader consts %d"
, BGFX_CHUNK_MAGIC_FSH == magic ? "Fragment" : BGFX_CHUNK_MAGIC_VSH == magic ? "Vertex" : "Compute"
, count
);
uint8_t fragmentBit = fragment ? BGFX_UNIFORM_FRAGMENTBIT : 0;
if (0 < count)
{
for (uint32_t ii = 0; ii < count; ++ii)
{
uint8_t nameSize = 0;
bx::read(&reader, nameSize);
char name[256];
bx::read(&reader, &name, nameSize);
name[nameSize] = '\0';
uint8_t type = 0;
bx::read(&reader, type);
uint8_t num;
bx::read(&reader, num);
uint16_t regIndex;
bx::read(&reader, regIndex);
uint16_t regCount;
bx::read(&reader, regCount);
const char* kind = "invalid";
PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name);
if (PredefinedUniform::Count != predefined)
{
kind = "predefined";
m_predefined[m_numPredefined].m_loc = regIndex;
m_predefined[m_numPredefined].m_count = regCount;
m_predefined[m_numPredefined].m_type = uint8_t(predefined|fragmentBit);
m_numPredefined++;
}
else if (0 == (BGFX_UNIFORM_SAMPLERBIT & type) )
{
const UniformRegInfo* info = s_renderVK->m_uniformReg.find(name);
BX_CHECK(NULL != info, "User defined uniform '%s' is not found, it won't be set.", name);
if (NULL != info)
{
if (NULL == m_constantBuffer)
{
m_constantBuffer = UniformBuffer::create(1024);
}
kind = "user";
m_constantBuffer->writeUniformHandle( (UniformType::Enum)(type|fragmentBit), regIndex, info->m_handle, regCount);
}
}
else
{
kind = "sampler";
}
BX_TRACE("\t%s: %s (%s), num %2d, r.index %3d, r.count %2d"
, kind
, name
, getUniformTypeName(UniformType::Enum(type&~BGFX_UNIFORM_MASK) )
, num
, regIndex
, regCount
);
BX_UNUSED(kind);
}
if (NULL != m_constantBuffer)
{
m_constantBuffer->finish();
}
}
uint32_t shaderSize;
bx::read(&reader, shaderSize);
const void* code = reader.getDataPtr();
bx::skip(&reader, shaderSize+1);
m_code = alloc(shaderSize);
bx::memCopy(m_code->data
, code
, shaderSize
);
VkShaderModuleCreateInfo smci;
smci.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
smci.pNext = NULL;
smci.flags = 0;
smci.codeSize = m_code->size;
smci.pCode = (const uint32_t*)m_code->data;
VK_CHECK(vkCreateShaderModule(
s_renderVK->m_device
, &smci
, s_renderVK->m_allocatorCb
, &m_module
) );
bx::memSet(m_attrMask, 0, sizeof(m_attrMask) );
bx::memSet(m_attrRemap, 0, sizeof(m_attrRemap) );
bx::read(&reader, m_numAttrs);
for (uint8_t ii = 0; ii < m_numAttrs; ++ii)
{
uint16_t id;
bx::read(&reader, id);
Attrib::Enum attr = idToAttrib(id);
if (Attrib::Count != attr)
{
m_attrMask[attr] = UINT16_MAX;
m_attrRemap[attr] = ii;
}
}
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(iohash);
murmur.add(m_code->data, m_code->size);
murmur.add(m_numAttrs);
murmur.add(m_attrMask, m_numAttrs);
murmur.add(m_attrRemap, m_numAttrs);
m_hash = murmur.end();
bx::read(&reader, m_size);
}
void ShaderVK::destroy()
{
if (NULL != m_constantBuffer)
{
UniformBuffer::destroy(m_constantBuffer);
m_constantBuffer = NULL;
}
m_numPredefined = 0;
if (NULL != m_code)
{
release(m_code);
m_code = NULL;
m_hash = 0;
}
if (VK_NULL_HANDLE != m_module)
{
vkDestroy(m_module);
}
}
void TextureVK::destroy()
{
}
void FrameBufferVK::destroy()
{
}
void RendererContextVK::submitBlit(BlitState& _bs, uint16_t _view)
{
while (_bs.hasItem(_view) )
{
const BlitItem& blit = _bs.advance();
BX_UNUSED(blit);
}
}
void RendererContextVK::submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter)
{
BX_UNUSED(_render, _clearQuad, _textVideoMemBlitter);
updateResolution(_render->m_resolution);
int64_t timeBegin = bx::getHPCounter();
int64_t captureElapsed = 0;
// m_gpuTimer.begin(m_commandList);
if (0 < _render->m_iboffset)
{
// TransientIndexBuffer* ib = _render->m_transientIb;
// m_indexBuffers[ib->handle.idx].update(m_commandList, 0, _render->m_iboffset, ib->data);
}
if (0 < _render->m_vboffset)
{
// TransientVertexBuffer* vb = _render->m_transientVb;
// m_vertexBuffers[vb->handle.idx].update(m_commandList, 0, _render->m_vboffset, vb->data);
}
_render->sort();
RenderDraw currentState;
