Added SPIRV-Tools.

This commit is contained in:
Branimir Karadžić 2018-04-10 19:44:28 -07:00
parent 03b7659b37
commit 172b7c506b
555 changed files with 214853 additions and 38 deletions

View File

@ -7007,6 +7007,7 @@ void GlslangToSpv(const glslang::TIntermediate& intermediate, std::vector<unsign
// optimizer.RegisterPass(CreateCommonUniformElimPass());
}
optimizer.RegisterPass(CreateAggressiveDCEPass());
optimizer.RegisterLegalizationPasses();
if (!optimizer.Run(spirv.data(), spirv.size(), &spirv))
return;

89
3rdparty/spirv-tools/.appveyor.yml vendored Normal file
View File

@ -0,0 +1,89 @@
# Windows Build Configuration for AppVeyor
# http://www.appveyor.com/docs/appveyor-yml
# version format
version: "{build}"
# The most recent compiler gives the most interesting new results.
# Put it first so we get its feedback first.
os:
- Visual Studio 2017
- Visual Studio 2013
platform:
- x64
configuration:
- Debug
- Release
branches:
only:
- master
# Travis advances the master-tot tag to current top of the tree after
# each push into the master branch, because it relies on that tag to
# upload build artifacts to the master-tot release. This will cause
# double testing for each push on Appveyor: one for the push, one for
# the tag advance. Disable testing tags.
skip_tags: true
clone_depth: 1
matrix:
fast_finish: true # Show final status immediately if a test fails.
exclude:
- os: Visual Studio 2013
configuration: Debug
# scripts that run after cloning repository
install:
# Install ninja
- set NINJA_URL="https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-win.zip"
- appveyor DownloadFile %NINJA_URL% -FileName ninja.zip
- 7z x ninja.zip -oC:\ninja > nul
- set PATH=C:\ninja;%PATH%
before_build:
- git clone --depth=1 https://github.com/KhronosGroup/SPIRV-Headers.git external/spirv-headers
- git clone --depth=1 https://github.com/google/googletest.git external/googletest
- git clone --depth=1 https://github.com/google/effcee.git external/effcee
- git clone --depth=1 https://github.com/google/re2.git external/re2
# Set path and environment variables for the current Visual Studio version
- if "%APPVEYOR_BUILD_WORKER_IMAGE%"=="Visual Studio 2013" (call "C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\vcvarsall.bat" x86_amd64)
- if "%APPVEYOR_BUILD_WORKER_IMAGE%"=="Visual Studio 2017" (call "C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\vcvarsall.bat" x86_amd64)
build:
parallel: true # enable MSBuild parallel builds
verbosity: minimal
build_script:
- mkdir build && cd build
- cmake -GNinja -DSPIRV_BUILD_COMPRESSION=ON -DCMAKE_BUILD_TYPE=%CONFIGURATION% -DCMAKE_INSTALL_PREFIX=install -DRE2_BUILD_TESTING=OFF ..
- ninja install
test_script:
- ctest -C %CONFIGURATION% --output-on-failure --timeout 300
after_test:
# Zip build artifacts for uploading and deploying
- cd install
- 7z a SPIRV-Tools-master-windows-"%PLATFORM%"-"%CONFIGURATION%".zip *\*
artifacts:
- path: build\install\*.zip
name: artifacts-zip
deploy:
- provider: GitHub
auth_token:
secure: TMfcScKzzFIm1YgeV/PwCRXFDCw8Xm0wY2Vb2FU6WKlbzb5eUITTpr6I5vHPnAxS
release: master-tot
description: "Continuous build of the latest master branch by Appveyor and Travis CI"
artifact: artifacts-zip
draft: false
prerelease: false
force_update: true
on:
branch: master
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2017

5
3rdparty/spirv-tools/.clang-format vendored Normal file
View File

@ -0,0 +1,5 @@
---
Language: Cpp
BasedOnStyle: Google
DerivePointerAlignment: false
...

15
3rdparty/spirv-tools/.gitignore vendored Normal file
View File

@ -0,0 +1,15 @@
/build*
.ycm_extra_conf.py*
compile_commands.json
/external/googletest
/external/SPIRV-Headers
/external/spirv-headers
/external/effcee
/external/re2
/TAGS
/.clang_complete
/utils/clang-format-diff.py
# Vim
[._]*.s[a-w][a-z]
*~

