bgfx/src/renderer_d3d9.cpp
2018-07-19 20:22:21 -07:00

4528 lines
124 KiB
C++

/*
* Copyright 2011-2018 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
#include "bgfx_p.h"
#if BGFX_CONFIG_RENDERER_DIRECT3D9
# include "renderer_d3d9.h"
# include <bx/pixelformat.h>
namespace bgfx { namespace d3d9
{
static wchar_t s_viewNameW[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME];
static char s_viewName[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME];
struct PrimInfo
{
D3DPRIMITIVETYPE m_type;
uint32_t m_min;
uint32_t m_div;
uint32_t m_sub;
};
static const PrimInfo s_primInfo[] =
{
{ D3DPT_TRIANGLELIST, 3, 3, 0 },
{ D3DPT_TRIANGLESTRIP, 3, 1, 2 },
{ D3DPT_LINELIST, 2, 2, 0 },
{ D3DPT_LINESTRIP, 2, 1, 1 },
{ D3DPT_POINTLIST, 1, 1, 0 },
{ D3DPRIMITIVETYPE(0), 0, 0, 0 },
};
BX_STATIC_ASSERT(Topology::Count == BX_COUNTOF(s_primInfo)-1);
static const D3DMULTISAMPLE_TYPE s_checkMsaa[] =
{
D3DMULTISAMPLE_NONE,
D3DMULTISAMPLE_2_SAMPLES,
D3DMULTISAMPLE_4_SAMPLES,
D3DMULTISAMPLE_8_SAMPLES,
D3DMULTISAMPLE_16_SAMPLES,
};
static Msaa s_msaa[] =
{
{ D3DMULTISAMPLE_NONE, 0 },
{ D3DMULTISAMPLE_2_SAMPLES, 0 },
{ D3DMULTISAMPLE_4_SAMPLES, 0 },
{ D3DMULTISAMPLE_8_SAMPLES, 0 },
{ D3DMULTISAMPLE_16_SAMPLES, 0 },
};
struct Blend
{
D3DBLEND m_src;
D3DBLEND m_dst;
bool m_factor;
};
static const Blend s_blendFactor[] =
{
{ (D3DBLEND)0, (D3DBLEND)0, false }, // ignored
{ D3DBLEND_ZERO, D3DBLEND_ZERO, false }, // ZERO
{ D3DBLEND_ONE, D3DBLEND_ONE, false }, // ONE
{ D3DBLEND_SRCCOLOR, D3DBLEND_SRCCOLOR, false }, // SRC_COLOR
{ D3DBLEND_INVSRCCOLOR, D3DBLEND_INVSRCCOLOR, false }, // INV_SRC_COLOR
{ D3DBLEND_SRCALPHA, D3DBLEND_SRCALPHA, false }, // SRC_ALPHA
{ D3DBLEND_INVSRCALPHA, D3DBLEND_INVSRCALPHA, false }, // INV_SRC_ALPHA
{ D3DBLEND_DESTALPHA, D3DBLEND_DESTALPHA, false }, // DST_ALPHA
{ D3DBLEND_INVDESTALPHA, D3DBLEND_INVDESTALPHA, false }, // INV_DST_ALPHA
{ D3DBLEND_DESTCOLOR, D3DBLEND_DESTCOLOR, false }, // DST_COLOR
{ D3DBLEND_INVDESTCOLOR, D3DBLEND_INVDESTCOLOR, false }, // INV_DST_COLOR
{ D3DBLEND_SRCALPHASAT, D3DBLEND_ONE, false }, // SRC_ALPHA_SAT
{ D3DBLEND_BLENDFACTOR, D3DBLEND_BLENDFACTOR, true }, // FACTOR
{ D3DBLEND_INVBLENDFACTOR, D3DBLEND_INVBLENDFACTOR, true }, // INV_FACTOR
};
static const D3DBLENDOP s_blendEquation[] =
{
D3DBLENDOP_ADD,
D3DBLENDOP_SUBTRACT,
D3DBLENDOP_REVSUBTRACT,
D3DBLENDOP_MIN,
D3DBLENDOP_MAX,
};
static const D3DCMPFUNC s_cmpFunc[] =
{
(D3DCMPFUNC)0, // ignored
D3DCMP_LESS,
D3DCMP_LESSEQUAL,
D3DCMP_EQUAL,
D3DCMP_GREATEREQUAL,
D3DCMP_GREATER,
D3DCMP_NOTEQUAL,
D3DCMP_NEVER,
D3DCMP_ALWAYS,
};
static const D3DSTENCILOP s_stencilOp[] =
{
D3DSTENCILOP_ZERO,
D3DSTENCILOP_KEEP,
D3DSTENCILOP_REPLACE,
D3DSTENCILOP_INCR,
D3DSTENCILOP_INCRSAT,
D3DSTENCILOP_DECR,
D3DSTENCILOP_DECRSAT,
D3DSTENCILOP_INVERT,
};
static const D3DRENDERSTATETYPE s_stencilFuncRs[] =
{
D3DRS_STENCILFUNC,
D3DRS_CCW_STENCILFUNC,
};
static const D3DRENDERSTATETYPE s_stencilFailRs[] =
{
D3DRS_STENCILFAIL,
D3DRS_CCW_STENCILFAIL,
};
static const D3DRENDERSTATETYPE s_stencilZFailRs[] =
{
D3DRS_STENCILZFAIL,
D3DRS_CCW_STENCILZFAIL,
};
static const D3DRENDERSTATETYPE s_stencilZPassRs[] =
{
D3DRS_STENCILPASS,
D3DRS_CCW_STENCILPASS,
};
static const D3DCULL s_cullMode[] =
{
D3DCULL_NONE,
D3DCULL_CW,
D3DCULL_CCW,
};
static const D3DTEXTUREADDRESS s_textureAddress[] =
{
D3DTADDRESS_WRAP,
D3DTADDRESS_MIRROR,
D3DTADDRESS_CLAMP,
D3DTADDRESS_BORDER,
};
static const D3DTEXTUREFILTERTYPE s_textureFilter[] =
{
D3DTEXF_LINEAR,
D3DTEXF_POINT,
D3DTEXF_ANISOTROPIC,
};
struct TextureFormatInfo
{
D3DFORMAT m_fmt;
};
static TextureFormatInfo s_textureFormat[] =
{
{ D3DFMT_DXT1 }, // BC1
{ D3DFMT_DXT3 }, // BC2
{ D3DFMT_DXT5 }, // BC3
{ D3DFMT_UNKNOWN }, // BC4
{ D3DFMT_UNKNOWN }, // BC5
{ D3DFMT_UNKNOWN }, // BC6H
{ D3DFMT_UNKNOWN }, // BC7
{ D3DFMT_UNKNOWN }, // ETC1
{ D3DFMT_UNKNOWN }, // ETC2
{ D3DFMT_UNKNOWN }, // ETC2A
{ D3DFMT_UNKNOWN }, // ETC2A1
{ D3DFMT_UNKNOWN }, // PTC12
{ D3DFMT_UNKNOWN }, // PTC14
{ D3DFMT_UNKNOWN }, // PTC12A
{ D3DFMT_UNKNOWN }, // PTC14A
{ D3DFMT_UNKNOWN }, // PTC22
{ D3DFMT_UNKNOWN }, // PTC24
{ D3DFMT_UNKNOWN }, // ATC,
{ D3DFMT_UNKNOWN }, // ATCE,
{ D3DFMT_UNKNOWN }, // ATCI,
{ D3DFMT_UNKNOWN }, // ASTC4x4,
{ D3DFMT_UNKNOWN }, // ASTC5x5,
{ D3DFMT_UNKNOWN }, // ASTC6x6,
{ D3DFMT_UNKNOWN }, // ASTC8x5,
{ D3DFMT_UNKNOWN }, // ASTC8x6,
{ D3DFMT_UNKNOWN }, // ASTC10x5,
{ D3DFMT_UNKNOWN }, // Unknown
{ D3DFMT_A1 }, // R1
{ D3DFMT_A8 }, // A8
{ D3DFMT_L8 }, // R8
{ D3DFMT_UNKNOWN }, // R8I
{ D3DFMT_UNKNOWN }, // R8U
{ D3DFMT_UNKNOWN }, // R8S
{ D3DFMT_L16 }, // R16
{ D3DFMT_UNKNOWN }, // R16I
{ D3DFMT_UNKNOWN }, // R16U
{ D3DFMT_R16F }, // R16F
{ D3DFMT_UNKNOWN }, // R16S
{ D3DFMT_UNKNOWN }, // R32I
{ D3DFMT_UNKNOWN }, // R32U
{ D3DFMT_R32F }, // R32F
{ D3DFMT_A8L8 }, // RG8
{ D3DFMT_UNKNOWN }, // RG8I
{ D3DFMT_UNKNOWN }, // RG8U
{ D3DFMT_UNKNOWN }, // RG8S
{ D3DFMT_G16R16 }, // RG16
{ D3DFMT_UNKNOWN }, // RG16I
{ D3DFMT_UNKNOWN }, // RG16U
{ D3DFMT_G16R16F }, // RG16F
{ D3DFMT_UNKNOWN }, // RG16S
{ D3DFMT_UNKNOWN }, // RG32I
{ D3DFMT_UNKNOWN }, // RG32U
{ D3DFMT_G32R32F }, // RG32F
{ D3DFMT_UNKNOWN }, // RGB8
{ D3DFMT_UNKNOWN }, // RGB8I
{ D3DFMT_UNKNOWN }, // RGB8U
{ D3DFMT_UNKNOWN }, // RGB8S
{ D3DFMT_UNKNOWN }, // RGB9E5F
{ D3DFMT_A8R8G8B8 }, // BGRA8
{ D3DFMT_UNKNOWN }, // RGBA8
{ D3DFMT_UNKNOWN }, // RGBA8I
{ D3DFMT_UNKNOWN }, // RGBA8U
{ D3DFMT_UNKNOWN }, // RGBA8S
{ D3DFMT_A16B16G16R16 }, // RGBA16
{ D3DFMT_UNKNOWN }, // RGBA16I
{ D3DFMT_UNKNOWN }, // RGBA16U
{ D3DFMT_A16B16G16R16F }, // RGBA16F
{ D3DFMT_UNKNOWN }, // RGBA16S
{ D3DFMT_UNKNOWN }, // RGBA32I
{ D3DFMT_UNKNOWN }, // RGBA32U
{ D3DFMT_A32B32G32R32F }, // RGBA32F
{ D3DFMT_R5G6B5 }, // R5G6B5
{ D3DFMT_A4R4G4B4 }, // RGBA4
{ D3DFMT_A1R5G5B5 }, // RGB5A1
{ D3DFMT_A2B10G10R10 }, // RGB10A2
{ D3DFMT_UNKNOWN }, // RG11B10F
{ D3DFMT_UNKNOWN }, // UnknownDepth
{ D3DFMT_D16 }, // D16
{ D3DFMT_D24X8 }, // D24
{ D3DFMT_D24S8 }, // D24S8
{ D3DFMT_D32 }, // D32
{ D3DFMT_DF16 }, // D16F
{ D3DFMT_DF24 }, // D24F
{ D3DFMT_D32F_LOCKABLE }, // D32F
{ D3DFMT_S8_LOCKABLE }, // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormat) );
static ExtendedFormat s_extendedFormats[ExtendedFormat::Count] =
{
{ D3DFMT_ATI1, 0, D3DRTYPE_TEXTURE, false },
{ D3DFMT_ATI2, 0, D3DRTYPE_TEXTURE, false },
{ D3DFMT_DF16, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, false },
{ D3DFMT_DF24, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, false },
{ D3DFMT_INST, 0, D3DRTYPE_SURFACE, false },
{ D3DFMT_INTZ, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, false },
{ D3DFMT_NULL, D3DUSAGE_RENDERTARGET, D3DRTYPE_SURFACE, false },
{ D3DFMT_RESZ, D3DUSAGE_RENDERTARGET, D3DRTYPE_SURFACE, false },
{ D3DFMT_RAWZ, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, false },
{ D3DFMT_ATOC, 0, D3DRTYPE_SURFACE, false },
};
static const GUID IID_IDirect3D9 = { 0x81bdcbca, 0x64d4, 0x426d, { 0xae, 0x8d, 0xad, 0x1, 0x47, 0xf4, 0x27, 0x5c } };
static const GUID IID_IDirect3DDevice9Ex = { 0xb18b10ce, 0x2649, 0x405a, { 0x87, 0xf, 0x95, 0xf7, 0x77, 0xd4, 0x31, 0x3a } };
typedef HRESULT (WINAPI *Direct3DCreate9ExFn)(UINT SDKVersion, IDirect3D9Ex**);
static Direct3DCreate9ExFn Direct3DCreate9Ex;
typedef IDirect3D9* (WINAPI *Direct3DCreate9Fn)(UINT SDKVersion);
static Direct3DCreate9Fn Direct3DCreate9;
static PFN_D3DPERF_SET_MARKER D3DPERF_SetMarker;
static PFN_D3DPERF_BEGIN_EVENT D3DPERF_BeginEvent;
static PFN_D3DPERF_END_EVENT D3DPERF_EndEvent;
static const D3DVERTEXELEMENT9 s_attrib[] =
{
{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0 },
{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_NORMAL, 0 },
{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TANGENT, 0 },
{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_BINORMAL, 0 },
{ 0, 0, D3DDECLTYPE_UBYTE4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 0 },
{ 0, 0, D3DDECLTYPE_UBYTE4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 1 },
{ 0, 0, D3DDECLTYPE_UBYTE4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 2 },
{ 0, 0, D3DDECLTYPE_UBYTE4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 3 },
{ 0, 0, D3DDECLTYPE_UBYTE4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_BLENDINDICES, 0 },
{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_BLENDWEIGHT, 0 },
{ 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0 },
{ 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 1 },
{ 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 2 },
{ 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 3 },
{ 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 4 },
{ 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 5 },
{ 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 6 },
{ 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 7 },
D3DDECL_END()
};
BX_STATIC_ASSERT(Attrib::Count == BX_COUNTOF(s_attrib)-1);
static const uint8_t s_attribType[][4][2] =
{
{ // Uint8
{ D3DDECLTYPE_UBYTE4, D3DDECLTYPE_UBYTE4N },
{ D3DDECLTYPE_UBYTE4, D3DDECLTYPE_UBYTE4N },
{ D3DDECLTYPE_UBYTE4, D3DDECLTYPE_UBYTE4N },
{ D3DDECLTYPE_UBYTE4, D3DDECLTYPE_UBYTE4N },
},
{ // Uint10
{ D3DDECLTYPE_UDEC3, D3DDECLTYPE_DEC3N },
{ D3DDECLTYPE_UDEC3, D3DDECLTYPE_DEC3N },
{ D3DDECLTYPE_UDEC3, D3DDECLTYPE_DEC3N },
{ D3DDECLTYPE_UDEC3, D3DDECLTYPE_DEC3N },
},
{ // Int16
{ D3DDECLTYPE_SHORT2, D3DDECLTYPE_SHORT2N },
{ D3DDECLTYPE_SHORT2, D3DDECLTYPE_SHORT2N },
{ D3DDECLTYPE_SHORT4, D3DDECLTYPE_SHORT4N },
{ D3DDECLTYPE_SHORT4, D3DDECLTYPE_SHORT4N },
},
{ // Half
{ D3DDECLTYPE_FLOAT16_2, D3DDECLTYPE_FLOAT16_2 },
{ D3DDECLTYPE_FLOAT16_2, D3DDECLTYPE_FLOAT16_2 },
{ D3DDECLTYPE_FLOAT16_4, D3DDECLTYPE_FLOAT16_4 },
{ D3DDECLTYPE_FLOAT16_4, D3DDECLTYPE_FLOAT16_4 },
},
{ // Float
{ D3DDECLTYPE_FLOAT1, D3DDECLTYPE_FLOAT1 },
{ D3DDECLTYPE_FLOAT2, D3DDECLTYPE_FLOAT2 },
{ D3DDECLTYPE_FLOAT3, D3DDECLTYPE_FLOAT3 },
{ D3DDECLTYPE_FLOAT4, D3DDECLTYPE_FLOAT4 },
},
};
BX_STATIC_ASSERT(AttribType::Count == BX_COUNTOF(s_attribType) );
static D3DVERTEXELEMENT9* fillVertexDecl(uint8_t _stream, D3DVERTEXELEMENT9* _out, const VertexDecl& _decl)
{
D3DVERTEXELEMENT9* elem = _out;
for (uint32_t attr = 0; attr < Attrib::Count; ++attr)
{
if (UINT16_MAX != _decl.m_attributes[attr])
{
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_decl.decode(Attrib::Enum(attr), num, type, normalized, asInt);
bx::memCopy(elem, &s_attrib[attr], sizeof(D3DVERTEXELEMENT9) );
elem->Stream = _stream;
elem->Type = s_attribType[type][num-1][normalized];
elem->Offset = _decl.m_offset[attr];
++elem;
}
}
return elem;
}
inline bool isLost(HRESULT _hr)
{
return false
|| _hr == D3DERR_DEVICELOST
|| _hr == D3DERR_DRIVERINTERNALERROR
#if !defined(D3D_DISABLE_9EX)
|| _hr == D3DERR_DEVICEHUNG
|| _hr == D3DERR_DEVICEREMOVED
#endif // !defined(D3D_DISABLE_9EX)
;
}
struct RendererContextD3D9 : public RendererContextI
{
RendererContextD3D9()
: m_d3d9(NULL)
, m_device(NULL)
, m_flushQuery(NULL)
, m_swapChain(NULL)
, m_captureTexture(NULL)
, m_captureSurface(NULL)
, m_captureResolve(NULL)
, m_maxAnisotropy(1)
, m_initialized(false)
, m_amd(false)
, m_nvidia(false)
, m_atocSupport(false)
, m_instancingSupport(false)
, m_occlusionQuerySupport(false)
, m_timerQuerySupport(false)
, m_rtMsaa(false)
{
}
~RendererContextD3D9()
{
}
bool init(const Init& _init)
{
struct ErrorState
{
enum Enum
{
Default,
LoadedD3D9,
CreatedD3D9,
CreatedDevice,
};
};
ErrorState::Enum errorState = ErrorState::Default;
m_fbh.idx = kInvalidHandle;
bx::memSet(m_uniforms, 0, sizeof(m_uniforms) );
bx::memSet(&m_resolution, 0, sizeof(m_resolution) );
D3DFORMAT adapterFormat = D3DFMT_X8R8G8B8;
// http://msdn.microsoft.com/en-us/library/windows/desktop/bb172588%28v=vs.85%29.aspx
bx::memSet(&m_params, 0, sizeof(m_params) );
m_params.BackBufferWidth = _init.resolution.width;
m_params.BackBufferHeight = _init.resolution.height;
m_params.BackBufferFormat = adapterFormat;
m_params.BackBufferCount = 1;
m_params.MultiSampleType = D3DMULTISAMPLE_NONE;
m_params.MultiSampleQuality = 0;
m_params.EnableAutoDepthStencil = TRUE;
m_params.AutoDepthStencilFormat = D3DFMT_D24S8;
m_params.Flags = D3DPRESENTFLAG_DISCARD_DEPTHSTENCIL;
m_params.FullScreen_RefreshRateInHz = 0;
m_params.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE;
m_params.SwapEffect = D3DSWAPEFFECT_DISCARD;
m_params.hDeviceWindow = NULL;
m_params.Windowed = true;
RECT rect;
GetWindowRect( (HWND)g_platformData.nwh, &rect);
m_params.BackBufferWidth = rect.right-rect.left;
m_params.BackBufferHeight = rect.bottom-rect.top;
m_d3d9dll = bx::dlopen("d3d9.dll");
if (NULL == m_d3d9dll)
{
BX_TRACE("Init error: Failed to load d3d9.dll.");
goto error;
}
errorState = ErrorState::LoadedD3D9;
m_nvapi.init();
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
D3DPERF_SetMarker = (PFN_D3DPERF_SET_MARKER )bx::dlsym(m_d3d9dll, "D3DPERF_SetMarker");
D3DPERF_BeginEvent = (PFN_D3DPERF_BEGIN_EVENT)bx::dlsym(m_d3d9dll, "D3DPERF_BeginEvent");
D3DPERF_EndEvent = (PFN_D3DPERF_END_EVENT )bx::dlsym(m_d3d9dll, "D3DPERF_EndEvent");
BX_CHECK(NULL != D3DPERF_SetMarker
&& NULL != D3DPERF_BeginEvent
&& NULL != D3DPERF_EndEvent
, "Failed to initialize PIX events."