currentState.clear();
currentState.m_stateFlags = BGFX_STATE_NONE;
currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE);
const bool hmdEnabled = false;
ViewState viewState(_render, hmdEnabled);
viewState.reset(_render, hmdEnabled);
// bool wireframe = !!(_render->m_debug&BGFX_DEBUG_WIREFRAME);
// setDebugWireframe(wireframe);
uint16_t currentSamplerStateIdx = kInvalidHandle;
uint16_t currentProgramIdx = kInvalidHandle;
uint32_t currentBindHash = 0;
bool hasPredefined = false;
bool commandListChanged = false;
VkPipeline currentPipeline = VK_NULL_HANDLE;
SortKey key;
uint16_t view = UINT16_MAX;
FrameBufferHandle fbh = { BGFX_CONFIG_MAX_FRAME_BUFFERS };
BlitState bs(_render);
uint32_t blendFactor = 0;
const uint64_t primType = _render->m_debug&BGFX_DEBUG_WIREFRAME ? BGFX_STATE_PT_LINES : 0;
uint8_t primIndex = uint8_t(primType >> BGFX_STATE_PT_SHIFT);
PrimInfo prim = s_primInfo[primIndex];
bool wasCompute = false;
bool viewHasScissor = false;
bool restoreScissor = false;
Rect viewScissorRect;
viewScissorRect.clear();
const uint32_t maxComputeBindings = g_caps.limits.maxComputeBindings;
BX_UNUSED(maxComputeBindings);
uint32_t statsNumPrimsSubmitted[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumPrimsRendered[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumInstances[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumIndices = 0;
uint32_t statsKeyType[2] = {};
VkSemaphore renderWait = m_presentDone[m_backBufferColorIdx];
VK_CHECK(vkAcquireNextImageKHR(m_device
, m_swapchain
, UINT64_MAX
, renderWait
, VK_NULL_HANDLE
, &m_backBufferColorIdx
) );
const uint64_t f0 = BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_FACTOR, BGFX_STATE_BLEND_FACTOR);
const uint64_t f1 = BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_INV_FACTOR, BGFX_STATE_BLEND_INV_FACTOR);
ScratchBufferVK& scratchBuffer = m_scratchBuffer[m_backBufferColorIdx];
VkDescriptorBufferInfo descriptorBufferInfo;
scratchBuffer.reset(descriptorBufferInfo);
VkCommandBufferBeginInfo cbbi;
cbbi.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cbbi.pNext = NULL;
cbbi.flags = 0
| VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT
// | VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT
;
cbbi.pInheritanceInfo = NULL;
m_commandBuffer = m_commandBuffers[m_backBufferColorIdx];
VK_CHECK(vkBeginCommandBuffer(m_commandBuffer, &cbbi) );
setImageMemoryBarrier(m_commandBuffer
, m_backBufferColorImage[m_backBufferColorIdx]
, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR
, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
);
VkRenderPassBeginInfo rpbi;
rpbi.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
rpbi.pNext = NULL;
rpbi.renderPass = m_renderPass;
rpbi.framebuffer = m_backBufferColor[m_backBufferColorIdx];
rpbi.renderArea.offset.x = 0;
rpbi.renderArea.offset.y = 0;
rpbi.renderArea.extent = m_sci.imageExtent;
rpbi.clearValueCount = 0;
rpbi.pClearValues = NULL;
bool beginRenderPass = false;
if (0 == (_render->m_debug&BGFX_DEBUG_IFH) )
{
// m_batch.begin();
// uint8_t eye = 0;
// uint8_t restartState = 0;
viewState.m_rect = _render->m_view[0].m_rect;
int32_t numItems = _render->m_numRenderItems;
for (int32_t item = 0, restartItem = numItems; item < numItems || restartItem < numItems;)
{
const uint64_t encodedKey = _render->m_sortKeys[item];
const bool isCompute = key.decode(encodedKey, _render->m_viewRemap);
statsKeyType[isCompute]++;
const bool viewChanged = 0
|| key.m_view != view
|| item == numItems
;
const uint32_t itemIdx = _render->m_sortValues[item];
const RenderItem& renderItem = _render->m_renderItem[itemIdx];
const RenderBind& renderBind = _render->m_renderItemBind[itemIdx];
++item;
if (viewChanged)
{
if (beginRenderPass)
{
vkCmdEndRenderPass(m_commandBuffer);
beginRenderPass = false;
}
VK_CHECK(vkEndCommandBuffer(m_commandBuffer) );
// m_batch.flush(m_commandList, true);
kick(renderWait);
