bgfx/3rdparty/spirv-tools/source/validate_id.cpp
Branimir Karadžić 172b7c506b Added SPIRV-Tools.
2018-04-10 19:44:28 -07:00

2768 lines
102 KiB
C++

// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "validate.h"
#include <cassert>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <stack>
#include <unordered_set>
#include <utility>
#include <vector>
#include "diagnostic.h"
#include "instruction.h"
#include "message.h"
#include "opcode.h"
#include "operand.h"
#include "spirv-tools/libspirv.h"
#include "spirv_validator_options.h"
#include "val/function.h"
#include "val/validation_state.h"
using libspirv::Decoration;
using libspirv::Function;
using libspirv::ValidationState_t;
using std::function;
using std::ignore;
using std::make_pair;
using std::pair;
using std::unordered_set;
using std::vector;
namespace {
class idUsage {
public:
idUsage(spv_const_context context, const spv_instruction_t* pInsts,
const uint64_t instCountArg, const SpvMemoryModel memoryModelArg,
const SpvAddressingModel addressingModelArg,
const ValidationState_t& module, const vector<uint32_t>& entry_points,
spv_position positionArg, const spvtools::MessageConsumer& consumer)
: targetEnv(context->target_env),
opcodeTable(context->opcode_table),
operandTable(context->operand_table),
extInstTable(context->ext_inst_table),
firstInst(pInsts),
instCount(instCountArg),
memoryModel(memoryModelArg),
addressingModel(addressingModelArg),
position(positionArg),
consumer_(consumer),
module_(module),
entry_points_(entry_points) {}
bool isValid(const spv_instruction_t* inst);
template <SpvOp>
bool isValid(const spv_instruction_t* inst, const spv_opcode_desc);
private:
const spv_target_env targetEnv;
const spv_opcode_table opcodeTable;
const spv_operand_table operandTable;
const spv_ext_inst_table extInstTable;
const spv_instruction_t* const firstInst;
const uint64_t instCount;
const SpvMemoryModel memoryModel;
const SpvAddressingModel addressingModel;
spv_position position;
const spvtools::MessageConsumer& consumer_;
const ValidationState_t& module_;
vector<uint32_t> entry_points_;
// Returns true if the two instructions represent structs that, as far as the
// validator can tell, have the exact same data layout.
bool AreLayoutCompatibleStructs(const libspirv::Instruction* type1,
const libspirv::Instruction* type2);
// Returns true if the operands to the OpTypeStruct instruction defining the
// types are the same or are layout compatible types. |type1| and |type2| must
// be OpTypeStruct instructions.
bool HaveLayoutCompatibleMembers(const libspirv::Instruction* type1,
const libspirv::Instruction* type2);
// Returns true if all decorations that affect the data layout of the struct
// (like Offset), are the same for the two types. |type1| and |type2| must be
// OpTypeStruct instructions.
bool HaveSameLayoutDecorations(const libspirv::Instruction* type1,
const libspirv::Instruction* type2);
bool HasConflictingMemberOffsets(
const vector<Decoration>& type1_decorations,
const vector<Decoration>& type2_decorations) const;
};
#define DIAG(INDEX) \
position->index += INDEX; \
libspirv::DiagnosticStream helper(*position, consumer_, \
SPV_ERROR_INVALID_DIAGNOSTIC); \
helper
#if 0
template <>
bool idUsage::isValid<SpvOpUndef>(const spv_instruction_t *inst,
const spv_opcode_desc) {
assert(0 && "Unimplemented!");
return false;
}
#endif // 0
template <>
bool idUsage::isValid<SpvOpMemberName>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto typeIndex = 1;
auto type = module_.FindDef(inst->words[typeIndex]);
if (!type || SpvOpTypeStruct != type->opcode()) {
DIAG(typeIndex) << "OpMemberName Type <id> '" << inst->words[typeIndex]
<< "' is not a struct type.";
return false;
}
auto memberIndex = 2;
auto member = inst->words[memberIndex];
auto memberCount = (uint32_t)(type->words().size() - 2);
if (memberCount <= member) {
DIAG(memberIndex) << "OpMemberName Member <id> '"
<< inst->words[memberIndex]
<< "' index is larger than Type <id> '" << type->id()
<< "'s member count.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpLine>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto fileIndex = 1;
auto file = module_.FindDef(inst->words[fileIndex]);
if (!file || SpvOpString != file->opcode()) {
DIAG(fileIndex) << "OpLine Target <id> '" << inst->words[fileIndex]
<< "' is not an OpString.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpDecorate>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto decorationIndex = 2;
auto decoration = inst->words[decorationIndex];
if (decoration == SpvDecorationSpecId) {
auto targetIndex = 1;
auto target = module_.FindDef(inst->words[targetIndex]);
if (!target || !spvOpcodeIsScalarSpecConstant(target->opcode())) {
DIAG(targetIndex) << "OpDecorate SpectId decoration target <id> '"
<< inst->words[decorationIndex]
<< "' is not a scalar specialization constant.";
return false;
}
}
// TODO: Add validations for all decorations.
return true;
}
template <>
bool idUsage::isValid<SpvOpMemberDecorate>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto structTypeIndex = 1;
auto structType = module_.FindDef(inst->words[structTypeIndex]);
if (!structType || SpvOpTypeStruct != structType->opcode()) {
DIAG(structTypeIndex) << "OpMemberDecorate Structure type <id> '"
<< inst->words[structTypeIndex]
<< "' is not a struct type.";
return false;
}
auto memberIndex = 2;
auto member = inst->words[memberIndex];
auto memberCount = static_cast<uint32_t>(structType->words().size() - 2);
if (memberCount < member) {
DIAG(memberIndex) << "Index " << member
<< " provided in OpMemberDecorate for struct <id> "
<< inst->words[structTypeIndex]
<< " is out of bounds. The structure has " << memberCount
<< " members. Largest valid index is " << memberCount - 1
<< ".";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpDecorationGroup>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto decorationGroupIndex = 1;
auto decorationGroup = module_.FindDef(inst->words[decorationGroupIndex]);
for (auto pair : decorationGroup->uses()) {
auto use = pair.first;
if (use->opcode() != SpvOpDecorate && use->opcode() != SpvOpGroupDecorate &&
use->opcode() != SpvOpGroupMemberDecorate &&
use->opcode() != SpvOpName) {
DIAG(decorationGroupIndex) << "Result id of OpDecorationGroup can only "
<< "be targeted by OpName, OpGroupDecorate, "
<< "OpDecorate, and OpGroupMemberDecorate";
return false;
}
}
return true;
}
template <>
bool idUsage::isValid<SpvOpGroupDecorate>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto decorationGroupIndex = 1;
auto decorationGroup = module_.FindDef(inst->words[decorationGroupIndex]);
if (!decorationGroup || SpvOpDecorationGroup != decorationGroup->opcode()) {
DIAG(decorationGroupIndex)
<< "OpGroupDecorate Decoration group <id> '"
<< inst->words[decorationGroupIndex] << "' is not a decoration group.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpGroupMemberDecorate>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto decorationGroupIndex = 1;
auto decorationGroup = module_.FindDef(inst->words[decorationGroupIndex]);
if (!decorationGroup || SpvOpDecorationGroup != decorationGroup->opcode()) {
DIAG(decorationGroupIndex)
<< "OpGroupMemberDecorate Decoration group <id> '"
<< inst->words[decorationGroupIndex] << "' is not a decoration group.";
return false;
}
// Grammar checks ensures that the number of arguments to this instruction
// is an odd number: 1 decoration group + (id,literal) pairs.
for (size_t i = 2; i + 1 < inst->words.size(); i = i + 2) {
const uint32_t struct_id = inst->words[i];
const uint32_t index = inst->words[i + 1];
auto struct_instr = module_.FindDef(struct_id);
if (!struct_instr || SpvOpTypeStruct != struct_instr->opcode()) {
DIAG(i) << "OpGroupMemberDecorate Structure type <id> '" << struct_id
<< "' is not a struct type.";
return false;
}
const uint32_t num_struct_members =
static_cast<uint32_t>(struct_instr->words().size() - 2);
if (index >= num_struct_members) {
DIAG(i) << "Index " << index
<< " provided in OpGroupMemberDecorate for struct <id> "
<< struct_id << " is out of bounds. The structure has "
<< num_struct_members << " members. Largest valid index is "
<< num_struct_members - 1 << ".";
return false;
}
}
return true;
}
#if 0
template <>
bool idUsage::isValid<SpvOpExtInst>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif // 0
template <>
bool idUsage::isValid<SpvOpEntryPoint>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto entryPointIndex = 2;
auto entryPoint = module_.FindDef(inst->words[entryPointIndex]);
if (!entryPoint || SpvOpFunction != entryPoint->opcode()) {
DIAG(entryPointIndex) << "OpEntryPoint Entry Point <id> '"
<< inst->words[entryPointIndex]
<< "' is not a function.";
return false;
}
// don't check kernel function signatures
const SpvExecutionModel executionModel = SpvExecutionModel(inst->words[1]);
if (executionModel != SpvExecutionModelKernel) {
// TODO: Check the entry point signature is void main(void), may be subject
// to change
auto entryPointType = module_.FindDef(entryPoint->words()[4]);
if (!entryPointType || 3 != entryPointType->words().size()) {
DIAG(entryPointIndex)
<< "OpEntryPoint Entry Point <id> '" << inst->words[entryPointIndex]
<< "'s function parameter count is not zero.";
return false;
}
}
std::stack<uint32_t> call_stack;
std::set<uint32_t> visited;
call_stack.push(entryPoint->id());
while (!call_stack.empty()) {
const uint32_t called_func_id = call_stack.top();
call_stack.pop();
if (!visited.insert(called_func_id).second) continue;
const Function* called_func = module_.function(called_func_id);
assert(called_func);
std::string reason;
if (!called_func->IsCompatibleWithExecutionModel(executionModel, &reason)) {
DIAG(entryPointIndex)
<< "OpEntryPoint Entry Point <id> '" << inst->words[entryPointIndex]
<< "'s callgraph contains function <id> " << called_func_id
<< ", which cannot be used with the current execution model:\n"
<< reason;
return false;
}
for (uint32_t new_call : called_func->function_call_targets()) {
call_stack.push(new_call);
}
}
auto returnType = module_.FindDef(entryPoint->type_id());
if (!returnType || SpvOpTypeVoid != returnType->opcode()) {
DIAG(entryPointIndex) << "OpEntryPoint Entry Point <id> '"
<< inst->words[entryPointIndex]
<< "'s function return type is not void.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpExecutionMode>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto entryPointIndex = 1;
auto entryPointID = inst->words[entryPointIndex];
auto found =
std::find(entry_points_.cbegin(), entry_points_.cend(), entryPointID);
if (found == entry_points_.cend()) {
DIAG(entryPointIndex) << "OpExecutionMode Entry Point <id> '"
<< inst->words[entryPointIndex]
<< "' is not the Entry Point "
"operand of an OpEntryPoint.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypeVector>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto componentIndex = 2;
auto componentType = module_.FindDef(inst->words[componentIndex]);
if (!componentType || !spvOpcodeIsScalarType(componentType->opcode())) {
DIAG(componentIndex) << "OpTypeVector Component Type <id> '"
<< inst->words[componentIndex]
<< "' is not a scalar type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypeMatrix>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto columnTypeIndex = 2;
auto columnType = module_.FindDef(inst->words[columnTypeIndex]);
if (!columnType || SpvOpTypeVector != columnType->opcode()) {
DIAG(columnTypeIndex) << "OpTypeMatrix Column Type <id> '"
<< inst->words[columnTypeIndex]
<< "' is not a vector.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypeSampler>(const spv_instruction_t*,
const spv_opcode_desc) {
// OpTypeSampler takes no arguments in Rev31 and beyond.