);
}
m_d3d9ex = NULL;
m_deviceEx = NULL;
Direct3DCreate9Ex = (Direct3DCreate9ExFn)bx::dlsym(m_d3d9dll, "Direct3DCreate9Ex");
if (BX_ENABLED(BGFX_CONFIG_RENDERER_DIRECT3D9EX)
&& NULL != Direct3DCreate9Ex)
{
Direct3DCreate9Ex(D3D_SDK_VERSION, &m_d3d9ex);
if (NULL != m_d3d9ex)
{
HRESULT hr = m_d3d9ex->QueryInterface(IID_IDirect3D9, (void**)&m_d3d9);
if (FAILED(hr) )
{
BX_TRACE("Failed to query D3D9 interface 0x%08x.", hr);
DX_RELEASE(m_d3d9ex, 0);
}
else
{
m_pool = D3DPOOL_DEFAULT;
}
}
}
if (NULL == m_d3d9)
{
Direct3DCreate9 = (Direct3DCreate9Fn)bx::dlsym(m_d3d9dll, "Direct3DCreate9");
if (NULL == Direct3DCreate9)
{
BX_TRACE("Init error: Function Direct3DCreate9 not found.");
goto error;
}
m_d3d9 = Direct3DCreate9(D3D_SDK_VERSION);
m_pool = D3DPOOL_MANAGED;
}
if (NULL == m_d3d9)
{
BX_TRACE("Init error: Unable to create Direct3D.");
goto error;
}
errorState = ErrorState::CreatedD3D9;
{
m_adapter = D3DADAPTER_DEFAULT;
m_deviceType = BGFX_PCI_ID_SOFTWARE_RASTERIZER == g_caps.vendorId
? D3DDEVTYPE_REF
: D3DDEVTYPE_HAL
;
uint8_t numGPUs = uint8_t(bx::uint32_min(BX_COUNTOF(g_caps.gpu), m_d3d9->GetAdapterCount() ) );
for (uint32_t ii = 0; ii < numGPUs; ++ii)
{
D3DADAPTER_IDENTIFIER9 desc;
HRESULT hr = m_d3d9->GetAdapterIdentifier(ii, 0, &desc);
if (SUCCEEDED(hr) )
{
BX_TRACE("Adapter #%d", ii);
BX_TRACE("\tDriver: %s", desc.Driver);
BX_TRACE("\tDescription: %s", desc.Description);
BX_TRACE("\tDeviceName: %s", desc.DeviceName);
BX_TRACE("\tVendorId: 0x%08x, DeviceId: 0x%08x, SubSysId: 0x%08x, Revision: 0x%08x"
, desc.VendorId
, desc.DeviceId
, desc.SubSysId
, desc.Revision
);
g_caps.gpu[ii].vendorId = (uint16_t)desc.VendorId;
g_caps.gpu[ii].deviceId = (uint16_t)desc.DeviceId;
if (D3DADAPTER_DEFAULT == m_adapter)
{
if ( (BGFX_PCI_ID_NONE != g_caps.vendorId || 0 != g_caps.deviceId)
&& (BGFX_PCI_ID_NONE == g_caps.vendorId || desc.VendorId == g_caps.vendorId)
&& ( 0 == g_caps.deviceId || desc.DeviceId == g_caps.deviceId) )
{
m_adapter = ii;
}
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PERFHUD)
&& 0 != bx::strFind(desc.Description, "PerfHUD") )
{
m_adapter = ii;
m_deviceType = D3DDEVTYPE_REF;
}
}
}
}
DX_CHECK(m_d3d9->GetAdapterIdentifier(m_adapter, 0, &m_identifier) );
m_amd = m_identifier.VendorId == BGFX_PCI_ID_AMD;
m_nvidia = m_identifier.VendorId == BGFX_PCI_ID_NVIDIA;
g_caps.vendorId = 0 == m_identifier.VendorId
? BGFX_PCI_ID_SOFTWARE_RASTERIZER
: (uint16_t)m_identifier.VendorId
;
g_caps.deviceId = (uint16_t)m_identifier.DeviceId;
uint32_t behaviorFlags[] =
{
D3DCREATE_HARDWARE_VERTEXPROCESSING | D3DCREATE_FPU_PRESERVE | D3DCREATE_PUREDEVICE,
D3DCREATE_MIXED_VERTEXPROCESSING | D3DCREATE_FPU_PRESERVE,
D3DCREATE_SOFTWARE_VERTEXPROCESSING | D3DCREATE_FPU_PRESERVE,
};
for (uint32_t ii = 0; ii < BX_COUNTOF(behaviorFlags) && NULL == m_device; ++ii)
{
if (NULL != m_d3d9ex)
{
DX_CHECK(m_d3d9ex->CreateDeviceEx(m_adapter
, m_deviceType
, (HWND)g_platformData.nwh
, behaviorFlags[ii]
, &m_params
, NULL
, &m_deviceEx
) );
m_device = m_deviceEx;
}
else
{
DX_CHECK(m_d3d9->CreateDevice(m_adapter
, m_deviceType
, (HWND)g_platformData.nwh
, behaviorFlags[ii]
, &m_params
, &m_device
) );
}
}
}
if (NULL == m_device)
{
BX_TRACE("Init error: Unable to create Direct3D9 device.");
goto error;
}
errorState = ErrorState::CreatedDevice;
m_numWindows = 1;
if (NULL != m_d3d9ex)
{
DX_CHECK(m_device->QueryInterface(IID_IDirect3DDevice9Ex, (void**)&m_deviceEx) );
}
{
IDirect3DQuery9* timerQueryTest[3] = {};
m_timerQuerySupport = true
&& SUCCEEDED(m_device->CreateQuery(D3DQUERYTYPE_TIMESTAMPDISJOINT, &timerQueryTest[0]) )
&& SUCCEEDED(m_device->CreateQuery(D3DQUERYTYPE_TIMESTAMP, &timerQueryTest[1]) )
&& SUCCEEDED(m_device->CreateQuery(D3DQUERYTYPE_TIMESTAMPFREQ, &timerQueryTest[2]) )
;
DX_RELEASE(timerQueryTest[0], 0);
DX_RELEASE(timerQueryTest[1], 0);
DX_RELEASE(timerQueryTest[2], 0);
}
{
IDirect3DQuery9* occlusionQueryTest;
m_occlusionQuerySupport = true
&& SUCCEEDED(m_device->CreateQuery(D3DQUERYTYPE_OCCLUSION, &occlusionQueryTest) )
;
DX_RELEASE(occlusionQueryTest, 0);
}
DX_CHECK(m_device->GetDeviceCaps(&m_caps) );
// For shit GPUs that can create DX9 device but can't do simple stuff. GTFO!
BX_WARN( (D3DPTEXTURECAPS_SQUAREONLY & m_caps.TextureCaps) == 0, "D3DPTEXTURECAPS_SQUAREONLY");
BX_WARN( (D3DPTEXTURECAPS_MIPMAP & m_caps.TextureCaps) == D3DPTEXTURECAPS_MIPMAP, "D3DPTEXTURECAPS_MIPMAP");
BX_WARN( (D3DPTEXTURECAPS_ALPHA & m_caps.TextureCaps) == D3DPTEXTURECAPS_ALPHA, "D3DPTEXTURECAPS_ALPHA");
BX_WARN(m_caps.VertexShaderVersion >= D3DVS_VERSION(2, 0) && m_caps.PixelShaderVersion >= D3DPS_VERSION(2, 1)
, "Shader Model Version (vs: %x, ps: %x)."
, m_caps.VertexShaderVersion
, m_caps.PixelShaderVersion
);
if ( (D3DPTEXTURECAPS_SQUAREONLY & m_caps.TextureCaps) != 0
|| (D3DPTEXTURECAPS_MIPMAP & m_caps.TextureCaps) != D3DPTEXTURECAPS_MIPMAP
|| (D3DPTEXTURECAPS_ALPHA & m_caps.TextureCaps) != D3DPTEXTURECAPS_ALPHA
|| !(m_caps.VertexShaderVersion >= D3DVS_VERSION(2, 0) && m_caps.PixelShaderVersion >= D3DPS_VERSION(2, 1) ) )
{
BX_TRACE("Init error: Min spec not satisfied.");
goto error;
}
BX_TRACE("Max vertex shader 3.0 instr. slots: %d", m_caps.MaxVertexShader30InstructionSlots);
BX_TRACE("Max vertex shader constants: %d", m_caps.MaxVertexShaderConst);
BX_TRACE("Max fragment shader 2.0 instr. slots: %d", m_caps.PS20Caps.NumInstructionSlots);
BX_TRACE("Max fragment shader 3.0 instr. slots: %d", m_caps.MaxPixelShader30InstructionSlots);
BX_TRACE("Num simultaneous render targets: %d", m_caps.NumSimultaneousRTs);
BX_TRACE("Max vertex index: %d", m_caps.MaxVertexIndex);
BX_TRACE("Max streams: %d", m_caps.MaxStreams);
g_caps.supported |= ( 0
| BGFX_CAPS_TEXTURE_3D
| BGFX_CAPS_TEXTURE_COMPARE_LEQUAL
| BGFX_CAPS_VERTEX_ATTRIB_HALF
| BGFX_CAPS_VERTEX_ATTRIB_UINT10
| BGFX_CAPS_FRAGMENT_DEPTH
| BGFX_CAPS_SWAP_CHAIN
| ( (UINT16_MAX < m_caps.MaxVertexIndex) ? BGFX_CAPS_INDEX32 : 0)
| ( (m_caps.DevCaps2 & D3DDEVCAPS2_CAN_STRETCHRECT_FROM_TEXTURES) ? BGFX_CAPS_TEXTURE_BLIT : 0)
| BGFX_CAPS_TEXTURE_READ_BACK
| (m_occlusionQuerySupport ? BGFX_CAPS_OCCLUSION_QUERY : 0)
);
m_caps.NumSimultaneousRTs = bx::uint32_min(m_caps.NumSimultaneousRTs, BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS);
m_caps.MaxStreams = bx::uint32_min(m_caps.MaxStreams, BGFX_CONFIG_MAX_VERTEX_STREAMS);
m_caps.MaxAnisotropy = bx::uint32_max(m_caps.MaxAnisotropy, 1);
g_caps.limits.maxTextureSize = uint16_t(bx::uint32_min(m_caps.MaxTextureWidth, m_caps.MaxTextureHeight) );
g_caps.limits.maxFBAttachments = uint8_t(m_caps.NumSimultaneousRTs);
g_caps.limits.maxVertexStreams = uint8_t(m_caps.MaxStreams);
if (BX_ENABLED(BGFX_CONFIG_RENDERER_USE_EXTENSIONS) )
{
BX_TRACE("Extended formats:");
for (uint32_t ii = 0; ii < ExtendedFormat::Count; ++ii)
{
ExtendedFormat& fmt = s_extendedFormats[ii];
fmt.m_supported = SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter, m_deviceType, adapterFormat, fmt.m_usage, fmt.m_type, fmt.m_fmt) );
const char* fourcc = (const char*)&fmt.m_fmt;
BX_TRACE("\t%2d: %c%c%c%c %s", ii, fourcc[0], fourcc[1], fourcc[2], fourcc[3], fmt.m_supported ? "supported" : "");
BX_UNUSED(fourcc);
}
m_instancingSupport = false
|| s_extendedFormats[ExtendedFormat::Inst].m_supported
|| (m_caps.VertexShaderVersion >= D3DVS_VERSION(3, 0) )
;
m_atocSupport = false
|| s_extendedFormats[ExtendedFormat::Atoc].m_supported
;
if (m_amd
&& s_extendedFormats[ExtendedFormat::Inst].m_supported)
{ // AMD only
m_device->SetRenderState(D3DRS_POINTSIZE, D3DFMT_INST);
}
if (s_extendedFormats[ExtendedFormat::Intz].m_supported)
{
s_textureFormat[TextureFormat::D24].m_fmt = D3DFMT_INTZ;
s_textureFormat[TextureFormat::D32].m_fmt = D3DFMT_INTZ;
}
s_textureFormat[TextureFormat::BC4].m_fmt = s_extendedFormats[ExtendedFormat::Ati1].m_supported ? D3DFMT_ATI1 : D3DFMT_UNKNOWN;
s_textureFormat[TextureFormat::BC5].m_fmt = s_extendedFormats[ExtendedFormat::Ati2].m_supported ? D3DFMT_ATI2 : D3DFMT_UNKNOWN;
g_caps.supported |= m_instancingSupport ? BGFX_CAPS_INSTANCING : 0;
g_caps.supported |= m_atocSupport ? BGFX_CAPS_ALPHA_TO_COVERAGE : 0;
}
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
uint16_t support = BGFX_CAPS_FORMAT_TEXTURE_NONE;
support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter
, m_deviceType
, adapterFormat
, 0
, D3DRTYPE_TEXTURE
, s_textureFormat[ii].m_fmt
) ) ? BGFX_CAPS_FORMAT_TEXTURE_2D : BGFX_CAPS_FORMAT_TEXTURE_NONE;
support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter
, m_deviceType
, adapterFormat
, D3DUSAGE_QUERY_SRGBREAD
, D3DRTYPE_TEXTURE
, s_textureFormat[ii].m_fmt
) ) ? BGFX_CAPS_FORMAT_TEXTURE_2D_SRGB : BGFX_CAPS_FORMAT_TEXTURE_NONE;
support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter
, m_deviceType
, adapterFormat
, 0
, D3DRTYPE_VOLUMETEXTURE
, s_textureFormat[ii].m_fmt
) ) ? BGFX_CAPS_FORMAT_TEXTURE_3D : BGFX_CAPS_FORMAT_TEXTURE_NONE;
support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter
, m_deviceType
, adapterFormat
, D3DUSAGE_QUERY_SRGBREAD
, D3DRTYPE_VOLUMETEXTURE
, s_textureFormat[ii].m_fmt
) ) ? BGFX_CAPS_FORMAT_TEXTURE_3D_SRGB : BGFX_CAPS_FORMAT_TEXTURE_NONE;
support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter
, m_deviceType
, adapterFormat
, 0
, D3DRTYPE_CUBETEXTURE
, s_textureFormat[ii].m_fmt
) ) ? BGFX_CAPS_FORMAT_TEXTURE_CUBE : BGFX_CAPS_FORMAT_TEXTURE_NONE;
support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter
, m_deviceType
, adapterFormat
, D3DUSAGE_QUERY_SRGBREAD
, D3DRTYPE_CUBETEXTURE
, s_textureFormat[ii].m_fmt
) ) ? BGFX_CAPS_FORMAT_TEXTURE_CUBE_SRGB : BGFX_CAPS_FORMAT_TEXTURE_NONE;
support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter
, m_deviceType
, adapterFormat
, D3DUSAGE_QUERY_VERTEXTEXTURE
, D3DRTYPE_TEXTURE
, s_textureFormat[ii].m_fmt
) ) ? BGFX_CAPS_FORMAT_TEXTURE_VERTEX : BGFX_CAPS_FORMAT_TEXTURE_NONE;
support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter
, m_deviceType
, adapterFormat
, bimg::isDepth(bimg::TextureFormat::Enum(ii) ) ? D3DUSAGE_DEPTHSTENCIL : D3DUSAGE_RENDERTARGET
, D3DRTYPE_TEXTURE
, s_textureFormat[ii].m_fmt
) ) ? BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER : BGFX_CAPS_FORMAT_TEXTURE_NONE;
support |= SUCCEEDED(m_d3d9->CheckDeviceMultiSampleType(m_adapter
, m_deviceType
, s_textureFormat[ii].m_fmt
, true
, D3DMULTISAMPLE_2_SAMPLES
, NULL
) ) ? BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA : BGFX_CAPS_FORMAT_TEXTURE_NONE;
support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter
, m_deviceType
, adapterFormat
, bimg::isDepth(bimg::TextureFormat::Enum(ii) ) ? D3DUSAGE_DEPTHSTENCIL : D3DUSAGE_RENDERTARGET
, D3DRTYPE_TEXTURE
, s_textureFormat[ii].m_fmt
) ) ? BGFX_CAPS_FORMAT_TEXTURE_MIP_AUTOGEN : BGFX_CAPS_FORMAT_TEXTURE_NONE;
g_caps.formats[ii] = support;
}
m_fmtDepth = D3DFMT_D24S8;
{
IDirect3DSwapChain9* swapChain;
DX_CHECK(m_device->GetSwapChain(0, &swapChain) );
// GPA increases swapchain ref count.
//
// This causes assert in debug. When debugger is present refcount
// checks are off.
setGraphicsDebuggerPresent(1 != getRefCount(swapChain) );
DX_RELEASE(swapChain, 0);
}
// Init reserved part of view name.