renderWait = VK_NULL_HANDLE;
finishAll();
view = key.m_view;
currentPipeline = VK_NULL_HANDLE;
currentSamplerStateIdx = kInvalidHandle;
BX_UNUSED(currentSamplerStateIdx);
currentProgramIdx = kInvalidHandle;
hasPredefined = false;
fbh = _render->m_view[view].m_fbh;
setFrameBuffer(fbh);
viewState.m_rect = _render->m_view[view].m_rect;
const Rect& rect = _render->m_view[view].m_rect;
const Rect& scissorRect = _render->m_view[view].m_scissor;
viewHasScissor = !scissorRect.isZero();
viewScissorRect = viewHasScissor ? scissorRect : rect;
rpbi.renderArea.offset.x = rect.m_x;
rpbi.renderArea.offset.y = rect.m_y;
rpbi.renderArea.extent.width = rect.m_width;
rpbi.renderArea.extent.height = rect.m_height;
VK_CHECK(vkBeginCommandBuffer(m_commandBuffer, &cbbi) );
vkCmdBeginRenderPass(m_commandBuffer, &rpbi, VK_SUBPASS_CONTENTS_INLINE);
beginRenderPass = true;
VkViewport vp;
vp.x = rect.m_x;
vp.y = rect.m_y;
vp.width = rect.m_width;
vp.height = rect.m_height;
vp.minDepth = 0.0f;
vp.maxDepth = 1.0f;
vkCmdSetViewport(m_commandBuffer, 0, 1, &vp);
VkRect2D rc;
rc.offset.x = viewScissorRect.m_x;
rc.offset.y = viewScissorRect.m_y;
rc.extent.width = viewScissorRect.m_x + viewScissorRect.m_width;
rc.extent.height = viewScissorRect.m_y + viewScissorRect.m_height;
vkCmdSetScissor(m_commandBuffer, 0, 1, &rc);
restoreScissor = false;
Clear& clr = _render->m_view[view].m_clear;
if (BGFX_CLEAR_NONE != clr.m_flags)
{
Rect clearRect = rect;
clearRect.setIntersect(rect, viewScissorRect);
clearQuad(clearRect, clr, _render->m_colorPalette);
}
prim = s_primInfo[Topology::Count]; // Force primitive type update.
submitBlit(bs, view);
}
if (isCompute)
{
if (!wasCompute)
{
wasCompute = true;
// m_commandList->SetComputeRootSignature(m_rootSignature);
// ID3D12DescriptorHeap* heaps[] = {
// m_samplerAllocator.getHeap(),
// scratchBuffer.getHeap(),
// };
// m_commandList->SetDescriptorHeaps(BX_COUNTOF(heaps), heaps);
}
const RenderCompute& compute = renderItem.compute;
VkPipeline pipeline = getPipeline(key.m_program);
if (pipeline != currentPipeline)
{
currentPipeline = pipeline;
vkCmdBindPipeline(m_commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);
currentBindHash = 0;
}
// uint32_t bindHash = bx::hash<bx::HashMurmur2A>(renderBind.m_bind, sizeof(renderBind.m_bind) );
// if (currentBindHash != bindHash)
// {
// currentBindHash = bindHash;
//
// Bind* bindCached = bindLru.find(bindHash);
// if (NULL == bindCached)
// {
// D3D12_GPU_DESCRIPTOR_HANDLE srvHandle[BGFX_MAX_COMPUTE_BINDINGS] = {};
// uint32_t samplerFlags[BGFX_MAX_COMPUTE_BINDINGS] = {};
//
// for (uint32_t ii = 0; ii < maxComputeBindings; ++ii)
// {
// const Binding& bind = renderBind.m_bind[ii];
// if (kInvalidHandle != bind.m_idx)
// {
// switch (bind.m_type)
// {
// case Binding::Image:
// {
// TextureD3D12& texture = m_textures[bind.m_idx];
//
// if (Access::Read != bind.m_un.m_compute.m_access)
// {
// texture.setState(m_commandList, D3D12_RESOURCE_STATE_UNORDERED_ACCESS);
// scratchBuffer.allocUav(srvHandle[ii], texture, bind.m_un.m_compute.m_mip);
// }
// else
// {
// texture.setState(m_commandList, D3D12_RESOURCE_STATE_GENERIC_READ);
// scratchBuffer.allocSrv(srvHandle[ii], texture, bind.m_un.m_compute.m_mip);
// samplerFlags[ii] = texture.m_flags;
// }
// }
// break;
//
// case Binding::IndexBuffer:
// case Binding::VertexBuffer:
// {
// BufferD3D12& buffer = Binding::IndexBuffer == bind.m_type
// ? m_indexBuffers[bind.m_idx]
// : m_vertexBuffers[bind.m_idx]
// ;
//
// if (Access::Read != bind.m_un.m_compute.m_access)
// {
// buffer.setState(m_commandList, D3D12_RESOURCE_STATE_UNORDERED_ACCESS);
// scratchBuffer.allocUav(srvHandle[ii], buffer);
// }
// else
// {
// buffer.setState(m_commandList, D3D12_RESOURCE_STATE_GENERIC_READ);
// scratchBuffer.allocSrv(srvHandle[ii], buffer);
// }
// }
// break;
// }
// }
// }
//
// uint16_t samplerStateIdx = getSamplerState(samplerFlags, maxComputeBindings, _render->m_colorPalette);