return true;
}
// True if the integer constant is > 0. constWords are words of the
// constant-defining instruction (either OpConstant or
// OpSpecConstant). typeWords are the words of the constant's-type-defining
// OpTypeInt.
bool aboveZero(const vector<uint32_t>& constWords,
const vector<uint32_t>& typeWords) {
const uint32_t width = typeWords[2];
const bool is_signed = typeWords[3] > 0;
const uint32_t loWord = constWords[3];
if (width > 32) {
// The spec currently doesn't allow integers wider than 64 bits.
const uint32_t hiWord = constWords[4]; // Must exist, per spec.
if (is_signed && (hiWord >> 31)) return false;
return (loWord | hiWord) > 0;
} else {
if (is_signed && (loWord >> 31)) return false;
return loWord > 0;
}
}
template <>
bool idUsage::isValid<SpvOpTypeArray>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto elementTypeIndex = 2;
auto elementType = module_.FindDef(inst->words[elementTypeIndex]);
if (!elementType || !spvOpcodeGeneratesType(elementType->opcode())) {
DIAG(elementTypeIndex) << "OpTypeArray Element Type <id> '"
<< inst->words[elementTypeIndex]
<< "' is not a type.";
return false;
}
auto lengthIndex = 3;
auto length = module_.FindDef(inst->words[lengthIndex]);
if (!length || !spvOpcodeIsConstant(length->opcode())) {
DIAG(lengthIndex) << "OpTypeArray Length <id> '" << inst->words[lengthIndex]
<< "' is not a scalar constant type.";
return false;
}
// NOTE: Check the initialiser value of the constant
auto constInst = length->words();
auto constResultTypeIndex = 1;
auto constResultType = module_.FindDef(constInst[constResultTypeIndex]);
if (!constResultType || SpvOpTypeInt != constResultType->opcode()) {
DIAG(lengthIndex) << "OpTypeArray Length <id> '" << inst->words[lengthIndex]
<< "' is not a constant integer type.";
return false;
}
switch (length->opcode()) {
case SpvOpSpecConstant:
case SpvOpConstant:
if (aboveZero(length->words(), constResultType->words())) break;
// Else fall through!
case SpvOpConstantNull: {
DIAG(lengthIndex) << "OpTypeArray Length <id> '"
<< inst->words[lengthIndex]
<< "' default value must be at least 1.";
return false;
}
case SpvOpSpecConstantOp:
// Assume it's OK, rather than try to evaluate the operation.
break;
default:
assert(0 && "bug in spvOpcodeIsConstant() or result type isn't int");
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypeRuntimeArray>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto elementTypeIndex = 2;
auto elementType = module_.FindDef(inst->words[elementTypeIndex]);
if (!elementType || !spvOpcodeGeneratesType(elementType->opcode())) {
DIAG(elementTypeIndex) << "OpTypeRuntimeArray Element Type <id> '"
<< inst->words[elementTypeIndex]
<< "' is not a type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypeStruct>(const spv_instruction_t* inst,
const spv_opcode_desc) {
ValidationState_t& vstate = const_cast<ValidationState_t&>(module_);
const uint32_t struct_id = inst->words[1];
for (size_t memberTypeIndex = 2; memberTypeIndex < inst->words.size();
++memberTypeIndex) {
auto memberTypeId = inst->words[memberTypeIndex];
auto memberType = module_.FindDef(memberTypeId);
if (!memberType || !spvOpcodeGeneratesType(memberType->opcode())) {
DIAG(memberTypeIndex)
<< "OpTypeStruct Member Type <id> '" << inst->words[memberTypeIndex]
<< "' is not a type.";
return false;
}
if (SpvOpTypeStruct == memberType->opcode() &&
module_.IsStructTypeWithBuiltInMember(memberTypeId)) {
DIAG(memberTypeIndex)
<< "Structure <id> " << memberTypeId
<< " contains members with BuiltIn decoration. Therefore this "
"structure may not be contained as a member of another structure "
"type. Structure <id> "
<< struct_id << " contains structure <id> " << memberTypeId << ".";
return false;
}
if (module_.IsForwardPointer(memberTypeId)) {
if (memberType->opcode() != SpvOpTypePointer) {
DIAG(memberTypeIndex) << "Found a forward reference to a non-pointer "
"type in OpTypeStruct instruction.";
return false;
}
// If we're dealing with a forward pointer:
// Find out the type that the pointer is pointing to (must be struct)
// word 3 is the <id> of the type being pointed to.
auto typePointingTo = module_.FindDef(memberType->words()[3]);
if (typePointingTo && typePointingTo->opcode() != SpvOpTypeStruct) {
// Forward declared operands of a struct may only point to a struct.
DIAG(memberTypeIndex)
<< "A forward reference operand in an OpTypeStruct must be an "
"OpTypePointer that points to an OpTypeStruct. "
"Found OpTypePointer that points to Op"
<< spvOpcodeString(static_cast<SpvOp>(typePointingTo->opcode()))
<< ".";
return false;
}
}
}
std::unordered_set<uint32_t> built_in_members;
for (auto decoration : vstate.id_decorations(struct_id)) {
if (decoration.dec_type() == SpvDecorationBuiltIn &&
decoration.struct_member_index() != Decoration::kInvalidMember) {
built_in_members.insert(decoration.struct_member_index());
}
}
int num_struct_members = static_cast<int>(inst->words.size() - 2);
int num_builtin_members = static_cast<int>(built_in_members.size());
if (num_builtin_members > 0 && num_builtin_members != num_struct_members) {
DIAG(0)
<< "When BuiltIn decoration is applied to a structure-type member, "
"all members of that structure type must also be decorated with "
"BuiltIn (No allowed mixing of built-in variables and "
"non-built-in variables within a single structure). Structure id "
<< struct_id << " does not meet this requirement.";
return false;
}
if (num_builtin_members > 0) {
vstate.RegisterStructTypeWithBuiltInMember(struct_id);
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypePointer>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto typeIndex = 3;
auto type = module_.FindDef(inst->words[typeIndex]);
if (!type || !spvOpcodeGeneratesType(type->opcode())) {
DIAG(typeIndex) << "OpTypePointer Type <id> '" << inst->words[typeIndex]
<< "' is not a type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypeFunction>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto returnTypeIndex = 2;
auto returnType = module_.FindDef(inst->words[returnTypeIndex]);
if (!returnType || !spvOpcodeGeneratesType(returnType->opcode())) {
DIAG(returnTypeIndex) << "OpTypeFunction Return Type <id> '"
<< inst->words[returnTypeIndex] << "' is not a type.";
return false;
}
size_t num_args = 0;
for (size_t paramTypeIndex = 3; paramTypeIndex < inst->words.size();
++paramTypeIndex, ++num_args) {
auto paramType = module_.FindDef(inst->words[paramTypeIndex]);
if (!paramType || !spvOpcodeGeneratesType(paramType->opcode())) {
DIAG(paramTypeIndex) << "OpTypeFunction Parameter Type <id> '"
<< inst->words[paramTypeIndex] << "' is not a type.";
return false;
}
}
const uint32_t num_function_args_limit =
module_.options()->universal_limits_.max_function_args;
if (num_args > num_function_args_limit) {
DIAG(returnTypeIndex) << "OpTypeFunction may not take more than "
<< num_function_args_limit
<< " arguments. OpTypeFunction <id> '"
<< inst->words[1] << "' has " << num_args
<< " arguments.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypePipe>(const spv_instruction_t*,
const spv_opcode_desc) {
// OpTypePipe has no ID arguments.