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii)
{
bx::snprintf(s_viewName[ii], BGFX_CONFIG_MAX_VIEW_NAME_RESERVED + 1, "%3d ", ii);
mbstowcs(s_viewNameW[ii], s_viewName[ii], BGFX_CONFIG_MAX_VIEW_NAME_RESERVED);
}
if (NULL != m_deviceEx)
{
int32_t gpuPriority;
DX_CHECK(m_deviceEx->GetGPUThreadPriority(&gpuPriority) );
BX_TRACE("GPU thread priority: %d", gpuPriority);
uint32_t maxLatency;
DX_CHECK(m_deviceEx->GetMaximumFrameLatency(&maxLatency) );
BX_TRACE("GPU max frame latency: %d", maxLatency);
}
postReset();
m_initialized = true;
g_internalData.context = m_device;
return true;
error:
switch (errorState)
{
case ErrorState::CreatedDevice:
if (NULL != m_d3d9ex)
{
DX_RELEASE(m_deviceEx, 1);
DX_RELEASE(m_device, 0);
}
else
{
DX_RELEASE(m_device, 0);
}
BX_FALLTHROUGH;
case ErrorState::CreatedD3D9:
if (NULL != m_d3d9ex)
{
DX_RELEASE(m_d3d9, 1);
DX_RELEASE(m_d3d9ex, 0);
}
else
{
DX_RELEASE(m_d3d9, 0);
}
BX_FALLTHROUGH;
case ErrorState::LoadedD3D9:
m_nvapi.shutdown();
bx::dlclose(m_d3d9dll);
BX_FALLTHROUGH;
case ErrorState::Default:
break;
}
return false;
}
void shutdown()
{
preReset();
for (uint32_t ii = 0; ii < BX_COUNTOF(m_indexBuffers); ++ii)
{
m_indexBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_vertexBuffers); ++ii)
{
m_vertexBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_shaders); ++ii)
{
m_shaders[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii)
{
m_textures[ii].destroy();
}
if (NULL != m_d3d9ex)
{
DX_RELEASE(m_deviceEx, 1);
DX_RELEASE(m_device, 0);
DX_RELEASE(m_d3d9, 1);
DX_RELEASE(m_d3d9ex, 0);
}
else
{
DX_RELEASE(m_device, 0);
DX_RELEASE(m_d3d9, 0);
}
m_nvapi.shutdown();
bx::dlclose(m_d3d9dll);
m_initialized = false;
}
RendererType::Enum getRendererType() const override
{
return RendererType::Direct3D9;
}
const char* getRendererName() const override
{
if (NULL != m_d3d9ex)
{
return BGFX_RENDERER_DIRECT3D9_NAME " Ex";
}
return BGFX_RENDERER_DIRECT3D9_NAME;
}
void createIndexBuffer(IndexBufferHandle _handle, const Memory* _mem, uint16_t _flags) override
{
m_indexBuffers[_handle.idx].create(_mem->size, _mem->data, _flags);
}
void destroyIndexBuffer(IndexBufferHandle _handle) override
{
m_indexBuffers[_handle.idx].destroy();
}
void createVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl) override
{
VertexDecl& decl = m_vertexDecls[_handle.idx];
bx::memCopy(&decl, &_decl, sizeof(VertexDecl) );
dump(decl);
}
void destroyVertexDecl(VertexDeclHandle /*_handle*/) override
{
}
void createVertexBuffer(VertexBufferHandle _handle, const Memory* _mem, VertexDeclHandle _declHandle, uint16_t /*_flags*/) override
{
m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle);
}
void destroyVertexBuffer(VertexBufferHandle _handle) override
{
m_vertexBuffers[_handle.idx].destroy();
}
void createDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size, uint16_t _flags) override
{
m_indexBuffers[_handle.idx].create(_size, NULL, _flags);
}
void updateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) override
{
m_indexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicIndexBuffer(IndexBufferHandle _handle) override
{
m_indexBuffers[_handle.idx].destroy();
}
void createDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size, uint16_t /*_flags*/) override
{
VertexDeclHandle decl = BGFX_INVALID_HANDLE;
m_vertexBuffers[_handle.idx].create(_size, NULL, decl);
}
void updateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) override
{
m_vertexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicVertexBuffer(VertexBufferHandle _handle) override
{
m_vertexBuffers[_handle.idx].destroy();
}
void createShader(ShaderHandle _handle, const Memory* _mem) override
{
m_shaders[_handle.idx].create(_mem);
}
void destroyShader(ShaderHandle _handle) override
{
m_shaders[_handle.idx].destroy();
}
void createProgram(ProgramHandle _handle, ShaderHandle _vsh, ShaderHandle _fsh) override
{
m_program[_handle.idx].create(&m_shaders[_vsh.idx], isValid(_fsh) ? &m_shaders[_fsh.idx] : NULL);
}
void destroyProgram(ProgramHandle _handle) override
{
m_program[_handle.idx].destroy();
}
void* createTexture(TextureHandle _handle, const Memory* _mem, uint32_t _flags, uint8_t _skip) override
{
m_textures[_handle.idx].create(_mem, _flags, _skip);
return NULL;
}
void updateTextureBegin(TextureHandle _handle, uint8_t _side, uint8_t _mip) override
{
m_updateTexture = &m_textures[_handle.idx];
m_updateTexture->updateBegin(_side, _mip);
}
void updateTexture(TextureHandle /*_handle*/, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) override
{
m_updateTexture->update(_side, _mip, _rect, _z, _depth, _pitch, _mem);
}
void updateTextureEnd() override
{
m_updateTexture->updateEnd();
m_updateTexture = NULL;
}
void readTexture(TextureHandle _handle, void* _data, uint8_t _mip) override
{
TextureD3D9& texture = m_textures[_handle.idx];
D3DLOCKED_RECT lockedRect;
DX_CHECK(texture.m_texture2d->LockRect(_mip
, &lockedRect
, NULL
, D3DLOCK_NO_DIRTY_UPDATE|D3DLOCK_NOSYSLOCK|D3DLOCK_READONLY
) );
uint32_t srcWidth = bx::uint32_max(1, texture.m_width >>_mip);
uint32_t srcHeight = bx::uint32_max(1, texture.m_height>>_mip);
uint32_t srcPitch = lockedRect.Pitch;
uint8_t* src = (uint8_t*)lockedRect.pBits;
const uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(texture.m_textureFormat) );
uint8_t* dst = (uint8_t*)_data;
uint32_t dstPitch = srcWidth*bpp/8;
uint32_t pitch = bx::uint32_min(srcPitch, dstPitch);
for (uint32_t yy = 0, height = srcHeight; yy < height; ++yy)
{
bx::memCopy(dst, src, pitch);
src += srcPitch;
dst += dstPitch;
}
DX_CHECK(texture.m_texture2d->UnlockRect(_mip) );
}
void resizeTexture(TextureHandle _handle, uint16_t _width, uint16_t _height, uint8_t _numMips) override
{
TextureD3D9& texture = m_textures[_handle.idx];
uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate);
const Memory* mem = alloc(size);
bx::StaticMemoryBlockWriter writer(mem->data, mem->size);
uint32_t magic = BGFX_CHUNK_MAGIC_TEX;
bx::write(&writer, magic);
TextureCreate tc;
tc.m_width = _width;
tc.m_height = _height;
tc.m_depth = 0;
tc.m_numLayers = 1;
tc.m_numMips = _numMips;
tc.m_format = TextureFormat::Enum(texture.m_requestedFormat);
tc.m_cubeMap = false;
tc.m_mem = NULL;
bx::write(&writer, tc);
texture.destroy(true);
texture.create(mem, texture.m_flags, 0);
release(mem);
}
void overrideInternal(TextureHandle _handle, uintptr_t _ptr) override
{
// Resource ref. counts might be messed up outside of bgfx.
// Disabling ref. count check once texture is overridden.
setGraphicsDebuggerPresent(true);
m_textures[_handle.idx].overrideInternal(_ptr);
}
uintptr_t getInternal(TextureHandle _handle) override
{
// Resource ref. counts might be messed up outside of bgfx.
// Disabling ref. count check once texture is overridden.
setGraphicsDebuggerPresent(true);
return uintptr_t(m_textures[_handle.idx].m_ptr);
}
void destroyTexture(TextureHandle _handle) override
{
m_textures[_handle.idx].destroy();
}
void createFrameBuffer(FrameBufferHandle _handle, uint8_t _num, const Attachment* _attachment) override
{
m_frameBuffers[_handle.idx].create(_num, _attachment);
}
void createFrameBuffer(FrameBufferHandle _handle, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _depthFormat) override
{
uint16_t denseIdx = m_numWindows++;
m_windows[denseIdx] = _handle;
m_frameBuffers[_handle.idx].create(denseIdx, _nwh, _width, _height, _depthFormat);
}
void destroyFrameBuffer(FrameBufferHandle _handle) override
{
uint16_t denseIdx = m_frameBuffers[_handle.idx].destroy();
if (UINT16_MAX != denseIdx)
{
--m_numWindows;
if (m_numWindows > 1)
{
FrameBufferHandle handle = m_windows[m_numWindows];
m_windows[denseIdx] = handle;
m_frameBuffers[handle.idx].m_denseIdx = denseIdx;
}
}
}
void createUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) override
{
if (NULL != m_uniforms[_handle.idx])
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
}
uint32_t size = BX_ALIGN_16(g_uniformTypeSize[_type]*_num);
void* data = BX_ALLOC(g_allocator, size);
bx::memSet(data, 0, size);
m_uniforms[_handle.idx] = data;
m_uniformReg.add(_handle, _name);
}
void destroyUniform(UniformHandle _handle) override
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
m_uniforms[_handle.idx] = NULL;
m_uniformReg.remove(_handle);
}
void requestScreenShot(FrameBufferHandle _handle, const char* _filePath) override
{
IDirect3DSwapChain9* swapChain = isValid(_handle)
? m_frameBuffers[_handle.idx].m_swapChain
: m_swapChain
;
if (NULL == swapChain)
{
BX_TRACE("Unable to capture screenshot %s.", _filePath);
return;
}
D3DPRESENT_PARAMETERS params;
DX_CHECK(swapChain->GetPresentParameters(&params));
IDirect3DSurface9* surface;
D3DDEVICE_CREATION_PARAMETERS dcp;
DX_CHECK(m_device->GetCreationParameters(&dcp) );
D3DDISPLAYMODE dm;
DX_CHECK(m_d3d9->GetAdapterDisplayMode(dcp.AdapterOrdinal, &dm) );
DX_CHECK(m_device->CreateOffscreenPlainSurface(dm.Width
, dm.Height
, D3DFMT_A8R8G8B8
, D3DPOOL_SCRATCH
, &surface
, NULL
) );
HWND nwh = params.hDeviceWindow;
SetWindowPos(nwh, HWND_TOPMOST, 0, 0, 0, 0, SWP_NOMOVE|SWP_NOSIZE);
DX_CHECK(m_device->GetFrontBufferData(0, surface) );
SetWindowPos(nwh, HWND_NOTOPMOST, 0, 0, 0, 0, SWP_NOMOVE|SWP_NOSIZE);
D3DLOCKED_RECT rect;
DX_CHECK(surface->LockRect(&rect
, NULL
, D3DLOCK_NO_DIRTY_UPDATE|D3DLOCK_NOSYSLOCK|D3DLOCK_READONLY
) );
RECT rc;
GetClientRect(nwh, &rc);
POINT point;
point.x = rc.left;
point.y = rc.top;
ClientToScreen(nwh, &point);
uint8_t* data = (uint8_t*)rect.pBits;
uint32_t bytesPerPixel = rect.Pitch/dm.Width;
g_callback->screenShot(_filePath
, params.BackBufferWidth
, params.BackBufferHeight
, rect.Pitch
, &data[point.y*rect.Pitch+point.x*bytesPerPixel]
, params.BackBufferHeight*rect.Pitch
, false
);
DX_CHECK(surface->UnlockRect() );
DX_RELEASE(surface, 0);
}
void updateViewName(ViewId _id, const char* _name) override
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
mbstowcs(&s_viewNameW[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED]
, _name
, BX_COUNTOF(s_viewNameW[0])-BGFX_CONFIG_MAX_VIEW_NAME_RESERVED
);
}
bx::strCopy(&s_viewName[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED]
, BX_COUNTOF(s_viewName[0]) - BGFX_CONFIG_MAX_VIEW_NAME_RESERVED
, _name
);
}
void updateUniform(uint16_t _loc, const void* _data, uint32_t _size) override
{
bx::memCopy(m_uniforms[_loc], _data, _size);
}
void setMarker(const char* _marker, uint32_t _size) override
{
#if BGFX_CONFIG_DEBUG_PIX
uint32_t size = _size*sizeof(wchar_t);
wchar_t* name = (wchar_t*)alloca(size);
mbstowcs(name, _marker, size-2);
PIX_SETMARKER(D3DCOLOR_MARKER, name);
#endif // BGFX_CONFIG_DEBUG_PIX
BX_UNUSED(_marker, _size);
}
void invalidateOcclusionQuery(OcclusionQueryHandle _handle) override
{
m_occlusionQuery.invalidate(_handle);
}
virtual void setName(Handle _handle, const char* _name) override
{
BX_UNUSED(_handle, _name)
}
void submitBlit(BlitState& _bs, uint16_t _view);
void submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) override;
void blitSetup(TextVideoMemBlitter& _blitter) override
{
uint32_t width = m_params.BackBufferWidth;
uint32_t height = m_params.BackBufferHeight;
FrameBufferHandle fbh = BGFX_INVALID_HANDLE;
setFrameBuffer(fbh, false, false);
D3DVIEWPORT9 vp;
vp.X = 0;
vp.Y = 0;
vp.Width = width;
vp.Height = height;
vp.MinZ = 0.0f;
vp.MaxZ = 1.0f;
IDirect3DDevice9* device = m_device;
DX_CHECK(device->SetViewport(&vp) );
DX_CHECK(device->SetRenderState(D3DRS_STENCILENABLE, FALSE) );
DX_CHECK(device->SetRenderState(D3DRS_ZENABLE, FALSE) );
DX_CHECK(device->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS) );
DX_CHECK(device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE) );
DX_CHECK(device->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE) );
DX_CHECK(device->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATER) );
DX_CHECK(device->SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_RED|D3DCOLORWRITEENABLE_GREEN|D3DCOLORWRITEENABLE_BLUE) );
DX_CHECK(device->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID) );
ProgramD3D9& program = m_program[_blitter.m_program.idx];
DX_CHECK(device->SetVertexShader(program.m_vsh->m_vertexShader) );
DX_CHECK(device->SetPixelShader(program.m_fsh->m_pixelShader) );
VertexBufferD3D9& vb = m_vertexBuffers[_blitter.m_vb->handle.idx];
VertexDecl& vertexDecl = m_vertexDecls[_blitter.m_vb->decl.idx];
DX_CHECK(device->SetStreamSource(0, vb.m_ptr, 0, vertexDecl.m_stride) );
setInputLayout(vertexDecl, 0);
IndexBufferD3D9& ib = m_indexBuffers[_blitter.m_ib->handle.idx];
DX_CHECK(device->SetIndices(ib.m_ptr) );
float proj[16];
bx::mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f, 0.0f, false);
PredefinedUniform& predefined = program.m_predefined[0];
uint8_t flags = predefined.m_type;
setShaderUniform(flags, predefined.m_loc, proj, 4);
m_textures[_blitter.m_texture.idx].commit(0, BGFX_TEXTURE_INTERNAL_DEFAULT_SAMPLER, NULL);
}
void blitRender(TextVideoMemBlitter& _blitter, uint32_t _numIndices) override
{
const uint32_t numVertices = _numIndices*4/6;
if (0 < numVertices)
{
m_indexBuffers[_blitter.m_ib->handle.idx].update(0, _numIndices * 2, _blitter.m_ib->data, true);
m_vertexBuffers[_blitter.m_vb->handle.idx].update(0, numVertices*_blitter.m_decl.m_stride, _blitter.m_vb->data, true);
DX_CHECK(m_device->DrawIndexedPrimitive(D3DPT_TRIANGLELIST
, 0
, 0
, numVertices
, 0
, _numIndices / 3
) );
}
}
void updateMsaa()
{
for (uint32_t ii = 1, last = 0; ii < BX_COUNTOF(s_checkMsaa); ++ii)
{
D3DMULTISAMPLE_TYPE msaa = s_checkMsaa[ii];
DWORD quality;
HRESULT hr = m_d3d9->CheckDeviceMultiSampleType(m_adapter
, m_deviceType
, m_params.BackBufferFormat
, m_params.Windowed
, msaa
, &quality
);
if (SUCCEEDED(hr) )
{
s_msaa[ii].m_type = msaa;
s_msaa[ii].m_quality = bx::uint32_imax(0, quality-1);
last = ii;
}
else
{
s_msaa[ii] = s_msaa[last];
}
}
}
void updateResolution(const Resolution& _resolution)
{
m_maxAnisotropy = !!(_resolution.reset & BGFX_RESET_MAXANISOTROPY)
? m_caps.MaxAnisotropy
: 1
;
const uint32_t maskFlags = ~(0
| BGFX_RESET_MAXANISOTROPY
| BGFX_RESET_DEPTH_CLAMP
| BGFX_RESET_SUSPEND
);
if (m_resolution.width != _resolution.width
|| m_resolution.height != _resolution.height
|| (m_resolution.reset&maskFlags) != (_resolution.reset&maskFlags) )
{
uint32_t flags = _resolution.reset & (~BGFX_RESET_INTERNAL_FORCE);
m_resolution = _resolution;
m_resolution.reset = flags;
m_textVideoMem.resize(false, _resolution.width, _resolution.height);
m_textVideoMem.clear();
D3DDEVICE_CREATION_PARAMETERS dcp;
DX_CHECK(m_device->GetCreationParameters(&dcp) );
D3DDISPLAYMODE dm;
DX_CHECK(m_d3d9->GetAdapterDisplayMode(dcp.AdapterOrdinal, &dm) );
m_params.BackBufferFormat = dm.Format;
m_params.BackBufferWidth = _resolution.width;
m_params.BackBufferHeight = _resolution.height;
m_params.FullScreen_RefreshRateInHz = BGFX_RESET_FULLSCREEN == (m_resolution.reset&BGFX_RESET_FULLSCREEN_MASK) ? 60 : 0;
m_params.PresentationInterval = !!(m_resolution.reset&BGFX_RESET_VSYNC) ? D3DPRESENT_INTERVAL_ONE : D3DPRESENT_INTERVAL_IMMEDIATE;
updateMsaa();
Msaa& msaa = s_msaa[(m_resolution.reset&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT];
m_params.MultiSampleType = msaa.m_type;
m_params.MultiSampleQuality = msaa.m_quality;
preReset();
DX_CHECK(m_device->Reset(&m_params) );
postReset();
}
}
void setFrameBuffer(FrameBufferHandle _fbh, bool _msaa = true, bool _needPresent = true)
{
if (isValid(m_fbh)
&& m_fbh.idx != _fbh.idx)
{
FrameBufferD3D9& frameBuffer = m_frameBuffers[m_fbh.idx];
frameBuffer.resolve();
}
if (!isValid(_fbh) )
{
m_needPresent |= _needPresent;
DX_CHECK(m_device->SetRenderTarget(0, m_backBufferColor) );
for (uint32_t ii = 1, num = g_caps.limits.maxFBAttachments; ii < num; ++ii)
{
DX_CHECK(m_device->SetRenderTarget(ii, NULL) );
}
DX_CHECK(m_device->SetDepthStencilSurface(m_backBufferDepthStencil) );
DX_CHECK(m_device->SetRenderState(D3DRS_SRGBWRITEENABLE, 0 != (m_resolution.reset & BGFX_RESET_SRGB_BACKBUFFER) ) );
}
else
{
m_frameBuffers[_fbh.idx].set();
}
m_fbh = _fbh;
m_rtMsaa = _msaa;
}