133
3rdparty/spirv-tools/.travis.yml vendored Normal file
View File

@ -0,0 +1,133 @@
# Linux Build Configuration for Travis
language: cpp
os:
- linux
- osx
# Use Ubuntu 14.04 LTS (Trusty) as the Linux testing environment.
dist: trusty
sudo: false
env:
global:
- secure: IoR/Xe9E+NnLAeI23WrmUsGQn5rocz+XRYUk+BbaoKiIRYm4q72GKyypRoOGLu7wImOXFSvnN/dpdnqIpx4W0NfsSvNdlXyhDy+wvT1kzTt77dJGnkGZTZ2SBOtC9AECLy4sqM9HG0rYRR6WfXcnP2GlrE5f2aF07aISQbOUsQMvyyhtCmVAzIigK1zIUto5I0pNenvo/Y+ur+mEvTh+FtaoDIGepCbZlCc+OxqRXwXNlI7mDXbzLPmTB1FWTGsrZdRX8czF9tN9Y+T79DQjB4Lcyyeow8yU9NBVlgzZJcp1xI0UIskRT8gVrXmBYL2dMeHnDQuhxjEg9n7jfr3ptA9rgwMaSsgdaLwuBXgtPuqVgUYDpE1cP8WI8q38MXX0I6psTs/WHu+z+5UwfjzpPOHmGdVt48o8ymFTapvD5Cf1+uJyk73QkyStnPIdBF1N9Yx5sD7HN28K6/Ro12sCCePHUZ9Uz1DdZI6XxkgCNKNwao0csAyvODxD6Ee43mkExtviB8BJY5jWLIMTdGhgEGH2sRqils8IDW0p8AOTPM4UC7iA7hdg3pA+XMvBHvP9ixsY7tuB+yR2AfnFaSw2DVbwI5GgFdFMNHXYuL+9V9Wuh3keBKYQT/Hy1YvxjQ/t9UouYHqEsyVFUl3R4lEAM9+qSRsRu+EKmcSO2QtCsWc=
matrix:
# Each line is a set of environment variables set before a build.
# Thus each line represents a different build configuration.
- BUILD_TYPE=RelWithDebInfo
- BUILD_TYPE=Debug
compiler:
- clang
- gcc
matrix:
fast_finish: true
include:
# Additional build using Android NDK with android-cmake
- env: BUILD_ANDROID_CMAKE=ON
# Additional build using Android NDK with Android.mk
- env: BUILD_ANDROID_MK=ON
# Additional check over format
- env: CHECK_FORMAT=ON
exclude:
# Skip GCC builds on macOS.
- os: osx
compiler: gcc
cache:
apt: true
git:
depth: 1
branches:
only:
- master
before_install:
- if [[ "$BUILD_ANDROID_CMAKE" == "ON" ]] || [[ "$BUILD_ANDROID_MK" == "ON" ]]; then
git clone --depth=1 https://github.com/urho3d/android-ndk.git $HOME/android-ndk;
export ANDROID_NDK=$HOME/android-ndk;
git clone --depth=1 https://github.com/taka-no-me/android-cmake.git $HOME/android-cmake;
export TOOLCHAIN_PATH=$HOME/android-cmake/android.toolchain.cmake;
fi
- if [[ "$CHECK_FORMAT" == "ON" ]]; then
curl -L http://llvm.org/svn/llvm-project/cfe/trunk/tools/clang-format/clang-format-diff.py -o utils/clang-format-diff.py;
fi
before_script:
- git clone --depth=1 https://github.com/KhronosGroup/SPIRV-Headers external/spirv-headers
- git clone --depth=1 https://github.com/google/googletest external/googletest
- git clone --depth=1 https://github.com/google/effcee external/effcee
- git clone --depth=1 https://github.com/google/re2 external/re2
script:
# Due to the limitation of Travis platform, we cannot start too many concurrent jobs.
# Otherwise GCC will panic with internal error, possibility because of memory issues.
# ctest with the current tests doesn't profit from using more than 4 threads.
- export NPROC=4
- mkdir build && cd build
- if [[ "$BUILD_ANDROID_MK" == "ON" ]]; then
export BUILD_DIR=$(pwd);
mkdir ${BUILD_DIR}/libs;
mkdir ${BUILD_DIR}/app;
$ANDROID_NDK/ndk-build -C ../android_test NDK_PROJECT_PATH=.
NDK_LIBS_OUT=${BUILD_DIR}/libs
NDK_APP_OUT=${BUILD_DIR}/app -j${NPROC};
elif [[ "$BUILD_ANDROID_CMAKE" == "ON" ]]; then
cmake -DCMAKE_TOOLCHAIN_FILE=${TOOLCHAIN_PATH}
-DANDROID_NATIVE_API_LEVEL=android-9
-DCMAKE_BUILD_TYPE=Release
-DANDROID_ABI="armeabi-v7a with NEON"
-DSPIRV_BUILD_COMPRESSION=ON
-DSPIRV_SKIP_TESTS=ON ..;
make -j${NPROC};
elif [[ "$CHECK_FORMAT" == "ON" ]]; then
cd ..;
./utils/check_code_format.sh;
else
cmake -DCMAKE_BUILD_TYPE=${BUILD_TYPE} -DSPIRV_BUILD_COMPRESSION=ON -DCMAKE_INSTALL_PREFIX=install ..;
make -j${NPROC} install;
ctest -j${NPROC} --output-on-failure --timeout 300;
fi
after_success:
# Create tarball for deployment
- if [[ "${CC}" == "clang" && "${BUILD_ANDROID_MK}" != "ON" && "${BUILD_ANDROID_CMAKE}" != "ON" && "${CHECK_FORMAT}" != "ON" ]]; then
cd install;
export TARBALL=SPIRV-Tools-master-${TRAVIS_OS_NAME}-${BUILD_TYPE}.zip;
find . -print | zip -@ ${TARBALL};
fi
before_deploy:
# Tag the current master top of the tree as "master-tot".
# Travis CI relies on the tag name to push to the correct release.
- git config --global user.name "Travis CI"
- git config --global user.email "builds@travis-ci.org"
- git tag -f master-tot
- git push -q -f https://${spirvtoken}@github.com/KhronosGroup/SPIRV-Tools --tags
deploy:
provider: releases
api_key: ${spirvtoken}
on:
branch: master
condition: ${CC} == clang && ${BUILD_ANDROID_MK} != ON && ${BUILD_ANDROID_CMAKE} != ON && ${CHECK_FORMAT} != ON
file: ${TARBALL}
skip_cleanup: true
overwrite: true
notifications:
email:
recipients:
- andreyt@google.com
- antiagainst@google.com
- awoloszyn@google.com
- dneto@google.com
- ehsann@google.com
- qining@google.com
on_success: change
on_failure: always