return true;
}
template <>
bool idUsage::isValid<SpvOpConstantTrue>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || SpvOpTypeBool != resultType->opcode()) {
DIAG(resultTypeIndex) << "OpConstantTrue Result Type <id> '"
<< inst->words[resultTypeIndex]
<< "' is not a boolean type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpConstantFalse>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || SpvOpTypeBool != resultType->opcode()) {
DIAG(resultTypeIndex) << "OpConstantFalse Result Type <id> '"
<< inst->words[resultTypeIndex]
<< "' is not a boolean type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpConstantComposite>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || !spvOpcodeIsComposite(resultType->opcode())) {
DIAG(resultTypeIndex) << "OpConstantComposite Result Type <id> '"
<< inst->words[resultTypeIndex]
<< "' is not a composite type.";
return false;
}
auto constituentCount = inst->words.size() - 3;
switch (resultType->opcode()) {
case SpvOpTypeVector: {
auto componentCount = resultType->words()[3];
if (componentCount != constituentCount) {
// TODO: Output ID's on diagnostic
DIAG(inst->words.size() - 1)
<< "OpConstantComposite Constituent <id> count does not match "
"Result Type <id> '"
<< resultType->id() << "'s vector component count.";
return false;
}
auto componentType = module_.FindDef(resultType->words()[2]);
assert(componentType);
for (size_t constituentIndex = 3; constituentIndex < inst->words.size();
constituentIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
if (!constituent ||
!spvOpcodeIsConstantOrUndef(constituent->opcode())) {
DIAG(constituentIndex) << "OpConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' is not a constant or undef.";
return false;
}
auto constituentResultType = module_.FindDef(constituent->type_id());
if (!constituentResultType ||
componentType->opcode() != constituentResultType->opcode()) {
DIAG(constituentIndex)
<< "OpConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "'s type does not match Result Type <id> '" << resultType->id()
<< "'s vector element type.";
return false;
}
}
} break;
case SpvOpTypeMatrix: {
auto columnCount = resultType->words()[3];
if (columnCount != constituentCount) {
// TODO: Output ID's on diagnostic
DIAG(inst->words.size() - 1)
<< "OpConstantComposite Constituent <id> count does not match "
"Result Type <id> '"
<< resultType->id() << "'s matrix column count.";
return false;
}
auto columnType = module_.FindDef(resultType->words()[2]);
assert(columnType);
auto componentCount = columnType->words()[3];
auto componentType = module_.FindDef(columnType->words()[2]);
assert(componentType);
for (size_t constituentIndex = 3; constituentIndex < inst->words.size();
constituentIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
if (!constituent || !(SpvOpConstantComposite == constituent->opcode() ||
SpvOpUndef == constituent->opcode())) {
// The message says "... or undef" because the spec does not say
// undef is a constant.
DIAG(constituentIndex) << "OpConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' is not a constant composite or undef.";
return false;
}
auto vector = module_.FindDef(constituent->type_id());
assert(vector);
if (columnType->opcode() != vector->opcode()) {
DIAG(constituentIndex)
<< "OpConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' type does not match Result Type <id> '" << resultType->id()
<< "'s matrix column type.";
return false;
}
auto vectorComponentType = module_.FindDef(vector->words()[2]);
assert(vectorComponentType);
if (componentType->id() != vectorComponentType->id()) {
DIAG(constituentIndex)
<< "OpConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' component type does not match Result Type <id> '"
<< resultType->id() << "'s matrix column component type.";
return false;
}
if (componentCount != vector->words()[3]) {
DIAG(constituentIndex)
<< "OpConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' vector component count does not match Result Type <id> '"
<< resultType->id() << "'s vector component count.";
return false;
}
}
} break;
case SpvOpTypeArray: {
auto elementType = module_.FindDef(resultType->words()[2]);
assert(elementType);
auto length = module_.FindDef(resultType->words()[3]);
assert(length);
if (length->words()[3] != constituentCount) {
DIAG(inst->words.size() - 1)
<< "OpConstantComposite Constituent count does not match "
"Result Type <id> '"
<< resultType->id() << "'s array length.";
return false;
}
for (size_t constituentIndex = 3; constituentIndex < inst->words.size();
constituentIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
if (!constituent ||
!spvOpcodeIsConstantOrUndef(constituent->opcode())) {
DIAG(constituentIndex) << "OpConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' is not a constant or undef.";
return false;
}
auto constituentType = module_.FindDef(constituent->type_id());
assert(constituentType);
if (elementType->id() != constituentType->id()) {
DIAG(constituentIndex)
<< "OpConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "'s type does not match Result Type <id> '" << resultType->id()
<< "'s array element type.";
return false;
}
}
} break;
case SpvOpTypeStruct: {
auto memberCount = resultType->words().size() - 2;
if (memberCount != constituentCount) {
DIAG(resultTypeIndex) << "OpConstantComposite Constituent <id> '"
<< inst->words[resultTypeIndex]
<< "' count does not match Result Type <id> '"
<< resultType->id() << "'s struct member count.";
return false;
}
for (uint32_t constituentIndex = 3, memberIndex = 2;
constituentIndex < inst->words.size();
constituentIndex++, memberIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
if (!constituent ||
!spvOpcodeIsConstantOrUndef(constituent->opcode())) {
DIAG(constituentIndex) << "OpConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' is not a constant or undef.";
return false;
}
auto constituentType = module_.FindDef(constituent->type_id());
assert(constituentType);
auto memberType = module_.FindDef(resultType->words()[memberIndex]);
assert(memberType);
if (memberType->id() != constituentType->id()) {
DIAG(constituentIndex)
<< "OpConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' type does not match the Result Type <id> '"
<< resultType->id() << "'s member type.";
return false;
}
}
} break;
default: { assert(0 && "Unreachable!"); } break;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpConstantSampler>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || SpvOpTypeSampler != resultType->opcode()) {
DIAG(resultTypeIndex) << "OpConstantSampler Result Type <id> '"
<< inst->words[resultTypeIndex]
<< "' is not a sampler type.";
return false;
}
return true;
}
// True if instruction defines a type that can have a null value, as defined by
// the SPIR-V spec. Tracks composite-type components through module to check
// nullability transitively.
bool IsTypeNullable(const vector<uint32_t>& instruction,
const ValidationState_t& module) {
uint16_t opcode;
uint16_t word_count;
spvOpcodeSplit(instruction[0], &word_count, &opcode);
switch (static_cast<SpvOp>(opcode)) {
case SpvOpTypeBool:
case SpvOpTypeInt:
case SpvOpTypeFloat:
case SpvOpTypePointer:
case SpvOpTypeEvent:
case SpvOpTypeDeviceEvent:
case SpvOpTypeReserveId:
case SpvOpTypeQueue:
return true;
case SpvOpTypeArray:
case SpvOpTypeMatrix:
case SpvOpTypeVector: {
auto base_type = module.FindDef(instruction[2]);
return base_type && IsTypeNullable(base_type->words(), module);
}
case SpvOpTypeStruct: {
for (size_t elementIndex = 2; elementIndex < instruction.size();
++elementIndex) {
auto element = module.FindDef(instruction[elementIndex]);
if (!element || !IsTypeNullable(element->words(), module)) return false;
}
return true;
}
default:
return false;
}
}
template <>
bool idUsage::isValid<SpvOpConstantNull>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || !IsTypeNullable(resultType->words(), module_)) {
DIAG(resultTypeIndex) << "OpConstantNull Result Type <id> '"
<< inst->words[resultTypeIndex]
<< "' cannot have a null value.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpSpecConstantTrue>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || SpvOpTypeBool != resultType->opcode()) {
DIAG(resultTypeIndex) << "OpSpecConstantTrue Result Type <id> '"
<< inst->words[resultTypeIndex]
<< "' is not a boolean type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpSpecConstantFalse>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || SpvOpTypeBool != resultType->opcode()) {
DIAG(resultTypeIndex) << "OpSpecConstantFalse Result Type <id> '"
<< inst->words[resultTypeIndex]
<< "' is not a boolean type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpSampledImage>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 2;
auto resultID = inst->words[resultTypeIndex];
auto sampledImageInstr = module_.FindDef(resultID);
// We need to validate 2 things:
// * All OpSampledImage instructions must be in the same block in which their
// Result <id> are consumed.
// * Result <id> from OpSampledImage instructions must not appear as operands
// to OpPhi instructions or OpSelect instructions, or any instructions other
// than the image lookup and query instructions specified to take an operand
// whose type is OpTypeSampledImage.
std::vector<uint32_t> consumers = module_.getSampledImageConsumers(resultID);
if (!consumers.empty()) {
for (auto consumer_id : consumers) {
auto consumer_instr = module_.FindDef(consumer_id);
auto consumer_opcode = consumer_instr->opcode();
if (consumer_instr->block() != sampledImageInstr->block()) {
DIAG(resultTypeIndex)
<< "All OpSampledImage instructions must be in the same block in "
"which their Result <id> are consumed. OpSampledImage Result "
"Type <id> '"
<< resultID
<< "' has a consumer in a different basic "
"block. The consumer instruction <id> is '"
<< consumer_id << "'.";
return false;
}
// TODO: The following check is incomplete. We should also check that the
// Sampled Image is not used by instructions that should not take
// SampledImage as an argument. We could find the list of valid
// instructions by scanning for "Sampled Image" in the operand description
// field in the grammar file.
if (consumer_opcode == SpvOpPhi || consumer_opcode == SpvOpSelect) {
DIAG(resultTypeIndex)
<< "Result <id> from OpSampledImage instruction must not appear as "
"operands of Op"
<< spvOpcodeString(static_cast<SpvOp>(consumer_opcode)) << "."
<< " Found result <id> '" << resultID << "' as an operand of <id> '"
<< consumer_id << "'.";
return false;
}
}
}
return true;
}
template <>
bool idUsage::isValid<SpvOpSpecConstantComposite>(const spv_instruction_t* inst,
const spv_opcode_desc) {
// The result type must be a composite type.
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || !spvOpcodeIsComposite(resultType->opcode())) {
DIAG(resultTypeIndex) << "OpSpecConstantComposite Result Type <id> '"
<< inst->words[resultTypeIndex]
<< "' is not a composite type.";
return false;
}
// Validation checks differ based on the type of composite type.
auto constituentCount = inst->words.size() - 3;
switch (resultType->opcode()) {
// For Vectors, the following must be met:
// * Number of constituents in the result type and the vector must match.
// * All the components of the vector must have the same type (or specialize
// to the same type). OpConstant and OpSpecConstant are allowed.