void setShaderUniform(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
if (_flags&BGFX_UNIFORM_FRAGMENTBIT)
{
DX_CHECK(m_device->SetPixelShaderConstantF(_regIndex, (const float*)_val, _numRegs) );
}
else
{
DX_CHECK(m_device->SetVertexShaderConstantF(_regIndex, (const float*)_val, _numRegs) );
}
}
void setShaderUniform4f(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
setShaderUniform(_flags, _regIndex, _val, _numRegs);
}
void setShaderUniform4x4f(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
setShaderUniform(_flags, _regIndex, _val, _numRegs);
}
void reset()
{
preReset();
HRESULT hr;
do
{
hr = m_device->Reset(&m_params);
} while (FAILED(hr) );
postReset();
}
void flush()
{
m_flushQuery->Issue(D3DISSUE_END);
m_flushQuery->GetData(NULL, 0, D3DGETDATA_FLUSH);
}
bool isDeviceRemoved() override
{
return false;
}
void flip() override
{
if (NULL != m_swapChain)
{
if (NULL != m_deviceEx)
{
DX_CHECK(m_deviceEx->WaitForVBlank(0) );
}
for (uint32_t ii = 0, num = m_numWindows; ii < num; ++ii)
{
HRESULT hr = S_OK;
if (0 == ii)
{
if (m_needPresent)
{
hr = m_swapChain->Present(NULL, NULL, (HWND)g_platformData.nwh, NULL, 0);
m_needPresent = false;
}
else
{
flush();
}
}
else
{
hr = m_frameBuffers[m_windows[ii].idx].present();
}
if (isLost(hr) )
{
do
{
do
{
hr = m_device->TestCooperativeLevel();
}
while (D3DERR_DEVICENOTRESET != hr);
reset();
hr = m_device->TestCooperativeLevel();
}
while (FAILED(hr) );
break;
}
else if (FAILED(hr) )
{
BX_TRACE("Present failed with err 0x%08x.", hr);
}
}
}
}
void preReset()
{
m_needPresent = false;
invalidateSamplerState();
m_inputLayoutCache.invalidate();
for (uint32_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage)
{
DX_CHECK(m_device->SetTexture(stage, NULL) );
}
DX_CHECK(m_device->SetRenderTarget(0, m_backBufferColor) );
for (uint32_t ii = 1, num = g_caps.limits.maxFBAttachments; ii < num; ++ii)
{
DX_CHECK(m_device->SetRenderTarget(ii, NULL) );
}
DX_CHECK(m_device->SetDepthStencilSurface(m_backBufferDepthStencil) );
DX_CHECK(m_device->SetVertexShader(NULL) );
DX_CHECK(m_device->SetPixelShader(NULL) );
DX_CHECK(m_device->SetStreamSource(0, NULL, 0, 0) );
DX_CHECK(m_device->SetIndices(NULL) );
DX_RELEASE(m_backBufferColor, 0);
DX_RELEASE(m_backBufferDepthStencil, 0);
DX_RELEASE(m_swapChain, 0);
capturePreReset();
DX_RELEASE(m_flushQuery, 0);
if (m_timerQuerySupport)
{
m_gpuTimer.preReset();
}
if (m_occlusionQuerySupport)
{
m_occlusionQuery.preReset();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_indexBuffers); ++ii)
{
m_indexBuffers[ii].preReset();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_vertexBuffers); ++ii)
{
m_vertexBuffers[ii].preReset();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii)
{
m_frameBuffers[ii].preReset();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii)
{
m_textures[ii].preReset();
}
}
void postReset()
{
DX_CHECK(m_device->GetSwapChain(0, &m_swapChain) );
DX_CHECK(m_swapChain->GetBackBuffer(0, D3DBACKBUFFER_TYPE_MONO, &m_backBufferColor) );
DX_CHECK(m_device->GetDepthStencilSurface(&m_backBufferDepthStencil) );
DX_CHECK(m_device->CreateQuery(D3DQUERYTYPE_EVENT, &m_flushQuery) );
if (m_timerQuerySupport)
{
m_gpuTimer.postReset();
}
if (m_occlusionQuerySupport)
{
m_occlusionQuery.postReset();
}
capturePostReset();
for (uint32_t ii = 0; ii < BX_COUNTOF(m_indexBuffers); ++ii)
{
m_indexBuffers[ii].postReset();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_vertexBuffers); ++ii)
{
m_vertexBuffers[ii].postReset();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii)
{
m_textures[ii].postReset();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii)
{
m_frameBuffers[ii].postReset();
}
}
void invalidateSamplerState()
{
for (uint32_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage)
{
m_samplerFlags[stage] = UINT32_MAX;
}
}
static void setSamplerState(IDirect3DDevice9* _device, DWORD _stage, D3DSAMPLERSTATETYPE _type, DWORD _value)
{
DX_CHECK(_device->SetSamplerState(_stage, _type, _value) );
if (4 > _stage)
{
DX_CHECK(_device->SetSamplerState(D3DVERTEXTEXTURESAMPLER0 + _stage, _type, _value) );
}
}
void setSamplerState(uint8_t _stage, uint32_t _flags, const float _rgba[4])
{
const uint32_t flags = _flags&( (~BGFX_TEXTURE_RESERVED_MASK) | BGFX_TEXTURE_SAMPLER_BITS_MASK | BGFX_TEXTURE_SRGB);
BX_CHECK(_stage < BX_COUNTOF(m_samplerFlags), "");
if (m_samplerFlags[_stage] != flags)
{
m_samplerFlags[_stage] = flags;
IDirect3DDevice9* device = m_device;
D3DTEXTUREADDRESS tau = s_textureAddress[(_flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT];
D3DTEXTUREADDRESS tav = s_textureAddress[(_flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT];
D3DTEXTUREADDRESS taw = s_textureAddress[(_flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT];
D3DTEXTUREFILTERTYPE minFilter = s_textureFilter[(_flags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT];
D3DTEXTUREFILTERTYPE magFilter = s_textureFilter[(_flags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT];
D3DTEXTUREFILTERTYPE mipFilter = s_textureFilter[(_flags&BGFX_TEXTURE_MIP_MASK)>>BGFX_TEXTURE_MIP_SHIFT];
setSamplerState(device, _stage, D3DSAMP_ADDRESSU, tau);
setSamplerState(device, _stage, D3DSAMP_ADDRESSV, tav);
setSamplerState(device, _stage, D3DSAMP_ADDRESSW, taw);
setSamplerState(device, _stage, D3DSAMP_MINFILTER, minFilter);
setSamplerState(device, _stage, D3DSAMP_MAGFILTER, magFilter);
setSamplerState(device, _stage, D3DSAMP_MIPFILTER, mipFilter);
setSamplerState(device, _stage, D3DSAMP_MAXANISOTROPY, m_maxAnisotropy);
setSamplerState(device, _stage, D3DSAMP_SRGBTEXTURE, 0 != (flags & BGFX_TEXTURE_SRGB) );
if (NULL != _rgba)
{
if (needBorderColor(_flags) )
{
DWORD bc = D3DCOLOR_COLORVALUE(_rgba[0], _rgba[1], _rgba[2], _rgba[3]);
setSamplerState(device
, _stage
, D3DSAMP_BORDERCOLOR
, bc
);
}
}
}
}
bool isVisible(Frame* _render, OcclusionQueryHandle _handle, bool _visible)
{
m_occlusionQuery.resolve(_render);
return _visible == (0 != _render->m_occlusion[_handle.idx]);
}
void capturePreReset()
{
if (NULL != m_captureSurface)
{
g_callback->captureEnd();
}
DX_RELEASE(m_captureSurface, 1);
DX_RELEASE(m_captureTexture, 0);
DX_RELEASE(m_captureResolve, 0);
}
void capturePostReset()
{
if (m_resolution.reset&BGFX_RESET_CAPTURE)
{
uint32_t width = m_params.BackBufferWidth;
uint32_t height = m_params.BackBufferHeight;
D3DFORMAT fmt = m_params.BackBufferFormat;
DX_CHECK(m_device->CreateTexture(width
, height
, 1
, 0
, fmt
, D3DPOOL_SYSTEMMEM
, &m_captureTexture
, NULL
) );
DX_CHECK(m_captureTexture->GetSurfaceLevel(0
, &m_captureSurface
) );
if (m_params.MultiSampleType != D3DMULTISAMPLE_NONE)
{
DX_CHECK(m_device->CreateRenderTarget(width
, height
, fmt
, D3DMULTISAMPLE_NONE
, 0
, false
, &m_captureResolve
, NULL
) );
}
g_callback->captureBegin(width, height, width*4, TextureFormat::BGRA8, false);
}
}
void capture()
{
if (NULL != m_captureSurface)
{
IDirect3DSurface9* resolve = m_backBufferColor;
if (NULL != m_captureResolve)
{
resolve = m_captureResolve;
DX_CHECK(m_device->StretchRect(m_backBufferColor
, 0
, m_captureResolve
, NULL
, D3DTEXF_NONE
) );
}
HRESULT hr = m_device->GetRenderTargetData(resolve, m_captureSurface);
if (SUCCEEDED(hr) )
{
D3DLOCKED_RECT rect;
DX_CHECK(m_captureSurface->LockRect(&rect
, NULL
, D3DLOCK_NO_DIRTY_UPDATE|D3DLOCK_NOSYSLOCK|D3DLOCK_READONLY
) );
g_callback->captureFrame(rect.pBits, m_params.BackBufferHeight*rect.Pitch);
DX_CHECK(m_captureSurface->UnlockRect() );
}
}
}
void commit(UniformBuffer& _uniformBuffer)
{
_uniformBuffer.reset();
IDirect3DDevice9* device = m_device;
for (;;)
{
uint32_t opcode = _uniformBuffer.read();
if (UniformType::End == opcode)
{
break;
}
UniformType::Enum type;
uint16_t loc;
uint16_t num;
uint16_t copy;
UniformBuffer::decodeOpcode(opcode, type, loc, num, copy);
const char* data;
if (copy)
{
data = _uniformBuffer.read(g_uniformTypeSize[type]*num);
}
else
{
UniformHandle handle;
bx::memCopy(&handle, _uniformBuffer.read(sizeof(UniformHandle) ), sizeof(UniformHandle) );
data = (const char*)m_uniforms[handle.idx];
}
#define CASE_IMPLEMENT_UNIFORM(_uniform, _dxsuffix, _type) \
case UniformType::_uniform: \
{ \
_type* value = (_type*)data; \
DX_CHECK(device->SetVertexShaderConstant##_dxsuffix(loc, value, num) ); \
} \
break; \
\
case UniformType::_uniform|BGFX_UNIFORM_FRAGMENTBIT: \
{ \
_type* value = (_type*)data; \
DX_CHECK(device->SetPixelShaderConstant##_dxsuffix(loc, value, num) ); \
} \
break
switch ( (int32_t)type)
{
case UniformType::Mat3:
{
float* value = (float*)data;
for (uint32_t ii = 0, count = num/3; ii < count; ++ii, loc += 3, value += 9)
{
Matrix4 mtx;
mtx.un.val[ 0] = value[0];
mtx.un.val[ 1] = value[1];
mtx.un.val[ 2] = value[2];
mtx.un.val[ 3] = 0.0f;
mtx.un.val[ 4] = value[3];
mtx.un.val[ 5] = value[4];
mtx.un.val[ 6] = value[5];
mtx.un.val[ 7] = 0.0f;
mtx.un.val[ 8] = value[6];
mtx.un.val[ 9] = value[7];
mtx.un.val[10] = value[8];
mtx.un.val[11] = 0.0f;
DX_CHECK(device->SetVertexShaderConstantF(loc, &mtx.un.val[0], 3) );
}
}
break;
case UniformType::Mat3|BGFX_UNIFORM_FRAGMENTBIT:
{
float* value = (float*)data;
for (uint32_t ii = 0, count = num/3; ii < count; ++ii, loc += 3, value += 9)
{
Matrix4 mtx;
mtx.un.val[ 0] = value[0];
mtx.un.val[ 1] = value[1];
mtx.un.val[ 2] = value[2];
mtx.un.val[ 3] = 0.0f;
mtx.un.val[ 4] = value[3];
mtx.un.val[ 5] = value[4];
mtx.un.val[ 6] = value[5];
mtx.un.val[ 7] = 0.0f;
mtx.un.val[ 8] = value[6];
mtx.un.val[ 9] = value[7];
mtx.un.val[10] = value[8];
mtx.un.val[11] = 0.0f;
DX_CHECK(device->SetPixelShaderConstantF(loc, &mtx.un.val[0], 3) );
}
}
break;
CASE_IMPLEMENT_UNIFORM(Int1, I, int);
CASE_IMPLEMENT_UNIFORM(Vec4, F, float);
CASE_IMPLEMENT_UNIFORM(Mat4, F, float);
case UniformType::End:
break;
default:
BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", _uniformBuffer.getPos(), opcode, type, loc, num, copy);
break;
}
#undef CASE_IMPLEMENT_UNIFORM
}
}
void clearQuad(ClearQuad& _clearQuad, const Rect& _rect, const Clear& _clear, const float _palette[][4])
{
IDirect3DDevice9* device = m_device;
uint32_t numMrt = 1;
FrameBufferHandle fbh = m_fbh;
if (isValid(fbh) )
{
const FrameBufferD3D9& fb = m_frameBuffers[fbh.idx];
numMrt = bx::uint32_max(1, fb.m_num);
}
if (1 == numMrt)
{
D3DCOLOR color = 0;
DWORD flags = 0;
if (BGFX_CLEAR_COLOR & _clear.m_flags)
{
if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags)
{
uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_COLOR_PALETTE-1, _clear.m_index[0]);
const float* rgba = _palette[index];
const float rr = rgba[0];
const float gg = rgba[1];
const float bb = rgba[2];
const float aa = rgba[3];
color = D3DCOLOR_COLORVALUE(rr, gg, bb, aa);
}
else
{
color = D3DCOLOR_RGBA(_clear.m_index[0], _clear.m_index[1], _clear.m_index[2], _clear.m_index[3]);
}
flags |= D3DCLEAR_TARGET;
DX_CHECK(device->SetRenderState(D3DRS_COLORWRITEENABLE
, D3DCOLORWRITEENABLE_RED
| D3DCOLORWRITEENABLE_GREEN
| D3DCOLORWRITEENABLE_BLUE
| D3DCOLORWRITEENABLE_ALPHA
) );
}
if (BGFX_CLEAR_DEPTH & _clear.m_flags)
{
flags |= D3DCLEAR_ZBUFFER;
DX_CHECK(device->SetRenderState(D3DRS_ZWRITEENABLE, TRUE) );
}
if (BGFX_CLEAR_STENCIL & _clear.m_flags)
{
flags |= D3DCLEAR_STENCIL;
}
if (0 != flags)
{
RECT rc;
rc.left = _rect.m_x;
rc.top = _rect.m_y;
rc.right = _rect.m_x + _rect.m_width;
rc.bottom = _rect.m_y + _rect.m_height;
DX_CHECK(device->SetRenderState(D3DRS_SCISSORTESTENABLE, TRUE) );
DX_CHECK(device->SetScissorRect(&rc) );
DX_CHECK(device->Clear(0, NULL, flags, color, _clear.m_depth, _clear.m_stencil) );
DX_CHECK(device->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE) );
}
}
else
{
DX_CHECK(device->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE) );
DX_CHECK(device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE) );
DX_CHECK(device->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE) );
if (BGFX_CLEAR_COLOR & _clear.m_flags)
{
DX_CHECK(device->SetRenderState(D3DRS_COLORWRITEENABLE
, D3DCOLORWRITEENABLE_RED
| D3DCOLORWRITEENABLE_GREEN
| D3DCOLORWRITEENABLE_BLUE
| D3DCOLORWRITEENABLE_ALPHA
) );
}
else
{
DX_CHECK(device->SetRenderState(D3DRS_COLORWRITEENABLE, 0) );
}
if (BGFX_CLEAR_DEPTH & _clear.m_flags)
{
DX_CHECK(device->SetRenderState(D3DRS_ZWRITEENABLE, TRUE) );
DX_CHECK(device->SetRenderState(D3DRS_ZENABLE, TRUE) );
DX_CHECK(device->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS) );
}
else
{
DX_CHECK(device->SetRenderState(D3DRS_ZWRITEENABLE, FALSE) );
DX_CHECK(device->SetRenderState(D3DRS_ZENABLE, FALSE) );
}
if (BGFX_CLEAR_STENCIL & _clear.m_flags)
{
DX_CHECK(device->SetRenderState(D3DRS_STENCILENABLE, TRUE) );
DX_CHECK(device->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, TRUE) );
DX_CHECK(device->SetRenderState(D3DRS_STENCILREF, _clear.m_stencil) );
DX_CHECK(device->SetRenderState(D3DRS_STENCILMASK, 0xff) );
DX_CHECK(device->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS) );
DX_CHECK(device->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_REPLACE) );
DX_CHECK(device->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_REPLACE) );
DX_CHECK(device->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE) );
}
else
{
DX_CHECK(device->SetRenderState(D3DRS_STENCILENABLE, FALSE) );
}
VertexBufferD3D9& vb = m_vertexBuffers[_clearQuad.m_vb->handle.idx];
VertexDecl& vertexDecl = m_vertexDecls[_clearQuad.m_vb->decl.idx];
uint32_t stride = _clearQuad.m_decl.m_stride;
{
struct Vertex
{
float m_x;
float m_y;
float m_z;
};
Vertex* vertex = (Vertex*)_clearQuad.m_vb->data;
BX_CHECK(stride == sizeof(Vertex), "Stride/Vertex mismatch (stride %d, sizeof(Vertex) %d)", stride, sizeof(Vertex) );
const float depth = _clear.m_depth;
vertex->m_x = -1.0f;
vertex->m_y = -1.0f;
vertex->m_z = depth;
vertex++;
vertex->m_x = 1.0f;
vertex->m_y = -1.0f;
vertex->m_z = depth;
vertex++;
vertex->m_x = -1.0f;
vertex->m_y = 1.0f;
vertex->m_z = depth;
vertex++;
vertex->m_x = 1.0f;
vertex->m_y = 1.0f;
vertex->m_z = depth;
}
vb.update(0, 4*stride, _clearQuad.m_vb->data);
ProgramD3D9& program = m_program[_clearQuad.m_program[numMrt-1].idx];
device->SetVertexShader(program.m_vsh->m_vertexShader);
device->SetPixelShader(program.m_fsh->m_pixelShader);
float mrtClear[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS][4];
if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags)
{
for (uint32_t ii = 0; ii < numMrt; ++ii)
{
uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_COLOR_PALETTE - 1, _clear.m_index[ii]);
bx::memCopy(mrtClear[ii], _palette[index], 16);
}
}
else
{
float rgba[4] =
{
_clear.m_index[0] * 1.0f / 255.0f,
_clear.m_index[1] * 1.0f / 255.0f,
_clear.m_index[2] * 1.0f / 255.0f,
_clear.m_index[3] * 1.0f / 255.0f,
};
for (uint32_t ii = 0; ii < numMrt; ++ii)
{
bx::memCopy(mrtClear[ii], rgba, 16);
}
}
DX_CHECK(device->SetPixelShaderConstantF(0, mrtClear[0], numMrt));
DX_CHECK(device->SetStreamSource(0, vb.m_ptr, 0, stride) );
DX_CHECK(device->SetStreamSourceFreq(0, 1) );
DX_CHECK(device->SetStreamSource(1, NULL, 0, 0) );
setInputLayout(vertexDecl, 0);
DX_CHECK(device->SetIndices(NULL) );
DX_CHECK(device->DrawPrimitive(D3DPT_TRIANGLESTRIP
, 0
, 2
) );
}
}
void setInputLayout(uint8_t _numStreams, const VertexDecl** _vertexDecls, uint16_t _numInstanceData)
{
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_numInstanceData);
for (uint8_t stream = 0; stream < _numStreams; ++stream)
{
murmur.add(_vertexDecls[stream]->m_hash);
}
uint64_t layoutHash = murmur.end();
IDirect3DVertexDeclaration9* layout = m_inputLayoutCache.find(layoutHash);
if (NULL == layout)
{
D3DVERTEXELEMENT9 vertexElements[Attrib::Count+1+BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT];
D3DVERTEXELEMENT9* elem = vertexElements;
for (uint8_t stream = 0; stream < _numStreams; ++stream)
{
elem = fillVertexDecl(stream, elem, *_vertexDecls[stream]);
}
const D3DVERTEXELEMENT9 inst = { _numStreams, 0, D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0 };
for (uint8_t ii = 0; ii < _numInstanceData; ++ii)
{
bx::memCopy(elem, &inst, sizeof(D3DVERTEXELEMENT9) );
elem->UsageIndex = uint8_t(7-ii); // TEXCOORD7 = i_data0, TEXCOORD6 = i_data1, etc.