315
3rdparty/spirv-tools/Android.mk vendored Normal file
View File

@ -0,0 +1,315 @@
LOCAL_PATH := $(call my-dir)
SPVTOOLS_OUT_PATH=$(if $(call host-path-is-absolute,$(TARGET_OUT)),$(TARGET_OUT),$(abspath $(TARGET_OUT)))
SPVHEADERS_LOCAL_PATH := $(LOCAL_PATH)/external/spirv-headers
SPVTOOLS_SRC_FILES := \
source/assembly_grammar.cpp \
source/binary.cpp \
source/diagnostic.cpp \
source/disassemble.cpp \
source/ext_inst.cpp \
source/enum_string_mapping.cpp \
source/extensions.cpp \
source/id_descriptor.cpp \
source/libspirv.cpp \
source/name_mapper.cpp \
source/opcode.cpp \
source/operand.cpp \
source/parsed_operand.cpp \
source/print.cpp \
source/software_version.cpp \
source/spirv_endian.cpp \
source/spirv_target_env.cpp \
source/spirv_validator_options.cpp \
source/table.cpp \
source/text.cpp \
source/text_handler.cpp \
source/util/bit_stream.cpp \
source/util/parse_number.cpp \
source/util/string_utils.cpp \
source/util/timer.cpp \
source/val/basic_block.cpp \
source/val/construct.cpp \
source/val/function.cpp \
source/val/instruction.cpp \
source/val/validation_state.cpp \
source/validate.cpp \
source/validate_adjacency.cpp \
source/validate_arithmetics.cpp \
source/validate_atomics.cpp \
source/validate_barriers.cpp \
source/validate_bitwise.cpp \
source/validate_builtins.cpp \
source/validate_capability.cpp \
source/validate_cfg.cpp \
source/validate_composites.cpp \
source/validate_conversion.cpp \
source/validate_datarules.cpp \
source/validate_decorations.cpp \
source/validate_derivatives.cpp \
source/validate_ext_inst.cpp \
source/validate_id.cpp \
source/validate_image.cpp \
source/validate_instruction.cpp \
source/validate_layout.cpp \
source/validate_literals.cpp \
source/validate_logicals.cpp \
source/validate_primitives.cpp \
source/validate_type_unique.cpp
SPVTOOLS_OPT_SRC_FILES := \
source/opt/aggressive_dead_code_elim_pass.cpp \
source/opt/basic_block.cpp \
source/opt/block_merge_pass.cpp \
source/opt/build_module.cpp \
source/opt/cfg.cpp \
source/opt/cfg_cleanup_pass.cpp \
source/opt/ccp_pass.cpp \
source/opt/common_uniform_elim_pass.cpp \
source/opt/compact_ids_pass.cpp \
source/opt/composite.cpp \
source/opt/const_folding_rules.cpp \
source/opt/constants.cpp \
source/opt/copy_prop_arrays.cpp \
source/opt/dead_branch_elim_pass.cpp \
source/opt/dead_insert_elim_pass.cpp \
source/opt/dead_variable_elimination.cpp \
source/opt/decoration_manager.cpp \
source/opt/def_use_manager.cpp \
source/opt/dominator_analysis.cpp \
source/opt/dominator_tree.cpp \
source/opt/eliminate_dead_constant_pass.cpp \
source/opt/eliminate_dead_functions_pass.cpp \
source/opt/feature_manager.cpp \
source/opt/flatten_decoration_pass.cpp \
source/opt/fold.cpp \
source/opt/folding_rules.cpp \
source/opt/fold_spec_constant_op_and_composite_pass.cpp \
source/opt/freeze_spec_constant_value_pass.cpp \
source/opt/function.cpp \
source/opt/if_conversion.cpp \
source/opt/inline_pass.cpp \
source/opt/inline_exhaustive_pass.cpp \
source/opt/inline_opaque_pass.cpp \
source/opt/insert_extract_elim.cpp \
source/opt/instruction.cpp \
source/opt/instruction_list.cpp \
source/opt/ir_context.cpp \
source/opt/ir_loader.cpp \
source/opt/licm_pass.cpp \
source/opt/local_access_chain_convert_pass.cpp \
source/opt/local_redundancy_elimination.cpp \
source/opt/local_single_block_elim_pass.cpp \
source/opt/local_single_store_elim_pass.cpp \
source/opt/local_ssa_elim_pass.cpp \
source/opt/loop_descriptor.cpp \
source/opt/loop_peeling.cpp \
source/opt/loop_unroller.cpp \
source/opt/loop_unswitch_pass.cpp \
source/opt/loop_utils.cpp \
source/opt/mem_pass.cpp \
source/opt/merge_return_pass.cpp \
source/opt/module.cpp \
source/opt/optimizer.cpp \
source/opt/pass.cpp \
source/opt/pass_manager.cpp \
source/opt/private_to_local_pass.cpp \
source/opt/propagator.cpp \
source/opt/redundancy_elimination.cpp \
source/opt/remove_duplicates_pass.cpp \
source/opt/replace_invalid_opc.cpp \
source/opt/scalar_analysis.cpp \
source/opt/scalar_analysis_simplification.cpp \
source/opt/scalar_replacement_pass.cpp \
source/opt/set_spec_constant_default_value_pass.cpp \
source/opt/simplification_pass.cpp \
source/opt/ssa_rewrite_pass.cpp \
source/opt/strength_reduction_pass.cpp \
source/opt/strip_debug_info_pass.cpp \
source/opt/strip_reflect_info_pass.cpp \
source/opt/type_manager.cpp \
source/opt/types.cpp \
source/opt/unify_const_pass.cpp \
source/opt/value_number_table.cpp \
source/opt/workaround1209.cpp
# Locations of grammar files.
#
# TODO(dneto): Build a single set of tables that embeds versioning differences on
# a per-item basis. That must happen before SPIR-V 1.4, etc.
# https://github.com/KhronosGroup/SPIRV-Tools/issues/1195
SPV_CORE10_GRAMMAR=$(SPVHEADERS_LOCAL_PATH)/include/spirv/1.0/spirv.core.grammar.json
SPV_CORE11_GRAMMAR=$(SPVHEADERS_LOCAL_PATH)/include/spirv/1.1/spirv.core.grammar.json
SPV_CORE12_GRAMMAR=$(SPVHEADERS_LOCAL_PATH)/include/spirv/1.2/spirv.core.grammar.json
SPV_COREUNIFIED1_GRAMMAR=$(SPVHEADERS_LOCAL_PATH)/include/spirv/unified1/spirv.core.grammar.json
SPV_CORELATEST_GRAMMAR=$(SPV_COREUNIFIED1_GRAMMAR)
SPV_GLSL_GRAMMAR=$(SPVHEADERS_LOCAL_PATH)/include/spirv/1.2/extinst.glsl.std.450.grammar.json
SPV_OPENCL_GRAMMAR=$(SPVHEADERS_LOCAL_PATH)/include/spirv/1.2/extinst.opencl.std.100.grammar.json
# TODO(dneto): I expect the DebugInfo grammar file to eventually migrate to SPIRV-Headers
SPV_DEBUGINFO_GRAMMAR=$(LOCAL_PATH)/source/extinst.debuginfo.grammar.json
define gen_spvtools_grammar_tables
$(call generate-file-dir,$(1)/core.insts-1.0.inc)
$(1)/core.insts-1.0.inc $(1)/operand.kinds-1.0.inc $(1)/glsl.std.450.insts.inc $(1)/opencl.std.insts.inc: \
$(LOCAL_PATH)/utils/generate_grammar_tables.py \
$(SPV_CORE10_GRAMMAR) \
$(SPV_GLSL_GRAMMAR) \
$(SPV_OPENCL_GRAMMAR) \
$(SPV_DEBUGINFO_GRAMMAR)
@$(HOST_PYTHON) $(LOCAL_PATH)/utils/generate_grammar_tables.py \
--spirv-core-grammar=$(SPV_CORE10_GRAMMAR) \
--extinst-glsl-grammar=$(SPV_GLSL_GRAMMAR) \
--extinst-opencl-grammar=$(SPV_OPENCL_GRAMMAR) \
--extinst-debuginfo-grammar=$(SPV_DEBUGINFO_GRAMMAR) \
--core-insts-output=$(1)/core.insts-1.0.inc \
--glsl-insts-output=$(1)/glsl.std.450.insts.inc \
--opencl-insts-output=$(1)/opencl.std.insts.inc \
--operand-kinds-output=$(1)/operand.kinds-1.0.inc
@echo "[$(TARGET_ARCH_ABI)] Grammar v1.0 : instructions & operands <= grammar JSON files"
$(1)/core.insts-1.1.inc $(1)/operand.kinds-1.1.inc: \
$(LOCAL_PATH)/utils/generate_grammar_tables.py \
$(SPV_CORE11_GRAMMAR) \
$(SPV_DEBUGINFO_GRAMMAR)