// To check that condition, we check each supplied value argument's type
// against the element type of the result type.
case SpvOpTypeVector: {
auto componentCount = resultType->words()[3];
if (componentCount != constituentCount) {
DIAG(inst->words.size() - 1)
<< "OpSpecConstantComposite Constituent <id> count does not match "
"Result Type <id> '"
<< resultType->id() << "'s vector component count.";
return false;
}
auto componentType = module_.FindDef(resultType->words()[2]);
assert(componentType);
for (size_t constituentIndex = 3; constituentIndex < inst->words.size();
constituentIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
if (!constituent ||
!spvOpcodeIsConstantOrUndef(constituent->opcode())) {
DIAG(constituentIndex) << "OpSpecConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' is not a constant or undef.";
return false;
}
auto constituentResultType = module_.FindDef(constituent->type_id());
if (!constituentResultType ||
componentType->opcode() != constituentResultType->opcode()) {
DIAG(constituentIndex)
<< "OpSpecConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "'s type does not match Result Type <id> '" << resultType->id()
<< "'s vector element type.";
return false;
}
}
break;
}
case SpvOpTypeMatrix: {
auto columnCount = resultType->words()[3];
if (columnCount != constituentCount) {
DIAG(inst->words.size() - 1)
<< "OpSpecConstantComposite Constituent <id> count does not match "
"Result Type <id> '"
<< resultType->id() << "'s matrix column count.";
return false;
}
auto columnType = module_.FindDef(resultType->words()[2]);
assert(columnType);
auto componentCount = columnType->words()[3];
auto componentType = module_.FindDef(columnType->words()[2]);
assert(componentType);
for (size_t constituentIndex = 3; constituentIndex < inst->words.size();
constituentIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
auto constituentOpCode = constituent->opcode();
if (!constituent || !(SpvOpSpecConstantComposite == constituentOpCode ||
SpvOpConstantComposite == constituentOpCode ||
SpvOpUndef == constituentOpCode)) {
// The message says "... or undef" because the spec does not say
// undef is a constant.
DIAG(constituentIndex) << "OpSpecConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' is not a constant composite or undef.";
return false;
}
auto vector = module_.FindDef(constituent->type_id());
assert(vector);
if (columnType->opcode() != vector->opcode()) {
DIAG(constituentIndex)
<< "OpSpecConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' type does not match Result Type <id> '" << resultType->id()
<< "'s matrix column type.";
return false;
}
auto vectorComponentType = module_.FindDef(vector->words()[2]);
assert(vectorComponentType);
if (componentType->id() != vectorComponentType->id()) {
DIAG(constituentIndex)
<< "OpSpecConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' component type does not match Result Type <id> '"
<< resultType->id() << "'s matrix column component type.";
return false;
}
if (componentCount != vector->words()[3]) {
DIAG(constituentIndex)
<< "OpSpecConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' vector component count does not match Result Type <id> '"
<< resultType->id() << "'s vector component count.";
return false;
}
}
break;
}
case SpvOpTypeArray: {
auto elementType = module_.FindDef(resultType->words()[2]);
assert(elementType);
auto length = module_.FindDef(resultType->words()[3]);
assert(length);
if (length->words()[3] != constituentCount) {
DIAG(inst->words.size() - 1)
<< "OpSpecConstantComposite Constituent count does not match "
"Result Type <id> '"
<< resultType->id() << "'s array length.";
return false;
}
for (size_t constituentIndex = 3; constituentIndex < inst->words.size();
constituentIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
if (!constituent ||
!spvOpcodeIsConstantOrUndef(constituent->opcode())) {
DIAG(constituentIndex) << "OpSpecConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' is not a constant or undef.";
return false;
}
auto constituentType = module_.FindDef(constituent->type_id());
assert(constituentType);
if (elementType->id() != constituentType->id()) {
DIAG(constituentIndex)
<< "OpSpecConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "'s type does not match Result Type <id> '" << resultType->id()
<< "'s array element type.";
return false;
}
}
break;
}
case SpvOpTypeStruct: {
auto memberCount = resultType->words().size() - 2;
if (memberCount != constituentCount) {
DIAG(resultTypeIndex) << "OpSpecConstantComposite Constituent <id> '"
<< inst->words[resultTypeIndex]
<< "' count does not match Result Type <id> '"
<< resultType->id() << "'s struct member count.";
return false;
}
for (uint32_t constituentIndex = 3, memberIndex = 2;
constituentIndex < inst->words.size();
constituentIndex++, memberIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
if (!constituent ||
!spvOpcodeIsConstantOrUndef(constituent->opcode())) {
DIAG(constituentIndex) << "OpSpecConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' is not a constant or undef.";
return false;
}
auto constituentType = module_.FindDef(constituent->type_id());
assert(constituentType);
auto memberType = module_.FindDef(resultType->words()[memberIndex]);
assert(memberType);
if (memberType->id() != constituentType->id()) {
DIAG(constituentIndex)
<< "OpSpecConstantComposite Constituent <id> '"
<< inst->words[constituentIndex]
<< "' type does not match the Result Type <id> '"
<< resultType->id() << "'s member type.";
return false;
}
}
break;
}
default: { assert(0 && "Unreachable!"); } break;
}
return true;
}
#if 0
template <>
bool idUsage::isValid<SpvOpSpecConstantOp>(const spv_instruction_t *inst) {}
#endif
template <>
bool idUsage::isValid<SpvOpVariable>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || SpvOpTypePointer != resultType->opcode()) {
DIAG(resultTypeIndex) << "OpVariable Result Type <id> '"
<< inst->words[resultTypeIndex]
<< "' is not a pointer type.";
return false;
}
const auto initialiserIndex = 4;
if (initialiserIndex < inst->words.size()) {
const auto initialiser = module_.FindDef(inst->words[initialiserIndex]);
const auto storageClassIndex = 3;
const auto is_module_scope_var =
initialiser && (initialiser->opcode() == SpvOpVariable) &&
(initialiser->word(storageClassIndex) != SpvStorageClassFunction);
const auto is_constant =
initialiser && spvOpcodeIsConstant(initialiser->opcode());
if (!initialiser || !(is_constant || is_module_scope_var)) {
DIAG(initialiserIndex)
<< "OpVariable Initializer <id> '" << inst->words[initialiserIndex]
<< "' is not a constant or module-scope variable.";
return false;
}
}
return true;
}
template <>
bool idUsage::isValid<SpvOpLoad>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType) {
DIAG(resultTypeIndex) << "OpLoad Result Type <id> '"
<< inst->words[resultTypeIndex] << "' is not defind.";
return false;
}
const bool uses_variable_pointer =
module_.features().variable_pointers ||
module_.features().variable_pointers_storage_buffer;
auto pointerIndex = 3;
auto pointer = module_.FindDef(inst->words[pointerIndex]);
if (!pointer ||
(addressingModel == SpvAddressingModelLogical &&
((!uses_variable_pointer &&
!spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
(uses_variable_pointer &&
!spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
DIAG(pointerIndex) << "OpLoad Pointer <id> '" << inst->words[pointerIndex]
<< "' is not a logical pointer.";
return false;
}
auto pointerType = module_.FindDef(pointer->type_id());
if (!pointerType || pointerType->opcode() != SpvOpTypePointer) {
DIAG(pointerIndex) << "OpLoad type for pointer <id> '"
<< inst->words[pointerIndex]
<< "' is not a pointer type.";
return false;
}
auto pointeeType = module_.FindDef(pointerType->words()[3]);
if (!pointeeType || resultType->id() != pointeeType->id()) {
DIAG(resultTypeIndex) << "OpLoad Result Type <id> '"
<< inst->words[resultTypeIndex]
<< "' does not match Pointer <id> '" << pointer->id()
<< "'s type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpStore>(const spv_instruction_t* inst,
const spv_opcode_desc) {
const bool uses_variable_pointer =
module_.features().variable_pointers ||
module_.features().variable_pointers_storage_buffer;
const auto pointerIndex = 1;
auto pointer = module_.FindDef(inst->words[pointerIndex]);
if (!pointer ||
(addressingModel == SpvAddressingModelLogical &&
((!uses_variable_pointer &&
!spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
(uses_variable_pointer &&
!spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
DIAG(pointerIndex) << "OpStore Pointer <id> '" << inst->words[pointerIndex]
<< "' is not a logical pointer.";
return false;
}
auto pointerType = module_.FindDef(pointer->type_id());
if (!pointer || pointerType->opcode() != SpvOpTypePointer) {
DIAG(pointerIndex) << "OpStore type for pointer <id> '"
<< inst->words[pointerIndex]
<< "' is not a pointer type.";
return false;
}
auto type = module_.FindDef(pointerType->words()[3]);
assert(type);
if (SpvOpTypeVoid == type->opcode()) {
DIAG(pointerIndex) << "OpStore Pointer <id> '" << inst->words[pointerIndex]
<< "'s type is void.";
return false;
}
// validate storage class
{
uint32_t dataType;
uint32_t storageClass;
if (!module_.GetPointerTypeInfo(pointerType->id(), &dataType,
&storageClass)) {
DIAG(pointerIndex) << "OpStore Pointer <id> '"
<< inst->words[pointerIndex]
<< "' is not pointer type";
return false;
}
if (storageClass == SpvStorageClassUniformConstant ||
storageClass == SpvStorageClassInput ||
storageClass == SpvStorageClassPushConstant) {
DIAG(pointerIndex) << "OpStore Pointer <id> '"
<< inst->words[pointerIndex]
<< "' storage class is read-only";
return false;
}
}
auto objectIndex = 2;
auto object = module_.FindDef(inst->words[objectIndex]);
if (!object || !object->type_id()) {
DIAG(objectIndex) << "OpStore Object <id> '" << inst->words[objectIndex]
<< "' is not an object.";
return false;
}
auto objectType = module_.FindDef(object->type_id());
assert(objectType);
if (SpvOpTypeVoid == objectType->opcode()) {
DIAG(objectIndex) << "OpStore Object <id> '" << inst->words[objectIndex]
<< "'s type is void.";
return false;
}
if (type->id() != objectType->id()) {
if (!module_.options()->relax_struct_store ||
type->opcode() != SpvOpTypeStruct ||
objectType->opcode() != SpvOpTypeStruct) {
DIAG(pointerIndex) << "OpStore Pointer <id> '"
<< inst->words[pointerIndex]
<< "'s type does not match Object <id> '"
<< object->id() << "'s type.";
return false;
}
// TODO: Check for layout compatible matricies and arrays as well.