// if (samplerStateIdx != currentSamplerStateIdx)
// {
// currentSamplerStateIdx = samplerStateIdx;
// m_commandList->SetComputeRootDescriptorTable(Rdt::Sampler, m_samplerAllocator.get(samplerStateIdx) );
// }
//
// m_commandList->SetComputeRootDescriptorTable(Rdt::SRV, srvHandle[0]);
// m_commandList->SetComputeRootDescriptorTable(Rdt::UAV, srvHandle[0]);
//
// Bind bind;
// bind.m_srvHandle = srvHandle[0];
// bind.m_samplerStateIdx = samplerStateIdx;
// bindLru.add(bindHash, bind, 0);
// }
// else
// {
// uint16_t samplerStateIdx = bindCached->m_samplerStateIdx;
// if (samplerStateIdx != currentSamplerStateIdx)
// {
// currentSamplerStateIdx = samplerStateIdx;
// m_commandList->SetComputeRootDescriptorTable(Rdt::Sampler, m_samplerAllocator.get(samplerStateIdx) );
// }
// m_commandList->SetComputeRootDescriptorTable(Rdt::SRV, bindCached->m_srvHandle);
// m_commandList->SetComputeRootDescriptorTable(Rdt::UAV, bindCached->m_srvHandle);
// }
// }
bool constantsChanged = false;
if (compute.m_uniformBegin < compute.m_uniformEnd
|| currentProgramIdx != key.m_program)
{
rendererUpdateUniforms(this, _render->m_uniformBuffer[compute.m_uniformIdx], compute.m_uniformBegin, compute.m_uniformEnd);
currentProgramIdx = key.m_program;
ProgramVK& program = m_program[currentProgramIdx];
UniformBuffer* vcb = program.m_vsh->m_constantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
hasPredefined = 0 < program.m_numPredefined;
constantsChanged = true;
}
if (constantsChanged
|| hasPredefined)
{
ProgramVK& program = m_program[currentProgramIdx];
viewState.setPredefined<4>(this, view, 0, program, _render, compute);
// commitShaderConstants(key.m_program, gpuAddress);
// m_commandList->SetComputeRootConstantBufferView(Rdt::CBV, gpuAddress);
}
if (isValid(compute.m_indirectBuffer) )
{
const VertexBufferVK& vb = m_vertexBuffers[compute.m_indirectBuffer.idx];
uint32_t numDrawIndirect = UINT16_MAX == compute.m_numIndirect
? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE
: compute.m_numIndirect
;
uint32_t args = compute.m_startIndirect * BGFX_CONFIG_DRAW_INDIRECT_STRIDE;
for (uint32_t ii = 0; ii < numDrawIndirect; ++ii)
{
// m_commandList->ExecuteIndirect(ptr, args);
args += BGFX_CONFIG_DRAW_INDIRECT_STRIDE;
}
}
else
{
// m_commandList->Dispatch(compute.m_numX, compute.m_numY, compute.m_numZ);
}
continue;
}
const RenderDraw& draw = renderItem.draw;
const bool hasOcclusionQuery = false; //0 != (draw.m_stateFlags & BGFX_STATE_INTERNAL_OCCLUSION_QUERY);
{
const bool occluded = false //true
// && isValid(draw.m_occlusionQuery)
// && !hasOcclusionQuery
// && !isVisible(_render, draw.m_occlusionQuery, 0 != (draw.m_submitFlags&BGFX_SUBMIT_INTERNAL_OCCLUSION_VISIBLE) )
;
if (occluded
|| _render->m_frameCache.isZeroArea(viewScissorRect, draw.m_scissor) )
{
// if (resetState)
// {
// currentState.clear();
// currentState.m_scissor = !draw.m_scissor;
// currentBind.clear();
// }
continue;
}
}
const uint64_t newFlags = draw.m_stateFlags;
uint64_t changedFlags = currentState.m_stateFlags ^ draw.m_stateFlags;
currentState.m_stateFlags = newFlags;
const uint64_t newStencil = draw.m_stencil;
uint64_t changedStencil = (currentState.m_stencil ^ draw.m_stencil) & BGFX_STENCIL_FUNC_REF_MASK;
currentState.m_stencil = newStencil;
if (viewChanged
|| wasCompute)
{
if (wasCompute)
{
wasCompute = false;
}
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
BX_UNUSED(s_viewName);
// wchar_t* viewNameW = s_viewNameW[view];
// viewNameW[3] = L' ';
// PIX_ENDEVENT();
// PIX_BEGINEVENT(toRgba8(0xff, 0x00, 0x00, 0xff), viewNameW);
}
commandListChanged = true;
}
if (commandListChanged)
{
commandListChanged = false;
// m_commandList->SetGraphicsRootSignature(m_rootSignature);
// ID3D12DescriptorHeap* heaps[] = {
// m_samplerAllocator.getHeap(),
// scratchBuffer.getHeap(),
// };
// m_commandList->SetDescriptorHeaps(BX_COUNTOF(heaps), heaps);