@$(HOST_PYTHON) $(LOCAL_PATH)/utils/generate_grammar_tables.py \
--spirv-core-grammar=$(SPV_CORE11_GRAMMAR) \
--extinst-debuginfo-grammar=$(SPV_DEBUGINFO_GRAMMAR) \
--core-insts-output=$(1)/core.insts-1.1.inc \
--operand-kinds-output=$(1)/operand.kinds-1.1.inc
@echo "[$(TARGET_ARCH_ABI)] Grammar v1.1 : instructions & operands <= grammar JSON files"
$(1)/core.insts-1.2.inc $(1)/operand.kinds-1.2.inc: \
$(LOCAL_PATH)/utils/generate_grammar_tables.py \
$(SPV_CORE12_GRAMMAR) \
$(SPV_DEBUGINFO_GRAMMAR)
@$(HOST_PYTHON) $(LOCAL_PATH)/utils/generate_grammar_tables.py \
--spirv-core-grammar=$(SPV_CORE12_GRAMMAR) \
--extinst-debuginfo-grammar=$(SPV_DEBUGINFO_GRAMMAR) \
--core-insts-output=$(1)/core.insts-1.2.inc \
--operand-kinds-output=$(1)/operand.kinds-1.2.inc
@echo "[$(TARGET_ARCH_ABI)] Grammar v1.2 : instructions & operands <= grammar JSON files"
$(1)/core.insts-unified1.inc $(1)/operand.kinds-unified1.inc: \
$(LOCAL_PATH)/utils/generate_grammar_tables.py \
$(SPV_COREUNIFIED1_GRAMMAR) \
$(SPV_DEBUGINFO_GRAMMAR)
@$(HOST_PYTHON) $(LOCAL_PATH)/utils/generate_grammar_tables.py \
--spirv-core-grammar=$(SPV_COREUNIFIED1_GRAMMAR) \
--extinst-debuginfo-grammar=$(SPV_DEBUGINFO_GRAMMAR) \
--core-insts-output=$(1)/core.insts-unified1.inc \
--operand-kinds-output=$(1)/operand.kinds-unified1.inc
@echo "[$(TARGET_ARCH_ABI)] Grammar v1.3 (from unified1) : instructions & operands <= grammar JSON files"
$(LOCAL_PATH)/source/opcode.cpp: $(1)/core.insts-1.0.inc $(1)/core.insts-1.1.inc $(1)/core.insts-1.2.inc $(1)/core.insts-unified1.inc
$(LOCAL_PATH)/source/operand.cpp: $(1)/operand.kinds-1.0.inc $(1)/operand.kinds-1.1.inc $(1)/operand.kinds-1.2.inc $(1)/operand.kinds-unified1.inc
$(LOCAL_PATH)/source/ext_inst.cpp: \
$(1)/glsl.std.450.insts.inc \
$(1)/opencl.std.insts.inc \
$(1)/debuginfo.insts.inc \
$(1)/spv-amd-gcn-shader.insts.inc \
$(1)/spv-amd-shader-ballot.insts.inc \
$(1)/spv-amd-shader-explicit-vertex-parameter.insts.inc \
$(1)/spv-amd-shader-trinary-minmax.insts.inc
endef
$(eval $(call gen_spvtools_grammar_tables,$(SPVTOOLS_OUT_PATH)))
define gen_spvtools_lang_headers
# Generate language-specific headers. So far we only generate C headers
# $1 is the output directory.
# $2 is the base name of the header file, e.g. "DebugInfo".
# $3 is the grammar file containing token definitions.
$(call generate-file-dir,$(1)/$(2).h)
$(1)/$(2).h : \
$(LOCAL_PATH)/utils/generate_language_headers.py \
$(3)
@$(HOST_PYTHON) $(LOCAL_PATH)/utils/generate_language_headers.py \
--extinst-name=$(2) \
--extinst-grammar=$(3) \
--extinst-output-base=$(1)/$(2)
@echo "[$(TARGET_ARCH_ABI)] Generate language specific header for $(2): headers <= grammar"
$(LOCAL_PATH)/source/ext_inst.cpp: $(1)/$(2).h
endef
# We generate language-specific headers for DebugInfo
$(eval $(call gen_spvtools_lang_headers,$(SPVTOOLS_OUT_PATH),DebugInfo,$(SPV_DEBUGINFO_GRAMMAR)))
define gen_spvtools_vendor_tables
$(call generate-file-dir,$(1)/$(2).insts.inc)
$(1)/$(2).insts.inc : \
$(LOCAL_PATH)/utils/generate_grammar_tables.py \
$(LOCAL_PATH)/source/extinst.$(2).grammar.json
@$(HOST_PYTHON) $(LOCAL_PATH)/utils/generate_grammar_tables.py \
--extinst-vendor-grammar=$(LOCAL_PATH)/source/extinst.$(2).grammar.json \
--vendor-insts-output=$(1)/$(2).insts.inc
@echo "[$(TARGET_ARCH_ABI)] Vendor extended instruction set: $(2) tables <= grammar"
$(LOCAL_PATH)/source/ext_inst.cpp: $(1)/$(2).insts.inc
endef
# Vendor extended instruction sets, with grammars from SPIRV-Tools source tree.
SPV_NONSTANDARD_EXTINST_GRAMMARS=$(foreach F,$(wildcard $(LOCAL_PATH)/source/extinst.*.grammar.json),$(patsubst extinst.%.grammar.json,%,$(notdir $F)))
$(foreach E,$(SPV_NONSTANDARD_EXTINST_GRAMMARS),$(eval $(call gen_spvtools_vendor_tables,$(SPVTOOLS_OUT_PATH),$E)))
define gen_spvtools_enum_string_mapping
$(call generate-file-dir,$(1)/extension_enum.inc.inc)
$(1)/extension_enum.inc $(1)/enum_string_mapping.inc: \
$(LOCAL_PATH)/utils/generate_grammar_tables.py \
$(SPV_CORELATEST_GRAMMAR)
@$(HOST_PYTHON) $(LOCAL_PATH)/utils/generate_grammar_tables.py \
--spirv-core-grammar=$(SPV_CORELATEST_GRAMMAR) \
--extinst-debuginfo-grammar=$(SPV_DEBUGINFO_GRAMMAR) \
--extension-enum-output=$(1)/extension_enum.inc \
--enum-string-mapping-output=$(1)/enum_string_mapping.inc
@echo "[$(TARGET_ARCH_ABI)] Generate enum<->string mapping <= grammar JSON files"
# Generated header extension_enum.inc is transitively included by table.h, which is
# used pervasively. Capture the pervasive dependency.
$(foreach F,$(SPVTOOLS_SRC_FILES) $(SPVTOOLS_OPT_SRC_FILES),$(LOCAL_PATH)/$F ) \
: $(1)/extension_enum.inc
$(LOCAL_PATH)/source/enum_string_mapping.cpp: $(1)/enum_string_mapping.inc
endef
$(eval $(call gen_spvtools_enum_string_mapping,$(SPVTOOLS_OUT_PATH)))
define gen_spvtools_build_version_inc
$(call generate-file-dir,$(1)/dummy_filename)
$(1)/build-version.inc: \
$(LOCAL_PATH)/utils/update_build_version.py \
$(LOCAL_PATH)/CHANGES
@$(HOST_PYTHON) $(LOCAL_PATH)/utils/update_build_version.py \
$(LOCAL_PATH) $(1)/build-version.inc
@echo "[$(TARGET_ARCH_ABI)] Generate : build-version.inc <= CHANGES"
$(LOCAL_PATH)/source/software_version.cpp: $(1)/build-version.inc
endef
$(eval $(call gen_spvtools_build_version_inc,$(SPVTOOLS_OUT_PATH)))
define gen_spvtools_generators_inc
$(call generate-file-dir,$(1)/dummy_filename)
$(1)/generators.inc: \
$(LOCAL_PATH)/utils/generate_registry_tables.py \
$(SPVHEADERS_LOCAL_PATH)/include/spirv/spir-v.xml
@$(HOST_PYTHON) $(LOCAL_PATH)/utils/generate_registry_tables.py \
--xml=$(SPVHEADERS_LOCAL_PATH)/include/spirv/spir-v.xml \
--generator-output=$(1)/generators.inc
@echo "[$(TARGET_ARCH_ABI)] Generate : generators.inc <= spir-v.xml"
$(LOCAL_PATH)/source/opcode.cpp: $(1)/generators.inc
endef
$(eval $(call gen_spvtools_generators_inc,$(SPVTOOLS_OUT_PATH)))
include $(CLEAR_VARS)
LOCAL_MODULE := SPIRV-Tools
LOCAL_C_INCLUDES := \
$(LOCAL_PATH)/include \
$(LOCAL_PATH)/source \
$(LOCAL_PATH)/external/spirv-headers/include \
$(SPVTOOLS_OUT_PATH)
LOCAL_EXPORT_C_INCLUDES := \
$(LOCAL_PATH)/include
LOCAL_CXXFLAGS:=-std=c++11 -fno-exceptions -fno-rtti -Werror
LOCAL_SRC_FILES:= $(SPVTOOLS_SRC_FILES)
include $(BUILD_STATIC_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := SPIRV-Tools-opt
LOCAL_C_INCLUDES := \
$(LOCAL_PATH)/include \
$(LOCAL_PATH)/source \
$(LOCAL_PATH)/external/spirv-headers/include \
$(SPVTOOLS_OUT_PATH)
LOCAL_CXXFLAGS:=-std=c++11 -fno-exceptions -fno-rtti -Werror
LOCAL_STATIC_LIBRARIES:=SPIRV-Tools
LOCAL_SRC_FILES:= $(SPVTOOLS_OPT_SRC_FILES)
include $(BUILD_STATIC_LIBRARY)