elem->Offset = ii*16;
++elem;
}
bx::memCopy(elem, &s_attrib[Attrib::Count], sizeof(D3DVERTEXELEMENT9) );
DX_CHECK(m_device->CreateVertexDeclaration(vertexElements, &layout) );
m_inputLayoutCache.add(layoutHash, layout);
}
DX_CHECK(m_device->SetVertexDeclaration(layout) );
}
void setInputLayout(const VertexDecl& _vertexDecl, uint16_t _numInstanceData)
{
const VertexDecl* decls[1] = { &_vertexDecl };
setInputLayout(BX_COUNTOF(decls), decls, _numInstanceData);
}
D3DCAPS9 m_caps;
IDirect3D9Ex* m_d3d9ex;
IDirect3DDevice9Ex* m_deviceEx;
IDirect3D9* m_d3d9;
IDirect3DDevice9* m_device;
IDirect3DQuery9* m_flushQuery;
TimerQueryD3D9 m_gpuTimer;
OcclusionQueryD3D9 m_occlusionQuery;
D3DPOOL m_pool;
IDirect3DSwapChain9* m_swapChain;
bool m_needPresent;
uint16_t m_numWindows;
FrameBufferHandle m_windows[BGFX_CONFIG_MAX_FRAME_BUFFERS];
IDirect3DSurface9* m_backBufferColor;
IDirect3DSurface9* m_backBufferDepthStencil;
IDirect3DTexture9* m_captureTexture;
IDirect3DSurface9* m_captureSurface;
IDirect3DSurface9* m_captureResolve;
IDirect3DVertexDeclaration9* m_instanceDataDecls[BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT];
void* m_d3d9dll;
NvApi m_nvapi;
uint32_t m_adapter;
D3DDEVTYPE m_deviceType;
D3DPRESENT_PARAMETERS m_params;
uint32_t m_maxAnisotropy;
D3DADAPTER_IDENTIFIER9 m_identifier;
Resolution m_resolution;
bool m_initialized;
bool m_amd;
bool m_nvidia;
bool m_atocSupport;
bool m_instancingSupport;
bool m_occlusionQuerySupport;
bool m_timerQuerySupport;
D3DFORMAT m_fmtDepth;
IndexBufferD3D9 m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS];
VertexBufferD3D9 m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
ShaderD3D9 m_shaders[BGFX_CONFIG_MAX_SHADERS];
ProgramD3D9 m_program[BGFX_CONFIG_MAX_PROGRAMS];
TextureD3D9 m_textures[BGFX_CONFIG_MAX_TEXTURES];
VertexDecl m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS];
FrameBufferD3D9 m_frameBuffers[BGFX_CONFIG_MAX_FRAME_BUFFERS];
UniformRegistry m_uniformReg;
void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS];
uint32_t m_samplerFlags[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS];
TextureD3D9* m_updateTexture;
uint8_t* m_updateTextureBits;
uint32_t m_updateTexturePitch;
uint8_t m_updateTextureSide;
uint8_t m_updateTextureMip;
StateCacheT<IDirect3DVertexDeclaration9> m_inputLayoutCache;
TextVideoMem m_textVideoMem;
FrameBufferHandle m_fbh;
bool m_rtMsaa;
};
static RendererContextD3D9* s_renderD3D9;
RendererContextI* rendererCreate(const Init& _init)
{
s_renderD3D9 = BX_NEW(g_allocator, RendererContextD3D9);
if (!s_renderD3D9->init(_init) )
{
BX_DELETE(g_allocator, s_renderD3D9);
s_renderD3D9 = NULL;
}
return s_renderD3D9;
}
void rendererDestroy()
{
s_renderD3D9->shutdown();
BX_DELETE(g_allocator, s_renderD3D9);
s_renderD3D9 = NULL;
}
void IndexBufferD3D9::create(uint32_t _size, void* _data, uint16_t _flags)
{
m_size = _size;
m_flags = _flags;
uint32_t usage = D3DUSAGE_WRITEONLY;
D3DPOOL pool = s_renderD3D9->m_pool;
if (NULL == _data)
{
usage |= D3DUSAGE_DYNAMIC;
pool = D3DPOOL_DEFAULT;
m_dynamic = (uint8_t*)BX_ALLOC(g_allocator, _size);
}
const D3DFORMAT format = 0 == (_flags & BGFX_BUFFER_INDEX32)
? D3DFMT_INDEX16
: D3DFMT_INDEX32
;
DX_CHECK(s_renderD3D9->m_device->CreateIndexBuffer(m_size
, usage
, format
, pool
, &m_ptr
, NULL
) );
if (NULL != _data)
{
update(0, _size, _data);
}
}
void IndexBufferD3D9::preReset()
{
if (NULL != m_dynamic)
{
DX_RELEASE(m_ptr, 0);
}
}
void IndexBufferD3D9::postReset()
{
if (NULL != m_dynamic)
{
const D3DFORMAT format = 0 == (m_flags & BGFX_BUFFER_INDEX32)
? D3DFMT_INDEX16
: D3DFMT_INDEX32
;
DX_CHECK(s_renderD3D9->m_device->CreateIndexBuffer(m_size
, D3DUSAGE_WRITEONLY|D3DUSAGE_DYNAMIC
, format
, D3DPOOL_DEFAULT
, &m_ptr
, NULL
) );
update(0, m_size, m_dynamic);
}
}
void VertexBufferD3D9::create(uint32_t _size, void* _data, VertexDeclHandle _declHandle)
{
m_size = _size;
m_decl = _declHandle;
uint32_t usage = D3DUSAGE_WRITEONLY;
D3DPOOL pool = s_renderD3D9->m_pool;
if (NULL == _data)
{
usage |= D3DUSAGE_DYNAMIC;
pool = D3DPOOL_DEFAULT;
m_dynamic = (uint8_t*)BX_ALLOC(g_allocator, _size);
}
DX_CHECK(s_renderD3D9->m_device->CreateVertexBuffer(m_size
, usage
, 0
, pool
, &m_ptr
, NULL
) );
if (NULL != _data)
{
update(0, _size, _data);
}
}
void VertexBufferD3D9::preReset()
{
if (NULL != m_dynamic)
{
DX_RELEASE(m_ptr, 0);
}
}
void VertexBufferD3D9::postReset()
{
if (NULL != m_dynamic)
{
DX_CHECK(s_renderD3D9->m_device->CreateVertexBuffer(m_size
, D3DUSAGE_WRITEONLY|D3DUSAGE_DYNAMIC
, 0
, D3DPOOL_DEFAULT
, &m_ptr
, NULL
) );
update(0, m_size, m_dynamic);
}
}
void ShaderD3D9::create(const Memory* _mem)
{
bx::MemoryReader reader(_mem->data, _mem->size);
uint32_t magic;
bx::read(&reader, magic);
switch (magic)
{
case BGFX_CHUNK_MAGIC_FSH:
case BGFX_CHUNK_MAGIC_VSH:
break;
default:
BGFX_FATAL(false, Fatal::InvalidShader, "Unknown shader format %x.", magic);
break;
}
bool fragment = BGFX_CHUNK_MAGIC_FSH == magic;
uint32_t iohash;
bx::read(&reader, iohash);
uint16_t count;
bx::read(&reader, count);
m_numPredefined = 0;
BX_TRACE("Shader consts %d", count);
uint8_t fragmentBit = fragment ? BGFX_UNIFORM_FRAGMENTBIT : 0;
if (0 < count)
{
for (uint32_t ii = 0; ii < count; ++ii)
{
uint8_t nameSize = 0;
bx::read(&reader, nameSize);
char name[256] = {};
bx::read(&reader, &name, nameSize);
name[nameSize] = '\0';
uint8_t type = 0;
bx::read(&reader, type);
uint8_t num = 0;
bx::read(&reader, num);
uint16_t regIndex = 0;
bx::read(&reader, regIndex);
uint16_t regCount = 0;
bx::read(&reader, regCount);
const char* kind = "invalid";
PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name);
if (PredefinedUniform::Count != predefined)
{
kind = "predefined";
m_predefined[m_numPredefined].m_loc = regIndex;
m_predefined[m_numPredefined].m_count = regCount;
m_predefined[m_numPredefined].m_type = uint8_t(predefined|fragmentBit);
m_numPredefined++;
}
else if (0 == (BGFX_UNIFORM_SAMPLERBIT & type) )
{
const UniformRegInfo* info = s_renderD3D9->m_uniformReg.find(name);
BX_WARN(NULL != info, "User defined uniform '%s' is not found, it won't be set.", name);
if (NULL != info)
{
if (NULL == m_constantBuffer)
{
m_constantBuffer = UniformBuffer::create(1024);
}
kind = "user";
m_constantBuffer->writeUniformHandle( (UniformType::Enum)(type|fragmentBit), regIndex, info->m_handle, regCount);
}
}
else
{
kind = "sampler";
}
BX_TRACE("\t%s: %s (%s), num %2d, r.index %3d, r.count %2d"
, kind
, name
, getUniformTypeName(UniformType::Enum(type&~BGFX_UNIFORM_MASK) )
, num
, regIndex
, regCount
);
BX_UNUSED(kind);
}
if (NULL != m_constantBuffer)
{
m_constantBuffer->finish();
}
}
uint32_t shaderSize;
bx::read(&reader, shaderSize);
const DWORD* code = (const DWORD*)reader.getDataPtr();
if (fragment)
{
m_type = 1;
DX_CHECK(s_renderD3D9->m_device->CreatePixelShader(code, &m_pixelShader) );
BGFX_FATAL(NULL != m_pixelShader, bgfx::Fatal::InvalidShader, "Failed to create fragment shader.");
}
else
{
m_type = 0;
DX_CHECK(s_renderD3D9->m_device->CreateVertexShader(code, &m_vertexShader) );
BGFX_FATAL(NULL != m_vertexShader, bgfx::Fatal::InvalidShader, "Failed to create vertex shader.");
}
}
void TextureD3D9::createTexture(uint32_t _width, uint32_t _height, uint8_t _numMips)
{
m_type = Texture2D;
const bimg::TextureFormat::Enum fmt = (bimg::TextureFormat::Enum)m_textureFormat;
DWORD usage = 0;
D3DPOOL pool = D3DPOOL_DEFAULT;
const bool renderTarget = 0 != (m_flags&BGFX_TEXTURE_RT_MASK);
const bool blit = 0 != (m_flags&BGFX_TEXTURE_BLIT_DST);
const bool readBack = 0 != (m_flags&BGFX_TEXTURE_READ_BACK);
if (bimg::isDepth(fmt) )
{
usage = D3DUSAGE_DEPTHSTENCIL;
}
else if (readBack)
{
usage = 0;
pool = D3DPOOL_SYSTEMMEM;
}
else if (renderTarget || blit)
{
usage = 0
| D3DUSAGE_RENDERTARGET
| (1 < _numMips ? D3DUSAGE_AUTOGENMIPMAP : 0)
;
}
IDirect3DDevice9* device = s_renderD3D9->m_device;
if (renderTarget)
{
uint32_t msaaQuality = ( (m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT);
msaaQuality = bx::uint32_satsub(msaaQuality, 1);
bool writeOnly = 0 != (m_flags&BGFX_TEXTURE_RT_WRITE_ONLY);
if (0 != msaaQuality
|| writeOnly)
{
const Msaa& msaa = s_msaa[msaaQuality];
if (bimg::isDepth(fmt) )
{
DX_CHECK(device->CreateDepthStencilSurface(
m_width
, m_height
, s_textureFormat[m_textureFormat].m_fmt
, msaa.m_type
, msaa.m_quality
, FALSE
, &m_surface
, NULL
) );
}
else
{
DX_CHECK(device->CreateRenderTarget(
m_width
, m_height
, s_textureFormat[m_textureFormat].m_fmt
, msaa.m_type
, msaa.m_quality
, FALSE
, &m_surface
, NULL
) );
}
if (writeOnly)
{
// This is render buffer, there is no sampling, no need
// to create texture.
return;
}
}
}
DX_CHECK(device->CreateTexture(_width
, _height
, _numMips
, usage
, s_textureFormat[fmt].m_fmt
, pool
, &m_texture2d
, NULL
) );
if (!renderTarget
&& !readBack)
{
if (NULL == m_staging)
{
DX_CHECK(device->CreateTexture(_width
, _height
, _numMips
, 0
, s_textureFormat[fmt].m_fmt
, D3DPOOL_SYSTEMMEM
, &m_staging2d
, NULL
) );
}
else
{
DX_CHECK(m_staging2d->AddDirtyRect(NULL));
DX_CHECK(device->UpdateTexture(m_staging2d, m_texture2d));
}
}
BGFX_FATAL(NULL != m_texture2d, Fatal::UnableToCreateTexture, "Failed to create texture (size: %dx%d, mips: %d, fmt: %d)."
, _width
, _height
, _numMips
, bimg::getName(fmt)
);
}
void TextureD3D9::createVolumeTexture(uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips)
{
m_type = Texture3D;
const TextureFormat::Enum fmt = (TextureFormat::Enum)m_textureFormat;
IDirect3DDevice9* device = s_renderD3D9->m_device;
DX_CHECK(device->CreateVolumeTexture(_width
, _height
, _depth
, _numMips
, 0
, s_textureFormat[fmt].m_fmt
, D3DPOOL_DEFAULT
, &m_texture3d
, NULL
) );
if (NULL == m_staging)
{
DX_CHECK(device->CreateVolumeTexture(_width
, _height
, _depth
, _numMips
, 0
, s_textureFormat[fmt].m_fmt
, D3DPOOL_SYSTEMMEM
, &m_staging3d
, NULL
) );
}
else
{
DX_CHECK(m_staging3d->AddDirtyBox(NULL) );
DX_CHECK(device->UpdateTexture(m_staging3d, m_texture3d) );
}
BGFX_FATAL(NULL != m_texture3d, Fatal::UnableToCreateTexture, "Failed to create volume texture (size: %dx%dx%d, mips: %d, fmt: %s)."
, _width
, _height
, _depth
, _numMips
, getName(fmt)
);
}
void TextureD3D9::createCubeTexture(uint32_t _width, uint8_t _numMips)
{
m_type = TextureCube;
const bimg::TextureFormat::Enum fmt = (bimg::TextureFormat::Enum)m_textureFormat;
DWORD usage = 0;
const bool renderTarget = 0 != (m_flags&BGFX_TEXTURE_RT_MASK);
const bool blit = 0 != (m_flags&BGFX_TEXTURE_BLIT_DST);
if (bimg::isDepth(fmt) )
{
usage = D3DUSAGE_DEPTHSTENCIL;
}
else if (renderTarget || blit)
{
usage = D3DUSAGE_RENDERTARGET;
}
IDirect3DDevice9* device = s_renderD3D9->m_device;
DX_CHECK(device->CreateCubeTexture(_width
, _numMips
, usage
, s_textureFormat[fmt].m_fmt
, D3DPOOL_DEFAULT
, &m_textureCube
, NULL
) );
if (!renderTarget)
{
if (NULL == m_staging)
{
DX_CHECK(device->CreateCubeTexture(_width
, _numMips
, 0
, s_textureFormat[fmt].m_fmt
, D3DPOOL_SYSTEMMEM
, &m_stagingCube
, NULL
) );
}
else
{
for (uint8_t ii = 0; ii < 6; ++ii)
{
DX_CHECK(m_stagingCube->AddDirtyRect(D3DCUBEMAP_FACES(ii), NULL) );
}
DX_CHECK(device->UpdateTexture(m_stagingCube, m_textureCube) );
}
}
BGFX_FATAL(NULL != m_textureCube, Fatal::UnableToCreateTexture, "Failed to create cube texture (edge: %d, mips: %d, fmt: %s)."