if (!AreLayoutCompatibleStructs(type, objectType)) {
DIAG(pointerIndex) << "OpStore Pointer <id> '"
<< inst->words[pointerIndex]
<< "'s layout does not match Object <id> '"
<< object->id() << "'s layout.";
return false;
}
}
return true;
}
template <>
bool idUsage::isValid<SpvOpCopyMemory>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto targetIndex = 1;
auto target = module_.FindDef(inst->words[targetIndex]);
if (!target) return false;
auto sourceIndex = 2;
auto source = module_.FindDef(inst->words[sourceIndex]);
if (!source) return false;
auto targetPointerType = module_.FindDef(target->type_id());
assert(targetPointerType);
auto targetType = module_.FindDef(targetPointerType->words()[3]);
assert(targetType);
auto sourcePointerType = module_.FindDef(source->type_id());
assert(sourcePointerType);
auto sourceType = module_.FindDef(sourcePointerType->words()[3]);
assert(sourceType);
if (targetType->id() != sourceType->id()) {
DIAG(sourceIndex) << "OpCopyMemory Target <id> '"
<< inst->words[sourceIndex]
<< "'s type does not match Source <id> '"
<< sourceType->id() << "'s type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpCopyMemorySized>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto targetIndex = 1;
auto target = module_.FindDef(inst->words[targetIndex]);
if (!target) return false;
auto sourceIndex = 2;
auto source = module_.FindDef(inst->words[sourceIndex]);
if (!source) return false;
auto sizeIndex = 3;
auto size = module_.FindDef(inst->words[sizeIndex]);
if (!size) return false;
auto targetPointerType = module_.FindDef(target->type_id());
if (!targetPointerType || SpvOpTypePointer != targetPointerType->opcode()) {
DIAG(targetIndex) << "OpCopyMemorySized Target <id> '"
<< inst->words[targetIndex] << "' is not a pointer.";
return false;
}
auto sourcePointerType = module_.FindDef(source->type_id());
if (!sourcePointerType || SpvOpTypePointer != sourcePointerType->opcode()) {
DIAG(sourceIndex) << "OpCopyMemorySized Source <id> '"
<< inst->words[sourceIndex] << "' is not a pointer.";
return false;
}
switch (size->opcode()) {
// TODO: The following opcode's are assumed to be valid, refer to the
// following bug https://cvs.khronos.org/bugzilla/show_bug.cgi?id=13871 for
// clarification
case SpvOpConstant:
case SpvOpSpecConstant: {
auto sizeType = module_.FindDef(size->type_id());
assert(sizeType);
if (SpvOpTypeInt != sizeType->opcode()) {
DIAG(sizeIndex) << "OpCopyMemorySized Size <id> '"
<< inst->words[sizeIndex]
<< "'s type is not an integer type.";
return false;
}
} break;
case SpvOpVariable: {
auto pointerType = module_.FindDef(size->type_id());
assert(pointerType);
auto sizeType = module_.FindDef(pointerType->type_id());
if (!sizeType || SpvOpTypeInt != sizeType->opcode()) {
DIAG(sizeIndex) << "OpCopyMemorySized Size <id> '"
<< inst->words[sizeIndex]
<< "'s variable type is not an integer type.";
return false;
}
} break;
default:
DIAG(sizeIndex) << "OpCopyMemorySized Size <id> '"
<< inst->words[sizeIndex]
<< "' is not a constant or variable.";
return false;
}
// TODO: Check that consant is a least size 1, see the same bug as above for
// clarification?
return true;
}
template <>
bool idUsage::isValid<SpvOpAccessChain>(const spv_instruction_t* inst,
const spv_opcode_desc) {
std::string instr_name =
"Op" + std::string(spvOpcodeString(static_cast<SpvOp>(inst->opcode)));
// The result type must be OpTypePointer. Result Type is at word 1.
auto resultTypeIndex = 1;
auto resultTypeInstr = module_.FindDef(inst->words[resultTypeIndex]);
if (SpvOpTypePointer != resultTypeInstr->opcode()) {
DIAG(resultTypeIndex) << "The Result Type of " << instr_name << " <id> '"
<< inst->words[2]
<< "' must be OpTypePointer. Found Op"
<< spvOpcodeString(
static_cast<SpvOp>(resultTypeInstr->opcode()))
<< ".";
return false;
}
// Result type is a pointer. Find out what it's pointing to.
// This will be used to make sure the indexing results in the same type.
// OpTypePointer word 3 is the type being pointed to.
auto resultTypePointedTo = module_.FindDef(resultTypeInstr->word(3));
// Base must be a pointer, pointing to the base of a composite object.
auto baseIdIndex = 3;
auto baseInstr = module_.FindDef(inst->words[baseIdIndex]);
auto baseTypeInstr = module_.FindDef(baseInstr->type_id());
if (!baseTypeInstr || SpvOpTypePointer != baseTypeInstr->opcode()) {
DIAG(baseIdIndex) << "The Base <id> '" << inst->words[baseIdIndex]
<< "' in " << instr_name
<< " instruction must be a pointer.";
return false;
}
// The result pointer storage class and base pointer storage class must match.
// Word 2 of OpTypePointer is the Storage Class.
auto resultTypeStorageClass = resultTypeInstr->word(2);
auto baseTypeStorageClass = baseTypeInstr->word(2);
if (resultTypeStorageClass != baseTypeStorageClass) {
DIAG(resultTypeIndex) << "The result pointer storage class and base "
"pointer storage class in "
<< instr_name << " do not match.";
return false;
}
// The type pointed to by OpTypePointer (word 3) must be a composite type.
auto typePointedTo = module_.FindDef(baseTypeInstr->word(3));
// Check Universal Limit (SPIR-V Spec. Section 2.17).
// The number of indexes passed to OpAccessChain may not exceed 255
// The instruction includes 4 words + N words (for N indexes)
const size_t num_indexes = inst->words.size() - 4;
const size_t num_indexes_limit =
module_.options()->universal_limits_.max_access_chain_indexes;
if (num_indexes > num_indexes_limit) {
DIAG(resultTypeIndex) << "The number of indexes in " << instr_name
<< " may not exceed " << num_indexes_limit
<< ". Found " << num_indexes << " indexes.";
return false;
}
// Indexes walk the type hierarchy to the desired depth, potentially down to
// scalar granularity. The first index in Indexes will select the top-level
// member/element/component/element of the base composite. All composite
// constituents use zero-based numbering, as described by their OpType...
// instruction. The second index will apply similarly to that result, and so
// on. Once any non-composite type is reached, there must be no remaining
// (unused) indexes.
for (size_t i = 4; i < inst->words.size(); ++i) {
const uint32_t cur_word = inst->words[i];
// Earlier ID checks ensure that cur_word definition exists.
auto cur_word_instr = module_.FindDef(cur_word);
// The index must be a scalar integer type (See OpAccessChain in the Spec.)
auto indexTypeInstr = module_.FindDef(cur_word_instr->type_id());
if (!indexTypeInstr || SpvOpTypeInt != indexTypeInstr->opcode()) {
DIAG(i) << "Indexes passed to " << instr_name
<< " must be of type integer.";
return false;
}
switch (typePointedTo->opcode()) {
case SpvOpTypeMatrix:
case SpvOpTypeVector:
case SpvOpTypeArray:
case SpvOpTypeRuntimeArray: {
// In OpTypeMatrix, OpTypeVector, OpTypeArray, and OpTypeRuntimeArray,
// word 2 is the Element Type.
typePointedTo = module_.FindDef(typePointedTo->word(2));
break;
}
case SpvOpTypeStruct: {
// In case of structures, there is an additional constraint on the
// index: the index must be an OpConstant.
if (SpvOpConstant != cur_word_instr->opcode()) {
DIAG(i) << "The <id> passed to " << instr_name
<< " to index into a "
"structure must be an OpConstant.";
return false;
}
// Get the index value from the OpConstant (word 3 of OpConstant).
// OpConstant could be a signed integer. But it's okay to treat it as
// unsigned because a negative constant int would never be seen as
// correct as a struct offset, since structs can't have more than 2
// billion members.
const uint32_t cur_index = cur_word_instr->word(3);
// The index points to the struct member we want, therefore, the index
// should be less than the number of struct members.
const uint32_t num_struct_members =
static_cast<uint32_t>(typePointedTo->words().size() - 2);
if (cur_index >= num_struct_members) {
DIAG(i) << "Index is out of bounds: " << instr_name
<< " can not find index " << cur_index
<< " into the structure <id> '" << typePointedTo->id()
<< "'. This structure has " << num_struct_members
<< " members. Largest valid index is "
<< num_struct_members - 1 << ".";
return false;
}
// Struct members IDs start at word 2 of OpTypeStruct.
auto structMemberId = typePointedTo->word(cur_index + 2);
typePointedTo = module_.FindDef(structMemberId);
break;
}
default: {
// Give an error. reached non-composite type while indexes still remain.
DIAG(i) << instr_name
<< " reached non-composite type while indexes "
"still remain to be traversed.";
return false;
}
}
}
// At this point, we have fully walked down from the base using the indeces.
// The type being pointed to should be the same as the result type.
if (typePointedTo->id() != resultTypePointedTo->id()) {
DIAG(resultTypeIndex)
<< instr_name << " result type (Op"
<< spvOpcodeString(static_cast<SpvOp>(resultTypePointedTo->opcode()))
<< ") does not match the type that results from indexing into the base "
"<id> (Op"
<< spvOpcodeString(static_cast<SpvOp>(typePointedTo->opcode())) << ").";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpInBoundsAccessChain>(
const spv_instruction_t* inst, const spv_opcode_desc opcodeEntry) {
return isValid<SpvOpAccessChain>(inst, opcodeEntry);
}
template <>
bool idUsage::isValid<SpvOpPtrAccessChain>(const spv_instruction_t* inst,
const spv_opcode_desc opcodeEntry) {
// OpPtrAccessChain's validation rules are similar to OpAccessChain, with one
// difference: word 4 must be id of an integer (Element <id>).