483
3rdparty/spirv-tools/CHANGES vendored Normal file
View File

@ -0,0 +1,483 @@
Revision history for SPIRV-Tools
v2018.3-dev 2018-04-06
- General:
- Support SPV_EXT_descriptor_indexing
- Support SPV_GOOGLE_decorate_string
- Support SPV_GOOGLE_hlsl_functionality1
- Support SPV_NV_shader_subgroup_partitioned
- Use "unified1" grammar from SPIRV-Headers
- Simplify support for new extensions. Assembler, disassembler, and simple validation
support is automatic if new tokens are introduced with appropriate extension
attributes in the "unified1" SPIR-V core grammar.
- Disassembler: Emit more digits on floating point, to reliably reproduce all
significand bits. (Use std::max_digits10 instead of std::digits10)
- Optimizer:
- Add --strip-reflect
- Add --time-report
- Merge-return now works with structured control flow.
- New (faster) SSA rewriter to convert local loads and stores to SSA IDs and phis.
Can replace load/store elimination passes.
- Fix instruction folding case: insertion that feeds and extract, when the extract
remains.
- Copy propagate arrays, in simple cases.
- Better handling of OpImageTexelPointer
- Add loop peeling internal utility.
- Initial utilities for scalar evolution.
- Validator:
- Check Vulkan built-in variables
- Check Vulkan-specific atomic result type rule.
- Relax control barrier check for SPIR-V 1.3. Fixes #1427
- Check OpPhi.
- Stop checking sizes derived from spec-constants.
- Re-enable checks for OpUConvert.
- Fixes:
#898: Linker properly removes FuncParamAttr from imported symbols.
#924, #1174: Fix handling of decoration groups in optimizer, linker.
#1404: Don't optimize away the compute compute workgroup size constant.
#1407: Remove a bad assertion
#1456: Fix bug in SSA rewriter related to variables updated in loops.
v2018.2 2018-03-07
- General:
- Support SPIR-V 1.3 and Vulkan 1.1.
- Default target environment is now SPIR-V 1.3. For command-line tools,
use the --target-env option to override the default. Examples:
# Generate a SPIR-V 1.0 binary instead of SPIR-V 1.3
spirv-as --target-env spv1.0 a.spvasm -o a.spv
spirv-as --target-env vulkan1.0 a.spvasm -o a.spv
# Validate as Vulkan 1.0
spirv-val --target-env vulkan1.0 a.spv
- Support SPV_GOOGLE_decorate_string and SPV_GOOGLE_hlsl_functionality1
- Fixes:
- Fix Android.mk build. Compilation was failing due to missing definitions of
SpvCapabilityFloat16ImageAMD and other enumerated values.
- Optimizer: Avoid generating duplicate names when merging types.
- #1375: Validator: SPV_AMD_gpu_shaer_half_float implicitly allows declaration
of the 16-bit floating point type.
- #1376: Optimizer: Avoid folding half-precision float.
v2018.1 2018-03-02
- General:
- Support Visual Studio 2013 again. (Continue support for VS 2015 and VS 2017.)
- Support building SPIRV-Tools as a shared library.
- Improve the HLSL legalization optimization recipe. #1311
- Optimizer:
- General speedups.
- Remove generic dead code elimination functionality from transforms:
--eliminate-local-single-block
--eliminate-local-single-store
--eliminate-local-multi-store
To recover the previous behaviour, a recipe using those transforms should now
also invoke the --eliminate-dead-code-aggressive transform.
- Improve folding, including coverage for floating point, OpSelect, and arithmetic
with non-trivial constant operands.
- Add loop-invariant code motion pass.
- Add loop-unrolling pass, for honouring unroll hits.
- Add loop-unswitch pass.
- Add instruction simplification pass.
- Aggressive dead code elimination: Understands capability hierarchy when finding
instructions it can eliminate (combinators). (PR #1268)
- CCP can now fold floating point arithmetic. #1311
- Validator:
- Validate barrier instructions.
- Check Vulkan-specific rules for atomics.
- Check Vulkan prohibition of Location or Component decorations on BuiltIn variables.
- Linker:
- Add --verify-ids option
- Add option to allow a resulting module to be partially linked.
- Handle OpModuleProcessed (instructions in SPIR-V layout section 7c)
- Fixes:
- #1265: Optimizer: Fix use-after free bug in if-conversion. (Fix object lifecycle bug
in type manager.)
- #1282: Fix new warnings found by GCC 8.0.1.
- #1285: Optimizer: Fix random failures during inlining. (Dangling references in DefUseManager)
- #1295: Optimizer: Fix incorrect handling of Phi nodes in CCP.
- #1300: Fix CCP: avoid bad CCP transitions and unsettled values.
- #1304: Avoid static-duration variables of class type (with constructors).
- #1323: Fix folding of an insert composite feeding a composite extract.
- #1339: Fix CCP: Handle OpConstantNull boolean values as conditions.
- #1341: DCEInst: Keep atomic instructions (and some others with side effects).
- #1354: Don't fold integer division.
- #1357: Support OpConstantNull in folding.
- #1361: CCP: Fix handling of non-constant module-scope values
v2018.0 2018-02-02
- General
- VisualStudio 2013 is no longer supported. VisualStudio 2015 is supported.
- Use "include/unified1" directory from SPIRV-Headers. Requires recent SPIRV-Headers source.
- Disassembler: spirv-dis adds --color option to force color disassembly.
- Optimizer:
- Add pass to eliminate dead insertions.
- Aggressive dead code elimination now removes OpSwitch constructs.
- Block merging occurs in more cases.
- Add driver workaround transform: replace OpUnreachable with harmless branch to merge.
- Improve instruction folding framework.
- Add loop analysis.
- Add scalar replacement of aggregates to size-optimization recipe.
- Add pass to replace instructions invalid for a shader stage, with a harmless value.
This changes the semantics of the program! Not for general use!
- Rearragne and add passes to performance-optimization recipe, to produce better results.
- Validator:
- Validate OpenCL extended instructions.
- Shaders can't perform atomics on floats.
- Validate memory semantics values in atomics.
- Validate instruction-adjacency constraints, e.g. OpPhi predecessors, merge instructions
immediately precede branches.
- Fixes:
- PR 1198: Optimizer: Fix CCP in presence of matrix constants.
- #1199: Optimizer: Fix CCP: don't propagate spec constants.
- #1203: Optimizer: Fix common uniform elim bug introduced by refactoring.
- #1210: Optimizer: Aggressive dead code elimination: Fix 'break' identification.
- #1212: Optimizer: Aggressive dead code elimination: Was skipping too many instructions.
- #1214: Optimizer: Aggressive dead code elimination: Fix infinite loop.
- #1228: Optimizer: Fix CCP: Handling of varying Phi nodes; was resulting in infinite loop.
- #1245: Optimizer: Dead branch elimination: Avoid a null pointer dereference.
- #1250: Optimizer: Dead branch elimination: Avoid spuriously reporting a change.
v2017.3 2018-01-12
- General:
- Support DebugInfo extended instruction set, targeted at OpenCL environments.
See the SPIR-V Registry.
- Generate a SPIRV-Tools.pc file for pkg-config.
- Optimizer:
- Progress for legalization of code generated from HLSL (issue #1118):
- Add --legalize-hlsl option to run transforms used to transform intermediate
code generated by HLSL to SPIR-V for Vulkan compilers. Those compilers
normally run these transforms automatically. This option is used for developing
those transforms.
- Add Private-to-Function variable conversion for modules with logical
addressing.
- Add --ccp: SSA Conditional Constant Propagation (CCP)
- Add --print-all to show disassembly for each optimization pass.