currentPipeline = VK_NULL_HANDLE;
currentBindHash = 0;
currentSamplerStateIdx = kInvalidHandle;
currentProgramIdx = kInvalidHandle;
currentState.clear();
currentState.m_scissor = !draw.m_scissor;
changedFlags = BGFX_STATE_MASK;
changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK);
currentState.m_stateFlags = newFlags;
currentState.m_stencil = newStencil;
const uint64_t pt = newFlags&BGFX_STATE_PT_MASK;
primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT);
}
rendererUpdateUniforms(this, _render->m_uniformBuffer[draw.m_uniformIdx], draw.m_uniformBegin, draw.m_uniformEnd);
if (isValid(draw.m_stream[0].m_handle) )
{
const uint64_t state = draw.m_stateFlags;
bool hasFactor = 0
|| f0 == (state & f0)
|| f1 == (state & f1)
;
const VertexBufferVK& vb = m_vertexBuffers[draw.m_stream[0].m_handle.idx];
uint16_t declIdx = !isValid(vb.m_decl) ? draw.m_stream[0].m_decl.idx : vb.m_decl.idx;
VkPipeline pipeline =
getPipeline(state
, draw.m_stencil
, declIdx
, key.m_program
, uint8_t(draw.m_instanceDataStride/16)
);
uint16_t scissor = draw.m_scissor;
uint32_t bindHash = bx::hash<bx::HashMurmur2A>(renderBind.m_bind, sizeof(renderBind.m_bind) );
if (currentBindHash != bindHash
|| 0 != changedStencil
|| (hasFactor && blendFactor != draw.m_rgba)
|| (0 != (BGFX_STATE_PT_MASK & changedFlags)
|| prim.m_topology != s_primInfo[primIndex].m_topology)
|| currentState.m_scissor != scissor
|| pipeline != currentPipeline
|| hasOcclusionQuery)
{
// m_batch.flush(m_commandList);
}
// if (currentBindHash != bindHash)
// {
// currentBindHash = bindHash;
//
// Bind* bindCached = bindLru.find(bindHash);
// if (NULL == bindCached)
// {
// D3D12_GPU_DESCRIPTOR_HANDLE srvHandle[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS];
// uint32_t samplerFlags[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS];
// {
// srvHandle[0].ptr = 0;
// for (uint32_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage)
// {
// const Binding& bind = renderBind.m_bind[stage];
// if (kInvalidHandle != bind.m_idx)
// {
// TextureD3D12& texture = m_textures[bind.m_idx];
// texture.setState(m_commandList, D3D12_RESOURCE_STATE_GENERIC_READ);
// scratchBuffer.allocSrv(srvHandle[stage], texture);
// samplerFlags[stage] = (0 == (BGFX_TEXTURE_INTERNAL_DEFAULT_SAMPLER & bind.m_un.m_draw.m_textureFlags)
// ? bind.m_un.m_draw.m_textureFlags
// : texture.m_flags
// ) & (BGFX_TEXTURE_SAMPLER_BITS_MASK|BGFX_TEXTURE_BORDER_COLOR_MASK)
// ;
// }
// else
// {
// bx::memCopy(&srvHandle[stage], &srvHandle[0], sizeof(D3D12_GPU_DESCRIPTOR_HANDLE) );
// samplerFlags[stage] = 0;
// }
// }
// }
//
// if (srvHandle[0].ptr != 0)
// {
// uint16_t samplerStateIdx = getSamplerState(samplerFlags, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, _render->m_colorPalette);
// if (samplerStateIdx != currentSamplerStateIdx)
// {
// currentSamplerStateIdx = samplerStateIdx;
// m_commandList->SetGraphicsRootDescriptorTable(Rdt::Sampler, m_samplerAllocator.get(samplerStateIdx) );
// }
//
// m_commandList->SetGraphicsRootDescriptorTable(Rdt::SRV, srvHandle[0]);
//
// Bind bind;
// bind.m_srvHandle = srvHandle[0];
// bind.m_samplerStateIdx = samplerStateIdx;
// bindLru.add(bindHash, bind, 0);
// }
// }
// else
// {
// uint16_t samplerStateIdx = bindCached->m_samplerStateIdx;
// if (samplerStateIdx != currentSamplerStateIdx)
// {
// currentSamplerStateIdx = samplerStateIdx;
// m_commandList->SetGraphicsRootDescriptorTable(Rdt::Sampler, m_samplerAllocator.get(samplerStateIdx) );
// }
// m_commandList->SetGraphicsRootDescriptorTable(Rdt::SRV, bindCached->m_srvHandle);
// }
// }
if (pipeline != currentPipeline
|| 0 != changedStencil)
{
const uint32_t fstencil = unpackStencil(0, draw.m_stencil);
const uint32_t ref = (fstencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT;
vkCmdSetStencilReference(m_commandBuffer, VK_STENCIL_FRONT_AND_BACK, ref);
}
if (pipeline != currentPipeline