// The grammar guarantees that there are at least 5 words in the instruction
// (i.e. if there are fewer than 5 words, the SPIR-V code will not compile.)
int elem_index = 4;
// We can remove the Element <id> from the instruction words, and simply call
// the validation code of OpAccessChain.
spv_instruction_t new_inst = *inst;
new_inst.words.erase(new_inst.words.begin() + elem_index);
return isValid<SpvOpAccessChain>(&new_inst, opcodeEntry);
}
template <>
bool idUsage::isValid<SpvOpInBoundsPtrAccessChain>(
const spv_instruction_t* inst, const spv_opcode_desc opcodeEntry) {
// Has the same validation rules as OpPtrAccessChain
return isValid<SpvOpPtrAccessChain>(inst, opcodeEntry);
}
#if 0
template <>
bool idUsage::isValid<SpvOpArrayLength>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<SpvOpImagePointer>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<SpvOpGenericPtrMemSemantics>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
template <>
bool idUsage::isValid<SpvOpFunction>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType) return false;
auto functionTypeIndex = 4;
auto functionType = module_.FindDef(inst->words[functionTypeIndex]);
if (!functionType || SpvOpTypeFunction != functionType->opcode()) {
DIAG(functionTypeIndex)
<< "OpFunction Function Type <id> '" << inst->words[functionTypeIndex]
<< "' is not a function type.";
return false;
}
auto returnType = module_.FindDef(functionType->words()[2]);
assert(returnType);
if (returnType->id() != resultType->id()) {
DIAG(resultTypeIndex) << "OpFunction Result Type <id> '"
<< inst->words[resultTypeIndex]
<< "' does not match the Function Type <id> '"
<< resultType->id() << "'s return type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpFunctionParameter>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType) return false;
// NOTE: Find OpFunction & ensure OpFunctionParameter is not out of place.
size_t paramIndex = 0;
assert(firstInst < inst && "Invalid instruction pointer");
while (firstInst != --inst) {
if (SpvOpFunction == inst->opcode) {
break;
} else if (SpvOpFunctionParameter == inst->opcode) {
paramIndex++;
}
}
auto functionType = module_.FindDef(inst->words[4]);
assert(functionType);
if (paramIndex >= functionType->words().size() - 3) {
DIAG(0) << "Too many OpFunctionParameters for " << inst->words[2]
<< ": expected " << functionType->words().size() - 3
<< " based on the function's type";
return false;
}
auto paramType = module_.FindDef(functionType->words()[paramIndex + 3]);
assert(paramType);
if (resultType->id() != paramType->id()) {
DIAG(resultTypeIndex) << "OpFunctionParameter Result Type <id> '"
<< inst->words[resultTypeIndex]
<< "' does not match the OpTypeFunction parameter "
"type of the same index.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpFunctionCall>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType) return false;
auto functionIndex = 3;
auto function = module_.FindDef(inst->words[functionIndex]);
if (!function || SpvOpFunction != function->opcode()) {
DIAG(functionIndex) << "OpFunctionCall Function <id> '"
<< inst->words[functionIndex] << "' is not a function.";
return false;
}
auto returnType = module_.FindDef(function->type_id());
assert(returnType);
if (returnType->id() != resultType->id()) {
DIAG(resultTypeIndex) << "OpFunctionCall Result Type <id> '"
<< inst->words[resultTypeIndex]
<< "'s type does not match Function <id> '"
<< returnType->id() << "'s return type.";
return false;
}
auto functionType = module_.FindDef(function->words()[4]);
assert(functionType);
auto functionCallArgCount = inst->words.size() - 4;
auto functionParamCount = functionType->words().size() - 3;
if (functionParamCount != functionCallArgCount) {
DIAG(inst->words.size() - 1)
<< "OpFunctionCall Function <id>'s parameter count does not match "
"the argument count.";
return false;
}
for (size_t argumentIndex = 4, paramIndex = 3;
argumentIndex < inst->words.size(); argumentIndex++, paramIndex++) {
auto argument = module_.FindDef(inst->words[argumentIndex]);
if (!argument) return false;
auto argumentType = module_.FindDef(argument->type_id());
assert(argumentType);
auto parameterType = module_.FindDef(functionType->words()[paramIndex]);
assert(parameterType);
if (argumentType->id() != parameterType->id()) {
DIAG(argumentIndex) << "OpFunctionCall Argument <id> '"
<< inst->words[argumentIndex]
<< "'s type does not match Function <id> '"
<< parameterType->id() << "'s parameter type.";
return false;
}
}
return true;
}
template <>
bool idUsage::isValid<SpvOpVectorShuffle>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto instr_name = [&inst]() {
std::string name =
"Op" + std::string(spvOpcodeString(static_cast<SpvOp>(inst->opcode)));
return name;
};
// Result Type must be an OpTypeVector.
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || resultType->opcode() != SpvOpTypeVector) {
DIAG(resultTypeIndex) << "The Result Type of " << instr_name()
<< " must be OpTypeVector. Found Op"
<< spvOpcodeString(
static_cast<SpvOp>(resultType->opcode()))
<< ".";
return false;
}
// The number of components in Result Type must be the same as the number of
// Component operands.
auto componentCount = inst->words.size() - 5;
auto vectorComponentCountIndex = 3;
auto resultVectorDimension = resultType->words()[vectorComponentCountIndex];
if (componentCount != resultVectorDimension) {
DIAG(inst->words.size() - 1)
<< instr_name()
<< " component literals count does not match "
"Result Type <id> '"
<< resultType->id() << "'s vector component count.";
return false;
}
// Vector 1 and Vector 2 must both have vector types, with the same Component
// Type as Result Type.
auto vector1Index = 3;
auto vector1Object = module_.FindDef(inst->words[vector1Index]);
auto vector1Type = module_.FindDef(vector1Object->type_id());
auto vector2Index = 4;
auto vector2Object = module_.FindDef(inst->words[vector2Index]);
auto vector2Type = module_.FindDef(vector2Object->type_id());
if (!vector1Type || vector1Type->opcode() != SpvOpTypeVector) {
DIAG(vector1Index) << "The type of Vector 1 must be OpTypeVector.";
return false;
}
if (!vector2Type || vector2Type->opcode() != SpvOpTypeVector) {
DIAG(vector2Index) << "The type of Vector 2 must be OpTypeVector.";
return false;
}
auto vectorComponentTypeIndex = 2;
auto resultComponentType = resultType->words()[vectorComponentTypeIndex];
auto vector1ComponentType = vector1Type->words()[vectorComponentTypeIndex];
if (vector1ComponentType != resultComponentType) {
DIAG(vector1Index) << "The Component Type of Vector 1 must be the same "
"as ResultType.";
return false;
}
auto vector2ComponentType = vector2Type->words()[vectorComponentTypeIndex];
if (vector2ComponentType != resultComponentType) {
DIAG(vector2Index) << "The Component Type of Vector 2 must be the same "
"as ResultType.";
return false;
}
// All Component literals must either be FFFFFFFF or in [0, N - 1].
auto vector1ComponentCount = vector1Type->words()[vectorComponentCountIndex];
auto vector2ComponentCount = vector2Type->words()[vectorComponentCountIndex];
auto N = vector1ComponentCount + vector2ComponentCount;
auto firstLiteralIndex = 5;
for (size_t i = firstLiteralIndex; i < inst->words.size(); ++i) {
auto literal = inst->words[i];
if (literal != 0xFFFFFFFF && literal >= N) {
DIAG(i) << "Component literal value " << literal << " is greater than "
<< N - 1 << ".";
return false;
}
}
return true;
}
template <>
bool idUsage::isValid<SpvOpPhi>(const spv_instruction_t* inst,
const spv_opcode_desc /*opcodeEntry*/) {
auto thisInst = module_.FindDef(inst->words[2]);
SpvOp typeOp = module_.GetIdOpcode(thisInst->type_id());
if (!spvOpcodeGeneratesType(typeOp)) {
DIAG(0) << "OpPhi's type <id> " << module_.getIdName(thisInst->type_id())
<< " is not a type instruction.";
return false;
}
auto block = thisInst->block();
size_t numInOps = inst->words.size() - 3;
if (numInOps % 2 != 0) {
DIAG(0) << "OpPhi does not have an equal number of incoming values and "
"basic blocks.";
return false;
}
// Create a uniqued vector of predecessor ids for comparison against
// incoming values. OpBranchConditional %cond %label %label produces two
// predecessors in the CFG.
std::vector<uint32_t> predIds;
std::transform(block->predecessors()->begin(), block->predecessors()->end(),
std::back_inserter(predIds),
[](const libspirv::BasicBlock* b) { return b->id(); });
std::sort(predIds.begin(), predIds.end());
predIds.erase(std::unique(predIds.begin(), predIds.end()), predIds.end());
size_t numEdges = numInOps / 2;
if (numEdges != predIds.size()) {
DIAG(0) << "OpPhi's number of incoming blocks (" << numEdges
<< ") does not match block's predecessor count ("
<< block->predecessors()->size() << ").";
return false;
}
for (size_t i = 3; i < inst->words.size(); ++i) {
auto incId = inst->words[i];
if (i % 2 == 1) {
// Incoming value type must match the phi result type.
auto incTypeId = module_.GetTypeId(incId);
if (thisInst->type_id() != incTypeId) {
DIAG(i) << "OpPhi's result type <id> "
<< module_.getIdName(thisInst->type_id())
<< " does not match incoming value <id> "
<< module_.getIdName(incId) << " type <id> "
<< module_.getIdName(incTypeId) << ".";
return false;
}
} else {
if (module_.GetIdOpcode(incId) != SpvOpLabel) {
DIAG(i) << "OpPhi's incoming basic block <id> "
<< module_.getIdName(incId) << " is not an OpLabel.";
return false;
}
// Incoming basic block must be an immediate predecessor of the phi's
// block.