- Internal: Add loop descriptors and post-order tree iterator.
- Generalized dead branch elimination
- Aggressive dead code elimination (ADCE) now removes dead functions and
module-scope variables.
- Vector extract/insert elimination now optimizes through some cases of
VectorShuffle, and GLSL.std.450 Mix extended instruction.
- Validator:
- Add validation for GLSL.std.450 extended instruction set.
- Check out of bounds composite accesses, where that's statically computable.
Fixes #1112.
- Check upper bits of literal numbers that aren't a multiple of 32-bits wide.
- More validation of primitive instructions
- Add optional "relaxed" checking logical addressing mode to permit some
cases of pointer-to-pointer. Contributes to HLSL legalization (issue #1118).
- Fixes:
#1100: Validator: Image operand Sample can be used with OpImageSparseFetch,
OpImageSparseRead.
#1108: Remove duplicates transform was incorrectly removing non-duplicate
decorations.
#1111: Optimizer's type manager could reference deleted memory.
#1112: Fix decoration equality check, e.g. it is now symmetric.
#1129: Validator now disallows Dim=SupbassData for OpImageSparseRead.
#1143: Fix CCP: Was generating incorrect code for loops.
#1153: Fix CCP crash.
#1154: Optimizer's internal instruction-to-block mappings were sometimes
inconsistent.
#1159: Fix CCP infinite loop.
#1168: Fix dead branch elimination intermittently generating incorrect code.
Fixes https://github.com/KhronosGroup/glslang/issues/1205
#1186: Fix validation of PackDouble2x32 and UnpackDouble2x32
v2017.2 2017-12-15
- General:
- Support OpenCL 1.2, 2.0 target environments, including embedded profiles
- Add CONTRIBUTING.md
- Fix exit status code for spirv-link
- Disassember: Enable emitting ANSI colour codes to a string
- Library avoids polluting global namespace. The libraries can export C and C++
symbols starting with "spv", or in a C++ namespace. Add a test for this.
- Linux release builds include debug information, for easier profiling
- Build bots no longer test VisualStudio 2013
- Testing dependency RE2 requires VisualStudio 2015 or later
- Build bots check code formatting
- Optimizer:
- Add --skip-validation to spirv-opt
- Add dominance tree analysis
- Add generic value propagation engine
- Add global redundancy elimination within a function
- Add scalar replacement of function-scope variables of composite type
- Aggressive dead code elimination: Remove empty loops
- Killing an instruction notifies the IRContext
- IRContext::KillInst deletes the instruction
- Move CFG analysis to IRContext
- Add constant manager
- Fix: Don't consider derivative instructions as combinators.
- Fix: Don't delete an instruction twice in local dead-code-elimination
- Fix: Don't consider derivative instructions as combinators.
- Validator:
- Finish checking of image instructions (Section 3.32.10)
- Check sparse image instructions
- Check OpTypeImage, OpTypeSampleImage
- Check composite instructions (Section 3.32.12)
- Check atomic instructions (Section 3.32.18)
- Check OpEmitStreamVertex, OpEndStreamPrimitive instructions
- Re-enable validation of OpCopyObject
- OpKill, image ImplicitLod and QueryLod instructions can only be used in Fragment
shaders.
- Fixes for image instruction validation:
- Lod image operand only usable with ExplicitLod and OpImageFetch
- ExplicitLod Lod image operand must be float scalar
- OpImageFectch Lod image operand must be int scalar
- OpImageGather component operand must be 32-bits (integer scalar)
- OpImageQuerySizeLod Lod must be integer scalar
- Fixes:
#622: Remove names and decorations when inlining
#989: Aggressive dead code elim: Don't optimize away live breaks from a loop
#991: Fix validation of SPV_AMD_shader_ballot
#1004: Use after free of an instruction, in remove-duplicates transform
#1007: OpImageRead not required to return 4-component vector
#1009: OpImageRead can return scalar int/float types
#1011: OpImageWrite should allow scalar int/float texel types
#1012: Fix validat Dref type check
#1017: Load-store elimination considers variable initializations
#1034: Fix Windows debug build: operator< should be a weak ordering
#1083: Inlining: Set parent (function) for each inlined basic block.
#1075: Aggressive dead code elimination: Was leaving dangling references to
removed blocks.
v2017.1 2017-11-23
- Update README with details on the public_spirv_tools_dev@khronos.org mailing list.
- General:
- Automatically deploy built artifacts to GitHub Releases
- Add a Linker (module combiner). Under development.
- Add Android.mk for Android NDK builds.
- Add the 'effcee' library as an optional dependency for use in tests.
Eventually it will be a required dependency, once downstream projects have
a chance to adjust. Requires 're2' library.
- Avoid static-duration variables of class type (with constructors).
- Hack around bugs in gcc-4.8.1 template handling
- Faster opcode lookup
- Validator:
- Recognize extensions listed on SPIR-V registry,
through #25 SPV_AMD_shader_fragment_mask
- Validator issues an info message when it sees an unrecognized extension.
- Type check basic arithmetic operations
- Type check carry/extended arithmetic operations
- Type check vector arithmetic operations
- Type check Relational and Logical instructions
- Type check Bit instructions
- Check type uniqueness rules
- Check conversion instructions
- Check image instructions
- Check derivative instructions
- Check OpVectorShuffle
- Check OpBranchConditional
- OpModuleProcessed is only allowed after debug names section and before annotations
section.
- Checks the right kind of return is called for each function (void or non-void).
- Add option to relax type check when storing structs (--relax-store-struct)
- Optimizer:
- Refactoring internal representation of the module, including:
- IRContext: owns a module and manages analyses
- Instructions are owned by intrusive lists, and have unique IDs
- BasicBlock owns its instruction list.
- DefUseManager: change representation of uses, for faster processing
on large modules.
- Add high level recipes: -O, -Os, and -Oconfig
Recipes for -O and -Os are under development.
- Add eliminate-dead-function transform
- Add strength reduction transform: For now, convert multiply by power of 2
to a bit shift.
- Add CFG cleanup transform
- Add removal of dead module-scope variables
- Add merge-return transform for modules without structured control flow
- Add redundancy elimination within a basic block (local value numbering)
- Extract-insert elimination:
- Recognize the case where the first instruction in the sequence is an
OpCompositeConstruct or OpConstantComposite
- Handle some cases of nested structs
- Dead branch elimination now can eliminate entire selection constructs
when all arms are dead.
- Compressing codec:
- Updated algorithm to 1.01, 1.02, 1.03
- Not built by default. Use -DSPIRV_BUILD_COMPRESSION=ON to build.
- Codec can be parameterized by a customized model.
- Fixes:
#728: Fix decoration of inlined functions
#798: spirv-as should fail when given unrecognized long option
#800: Inliner: Fix inlining function into header of multi-block loop
#824: Eliminate-local-multi-store: Fix a crash
#826: Elimiante-local-multi-store: Fix a crash
#827: Fix crash when compact-ids transform runs before another transform.
#834: Add Cmake option to build the compressing codec. Off by default.
#911: Fix classification of Line and NoLine instructions
v2017.0 2017-09-01