|| (hasFactor && blendFactor != draw.m_rgba) )
{
blendFactor = draw.m_rgba;
float bf[4];
bf[0] = ( (draw.m_rgba>>24) )/255.0f;
bf[1] = ( (draw.m_rgba>>16)&0xff)/255.0f;
bf[2] = ( (draw.m_rgba>> 8)&0xff)/255.0f;
bf[3] = ( (draw.m_rgba )&0xff)/255.0f;
vkCmdSetBlendConstants(m_commandBuffer, bf);
}
if (0 != (BGFX_STATE_PT_MASK & changedFlags)
|| prim.m_topology != s_primInfo[primIndex].m_topology)
{
const uint64_t pt = newFlags&BGFX_STATE_PT_MASK;
primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT);
prim = s_primInfo[primIndex];
// m_commandList->IASetPrimitiveTopology(prim.m_topology);
}
if (currentState.m_scissor != scissor)
{
currentState.m_scissor = scissor;
if (UINT16_MAX == scissor)
{
if (restoreScissor
|| viewHasScissor)
{
restoreScissor = false;
VkRect2D rc;
rc.offset.x = viewScissorRect.m_x;
rc.offset.y = viewScissorRect.m_y;
rc.extent.width = viewScissorRect.m_x + viewScissorRect.m_width;
rc.extent.height = viewScissorRect.m_y + viewScissorRect.m_height;
vkCmdSetScissor(m_commandBuffer, 0, 1, &rc);
}
}
else
{
restoreScissor = true;
Rect scissorRect;
scissorRect.setIntersect(viewScissorRect, _render->m_frameCache.m_rectCache.m_cache[scissor]);
VkRect2D rc;
rc.offset.x = scissorRect.m_x;
rc.offset.y = scissorRect.m_y;
rc.extent.width = scissorRect.m_x + scissorRect.m_width;
rc.extent.height = scissorRect.m_y + scissorRect.m_height;
vkCmdSetScissor(m_commandBuffer, 0, 1, &rc);
}
}
if (pipeline != currentPipeline)
{
currentPipeline = pipeline;
vkCmdBindPipeline(m_commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
}
bool constantsChanged = false;
if (draw.m_uniformBegin < draw.m_uniformEnd
|| currentProgramIdx != key.m_program
|| BGFX_STATE_ALPHA_REF_MASK & changedFlags)
{
currentProgramIdx = key.m_program;
ProgramVK& program = m_program[currentProgramIdx];
UniformBuffer* vcb = program.m_vsh->m_constantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
UniformBuffer* fcb = program.m_fsh->m_constantBuffer;
if (NULL != fcb)
{
commit(*fcb);
}
hasPredefined = 0 < program.m_numPredefined;
constantsChanged = true;
}
if (constantsChanged
|| hasPredefined)
{
ProgramVK& program = m_program[currentProgramIdx];
uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT;
viewState.m_alphaRef = ref/255.0f;
viewState.setPredefined<4>(this, view, 0, program, _render, draw);
commitShaderUniforms(m_commandBuffer, key.m_program); //, gpuAddress);
}
// vb.setState(_commandList, D3D12_RESOURCE_STATE_GENERIC_READ);
const VertexDecl& vertexDecl = m_vertexDecls[declIdx];
uint32_t numIndices = 0;
VkDeviceSize offset = 0;
vkCmdBindVertexBuffers(m_commandBuffer
, 0
, 1
, &vb.m_buffer
, &offset
);
if (!isValid(draw.m_indexBuffer) )
{
const uint32_t numVertices = UINT32_MAX == draw.m_numVertices
? vb.m_size / vertexDecl.m_stride
: draw.m_numVertices
;
vkCmdDraw(m_commandBuffer
, numVertices
, draw.m_numInstances
, draw.m_stream[0].m_startVertex
, 0
);
}
else
{
BufferVK& ib = m_indexBuffers[draw.m_indexBuffer.idx];
// ib.setState(_commandList, D3D12_RESOURCE_STATE_GENERIC_READ);
const bool hasIndex16 = 0 == (ib.m_flags & BGFX_BUFFER_INDEX32);
const uint32_t indexSize = hasIndex16 ? 2 : 4;
numIndices = UINT32_MAX == draw.m_numIndices
? ib.m_size / indexSize
: draw.m_numIndices
;
vkCmdBindIndexBuffer(m_commandBuffer
, ib.m_buffer
, 0
, hasIndex16
? VK_INDEX_TYPE_UINT16
: VK_INDEX_TYPE_UINT32
);
vkCmdDrawIndexed(m_commandBuffer
, numIndices
, draw.m_numInstances
, draw.m_startIndex
, draw.m_stream[0].m_startVertex
, 0
);
}
uint32_t numPrimsSubmitted = numIndices / prim.m_div - prim.m_sub;
uint32_t numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
statsNumPrimsSubmitted[primIndex] += numPrimsSubmitted;
statsNumPrimsRendered[primIndex] += numPrimsRendered;
statsNumInstances[primIndex] += draw.m_numInstances;
statsNumIndices += numIndices;
if (hasOcclusionQuery)
{
// m_occlusionQuery.begin(m_commandList, _render, draw.m_occlusionQuery);