, _width
, _numMips
, getName(fmt)
);
}
uint8_t* TextureD3D9::lock(uint8_t _side, uint8_t _lod, uint32_t& _pitch, uint32_t& _slicePitch, const Rect* _rect)
{
switch (m_type)
{
case Texture2D:
{
D3DLOCKED_RECT lockedRect;
if (NULL != _rect)
{
RECT rect;
rect.left = _rect->m_x;
rect.top = _rect->m_y;
rect.right = rect.left + _rect->m_width;
rect.bottom = rect.top + _rect->m_height;
DX_CHECK(m_staging2d->LockRect(_lod, &lockedRect, &rect, 0) );
DX_CHECK(m_staging2d->AddDirtyRect(&rect) );
}
else
{
DX_CHECK(m_staging2d->LockRect(_lod, &lockedRect, NULL, 0) );
DX_CHECK(m_staging2d->AddDirtyRect(NULL) );
}
_pitch = lockedRect.Pitch;
_slicePitch = 0;
return (uint8_t*)lockedRect.pBits;
}
case Texture3D:
{
D3DLOCKED_BOX box;
DX_CHECK(m_staging3d->LockBox(_lod, &box, NULL, 0) );
DX_CHECK(m_staging3d->AddDirtyBox(NULL) );
_pitch = box.RowPitch;
_slicePitch = box.SlicePitch;
return (uint8_t*)box.pBits;
}
case TextureCube:
{
D3DLOCKED_RECT lockedRect;
if (NULL != _rect)
{
RECT rect;
rect.left = _rect->m_x;
rect.top = _rect->m_y;
rect.right = rect.left + _rect->m_width;
rect.bottom = rect.top + _rect->m_height;
DX_CHECK(m_stagingCube->LockRect(D3DCUBEMAP_FACES(_side), _lod, &lockedRect, &rect, 0) );
DX_CHECK(m_textureCube->AddDirtyRect(D3DCUBEMAP_FACES(_side), &rect) );
}
else
{
DX_CHECK(m_stagingCube->LockRect(D3DCUBEMAP_FACES(_side), _lod, &lockedRect, NULL, 0) );
DX_CHECK(m_textureCube->AddDirtyRect(D3DCUBEMAP_FACES(_side), NULL) );
}
_pitch = lockedRect.Pitch;
_slicePitch = 0;
return (uint8_t*)lockedRect.pBits;
}
}
BX_CHECK(false, "You should not be here.");
_pitch = 0;
_slicePitch = 0;
return NULL;
}
void TextureD3D9::unlock(uint8_t _side, uint8_t _lod)
{
IDirect3DDevice9* device = s_renderD3D9->m_device;
switch (m_type)
{
case Texture2D:
{
DX_CHECK(m_staging2d->UnlockRect(_lod) );
DX_CHECK(device->UpdateTexture(m_staging2d, m_texture2d) );
}
return;
case Texture3D:
{
DX_CHECK(m_staging3d->UnlockBox(_lod) );
DX_CHECK(device->UpdateTexture(m_staging3d, m_texture3d) );
}
return;
case TextureCube:
{
DX_CHECK(m_stagingCube->UnlockRect(D3DCUBEMAP_FACES(_side), _lod) );
DX_CHECK(device->UpdateTexture(m_stagingCube, m_textureCube) );
}
return;
}
BX_CHECK(false, "You should not be here.");
}
void TextureD3D9::dirty(uint8_t _side, const Rect& _rect, uint16_t _z, uint16_t _depth)
{
switch (m_type)
{
case Texture2D:
{
RECT rect;
rect.left = _rect.m_x;
rect.top = _rect.m_y;
rect.right = rect.left + _rect.m_width;
rect.bottom = rect.top + _rect.m_height;
DX_CHECK(m_texture2d->AddDirtyRect(&rect) );
}
return;
case Texture3D:
{
D3DBOX box;
box.Left = _rect.m_x;
box.Top = _rect.m_y;
box.Right = box.Left + _rect.m_width;
box.Bottom = box.Top + _rect.m_height;
box.Front = _z;
box.Back = box.Front + _depth;
DX_CHECK(m_texture3d->AddDirtyBox(&box) );
}
return;
case TextureCube:
{
RECT rect;
rect.left = _rect.m_x;
rect.top = _rect.m_y;
rect.right = rect.left + _rect.m_width;
rect.bottom = rect.top + _rect.m_height;
DX_CHECK(m_textureCube->AddDirtyRect(D3DCUBEMAP_FACES(_side), &rect) );
}
return;
}
BX_CHECK(false, "You should not be here.");
}
IDirect3DSurface9* TextureD3D9::getSurface(uint8_t _side, uint8_t _mip) const
{
IDirect3DSurface9* surface = NULL;
switch (m_type)
{
case Texture2D:
DX_CHECK(m_texture2d->GetSurfaceLevel(_mip, &surface) );
break;
case Texture3D:
BX_CHECK(false, "");
break;
case TextureCube:
DX_CHECK(m_textureCube->GetCubeMapSurface(D3DCUBEMAP_FACES(_side), _mip, &surface) );
break;
}
return surface;
}
void TextureD3D9::create(const Memory* _mem, uint32_t _flags, uint8_t _skip)
{
bimg::ImageContainer imageContainer;
if (bimg::imageParse(imageContainer, _mem->data, _mem->size) )
{
uint8_t numMips = imageContainer.m_numMips;
const uint8_t startLod = uint8_t(bx::uint32_min(_skip, numMips-1) );
numMips -= startLod;
const bimg::ImageBlockInfo& blockInfo = bimg::getBlockInfo(bimg::TextureFormat::Enum(imageContainer.m_format) );
const uint32_t textureWidth = bx::uint32_max(blockInfo.blockWidth, imageContainer.m_width >>startLod);
const uint32_t textureHeight = bx::uint32_max(blockInfo.blockHeight, imageContainer.m_height>>startLod);
m_flags = _flags;
m_width = textureWidth;
m_height = textureHeight;
m_depth = imageContainer.m_depth;
m_numMips = numMips;
m_requestedFormat = uint8_t(imageContainer.m_format);
m_textureFormat = uint8_t(getViableTextureFormat(imageContainer) );
const bool convert = m_textureFormat != m_requestedFormat;
uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_textureFormat) );
if (imageContainer.m_cubeMap)
{
createCubeTexture(textureWidth, numMips);
}
else if (imageContainer.m_depth > 1)
{
createVolumeTexture(textureWidth, textureHeight, imageContainer.m_depth, numMips);
}
else
{
createTexture(textureWidth, textureHeight, numMips);
}
BX_TRACE("Texture %3d: %s (requested: %s), %dx%d%s%s."
, this - s_renderD3D9->m_textures
, getName( (TextureFormat::Enum)m_textureFormat)
, getName( (TextureFormat::Enum)m_requestedFormat)
, textureWidth
, textureHeight
, imageContainer.m_cubeMap ? "x6" : ""
, 0 != (m_flags&BGFX_TEXTURE_RT_MASK) ? " (render target)" : ""
);
if (0 != (_flags&BGFX_TEXTURE_RT_WRITE_ONLY) )
{
return;
}
// For BC4 and B5 in DX9 LockRect returns wrong number of
// bytes. If actual mip size is used it causes memory corruption.
// http://www.aras-p.info/texts/D3D9GPUHacks.html#3dc
const bool useMipSize = true
&& imageContainer.m_format != bimg::TextureFormat::BC4
&& imageContainer.m_format != bimg::TextureFormat::BC5
;
for (uint8_t side = 0, numSides = imageContainer.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
uint32_t width = textureWidth;
uint32_t height = textureHeight;
uint32_t depth = imageContainer.m_depth;
uint32_t mipWidth = imageContainer.m_width;
uint32_t mipHeight = imageContainer.m_height;
for (uint8_t lod = 0, num = numMips; lod < num; ++lod)
{
width = bx::uint32_max(1, width);
height = bx::uint32_max(1, height);
depth = bx::uint32_max(1, depth);
mipWidth = bx::uint32_max(blockInfo.blockWidth, mipWidth);
mipHeight = bx::uint32_max(blockInfo.blockHeight, mipHeight);
uint32_t mipSize = width*height*depth*bpp/8;
bimg::ImageMip mip;
if (bimg::imageGetRawData(imageContainer, side, lod+startLod, _mem->data, _mem->size, mip) )
{
uint32_t pitch;
uint32_t slicePitch;
uint8_t* bits = lock(side, lod, pitch, slicePitch);
if (convert)
{
if (width != mipWidth
|| height != mipHeight)
{
uint32_t srcpitch = mipWidth*bpp/8;
uint8_t* temp = (uint8_t*)BX_ALLOC(g_allocator, srcpitch*mipHeight);
bimg::imageDecodeToBgra8(
g_allocator
, temp
, mip.m_data
, mip.m_width
, mip.m_height
, srcpitch
, mip.m_format
);
bx::memCopy(bits, temp, pitch, height, srcpitch, pitch);
BX_FREE(g_allocator, temp);
}
else
{
bimg::imageDecodeToBgra8(g_allocator, bits, mip.m_data, mip.m_width, mip.m_height, pitch, mip.m_format);
}
}
else
{
uint32_t size = useMipSize ? mip.m_size : mipSize;
switch (m_textureFormat)
{
case TextureFormat::RGB5A1:
bimg::imageConvert(bits, 16, bx::packBgr5a1, mip.m_data, bx::unpackRgb5a1, size);
break;
case TextureFormat::RGBA4:
bimg::imageConvert(bits, 16, bx::packBgra4, mip.m_data, bx::unpackRgba4, size);
break;
default:
bx::memCopy(bits, mip.m_data, size);
break;
}
}
unlock(side, lod);
}
width >>= 1;
height >>= 1;
depth >>= 1;
mipWidth >>= 1;
mipHeight >>= 1;
}
}
}
}
void TextureD3D9::updateBegin(uint8_t _side, uint8_t _mip)
{
uint32_t slicePitch;
s_renderD3D9->m_updateTextureSide = _side;
s_renderD3D9->m_updateTextureMip = _mip;
s_renderD3D9->m_updateTextureBits = lock(_side, _mip, s_renderD3D9->m_updateTexturePitch, slicePitch);
}
void TextureD3D9::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem)
{
const uint32_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_textureFormat) );
const uint32_t rectpitch = _rect.m_width*bpp/8;
const uint32_t srcpitch = UINT16_MAX == _pitch ? rectpitch : _pitch;
const uint32_t dstpitch = s_renderD3D9->m_updateTexturePitch;
uint8_t* bits = s_renderD3D9->m_updateTextureBits + _rect.m_y*dstpitch + _rect.m_x*bpp/8;
const bool convert = m_textureFormat != m_requestedFormat;
uint8_t* data = _mem->data;
uint8_t* temp = NULL;
if (convert)
{
temp = (uint8_t*)BX_ALLOC(g_allocator, rectpitch*_rect.m_height);
bimg::imageDecodeToBgra8(g_allocator, temp, data, _rect.m_width, _rect.m_height, srcpitch, bimg::TextureFormat::Enum(m_requestedFormat) );
data = temp;
}
{
uint8_t* src = data;
uint8_t* dst = bits;
for (uint32_t yy = 0, height = _rect.m_height; yy < height; ++yy)
{
switch (m_textureFormat)
{
case TextureFormat::RGB5A1:
bimg::imageConvert(dst, 16, bx::packBgr5a1, src, bx::unpackRgb5a1, rectpitch);
break;
case TextureFormat::RGBA4:
bimg::imageConvert(dst, 16, bx::packBgra4, src, bx::unpackRgba4, rectpitch);
break;
default:
bx::memCopy(dst, src, rectpitch);
break;
}
src += srcpitch;
dst += dstpitch;
}
}
if (NULL != temp)
{
BX_FREE(g_allocator, temp);
}
if (0 == _mip)
{
dirty(_side, _rect, _z, _depth);
}
}
void TextureD3D9::updateEnd()
{
unlock(s_renderD3D9->m_updateTextureSide, s_renderD3D9->m_updateTextureMip);
}
void TextureD3D9::commit(uint8_t _stage, uint32_t _flags, const float _palette[][4])
{
uint32_t flags = 0 == (BGFX_TEXTURE_INTERNAL_DEFAULT_SAMPLER & _flags)
? _flags
: m_flags
;
uint32_t index = (flags & BGFX_TEXTURE_BORDER_COLOR_MASK) >> BGFX_TEXTURE_BORDER_COLOR_SHIFT;
s_renderD3D9->setSamplerState(_stage, flags, _palette[index]);
IDirect3DDevice9* device = s_renderD3D9->m_device;
DX_CHECK(device->SetTexture(_stage, m_ptr) );
if (4 > _stage)
{
DX_CHECK(device->SetTexture(D3DVERTEXTEXTURESAMPLER0 + _stage, m_ptr) );
}
}
void TextureD3D9::resolve() const
{
if (NULL != m_surface
&& NULL != m_ptr)
{
IDirect3DSurface9* surface = getSurface();
DX_CHECK(s_renderD3D9->m_device->StretchRect(m_surface
, NULL
, surface
, NULL
, D3DTEXF_LINEAR
) );
DX_RELEASE(surface, 1);
if (1 < m_numMips)
{
m_ptr->GenerateMipSubLevels();
}
}
}
void TextureD3D9::preReset()
{
TextureFormat::Enum fmt = (TextureFormat::Enum)m_textureFormat;
if (TextureFormat::Unknown != fmt)
{
DX_RELEASE(m_ptr, 0);
DX_RELEASE(m_surface, 0);
}
}
void TextureD3D9::postReset()
{
TextureFormat::Enum fmt = (TextureFormat::Enum)m_textureFormat;
if (TextureFormat::Unknown != fmt)
{
switch (m_type)
{
default:
case Texture2D:
createTexture(m_width, m_height, m_numMips);
break;
case Texture3D:
createVolumeTexture(m_width, m_height, m_depth, m_numMips);
break;
case TextureCube:
createCubeTexture(m_width, m_numMips);
break;
}
}
}
void FrameBufferD3D9::create(uint8_t _num, const Attachment* _attachment)
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_surface); ++ii)
{
m_surface[ii] = NULL;
}
m_denseIdx = UINT16_MAX;
m_dsIdx = UINT8_MAX;
m_num = 0;
m_numTh = _num;
m_needResolve = false;
bx::memCopy(m_attachment, _attachment, _num*sizeof(Attachment) );
for (uint32_t ii = 0; ii < _num; ++ii)
{
TextureHandle handle = m_attachment[ii].handle;
if (isValid(handle) )
{
const TextureD3D9& texture = s_renderD3D9->m_textures[handle.idx];
if (NULL != texture.m_surface)
{
m_surface[ii] = texture.m_surface;
m_surface[ii]->AddRef();
}
else
{
m_surface[ii] = texture.getSurface(uint8_t(m_attachment[ii].layer), uint8_t(m_attachment[ii].mip) );
}
if (0 == m_num)
{
m_width = texture.m_width;
m_height = texture.m_height;
}
if (bimg::isDepth(bimg::TextureFormat::Enum(texture.m_textureFormat) ) )
{
m_dsIdx = uint8_t(ii);
}
else
{
++m_num;
}
m_needResolve |= true
&& (NULL != texture.m_surface)
&& (NULL != texture.m_texture2d)
;
}
}
if (0 == m_num)
{
createNullColorRT();
}
}
void FrameBufferD3D9::create(uint16_t _denseIdx, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _depthFormat)
{
BX_UNUSED(_depthFormat);
m_hwnd = (HWND)_nwh;
m_width = bx::uint32_max(_width, 16);
m_height = bx::uint32_max(_height, 16);
D3DPRESENT_PARAMETERS params;
bx::memCopy(&params, &s_renderD3D9->m_params, sizeof(D3DPRESENT_PARAMETERS) );
params.BackBufferWidth = m_width;
params.BackBufferHeight = m_height;
DX_CHECK(s_renderD3D9->m_device->CreateAdditionalSwapChain(&params, &m_swapChain) );
DX_CHECK(m_swapChain->GetBackBuffer(0, D3DBACKBUFFER_TYPE_MONO, &m_surface[0]) );
DX_CHECK(s_renderD3D9->m_device->CreateDepthStencilSurface(
params.BackBufferWidth
, params.BackBufferHeight
, params.AutoDepthStencilFormat
, params.MultiSampleType
, params.MultiSampleQuality
, FALSE
, &m_surface[1]
, NULL
) );
m_dsIdx = 1;
m_denseIdx = _denseIdx;
m_num = 1;
m_needResolve = false;
m_needPresent = false;
}
uint16_t FrameBufferD3D9::destroy()
{
if (NULL != m_hwnd)
{
DX_RELEASE(m_surface[0], 0);
DX_RELEASE(m_surface[1], 0);
DX_RELEASE(m_swapChain, 0);
}
else
{
uint32_t num = m_numTh;
num += uint32_t(0 < m_numTh && 0 == m_num);
for (uint32_t ii = 0; ii < num; ++ii)
{
IDirect3DSurface9* ptr = m_surface[ii];
if (NULL != ptr)
{
ptr->Release();
m_surface[ii] = NULL;
}
}
}
m_hwnd = NULL;
m_num = 0;
m_numTh = 0;
m_needPresent = false;
uint16_t denseIdx = m_denseIdx;
m_denseIdx = UINT16_MAX;
return denseIdx;
}
HRESULT FrameBufferD3D9::present()
{
if (m_needPresent)
{
HRESULT hr = m_swapChain->Present(NULL, NULL, m_hwnd, NULL, 0);
m_needPresent = false;
return hr;
}
return S_OK;
}
void FrameBufferD3D9::resolve() const
{
if (m_needResolve)
{
for (uint32_t ii = 0, num = m_numTh; ii < num; ++ii)
{
const TextureD3D9& texture = s_renderD3D9->m_textures[m_attachment[ii].handle.idx];
texture.resolve();
}
}
}
void FrameBufferD3D9::preReset()
{
if (NULL != m_hwnd)
{
DX_RELEASE(m_surface[0], 0);
DX_RELEASE(m_surface[1], 0);
DX_RELEASE(m_swapChain, 0);
}
else
{
uint32_t num = m_numTh;
num += uint32_t(0 < m_numTh && 0 == m_num);
for (uint32_t ii = 0; ii < num; ++ii)
{
m_surface[ii]->Release();
m_surface[ii] = NULL;
}
}
}
void FrameBufferD3D9::postReset()
{
if (NULL != m_hwnd)
{
D3DPRESENT_PARAMETERS params;
bx::memCopy(&params, &s_renderD3D9->m_params, sizeof(D3DPRESENT_PARAMETERS) );
params.BackBufferWidth = m_width;
params.BackBufferHeight = m_height;
DX_CHECK(s_renderD3D9->m_device->CreateAdditionalSwapChain(&params, &m_swapChain) );
DX_CHECK(m_swapChain->GetBackBuffer(0, D3DBACKBUFFER_TYPE_MONO, &m_surface[0]) );
DX_CHECK(s_renderD3D9->m_device->CreateDepthStencilSurface(params.BackBufferWidth
, params.BackBufferHeight
, params.AutoDepthStencilFormat
, params.MultiSampleType
, params.MultiSampleQuality
, FALSE
, &m_surface[1]
, NULL
) );
}
else if (0 < m_numTh)
{
for (uint32_t ii = 0, num = m_numTh; ii < num; ++ii)
{
TextureHandle th = m_attachment[ii].handle;
if (isValid(th) )
{
TextureD3D9& texture = s_renderD3D9->m_textures[th.idx];
if (NULL != texture.m_surface)
{
m_surface[ii] = texture.m_surface;
m_surface[ii]->AddRef();
}
else
{
m_surface[ii] = texture.getSurface(uint8_t(m_attachment[ii].layer), uint8_t(m_attachment[ii].mip) );
}
}
}
if (0 == m_num)
{
createNullColorRT();
}
}
}
void FrameBufferD3D9::createNullColorRT()
{
DX_CHECK(s_renderD3D9->m_device->CreateRenderTarget(
m_width
, m_height
, D3DFMT_NULL
, D3DMULTISAMPLE_NONE
, 0
, false
, &m_surface[1]
, NULL
) );
}
void FrameBufferD3D9::set()
{
m_needPresent = UINT16_MAX != m_denseIdx;
// If frame buffer has only depth attachment D3DFMT_NULL
// render target is created.