- Update README to describe that assembler, disassembler, and binary parser support
are based on grammar files from the SPIRV-Headers repository.
v2016.7 2017-09-01
- Add SPIR-V 1.2
- OpenCL 2.2 support is now based on SPIR-V 1.2
- Support AMD extensions in assembler, disassembler:
SPV_AMD_gcn_shader
SPV_AMD_shader_ballot
SPV_AMD_shader_explicit_vertex_parameter
SPV_AMD_shader_trinary_minmax
SPV_AMD_gpu_shader_half_float
SPV_AMD_texture_gather_bias_lod
SPV_AMD_gpu_shader_int16
- Optimizer: Add support for:
- Inline all function calls in entry points.
- Flatten decoration groups. Fixes #602
- Id compaction (minimize Id bound). Fixes #624
- Eliminate redundant composite insert followed by extract
- Simplify access chains to local variables
- Eliminate local variables with a single store, if possible
- Eliminate local variables with a several stores, if possible
- Eliminate loads and stores in same block to local variables
- Eliminate redundant insert/extract to composite values
- Aggressive dead instruction elimination
- Eliminate dead branches
- Merge blocks when the second can only be preceded by the first
- Eliminate ommon uniform loads
- Assembler: Add option to preserve numeric ids. Fixes #625
- Add build target spirv-tools-vimsyntax to generate spvasm.vim, a SPIR-V
assembly syntax file for Vim.
- Version string: Allow overriding of wall clock timestamp with contents
of environment variable SOURCE_DATE_EPOCH.
- Validator implements relaxed rules for SPV_KHR_16bit_storage.
- CMake installation rules use GNUInstallDirs. For example, libraries
will be installed into a lib64 directory if that's the norm for the
current system.
- Fixes:
#500: Parameterize validator limit checks
#508: Support compilation under CYGWIN
#517: Fix validation when continue (or case) contstruct is also the head of a
nested control construct.
#551: If a merge block is reachable, it must be *strictly* dominated by its
header.
#548: Validator: Error when the reserved OpImageSparseSampleProj* opcodes
are used.
#611: spvtools::Optimizer was failing to save the module to the output
binary vector when all passes succeded without changes.
#629: The inline-entry-points-all optimization could generate invalidly
structured code when the inlined function had early returns.
#697: Optimizer's Instruction::ForEachInId method was skipping semantics-id
and scope-id.
#755: Inliner: Fix inlining of callee with single Return appearing before
the end of the function.
#776: Fix dead branch elimination in presence of complex but dead control
flow.
#781: SPV_KHR_variable_pointers allows duplicate pointer types
#782: Inliner: Fix remapping of non-label forward references in callee
#787: Inliner: Fix remapping of inlined entry block when called from
single block loop.
#790: Inliner: Fix remapping of inlined entry block when callee has
multiple returns.
v2016.6 2016-12-13
- Published the C++ interface for assembling, disassembling, validation, and
optimization.
- Support SPV_KHR_shader_draw_parameters in assembler, disassembler, parser.
- Validator:
- Add validator API accepting raw binary words
- Increased coverage:
- Checks "Data rules" in Universal Validation Rules, section 2.16.1
- WIP: Universal Limits.
- The minimum mandated upper bounds are checked.
- TODO: Parameterize the validator to allow larger limits accepted by
a more than minimally capable implementation.
- OpSampledImage checks
- OpConstantComposite checks
- Id bound check
- Disasssembler:
- Generates friendly GLSL-based names for more builtin variables
- Generates friendly names for numeric OpConstant values
- Vendor tool info extracted from SPIR-V XML registry file.
- Fixes issues:
#429: Validator: Allow OpTypeForwardPointer and OpTypeStruct to reference
undefined IDs
#482: Validator: OpVariable initializer can be an ID of a module-scope variable
v2016.5 2016-09-16
- Support SPV_KHR_shader_ballot in assembler, disassembler, parser.
- Disassembler: Generate friendly names for built-in variables.
- Partial fixes:
#359: Add Emacs helper for automatically diassembling/assembling a SPIR-V
binary on file load/save.
- Fixes:
#414: Validator: Allow OpUndef for composite constants
#415: Validator: Phi can use its own value in some cases.
v2016.4 2016-09-01
- Relicensed under Apache 2.0
- Add optimization passes (in API and spirv-opt command)
- Fold spec constants defined with OpSpecConstantOp and
OpSpecConstantComposite to normal constants with fixed value(s).
- Fixes issues:
#318: Relicensed under Apache 2.0
v2016.3 2016-08-24
- Add target environment enums for OpenCL 2.1, OpenCL 2.2,
OpenGL 4.0, OpenGL 4.1, OpenGL 4.2, OpenGL 4.3, OpenGL 4.5.
- Add spirv-cfg, an experimental tool to dump the control flow graph
as a GraphiViz "dot" graph
- Add optimization pass: Eliminate dead constants.
- Add spirv-lesspipe.sh filter utility
- Fixes issues:
#288: Check def-use dominance rules for OpPhi (variable,parent) operands
#339: Allow OpUndef in types-constants-global-vars section, as required
by SPIR-V 1.0 Rev7, 1.1 Rev 3.
#340: Avoid race on mkdir during build
#365: Relax PointSize, ClipDistance, CullDistance capability check in all
environments not just Vulkan 1.0.
v2016.2 2016-08-05
- Validator is incomplete
- Checks ID use block is dominated by definition block
- Add optimization passes (in API and spirv-opt command)
- Strip debug info instructions
- Freeze spec constant to their default values
- Allow INotEqual as operation for OpSpecConstantOp
- Fixes bugs:
#270: validator: crash when continue construct is unreachable
#279: validator: infinite loop when analyzing some degenerate control
flow graphs
#286: validator: don't incorrectly generate def-use error for
(variable,parent) parameters to OpPhi
#290: disassembler: never generate bare % for an identifier
#295: validator: def-use dominance check should ignore unreachable uses
#276: validator: allow unreachable continue constructs
#297: validator: allow an unreachable block to branch to a reachable
merge block
v2016.1 2016-07-19
- Fix https://github.com/KhronosGroup/SPIRV-Tools/issues/261
Turn off ClipDistance and CullDistance capability checks for Vulkan.
- The disassembler can emit friendly names based on debug info (OpName
instructions), and will infer somewhat friendly names for most types.
This is turned on by default for the spirv-dis command line tool.
- Updated to support SPIR-V 1.1 rev 2
- Input StorageClass, Sampled1D capability, and SampledBuffer capability
do not require Shader capability anymore.
v2016.0 2016-07-04
- Adds v<year>.<index> versioning, with "-dev" indicating
work in progress. The intent is to more easly report
and summarize functionality when SPIRV-Tools is incorporated
in downstream projects.
- Summary of functionality (See the README.md for more):
- Supports SPIR-V 1.1 Rev 1
- Supports SPIR-V 1.0 Rev 5
- Supports GLSL std450 extended instructions 1.0 Rev 3
- Supports OpenCL extended instructions 1.0 Rev 2
- Assembler, disassembler are complete
- Supports floating point widths of 16, 32, 64 bits
- Supports integer widths up to 64 bits
- Validator is incomplete
- Checks capability requirements in most cases
- Checks module layout constraints
- Checks ID use-definition ordering constraints,
ignoring control flow
- Checks some control flow graph rules
- Optimizer is introduced, with few available transforms.
- Supported on Linux, OSX, Android, Windows
- Fixes bugs:
- #143: OpenCL pow and pown arguments