if (!std::binary_search(predIds.begin(), predIds.end(), incId)) {
DIAG(i) << "OpPhi's incoming basic block <id> "
<< module_.getIdName(incId) << " is not a predecessor of <id> "
<< module_.getIdName(block->id()) << ".";
return false;
}
}
}
return true;
}
#if 0
template <>
bool idUsage::isValid<OpLoopMerge>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpSelectionMerge>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpBranch>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
template <>
bool idUsage::isValid<SpvOpBranchConditional>(const spv_instruction_t* inst,
const spv_opcode_desc) {
const size_t numOperands = inst->words.size() - 1;
const size_t condOperandIndex = 1;
const size_t targetTrueIndex = 2;
const size_t targetFalseIndex = 3;
// num_operands is either 3 or 5 --- if 5, the last two need to be literal
// integers
if (numOperands != 3 && numOperands != 5) {
DIAG(0) << "OpBranchConditional requires either 3 or 5 parameters";
return false;
}
bool ret = true;
// grab the condition operand and check that it is a bool
const auto condOp = module_.FindDef(inst->words[condOperandIndex]);
if (!condOp || !module_.IsBoolScalarType(condOp->type_id())) {
DIAG(0)
<< "Condition operand for OpBranchConditional must be of boolean type";
ret = false;
}
// target operands must be OpLabel
// note that we don't need to check that the target labels are in the same
// function,
// PerformCfgChecks already checks for that
const auto targetOpTrue = module_.FindDef(inst->words[targetTrueIndex]);
if (!targetOpTrue || SpvOpLabel != targetOpTrue->opcode()) {
DIAG(0) << "The 'True Label' operand for OpBranchConditional must be the "
"ID of an OpLabel instruction";
ret = false;
}
const auto targetOpFalse = module_.FindDef(inst->words[targetFalseIndex]);
if (!targetOpFalse || SpvOpLabel != targetOpFalse->opcode()) {
DIAG(0) << "The 'False Label' operand for OpBranchConditional must be the "
"ID of an OpLabel instruction";
ret = false;
}
return ret;
}
#if 0
template <>
bool idUsage::isValid<OpSwitch>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
template <>
bool idUsage::isValid<SpvOpReturnValue>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto valueIndex = 1;
auto value = module_.FindDef(inst->words[valueIndex]);
if (!value || !value->type_id()) {
DIAG(valueIndex) << "OpReturnValue Value <id> '" << inst->words[valueIndex]
<< "' does not represent a value.";
return false;
}
auto valueType = module_.FindDef(value->type_id());
if (!valueType || SpvOpTypeVoid == valueType->opcode()) {
DIAG(valueIndex) << "OpReturnValue value's type <id> '" << value->type_id()
<< "' is missing or void.";
return false;
}
const bool uses_variable_pointer =
module_.features().variable_pointers ||
module_.features().variable_pointers_storage_buffer;
if (addressingModel == SpvAddressingModelLogical &&
SpvOpTypePointer == valueType->opcode() && !uses_variable_pointer &&
!module_.options()->relax_logcial_pointer) {
DIAG(valueIndex)
<< "OpReturnValue value's type <id> '" << value->type_id()
<< "' is a pointer, which is invalid in the Logical addressing model.";
return false;
}
// NOTE: Find OpFunction
const spv_instruction_t* function = inst - 1;
while (firstInst != function) {
if (SpvOpFunction == function->opcode) break;
function--;
}
if (SpvOpFunction != function->opcode) {
DIAG(valueIndex) << "OpReturnValue is not in a basic block.";
return false;
}
auto returnType = module_.FindDef(function->words[1]);
if (!returnType || returnType->id() != valueType->id()) {
DIAG(valueIndex) << "OpReturnValue Value <id> '" << inst->words[valueIndex]
<< "'s type does not match OpFunction's return type.";
return false;
}
return true;
}
#if 0
template <>
bool idUsage::isValid<OpLifetimeStart>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {
}
#endif
#if 0
template <>
bool idUsage::isValid<OpLifetimeStop>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicInit>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicLoad>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicStore>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicExchange>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicCompareExchange>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicCompareExchangeWeak>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicIIncrement>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicIDecrement>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicIAdd>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicISub>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicUMin>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicUMax>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicAnd>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicOr>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicXor>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicIMin>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpAtomicIMax>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpEmitStreamVertex>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpEndStreamPrimitive>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupAsyncCopy>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupWaitEvents>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupAll>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupAny>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupBroadcast>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupIAdd>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupFAdd>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupFMin>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupUMin>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupSMin>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupFMax>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupUMax>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupSMax>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpEnqueueMarker>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {
}
#endif
#if 0
template <>
bool idUsage::isValid<OpEnqueueKernel>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {
}
#endif
#if 0
template <>
bool idUsage::isValid<OpGetKernelNDrangeSubGroupCount>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGetKernelNDrangeMaxSubGroupSize>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGetKernelWorkGroupSize>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGetKernelPreferredWorkGroupSizeMultiple>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpRetainEvent>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpReleaseEvent>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpCreateUserEvent>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpIsValidEvent>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpSetUserEventStatus>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpCaptureEventProfilingInfo>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGetDefaultQueue>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpBuildNDRange>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpReadPipe>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpWritePipe>(const spv_instruction_t *inst,
const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpReservedReadPipe>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpReservedWritePipe>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpReserveReadPipePackets>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpReserveWritePipePackets>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpCommitReadPipe>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpCommitWritePipe>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpIsValidReserveId>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGetNumPipePackets>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGetMaxPipePackets>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupReserveReadPipePackets>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupReserveWritePipePackets>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupCommitReadPipe>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#if 0
template <>
bool idUsage::isValid<OpGroupCommitWritePipe>(
const spv_instruction_t *inst, const spv_opcode_desc opcodeEntry) {}
#endif
#undef DIAG
bool idUsage::isValid(const spv_instruction_t* inst) {
spv_opcode_desc opcodeEntry = nullptr;
if (spvOpcodeTableValueLookup(targetEnv, opcodeTable, inst->opcode,
&opcodeEntry))
return false;
#define CASE(OpCode) \
case Spv##OpCode: \
return isValid<Spv##OpCode>(inst, opcodeEntry);
#define TODO(OpCode) \
case Spv##OpCode: \
return true;
switch (inst->opcode) {
TODO(OpUndef)
CASE(OpMemberName)
CASE(OpLine)
CASE(OpDecorate)
CASE(OpMemberDecorate)
CASE(OpDecorationGroup)
CASE(OpGroupDecorate)
CASE(OpGroupMemberDecorate)
TODO(OpExtInst)
CASE(OpEntryPoint)
CASE(OpExecutionMode)
CASE(OpTypeVector)
CASE(OpTypeMatrix)
CASE(OpTypeSampler)
CASE(OpTypeArray)
CASE(OpTypeRuntimeArray)
CASE(OpTypeStruct)
CASE(OpTypePointer)
CASE(OpTypeFunction)
CASE(OpTypePipe)
CASE(OpConstantTrue)
CASE(OpConstantFalse)
CASE(OpConstantComposite)
CASE(OpConstantSampler)
CASE(OpConstantNull)
CASE(OpSpecConstantTrue)
CASE(OpSpecConstantFalse)
CASE(OpSpecConstantComposite)
CASE(OpSampledImage)
TODO(OpSpecConstantOp)
CASE(OpVariable)
CASE(OpLoad)
CASE(OpStore)
CASE(OpCopyMemory)
CASE(OpCopyMemorySized)
CASE(OpAccessChain)
CASE(OpInBoundsAccessChain)
CASE(OpPtrAccessChain)
CASE(OpInBoundsPtrAccessChain)
TODO(OpArrayLength)
TODO(OpGenericPtrMemSemantics)
CASE(OpFunction)
CASE(OpFunctionParameter)
CASE(OpFunctionCall)
// Conversion opcodes are validated in validate_conversion.cpp.
CASE(OpVectorShuffle)
// Other composite opcodes are validated in validate_composites.cpp.
// Arithmetic opcodes are validated in validate_arithmetics.cpp.
// Bitwise opcodes are validated in validate_bitwise.cpp.
// Logical opcodes are validated in validate_logicals.cpp.
// Derivative opcodes are validated in validate_derivatives.cpp.