const uint32_t fbnum = bx::uint32_max(2, m_numTh);
const uint8_t dsIdx = m_dsIdx;
IDirect3DDevice9* device = s_renderD3D9->m_device;
DX_CHECK(device->SetDepthStencilSurface(UINT8_MAX == dsIdx
? s_renderD3D9->m_backBufferDepthStencil
: m_surface[dsIdx]
) );
uint32_t rtIdx = 0;
for (uint32_t ii = 0; ii < fbnum; ++ii)
{
IDirect3DSurface9* surface = m_surface[ii];
if (ii != dsIdx)
{
DX_CHECK(device->SetRenderTarget(rtIdx, surface) );
++rtIdx;
}
}
for (uint32_t ii = rtIdx, num = g_caps.limits.maxFBAttachments; ii < num; ++ii)
{
DX_CHECK(device->SetRenderTarget(ii, NULL) );
}
DX_CHECK(device->SetRenderState(D3DRS_SRGBWRITEENABLE, FALSE) );
}
void TimerQueryD3D9::postReset()
{
IDirect3DDevice9* device = s_renderD3D9->m_device;
for (uint32_t ii = 0; ii < BX_COUNTOF(m_query); ++ii)
{
Query& frame = m_query[ii];
DX_CHECK(device->CreateQuery(D3DQUERYTYPE_TIMESTAMPDISJOINT, &frame.m_disjoint) );
DX_CHECK(device->CreateQuery(D3DQUERYTYPE_TIMESTAMP, &frame.m_begin) );
DX_CHECK(device->CreateQuery(D3DQUERYTYPE_TIMESTAMP, &frame.m_end) );
DX_CHECK(device->CreateQuery(D3DQUERYTYPE_TIMESTAMPFREQ, &frame.m_freq) );
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_result); ++ii)
{
Result& result = m_result[ii];
result.reset();
}
m_control.reset();
}
void TimerQueryD3D9::preReset()
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_query); ++ii)
{
Query& frame = m_query[ii];
DX_RELEASE(frame.m_disjoint, 0);
DX_RELEASE(frame.m_begin, 0);
DX_RELEASE(frame.m_end, 0);
DX_RELEASE(frame.m_freq, 0);
}
}
uint32_t TimerQueryD3D9::begin(uint32_t _resultIdx)
{
while (0 == m_control.reserve(1) )
{
update();
}
Result& result = m_result[_resultIdx];
++result.m_pending;
const uint32_t idx = m_control.m_current;
Query& query = m_query[idx];
query.m_resultIdx = _resultIdx;
query.m_ready = false;
query.m_disjoint->Issue(D3DISSUE_BEGIN);
query.m_begin->Issue(D3DISSUE_END);
m_control.commit(1);
return idx;
}
void TimerQueryD3D9::end(uint32_t _idx)
{
Query& query = m_query[_idx];
query.m_ready = true;
query.m_disjoint->Issue(D3DISSUE_END);
query.m_freq->Issue(D3DISSUE_END);
query.m_end->Issue(D3DISSUE_END);
while (update() )
{
}
}
bool TimerQueryD3D9::update()
{
if (0 != m_control.available() )
{
Query& query = m_query[m_control.m_read];
if (!query.m_ready)
{
return false;
}
uint64_t timeEnd;
const bool flush = BX_COUNTOF(m_query)-1 == m_control.available();
HRESULT hr = query.m_end->GetData(&timeEnd, sizeof(timeEnd), flush ? D3DGETDATA_FLUSH : 0);
if (S_OK == hr
|| isLost(hr) )
{
m_control.consume(1);
uint64_t timeBegin;
DX_CHECK(query.m_begin->GetData(&timeBegin, sizeof(timeBegin), 0) );
uint64_t freq;
DX_CHECK(query.m_freq->GetData(&freq, sizeof(freq), 0) );
Result& result = m_result[query.m_resultIdx];
--result.m_pending;
result.m_frequency = freq;
result.m_begin = timeBegin;
result.m_end = timeEnd;
return true;
}
}
return false;
}
void OcclusionQueryD3D9::postReset()
{
IDirect3DDevice9* device = s_renderD3D9->m_device;
for (uint32_t ii = 0; ii < BX_COUNTOF(m_query); ++ii)
{
Query& query = m_query[ii];
DX_CHECK(device->CreateQuery(D3DQUERYTYPE_OCCLUSION, &query.m_ptr) );
}
}
void OcclusionQueryD3D9::preReset()
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_query); ++ii)
{
Query& query = m_query[ii];
DX_RELEASE(query.m_ptr, 0);
}
}
void OcclusionQueryD3D9::begin(Frame* _render, OcclusionQueryHandle _handle)
{
while (0 == m_control.reserve(1) )
{
resolve(_render, true);
}
Query& query = m_query[m_control.m_current];
query.m_ptr->Issue(D3DISSUE_BEGIN);
query.m_handle = _handle;
}
void OcclusionQueryD3D9::end()
{
Query& query = m_query[m_control.m_current];
query.m_ptr->Issue(D3DISSUE_END);
m_control.commit(1);
}
void OcclusionQueryD3D9::resolve(Frame* _render, bool)
{
while (0 != m_control.available() )
{
Query& query = m_query[m_control.m_read];
if (isValid(query.m_handle) )
{
uint32_t result;
HRESULT hr = query.m_ptr->GetData(&result, sizeof(result), 0);
if (S_FALSE == hr)
{
break;
}
_render->m_occlusion[query.m_handle.idx] = int32_t(result);
}
m_control.consume(1);
}
}
void OcclusionQueryD3D9::invalidate(OcclusionQueryHandle _handle)
{
const uint32_t size = m_control.m_size;
for (uint32_t ii = 0, num = m_control.available(); ii < num; ++ii)
{
Query& query = m_query[(m_control.m_read + ii) % size];
if (query.m_handle.idx == _handle.idx)
{
query.m_handle.idx = bgfx::kInvalidHandle;
}
}
}
void RendererContextD3D9::submitBlit(BlitState& _bs, uint16_t _view)
{
while (_bs.hasItem(_view) )
{
const BlitItem& blit = _bs.advance();
const TextureD3D9& src = m_textures[blit.m_src.idx];
const TextureD3D9& dst = m_textures[blit.m_dst.idx];
uint32_t srcWidth = bx::uint32_min(src.m_width, blit.m_srcX + blit.m_width) - blit.m_srcX;
uint32_t srcHeight = bx::uint32_min(src.m_height, blit.m_srcY + blit.m_height) - blit.m_srcY;
uint32_t dstWidth = bx::uint32_min(dst.m_width, blit.m_dstX + blit.m_width) - blit.m_dstX;
uint32_t dstHeight = bx::uint32_min(dst.m_height, blit.m_dstY + blit.m_height) - blit.m_dstY;
uint32_t width = bx::uint32_min(srcWidth, dstWidth);
uint32_t height = bx::uint32_min(srcHeight, dstHeight);
RECT srcRect = { LONG(blit.m_srcX), LONG(blit.m_srcY), LONG(blit.m_srcX + width), LONG(blit.m_srcY + height) };
RECT dstRect = { LONG(blit.m_dstX), LONG(blit.m_dstY), LONG(blit.m_dstX + width), LONG(blit.m_dstY + height) };
IDirect3DSurface9* srcSurface = src.getSurface(uint8_t(blit.m_srcZ), blit.m_srcMip);
IDirect3DSurface9* dstSurface = dst.getSurface(uint8_t(blit.m_dstZ), blit.m_dstMip);
// UpdateSurface (pool src: SYSTEMMEM, dst: DEFAULT)
// s/d T RTT RT
// T y y y
// RTT - - -
// RT - - -
//
// StretchRect (pool src and dst must be DEFAULT)
// s/d T RTT RT
// T - y y
// RTT - y y
// RT - y y
//
// GetRenderTargetData (dst must be SYSTEMMEM)
bool depth = bimg::isDepth(bimg::TextureFormat::Enum(src.m_textureFormat) );
HRESULT hr = m_device->StretchRect(srcSurface
, depth ? NULL : &srcRect
, dstSurface
, depth ? NULL : &dstRect
, D3DTEXF_NONE
);
if (FAILED(hr) )
{
hr = m_device->GetRenderTargetData(srcSurface, dstSurface);
BX_WARN(SUCCEEDED(hr), "StretchRect and GetRenderTargetData failed %x.", hr);
}
srcSurface->Release();
dstSurface->Release();
}
}
void RendererContextD3D9::submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter)
{
IDirect3DDevice9* device = m_device;
PIX_BEGINEVENT(D3DCOLOR_FRAME, L"rendererSubmit");
updateResolution(_render->m_resolution);
int64_t timeBegin = bx::getHPCounter();
int64_t captureElapsed = 0;
uint32_t frameQueryIdx = UINT32_MAX;
device->BeginScene();
if (m_timerQuerySupport)
{
frameQueryIdx = m_gpuTimer.begin(BGFX_CONFIG_MAX_VIEWS);
}
if (0 < _render->m_iboffset)
{
TransientIndexBuffer* ib = _render->m_transientIb;
m_indexBuffers[ib->handle.idx].update(0, _render->m_iboffset, ib->data, true);
}
if (0 < _render->m_vboffset)
{
TransientVertexBuffer* vb = _render->m_transientVb;
m_vertexBuffers[vb->handle.idx].update(0, _render->m_vboffset, vb->data, true);
}
_render->sort();
RenderDraw currentState;
currentState.clear();
currentState.m_stateFlags = BGFX_STATE_NONE;
currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE);
RenderBind currentBind;
currentBind.clear();
ViewState viewState(_render, false);
DX_CHECK(device->SetRenderState(D3DRS_FILLMODE, _render->m_debug&BGFX_DEBUG_WIREFRAME ? D3DFILL_WIREFRAME : D3DFILL_SOLID) );
uint16_t programIdx = kInvalidHandle;
SortKey key;
uint16_t view = UINT16_MAX;
FrameBufferHandle fbh = { BGFX_CONFIG_MAX_FRAME_BUFFERS };
uint32_t blendFactor = 0;
BlitState bs(_render);
uint8_t primIndex;
{
const uint64_t pt = _render->m_debug&BGFX_DEBUG_WIREFRAME ? BGFX_STATE_PT_LINES : 0;
primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT);
}
PrimInfo prim = s_primInfo[primIndex];
bool viewHasScissor = false;
Rect viewScissorRect;
viewScissorRect.clear();
uint32_t statsNumPrimsSubmitted[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumPrimsRendered[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumInstances[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumIndices = 0;
uint32_t statsKeyType[2] = {};
invalidateSamplerState();
Profiler<TimerQueryD3D9> profiler(
_render
, m_gpuTimer
, s_viewName
, m_timerQuerySupport
);
if (m_occlusionQuerySupport)
{
m_occlusionQuery.resolve(_render);
}
if (0 == (_render->m_debug&BGFX_DEBUG_IFH) )
{
for (uint32_t item = 0, numItems = _render->m_numRenderItems; item < numItems; ++item)
{
const uint64_t encodedKey = _render->m_sortKeys[item];
const bool isCompute = key.decode(encodedKey, _render->m_viewRemap);
statsKeyType[isCompute]++;
if (isCompute)
{
BX_CHECK(false, "Compute is not supported on DirectX 9.");
continue;
}
const uint32_t itemIdx = _render->m_sortValues[item];
const RenderDraw& draw = _render->m_renderItem[itemIdx].draw;
const RenderBind& renderBind = _render->m_renderItemBind[itemIdx];
const bool hasOcclusionQuery = 0 != (draw.m_stateFlags & BGFX_STATE_INTERNAL_OCCLUSION_QUERY);
{
const bool occluded = true
&& isValid(draw.m_occlusionQuery)
&& !hasOcclusionQuery
&& !isVisible(_render, draw.m_occlusionQuery, 0 != (draw.m_submitFlags&BGFX_SUBMIT_INTERNAL_OCCLUSION_VISIBLE) )
;
if (occluded
|| _render->m_frameCache.isZeroArea(viewScissorRect, draw.m_scissor) )
{
continue;
}
}
const uint64_t newFlags = draw.m_stateFlags;
uint64_t changedFlags = currentState.m_stateFlags ^ draw.m_stateFlags;
currentState.m_stateFlags = newFlags;
const uint64_t newStencil = draw.m_stencil;
uint64_t changedStencil = currentState.m_stencil ^ draw.m_stencil;
currentState.m_stencil = newStencil;
if (key.m_view != view)
{
currentState.clear();
currentState.m_scissor = !draw.m_scissor;
changedFlags = BGFX_STATE_MASK;
changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK);
currentState.m_stateFlags = newFlags;
currentState.m_stencil = newStencil;
view = key.m_view;
programIdx = kInvalidHandle;
if (_render->m_view[view].m_fbh.idx != fbh.idx)
{
fbh = _render->m_view[view].m_fbh;
setFrameBuffer(fbh);
}
PIX_ENDEVENT();
if (item > 0)
{
profiler.end();
}
profiler.begin(view);
PIX_BEGINEVENT(D3DCOLOR_VIEW, s_viewNameW[view]);
viewState.m_rect = _render->m_view[view].m_rect;
const Rect& scissorRect = _render->m_view[view].m_scissor;
viewHasScissor = !scissorRect.isZero();
viewScissorRect = viewHasScissor ? scissorRect : viewState.m_rect;
D3DVIEWPORT9 vp;
vp.X = viewState.m_rect.m_x;
vp.Y = viewState.m_rect.m_y;
vp.Width = viewState.m_rect.m_width;
vp.Height = viewState.m_rect.m_height;
vp.MinZ = 0.0f;
vp.MaxZ = 1.0f;
DX_CHECK(device->SetViewport(&vp) );
Clear& clear = _render->m_view[view].m_clear;
if (BGFX_CLEAR_NONE != (clear.m_flags & BGFX_CLEAR_MASK) )
{
clearQuad(_clearQuad, viewState.m_rect, clear, _render->m_colorPalette);
}
DX_CHECK(device->SetRenderState(D3DRS_STENCILENABLE, FALSE) );
DX_CHECK(device->SetRenderState(D3DRS_ZENABLE, TRUE) );
DX_CHECK(device->SetRenderState(D3DRS_ZFUNC, D3DCMP_LESS) );
DX_CHECK(device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE) );
DX_CHECK(device->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE) );
DX_CHECK(device->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATER) );
submitBlit(bs, view);
}
uint16_t scissor = draw.m_scissor;
if (currentState.m_scissor != scissor)
{
currentState.m_scissor = scissor;
if (UINT16_MAX == scissor)
{
DX_CHECK(device->SetRenderState(D3DRS_SCISSORTESTENABLE, viewHasScissor) );
if (viewHasScissor)
{
RECT rc;
rc.left = viewScissorRect.m_x;
rc.top = viewScissorRect.m_y;
rc.right = viewScissorRect.m_x + viewScissorRect.m_width;
rc.bottom = viewScissorRect.m_y + viewScissorRect.m_height;
DX_CHECK(device->SetScissorRect(&rc) );
}
}
else
{
Rect scissorRect;
scissorRect.setIntersect(viewScissorRect, _render->m_frameCache.m_rectCache.m_cache[scissor]);
DX_CHECK(device->SetRenderState(D3DRS_SCISSORTESTENABLE, true) );
RECT rc;
rc.left = scissorRect.m_x;
rc.top = scissorRect.m_y;
rc.right = scissorRect.m_x + scissorRect.m_width;
rc.bottom = scissorRect.m_y + scissorRect.m_height;
DX_CHECK(device->SetScissorRect(&rc) );
}
}
if (0 != changedStencil)
{
bool enable = 0 != newStencil;
DX_CHECK(device->SetRenderState(D3DRS_STENCILENABLE, enable) );
if (0 != newStencil)
{
uint32_t fstencil = unpackStencil(0, newStencil);
uint32_t bstencil = unpackStencil(1, newStencil);
uint8_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != fstencil;
DX_CHECK(device->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, 0 != frontAndBack) );
uint32_t fchanged = unpackStencil(0, changedStencil);
if ( (BGFX_STENCIL_FUNC_REF_MASK|BGFX_STENCIL_FUNC_RMASK_MASK) & fchanged)
{
uint32_t ref = (fstencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT;
DX_CHECK(device->SetRenderState(D3DRS_STENCILREF, ref) );
uint32_t rmask = (fstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT;
DX_CHECK(device->SetRenderState(D3DRS_STENCILMASK, rmask) );
}
// uint32_t bchanged = unpackStencil(1, changedStencil);
// if (BGFX_STENCIL_FUNC_RMASK_MASK & bchanged)
// {
// uint32_t wmask = (bstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT;
// DX_CHECK(device->SetRenderState(D3DRS_STENCILWRITEMASK, wmask) );
// }
for (uint8_t ii = 0, num = frontAndBack+1; ii < num; ++ii)
{
uint32_t stencil = unpackStencil(ii, newStencil);
uint32_t changed = unpackStencil(ii, changedStencil);
if ( (BGFX_STENCIL_TEST_MASK|BGFX_STENCIL_FUNC_REF_MASK|BGFX_STENCIL_FUNC_RMASK_MASK) & changed)
{
uint32_t func = (stencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT;
DX_CHECK(device->SetRenderState(s_stencilFuncRs[ii], s_cmpFunc[func]) );
}
if ( (BGFX_STENCIL_OP_FAIL_S_MASK|BGFX_STENCIL_OP_FAIL_Z_MASK|BGFX_STENCIL_OP_PASS_Z_MASK) & changed)
{
uint32_t sfail = (stencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT;
DX_CHECK(device->SetRenderState(s_stencilFailRs[ii], s_stencilOp[sfail]) );
uint32_t zfail = (stencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT;
DX_CHECK(device->SetRenderState(s_stencilZFailRs[ii], s_stencilOp[zfail]) );
uint32_t zpass = (stencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT;
DX_CHECK(device->SetRenderState(s_stencilZPassRs[ii], s_stencilOp[zpass]) );
}
}
}
}
if ( (0
| BGFX_STATE_CULL_MASK
| BGFX_STATE_WRITE_Z
| BGFX_STATE_DEPTH_TEST_MASK
| BGFX_STATE_WRITE_RGB
| BGFX_STATE_WRITE_A
| BGFX_STATE_BLEND_MASK
| BGFX_STATE_BLEND_EQUATION_MASK
| BGFX_STATE_ALPHA_REF_MASK
| BGFX_STATE_PT_MASK
| BGFX_STATE_POINT_SIZE_MASK
| BGFX_STATE_MSAA
) & changedFlags)
{
if (BGFX_STATE_CULL_MASK & changedFlags)
{
uint32_t cull = (newFlags&BGFX_STATE_CULL_MASK)>>BGFX_STATE_CULL_SHIFT;
DX_CHECK(device->SetRenderState(D3DRS_CULLMODE, s_cullMode[cull]) );
}