// m_batch.flush(m_commandList);
// m_occlusionQuery.end(m_commandList);
}
}
}
submitBlit(bs, BGFX_CONFIG_MAX_VIEWS);
// m_batch.end(m_commandList);
}
int64_t timeEnd = bx::getHPCounter();
int64_t frameTime = timeEnd - timeBegin;
static int64_t min = frameTime;
static int64_t max = frameTime;
min = bx::min<int64_t>(min, frameTime);
max = bx::max<int64_t>(max, frameTime);
static uint32_t maxGpuLatency = 0;
static double maxGpuElapsed = 0.0f;
double elapsedGpuMs = 0.0;
BX_UNUSED(maxGpuLatency, maxGpuElapsed, elapsedGpuMs);
static int64_t presentMin = 0; //m_presentElapsed;
static int64_t presentMax = 0; //m_presentElapsed;
BX_UNUSED(presentMin, presentMax);
// presentMin = bx::min<int64_t>(presentMin, m_presentElapsed);
// presentMax = bx::max<int64_t>(presentMax, m_presentElapsed);
// m_gpuTimer.end(m_commandList);
// while (m_gpuTimer.get() )
// {
// double toGpuMs = 1000.0 / double(m_gpuTimer.m_frequency);
// elapsedGpuMs = m_gpuTimer.m_elapsed * toGpuMs;
// maxGpuElapsed = elapsedGpuMs > maxGpuElapsed ? elapsedGpuMs : maxGpuElapsed;
// }
// maxGpuLatency = bx::uint32_imax(maxGpuLatency, m_gpuTimer.m_control.available()-1);
const int64_t timerFreq = bx::getHPFrequency();
Stats& perfStats = _render->m_perfStats;
perfStats.cpuTimeBegin = timeBegin;
perfStats.cpuTimeEnd = timeEnd;
perfStats.cpuTimerFreq = timerFreq;
// perfStats.gpuTimeBegin = m_gpuTimer.m_begin;
// perfStats.gpuTimeEnd = m_gpuTimer.m_end;
// perfStats.gpuTimerFreq = m_gpuTimer.m_frequency;
// perfStats.numDraw = statsKeyType[0];
// perfStats.numCompute = statsKeyType[1];
// perfStats.maxGpuLatency = maxGpuLatency;
bx::memCopy(perfStats.numPrims, statsNumPrimsRendered, sizeof(perfStats.numPrims) );
perfStats.gpuMemoryMax = -INT64_MAX;
perfStats.gpuMemoryUsed = -INT64_MAX;
if (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
// PIX_BEGINEVENT(toRgba8(0x40, 0x40, 0x40, 0xff), L"debugstats");
// m_needPresent = true;
TextVideoMem& tvm = m_textVideoMem;
static int64_t next = timeEnd;
if (timeEnd >= next)
{
next = timeEnd + timerFreq;
double freq = double(timerFreq);
double toMs = 1000.0 / freq;
tvm.clear();
uint16_t pos = 0;
tvm.printf(0, pos++, BGFX_CONFIG_DEBUG ? 0x8c : 0x8f
, " %s / " BX_COMPILER_NAME " / " BX_CPU_NAME " / " BX_ARCH_NAME " / " BX_PLATFORM_NAME " "
, getRendererName()
);
// const DXGI_ADAPTER_DESC& desc = m_adapterDesc;
// char description[BX_COUNTOF(desc.Description)];
// wcstombs(description, desc.Description, BX_COUNTOF(desc.Description) );
// tvm.printf(0, pos++, 0x8f, " Device: %s", description);
//
// char dedicatedVideo[16];
// bx::prettify(dedicatedVideo, BX_COUNTOF(dedicatedVideo), desc.DedicatedVideoMemory);
//
// char dedicatedSystem[16];
// bx::prettify(dedicatedSystem, BX_COUNTOF(dedicatedSystem), desc.DedicatedSystemMemory);
//
// char sharedSystem[16];
// bx::prettify(sharedSystem, BX_COUNTOF(sharedSystem), desc.SharedSystemMemory);
//
// char processMemoryUsed[16];
// bx::prettify(processMemoryUsed, BX_COUNTOF(processMemoryUsed), bx::getProcessMemoryUsed() );
//
// tvm.printf(0, pos++, 0x8f, " Memory: %s (video), %s (system), %s (shared), %s (process) "
// , dedicatedVideo
// , dedicatedSystem
// , sharedSystem
// , processMemoryUsed
// );
// DXGI_QUERY_VIDEO_MEMORY_INFO memInfo;
// DX_CHECK(m_adapter->QueryVideoMemoryInfo(0, DXGI_MEMORY_SEGMENT_GROUP_LOCAL, &memInfo) );
//
// char budget[16];
// bx::prettify(budget, BX_COUNTOF(budget), memInfo.Budget);
//
// char currentUsage[16];
// bx::prettify(currentUsage, BX_COUNTOF(currentUsage), memInfo.CurrentUsage);
//
// char availableForReservation[16];
// bx::prettify(availableForReservation, BX_COUNTOF(currentUsage), memInfo.AvailableForReservation);
//
// char currentReservation[16];
// bx::prettify(currentReservation, BX_COUNTOF(currentReservation), memInfo.CurrentReservation);
//
// tvm.printf(0, pos++, 0x8f, " Budget: %s, Usage: %s, AvailRes: %s, CurrRes: %s "
// , budget