CASE(OpPhi)
TODO(OpLoopMerge)
TODO(OpSelectionMerge)
TODO(OpBranch)
CASE(OpBranchConditional)
TODO(OpSwitch)
CASE(OpReturnValue)
TODO(OpLifetimeStart)
TODO(OpLifetimeStop)
TODO(OpAtomicLoad)
TODO(OpAtomicStore)
TODO(OpAtomicExchange)
TODO(OpAtomicCompareExchange)
TODO(OpAtomicCompareExchangeWeak)
TODO(OpAtomicIIncrement)
TODO(OpAtomicIDecrement)
TODO(OpAtomicIAdd)
TODO(OpAtomicISub)
TODO(OpAtomicUMin)
TODO(OpAtomicUMax)
TODO(OpAtomicAnd)
TODO(OpAtomicOr)
TODO(OpAtomicSMin)
TODO(OpAtomicSMax)
TODO(OpEmitStreamVertex)
TODO(OpEndStreamPrimitive)
TODO(OpGroupAsyncCopy)
TODO(OpGroupWaitEvents)
TODO(OpGroupAll)
TODO(OpGroupAny)
TODO(OpGroupBroadcast)
TODO(OpGroupIAdd)
TODO(OpGroupFAdd)
TODO(OpGroupFMin)
TODO(OpGroupUMin)
TODO(OpGroupSMin)
TODO(OpGroupFMax)
TODO(OpGroupUMax)
TODO(OpGroupSMax)
TODO(OpEnqueueMarker)
TODO(OpEnqueueKernel)
TODO(OpGetKernelNDrangeSubGroupCount)
TODO(OpGetKernelNDrangeMaxSubGroupSize)
TODO(OpGetKernelWorkGroupSize)
TODO(OpGetKernelPreferredWorkGroupSizeMultiple)
TODO(OpRetainEvent)
TODO(OpReleaseEvent)
TODO(OpCreateUserEvent)
TODO(OpIsValidEvent)
TODO(OpSetUserEventStatus)
TODO(OpCaptureEventProfilingInfo)
TODO(OpGetDefaultQueue)
TODO(OpBuildNDRange)
TODO(OpReadPipe)
TODO(OpWritePipe)
TODO(OpReservedReadPipe)
TODO(OpReservedWritePipe)
TODO(OpReserveReadPipePackets)
TODO(OpReserveWritePipePackets)
TODO(OpCommitReadPipe)
TODO(OpCommitWritePipe)
TODO(OpIsValidReserveId)
TODO(OpGetNumPipePackets)
TODO(OpGetMaxPipePackets)
TODO(OpGroupReserveReadPipePackets)
TODO(OpGroupReserveWritePipePackets)
TODO(OpGroupCommitReadPipe)
TODO(OpGroupCommitWritePipe)
default:
return true;
}
#undef TODO
#undef CASE
}
bool idUsage::AreLayoutCompatibleStructs(const libspirv::Instruction* type1,
const libspirv::Instruction* type2) {
if (type1->opcode() != SpvOpTypeStruct) {
return false;
}
if (type2->opcode() != SpvOpTypeStruct) {
return false;
}
if (!HaveLayoutCompatibleMembers(type1, type2)) return false;
return HaveSameLayoutDecorations(type1, type2);
}
bool idUsage::HaveLayoutCompatibleMembers(const libspirv::Instruction* type1,
const libspirv::Instruction* type2) {
assert(type1->opcode() == SpvOpTypeStruct &&
"type1 must be and OpTypeStruct instruction.");
assert(type2->opcode() == SpvOpTypeStruct &&
"type2 must be and OpTypeStruct instruction.");
const auto& type1_operands = type1->operands();
const auto& type2_operands = type2->operands();
if (type1_operands.size() != type2_operands.size()) {
return false;
}
for (size_t operand = 2; operand < type1_operands.size(); ++operand) {
if (type1->word(operand) != type2->word(operand)) {
auto def1 = module_.FindDef(type1->word(operand));
auto def2 = module_.FindDef(type2->word(operand));
if (!AreLayoutCompatibleStructs(def1, def2)) {
return false;
}
}
}
return true;
}
bool idUsage::HaveSameLayoutDecorations(const libspirv::Instruction* type1,
const libspirv::Instruction* type2) {
assert(type1->opcode() == SpvOpTypeStruct &&
"type1 must be and OpTypeStruct instruction.");
assert(type2->opcode() == SpvOpTypeStruct &&
"type2 must be and OpTypeStruct instruction.");
const std::vector<Decoration>& type1_decorations =
module_.id_decorations(type1->id());
const std::vector<Decoration>& type2_decorations =
module_.id_decorations(type2->id());
// TODO: Will have to add other check for arrays an matricies if we want to
// handle them.
if (HasConflictingMemberOffsets(type1_decorations, type2_decorations)) {
return false;
}
return true;
}
bool idUsage::HasConflictingMemberOffsets(
const vector<Decoration>& type1_decorations,
const vector<Decoration>& type2_decorations) const {
{
// We are interested in conflicting decoration. If a decoration is in one
// list but not the other, then we will assume the code is correct. We are
// looking for things we know to be wrong.
//
// We do not have to traverse type2_decoration because, after traversing
// type1_decorations, anything new will not be found in
// type1_decoration. Therefore, it cannot lead to a conflict.
for (const Decoration& decoration : type1_decorations) {
switch (decoration.dec_type()) {
case SpvDecorationOffset: {
// Since these affect the layout of the struct, they must be present
// in both structs.
auto compare = [&decoration](const Decoration& rhs) {
if (rhs.dec_type() != SpvDecorationOffset) return false;
return decoration.struct_member_index() ==
rhs.struct_member_index();
};
auto i = find_if(type2_decorations.begin(), type2_decorations.end(),
compare);
if (i != type2_decorations.end() &&
decoration.params().front() != i->params().front()) {
return true;
}
} break;
default:
// This decoration does not affect the layout of the structure, so
// just moving on.
break;
}
}
}
return false;
}
} // anonymous namespace
namespace libspirv {
spv_result_t UpdateIdUse(ValidationState_t& _) {
for (const auto& inst : _.ordered_instructions()) {
for (auto& operand : inst.operands()) {
const spv_operand_type_t& type = operand.type;
const uint32_t operand_id = inst.word(operand.offset);
if (spvIsIdType(type) && type != SPV_OPERAND_TYPE_RESULT_ID) {
if (auto def = _.FindDef(operand_id))
def->RegisterUse(&inst, operand.offset);
}
}
}
return SPV_SUCCESS;
}
/// This function checks all ID definitions dominate their use in the CFG.
///
/// This function will iterate over all ID definitions that are defined in the
/// functions of a module and make sure that the definitions appear in a
/// block that dominates their use.
///
/// NOTE: This function does NOT check module scoped functions which are
/// checked during the initial binary parse in the IdPass below
spv_result_t CheckIdDefinitionDominateUse(const ValidationState_t& _) {
unordered_set<const Instruction*> phi_instructions;
for (const auto& definition : _.all_definitions()) {
// Check only those definitions defined in a function
if (const Function* func = definition.second->function()) {
if (const BasicBlock* block = definition.second->block()) {
if (!block->reachable()) continue;
// If the Id is defined within a block then make sure all references to
// that Id appear in a blocks that are dominated by the defining block
for (auto& use_index_pair : definition.second->uses()) {
const Instruction* use = use_index_pair.first;
if (const BasicBlock* use_block = use->block()) {
if (use_block->reachable() == false) continue;
if (use->opcode() == SpvOpPhi) {
phi_instructions.insert(use);
} else if (!block->dominates(*use->block())) {
return _.diag(SPV_ERROR_INVALID_ID)
<< "ID " << _.getIdName(definition.first)
<< " defined in block " << _.getIdName(block->id())
<< " does not dominate its use in block "
<< _.getIdName(use_block->id());
}
}
}
} else {
// If the Ids defined within a function but not in a block(i.e. function
// parameters, block ids), then make sure all references to that Id
// appear within the same function
for (auto use : definition.second->uses()) {
const Instruction* inst = use.first;
if (inst->function() && inst->function() != func) {
return _.diag(SPV_ERROR_INVALID_ID)
<< "ID " << _.getIdName(definition.first)
<< " used in function "
<< _.getIdName(inst->function()->id())
<< " is used outside of it's defining function "
<< _.getIdName(func->id());
}
}
}
}
// NOTE: Ids defined outside of functions must appear before they are used
// This check is being performed in the IdPass function
}
// Check all OpPhi parent blocks are dominated by the variable's defining
// blocks
for (const Instruction* phi : phi_instructions) {
if (phi->block()->reachable() == false) continue;
for (size_t i = 3; i < phi->operands().size(); i += 2) {
const Instruction* variable = _.FindDef(phi->word(i));
const BasicBlock* parent =
phi->function()->GetBlock(phi->word(i + 1)).first;
if (variable->block() && parent->reachable() &&
!variable->block()->dominates(*parent)) {
return _.diag(SPV_ERROR_INVALID_ID)
<< "In OpPhi instruction " << _.getIdName(phi->id()) << ", ID "
<< _.getIdName(variable->id())
<< " definition does not dominate its parent "
<< _.getIdName(parent->id());
}
}
}
return SPV_SUCCESS;
}
// Performs SSA validation on the IDs of an instruction. The
// can_have_forward_declared_ids functor should return true if the
// instruction operand's ID can be forward referenced.
spv_result_t IdPass(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
auto can_have_forward_declared_ids =
spvOperandCanBeForwardDeclaredFunction(static_cast<SpvOp>(inst->opcode));
// Keep track of a result id defined by this instruction. 0 means it
// does not define an id.
uint32_t result_id = 0;
for (unsigned i = 0; i < inst->num_operands; i++) {
const spv_parsed_operand_t& operand = inst->operands[i];
const spv_operand_type_t& type = operand.type;
// We only care about Id operands, which are a single word.
const uint32_t operand_word = inst->words[operand.offset];
auto ret = SPV_ERROR_INTERNAL;
switch (type) {
case SPV_OPERAND_TYPE_RESULT_ID:
// NOTE: Multiple Id definitions are being checked by the binary parser.
//
// Defer undefined-forward-reference removal until after we've analyzed
// the remaining operands to this instruction. Deferral only matters
// for
// OpPhi since it's the only case where it defines its own forward
// reference. Other instructions that can have forward references
// either don't define a value or the forward reference is to a function
// Id (and hence defined outside of a function body).
result_id = operand_word;
// NOTE: The result Id is added (in RegisterInstruction) *after* all of
// the other Ids have been checked to avoid premature use in the same
// instruction.
ret = SPV_SUCCESS;
break;
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_TYPE_ID:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID:
case SPV_OPERAND_TYPE_SCOPE_ID:
if (_.IsDefinedId(operand_word)) {
ret = SPV_SUCCESS;
} else if (can_have_forward_declared_ids(i)) {
ret = _.ForwardDeclareId(operand_word);
} else {
ret = _.diag(SPV_ERROR_INVALID_ID)
<< "ID " << _.getIdName(operand_word)
<< " has not been defined";
}
break;
default:
ret = SPV_SUCCESS;
break;
}
if (SPV_SUCCESS != ret) {
return ret;
}
}
if (result_id) {
_.RemoveIfForwardDeclared(result_id);
}
_.RegisterInstruction(*inst);
return SPV_SUCCESS;
}
} // namespace libspirv
spv_result_t spvValidateInstructionIDs(const spv_instruction_t* pInsts,
const uint64_t instCount,
const libspirv::ValidationState_t& state,
spv_position position) {
idUsage idUsage(state.context(), pInsts, instCount, state.memory_model(),
state.addressing_model(), state, state.entry_points(),
position, state.context()->consumer);
for (uint64_t instIndex = 0; instIndex < instCount; ++instIndex) {
if (!idUsage.isValid(&pInsts[instIndex])) return SPV_ERROR_INVALID_ID;
position->index += pInsts[instIndex].words.size();
}
return SPV_SUCCESS;
}