if (BGFX_STATE_WRITE_Z & changedFlags)
{
DX_CHECK(device->SetRenderState(D3DRS_ZWRITEENABLE, !!(BGFX_STATE_WRITE_Z & newFlags) ) );
}
if (BGFX_STATE_DEPTH_TEST_MASK & changedFlags)
{
uint32_t func = (newFlags&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT;
DX_CHECK(device->SetRenderState(D3DRS_ZENABLE, 0 != func) );
if (0 != func)
{
DX_CHECK(device->SetRenderState(D3DRS_ZFUNC, s_cmpFunc[func]) );
}
}
if (BGFX_STATE_ALPHA_REF_MASK & changedFlags)
{
uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT;
viewState.m_alphaRef = ref/255.0f;
}
if ( (BGFX_STATE_PT_POINTS|BGFX_STATE_POINT_SIZE_MASK) & changedFlags)
{
DX_CHECK(device->SetRenderState(D3DRS_POINTSIZE, castfu( (float)( (newFlags&BGFX_STATE_POINT_SIZE_MASK)>>BGFX_STATE_POINT_SIZE_SHIFT) ) ) );
}
if (BGFX_STATE_MSAA & changedFlags)
{
DX_CHECK(device->SetRenderState(D3DRS_MULTISAMPLEANTIALIAS, (newFlags&BGFX_STATE_MSAA) == BGFX_STATE_MSAA) );
}
if (BGFX_STATE_LINEAA & changedFlags)
{
DX_CHECK(m_device->SetRenderState(D3DRS_ANTIALIASEDLINEENABLE, !!(newFlags&BGFX_STATE_LINEAA) ) );
}
if ( (BGFX_STATE_WRITE_A|BGFX_STATE_WRITE_RGB) & changedFlags)
{
uint32_t writeEnable = 0;
writeEnable |= (newFlags&BGFX_STATE_WRITE_R) ? D3DCOLORWRITEENABLE_RED : 0;
writeEnable |= (newFlags&BGFX_STATE_WRITE_G) ? D3DCOLORWRITEENABLE_GREEN : 0;
writeEnable |= (newFlags&BGFX_STATE_WRITE_B) ? D3DCOLORWRITEENABLE_BLUE : 0;
writeEnable |= (newFlags&BGFX_STATE_WRITE_A) ? D3DCOLORWRITEENABLE_ALPHA : 0;
DX_CHECK(device->SetRenderState(D3DRS_COLORWRITEENABLE, writeEnable) );
}
if ( ( (0
| BGFX_STATE_BLEND_MASK
| BGFX_STATE_BLEND_EQUATION_MASK
| BGFX_STATE_BLEND_ALPHA_TO_COVERAGE
) & changedFlags)
|| blendFactor != draw.m_rgba)
{
bool enabled = !!(BGFX_STATE_BLEND_MASK & newFlags);
DX_CHECK(device->SetRenderState(D3DRS_ALPHABLENDENABLE, enabled) );
if (m_atocSupport
&& BGFX_STATE_BLEND_ALPHA_TO_COVERAGE & changedFlags)
{
DX_CHECK(m_device->SetRenderState(D3DRS_ADAPTIVETESS_Y
, !!(newFlags&BGFX_STATE_BLEND_ALPHA_TO_COVERAGE)
? D3DFMT_ATOC
: 0
) );
}
if (enabled)
{
const uint32_t blend = uint32_t( (newFlags&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT);
const uint32_t equation = uint32_t( (newFlags&BGFX_STATE_BLEND_EQUATION_MASK)>>BGFX_STATE_BLEND_EQUATION_SHIFT);
const uint32_t srcRGB = (blend )&0xf;
const uint32_t dstRGB = (blend>> 4)&0xf;
const uint32_t srcA = (blend>> 8)&0xf;
const uint32_t dstA = (blend>>12)&0xf;
const uint32_t equRGB = (equation )&0x7;
const uint32_t equA = (equation>>3)&0x7;
DX_CHECK(device->SetRenderState(D3DRS_SRCBLEND, s_blendFactor[srcRGB].m_src) );
DX_CHECK(device->SetRenderState(D3DRS_DESTBLEND, s_blendFactor[dstRGB].m_dst) );
DX_CHECK(device->SetRenderState(D3DRS_BLENDOP, s_blendEquation[equRGB]) );
const bool separate = srcRGB != srcA || dstRGB != dstA || equRGB != equA;
DX_CHECK(device->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, separate) );
if (separate)
{
DX_CHECK(device->SetRenderState(D3DRS_SRCBLENDALPHA, s_blendFactor[srcA].m_src) );
DX_CHECK(device->SetRenderState(D3DRS_DESTBLENDALPHA, s_blendFactor[dstA].m_dst) );
DX_CHECK(device->SetRenderState(D3DRS_BLENDOPALPHA, s_blendEquation[equA]) );
}
if ( (s_blendFactor[srcRGB].m_factor || s_blendFactor[dstRGB].m_factor)
&& blendFactor != draw.m_rgba)
{
const uint32_t rgba = draw.m_rgba;
D3DCOLOR color = D3DCOLOR_RGBA(
rgba>>24
, (rgba>>16)&0xff
, (rgba>> 8)&0xff
, (rgba )&0xff
);
DX_CHECK(device->SetRenderState(D3DRS_BLENDFACTOR, color) );
}
}
blendFactor = draw.m_rgba;
}
const uint64_t pt = _render->m_debug&BGFX_DEBUG_WIREFRAME ? BGFX_STATE_PT_LINES : newFlags&BGFX_STATE_PT_MASK;
primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT);
prim = s_primInfo[primIndex];
}
bool programChanged = false;
bool constantsChanged = draw.m_uniformBegin < draw.m_uniformEnd;
rendererUpdateUniforms(this, _render->m_uniformBuffer[draw.m_uniformIdx], draw.m_uniformBegin, draw.m_uniformEnd);
if (key.m_program != programIdx)
{
programIdx = key.m_program;
if (kInvalidHandle == programIdx)
{
device->SetVertexShader(NULL);
device->SetPixelShader(NULL);
}
else
{
ProgramD3D9& program = m_program[programIdx];
device->SetVertexShader(program.m_vsh->m_vertexShader);
device->SetPixelShader(NULL == program.m_fsh
? NULL
: program.m_fsh->m_pixelShader
);
}
programChanged =
constantsChanged = true;
}
if (kInvalidHandle != programIdx)
{
ProgramD3D9& program = m_program[programIdx];
if (constantsChanged)
{
UniformBuffer* vcb = program.m_vsh->m_constantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
if (NULL != program.m_fsh)
{
UniformBuffer* fcb = program.m_fsh->m_constantBuffer;
if (NULL != fcb)
{
commit(*fcb);
}
}
}
viewState.setPredefined<4>(this, view, 0, program, _render, draw);
}
{
for (uint8_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage)
{
const Binding& bind = renderBind.m_bind[stage];
Binding& current = currentBind.m_bind[stage];
if (current.m_idx != bind.m_idx
|| current.m_un.m_draw.m_textureFlags != bind.m_un.m_draw.m_textureFlags
|| programChanged)
{
if (kInvalidHandle != bind.m_idx)
{
m_textures[bind.m_idx].commit(stage, bind.m_un.m_draw.m_textureFlags, _render->m_colorPalette);
}
else
{
DX_CHECK(device->SetTexture(stage, NULL) );
}
}
current = bind;
}
}
bool vertexStreamChanged = hasVertexStreamChanged(currentState, draw);
if (programChanged
|| vertexStreamChanged)
{
currentState.m_streamMask = draw.m_streamMask;
currentState.m_instanceDataBuffer.idx = draw.m_instanceDataBuffer.idx;
currentState.m_instanceDataOffset = draw.m_instanceDataOffset;
currentState.m_instanceDataStride = draw.m_instanceDataStride;
const VertexDecl* decls[BGFX_CONFIG_MAX_VERTEX_STREAMS];
const bool instanced = true
&& isValid(draw.m_instanceDataBuffer)
&& m_instancingSupport
;
const uint32_t freq = instanced
? D3DSTREAMSOURCE_INDEXEDDATA|draw.m_numInstances
: 1
;
uint32_t numVertices = draw.m_numVertices;
uint8_t numStreams = 0;
for (uint32_t idx = 0, streamMask = draw.m_streamMask, ntz = bx::uint32_cnttz(streamMask)
; 0 != streamMask
; streamMask >>= 1, idx += 1, ntz = bx::uint32_cnttz(streamMask), ++numStreams
)
{
streamMask >>= ntz;
idx += ntz;
currentState.m_stream[idx].m_decl = draw.m_stream[idx].m_decl;
currentState.m_stream[idx].m_handle = draw.m_stream[idx].m_handle;
currentState.m_stream[idx].m_startVertex = draw.m_stream[idx].m_startVertex;
const uint16_t handle = draw.m_stream[idx].m_handle.idx;
const VertexBufferD3D9& vb = m_vertexBuffers[handle];
const uint16_t decl = !isValid(vb.m_decl) ? draw.m_stream[idx].m_decl.idx : vb.m_decl.idx;
const VertexDecl& vertexDecl = m_vertexDecls[decl];
const uint32_t stride = vertexDecl.m_stride;
decls[numStreams] = &vertexDecl;
numVertices = bx::uint32_min(UINT32_MAX == draw.m_numVertices
? vb.m_size/stride
: draw.m_numVertices
, numVertices
);
DX_CHECK(device->SetStreamSourceFreq(0, freq) );
DX_CHECK(device->SetStreamSource(numStreams, vb.m_ptr, 0, stride) );
}
currentState.m_numVertices = numVertices;
if (0 < numStreams)
{
if (instanced)
{
const VertexBufferD3D9& inst = m_vertexBuffers[draw.m_instanceDataBuffer.idx];
DX_CHECK(device->SetStreamSourceFreq(numStreams, UINT(D3DSTREAMSOURCE_INSTANCEDATA|1) ) );
DX_CHECK(device->SetStreamSource(numStreams, inst.m_ptr, draw.m_instanceDataOffset, draw.m_instanceDataStride) );
setInputLayout(numStreams, decls, draw.m_instanceDataStride/16);
}
else
{
DX_CHECK(device->SetStreamSource(numStreams, NULL, 0, 0) );
setInputLayout(numStreams, decls, 0);
}
}
else
{
DX_CHECK(device->SetStreamSource(0, NULL, 0, 0) );
DX_CHECK(device->SetStreamSource(1, NULL, 0, 0) );
}
}
if (currentState.m_indexBuffer.idx != draw.m_indexBuffer.idx)
{
currentState.m_indexBuffer = draw.m_indexBuffer;
uint16_t handle = draw.m_indexBuffer.idx;
if (kInvalidHandle != handle)
{
const IndexBufferD3D9& ib = m_indexBuffers[handle];
DX_CHECK(device->SetIndices(ib.m_ptr) );
}
else
{
DX_CHECK(device->SetIndices(NULL) );
}
}
if (0 != currentState.m_streamMask)
{
uint32_t numVertices = draw.m_numVertices;
uint32_t numIndices = 0;
uint32_t numPrimsSubmitted = 0;
uint32_t numInstances = 0;
uint32_t numPrimsRendered = 0;
if (hasOcclusionQuery)
{
m_occlusionQuery.begin(_render, draw.m_occlusionQuery);
}
if (isValid(draw.m_indexBuffer) )
{
if (UINT32_MAX == draw.m_numIndices)
{
const IndexBufferD3D9& ib = m_indexBuffers[draw.m_indexBuffer.idx];
const uint32_t indexSize = 0 == (ib.m_flags & BGFX_BUFFER_INDEX32) ? 2 : 4;
numIndices = ib.m_size/indexSize;
numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
DX_CHECK(device->DrawIndexedPrimitive(prim.m_type
, draw.m_stream[0].m_startVertex
, 0
, numVertices
, 0
, numPrimsSubmitted
) );
}
else if (prim.m_min <= draw.m_numIndices)
{
numIndices = draw.m_numIndices;
numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
DX_CHECK(device->DrawIndexedPrimitive(prim.m_type
, draw.m_stream[0].m_startVertex
, 0
, numVertices
, draw.m_startIndex
, numPrimsSubmitted
) );
}
}
else
{
numPrimsSubmitted = numVertices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
DX_CHECK(device->DrawPrimitive(prim.m_type
, draw.m_stream[0].m_startVertex
, numPrimsSubmitted
) );
}
if (hasOcclusionQuery)
{
m_occlusionQuery.end();
}
statsNumPrimsSubmitted[primIndex] += numPrimsSubmitted;
statsNumPrimsRendered[primIndex] += numPrimsRendered;
statsNumInstances[primIndex] += numInstances;
statsNumIndices += numIndices;
}
}
submitBlit(bs, BGFX_CONFIG_MAX_VIEWS);
if (0 < _render->m_numRenderItems)
{
if (0 != (m_resolution.reset & BGFX_RESET_FLUSH_AFTER_RENDER) )
{
flush();
}
captureElapsed = -bx::getHPCounter();
capture();
captureElapsed += bx::getHPCounter();
profiler.end();
}
}
PIX_ENDEVENT();
int64_t timeEnd = bx::getHPCounter();
int64_t frameTime = timeEnd - timeBegin;
static int64_t min = frameTime;
static int64_t max = frameTime;
min = min > frameTime ? frameTime : min;
max = max < frameTime ? frameTime : max;
static uint32_t maxGpuLatency = 0;
static double maxGpuElapsed = 0.0f;
double elapsedGpuMs = 0.0;
if (UINT32_MAX != frameQueryIdx)
{
m_gpuTimer.end(frameQueryIdx);
const TimerQueryD3D9::Result& result = m_gpuTimer.m_result[BGFX_CONFIG_MAX_VIEWS];
double toGpuMs = 1000.0 / double(result.m_frequency);
elapsedGpuMs = (result.m_end - result.m_begin) * toGpuMs;
maxGpuElapsed = elapsedGpuMs > maxGpuElapsed ? elapsedGpuMs : maxGpuElapsed;
maxGpuLatency = bx::uint32_imax(maxGpuLatency, result.m_pending-1);
}
const int64_t timerFreq = bx::getHPFrequency();
Stats& perfStats = _render->m_perfStats;
perfStats.cpuTimeBegin = timeBegin;
perfStats.cpuTimeEnd = timeEnd;
perfStats.cpuTimerFreq = timerFreq;
const TimerQueryD3D9::Result& result = m_gpuTimer.m_result[BGFX_CONFIG_MAX_VIEWS];
perfStats.gpuTimeBegin = result.m_begin;
perfStats.gpuTimeEnd = result.m_end;
perfStats.gpuTimerFreq = result.m_frequency;
perfStats.numDraw = statsKeyType[0];
perfStats.numCompute = statsKeyType[1];
perfStats.maxGpuLatency = maxGpuLatency;
bx::memCopy(perfStats.numPrims, statsNumPrimsRendered, sizeof(perfStats.numPrims) );
m_nvapi.getMemoryInfo(perfStats.gpuMemoryUsed, perfStats.gpuMemoryMax);
if (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
PIX_BEGINEVENT(D3DCOLOR_FRAME, L"debugstats");
m_needPresent = true;
TextVideoMem& tvm = m_textVideoMem;
static int64_t next = timeEnd;
if (timeEnd >= next)
{
next = timeEnd + timerFreq;
double freq = double(timerFreq);
double toMs = 1000.0/freq;
tvm.clear();
uint16_t pos = 0;
tvm.printf(0, pos++, BGFX_CONFIG_DEBUG ? 0x8c : 0x8f
, " %s / " BX_COMPILER_NAME " / " BX_CPU_NAME " / " BX_ARCH_NAME " / " BX_PLATFORM_NAME " "
, getRendererName()
);
const D3DADAPTER_IDENTIFIER9& identifier = m_identifier;
tvm.printf(0, pos++, 0x8f, " Device: %s (%s)", identifier.Description, identifier.Driver);
char processMemoryUsed[16];
bx::prettify(processMemoryUsed, BX_COUNTOF(processMemoryUsed), bx::getProcessMemoryUsed() );
tvm.printf(0, pos++, 0x8f, " Memory: %s (process) ", processMemoryUsed);
pos = 10;
tvm.printf(10, pos++, 0x8b, " Frame: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS "
, double(frameTime)*toMs
, double(min)*toMs
, double(max)*toMs
, freq/frameTime
);
const uint32_t msaa = (m_resolution.reset&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT;
tvm.printf(10, pos++, 0x8b, " Reset flags: [%c] vsync, [%c] MSAAx%d, [%c] MaxAnisotropy "
, !!(m_resolution.reset&BGFX_RESET_VSYNC) ? '\xfe' : ' '
, 0 != msaa ? '\xfe' : ' '
, 1<<msaa
, !!(m_resolution.reset&BGFX_RESET_MAXANISOTROPY) ? '\xfe' : ' '
);
double elapsedCpuMs = double(frameTime)*toMs;
tvm.printf(10, pos++, 0x8b, " Submitted: %5d (draw %5d, compute %4d) / CPU %7.4f [ms] %c GPU %7.4f [ms] (latency %d)"
, _render->m_numRenderItems
, statsKeyType[0]
, statsKeyType[1]
, elapsedCpuMs
, elapsedCpuMs > maxGpuElapsed ? '>' : '<'
, maxGpuElapsed
, maxGpuLatency
);
maxGpuLatency = 0;
maxGpuElapsed = 0.0;
for (uint32_t ii = 0; ii < Topology::Count; ++ii)
{
tvm.printf(10, pos++, 0x8b, " %10s: %7d (#inst: %5d), submitted: %7d"
, getName(Topology::Enum(ii) )
, statsNumPrimsRendered[ii]
, statsNumInstances[ii]
, statsNumPrimsSubmitted[ii]
);
}
tvm.printf(10, pos++, 0x8b, " Indices: %7d ", statsNumIndices);
// tvm.printf(10, pos++, 0x8b, " Uniform size: %7d, Max: %7d ", _render->m_uniformEnd, _render->m_uniformMax);
tvm.printf(10, pos++, 0x8b, " DVB size: %7d ", _render->m_vboffset);
tvm.printf(10, pos++, 0x8b, " DIB size: %7d ", _render->m_iboffset);
pos++;
tvm.printf(10, pos++, 0x8b, " Occlusion queries: %3d ", m_occlusionQuery.m_control.available() );
pos++;
tvm.printf(10, pos++, 0x8b, " State cache: ");
tvm.printf(10, pos++, 0x8b, " Input ");
tvm.printf(10, pos++, 0x8b, " %6d "
, m_inputLayoutCache.getCount()
);
pos++;
double captureMs = double(captureElapsed)*toMs;
tvm.printf(10, pos++, 0x8b, " Capture: %7.4f [ms]", captureMs);
uint8_t attr[2] = { 0x8c, 0x8a };
uint8_t attrIndex = _render->m_waitSubmit < _render->m_waitRender;
tvm.printf(10, pos++, attr[attrIndex&1], " Submit wait: %7.4f [ms]", _render->m_waitSubmit*toMs);
tvm.printf(10, pos++, attr[(attrIndex+1)&1], " Render wait: %7.4f [ms]", _render->m_waitRender*toMs);
min = frameTime;
max = frameTime;
}
blit(this, _textVideoMemBlitter, tvm);
PIX_ENDEVENT();
}
else if (_render->m_debug & BGFX_DEBUG_TEXT)
{
PIX_BEGINEVENT(D3DCOLOR_FRAME, L"debugtext");
blit(this, _textVideoMemBlitter, _render->m_textVideoMem);
PIX_ENDEVENT();
}
device->EndScene();
}
} /* namespace d3d9 */ } // namespace bgfx
#else
namespace bgfx { namespace d3d9
{
RendererContextI* rendererCreate(const Init& _init)
{
BX_UNUSED(_init);
return NULL;
}
void rendererDestroy()
{
}
} /* namespace d3d9 */ } // namespace bgfx
#endif // BGFX_CONFIG_RENDERER_DIRECT3D9