// , currentUsage
// , availableForReservation
// , currentReservation
// );
pos = 10;
tvm.printf(10, pos++, 0x8b, " Frame: % 7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS "
, double(frameTime)*toMs
, double(min)*toMs
, double(max)*toMs
, freq/frameTime
);
// tvm.printf(10, pos++, 0x8b, " Present: % 7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] "
// , double(m_presentElapsed)*toMs
// , double(presentMin)*toMs
// , double(presentMax)*toMs
// );
const uint32_t msaa = (m_resolution.reset&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT;
tvm.printf(10, pos++, 0x8b, " Reset flags: [%c] vsync, [%c] MSAAx%d, [%c] MaxAnisotropy "
, !!(m_resolution.reset&BGFX_RESET_VSYNC) ? '\xfe' : ' '
, 0 != msaa ? '\xfe' : ' '
, 1<<msaa
, !!(m_resolution.reset&BGFX_RESET_MAXANISOTROPY) ? '\xfe' : ' '
);
double elapsedCpuMs = double(frameTime)*toMs;
tvm.printf(10, pos++, 0x8b, " Submitted: %5d (draw %5d, compute %4d) / CPU %7.4f [ms] "
, _render->m_numRenderItems
, statsKeyType[0]
, statsKeyType[1]
, elapsedCpuMs
);
for (uint32_t ii = 0; ii < Topology::Count; ++ii)
{
tvm.printf(10, pos++, 0x8b, " %9s: %7d (#inst: %5d), submitted: %7d "
, getName(Topology::Enum(ii) )
, statsNumPrimsRendered[ii]
, statsNumInstances[ii]
, statsNumPrimsSubmitted[ii]
);
}
// tvm.printf(10, pos++, 0x8b, " Batch: %7dx%d indirect, %7d immediate "
// , m_batch.m_stats.m_numIndirect[BatchD3D12::Draw]
// , m_batch.m_maxDrawPerBatch
// , m_batch.m_stats.m_numImmediate[BatchD3D12::Draw]
// );
// tvm.printf(10, pos++, 0x8b, " %7dx%d indirect, %7d immediate "
// , m_batch.m_stats.m_numIndirect[BatchD3D12::DrawIndexed]
// , m_batch.m_maxDrawPerBatch
// , m_batch.m_stats.m_numImmediate[BatchD3D12::DrawIndexed]
// );
if (NULL != m_renderDocDll)
{
tvm.printf(tvm.m_width-27, 0, 0x4f, " [F11 - RenderDoc capture] ");
}
tvm.printf(10, pos++, 0x8b, " Indices: %7d ", statsNumIndices);
// tvm.printf(10, pos++, 0x8b, " Uniform size: %7d, Max: %7d ", _render->m_uniformEnd, _render->m_uniformMax);
tvm.printf(10, pos++, 0x8b, " DVB size: %7d ", _render->m_vboffset);
tvm.printf(10, pos++, 0x8b, " DIB size: %7d ", _render->m_iboffset);
pos++;
tvm.printf(10, pos++, 0x8b, " State cache: ");
tvm.printf(10, pos++, 0x8b, " PSO | Sampler | Bind | Queued ");
tvm.printf(10, pos++, 0x8b, " %6d " //| %6d | %6d | %6d "
, m_pipelineStateCache.getCount()
// , m_samplerStateCache.getCount()
// , bindLru.getCount()
// , m_cmd.m_control.available()
);
pos++;
double captureMs = double(captureElapsed)*toMs;
tvm.printf(10, pos++, 0x8b, " Capture: %7.4f [ms] ", captureMs);
uint8_t attr[2] = { 0x8c, 0x8a };
uint8_t attrIndex = _render->m_waitSubmit < _render->m_waitRender;
tvm.printf(10, pos++, attr[attrIndex&1], " Submit wait: %7.4f [ms] ", _render->m_waitSubmit*toMs);
tvm.printf(10, pos++, attr[(attrIndex+1)&1], " Render wait: %7.4f [ms] ", _render->m_waitRender*toMs);
min = frameTime;
max = frameTime;
// presentMin = m_presentElapsed;
// presentMax = m_presentElapsed;
}
blit(this, _textVideoMemBlitter, tvm);
// PIX_ENDEVENT();
}
else if (_render->m_debug & BGFX_DEBUG_TEXT)
{
// PIX_BEGINEVENT(toRgba8(0x40, 0x40, 0x40, 0xff), L"debugtext");
blit(this, _textVideoMemBlitter, _render->m_textVideoMem);
// PIX_ENDEVENT();
}
if (beginRenderPass)
{
vkCmdEndRenderPass(m_commandBuffer);
beginRenderPass = false;
}
setImageMemoryBarrier(m_commandBuffer
, m_backBufferColorImage[m_backBufferColorIdx]
, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR
);
VK_CHECK(vkEndCommandBuffer(m_commandBuffer) );
kick(renderWait); //, m_presentDone[m_backBufferColorIdx]);
finishAll();
VK_CHECK(vkResetCommandPool(m_device, m_commandPool, 0) );
}
} /* namespace vk */ } // namespace bgfx
#else
namespace bgfx { namespace vk
{
RendererContextI* rendererCreate(const Init& _init)
{
BX_UNUSED(_init);
return NULL;
}
void rendererDestroy()
{
}
} /* namespace vk */ } // namespace bgfx
#endif // BGFX_CONFIG_RENDERER_VULKAN