268
3rdparty/spirv-tools/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,268 @@
# Copyright (c) 2015-2016 The Khronos Group Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
cmake_minimum_required(VERSION 2.8.12)
if (POLICY CMP0048)
cmake_policy(SET CMP0048 NEW)
endif()
if (POLICY CMP0054)
# Avoid dereferencing variables or interpret keywords that have been
# quoted or bracketed.
# https://cmake.org/cmake/help/v3.1/policy/CMP0054.html
cmake_policy(SET CMP0054 NEW)
endif()
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
project(spirv-tools)
enable_testing()
set(SPIRV_TOOLS "SPIRV-Tools")
include(GNUInstallDirs)
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
if("${CMAKE_SYSTEM_NAME}" STREQUAL "Linux")
add_definitions(-DSPIRV_LINUX)
set(SPIRV_TIMER_ENABLED ON)
elseif("${CMAKE_SYSTEM_NAME}" STREQUAL "Windows")
add_definitions(-DSPIRV_WINDOWS)
elseif("${CMAKE_SYSTEM_NAME}" STREQUAL "CYGWIN")
add_definitions(-DSPIRV_WINDOWS)
elseif("${CMAKE_SYSTEM_NAME}" STREQUAL "Darwin")
add_definitions(-DSPIRV_MAC)
elseif("${CMAKE_SYSTEM_NAME}" STREQUAL "Android")
add_definitions(-DSPIRV_ANDROID)
set(SPIRV_TIMER_ENABLED ON)
elseif("${CMAKE_SYSTEM_NAME}" STREQUAL "FreeBSD")
add_definitions(-DSPIRV_FREEBSD)
else()
message(FATAL_ERROR "Your platform '${CMAKE_SYSTEM_NAME}' is not supported!")
endif()
if (${SPIRV_TIMER_ENABLED})
add_definitions(-DSPIRV_TIMER_ENABLED)
endif()
if ("${CMAKE_BUILD_TYPE}" STREQUAL "")
message(STATUS "No build type selected, default to Debug")
set(CMAKE_BUILD_TYPE "Debug")
endif()
option(SKIP_SPIRV_TOOLS_INSTALL "Skip installation" ${SKIP_SPIRV_TOOLS_INSTALL})
if(NOT ${SKIP_SPIRV_TOOLS_INSTALL})
set(ENABLE_SPIRV_TOOLS_INSTALL ON)
endif()
option(SPIRV_BUILD_COMPRESSION "Build SPIR-V compressing codec" OFF)
option(SPIRV_WERROR "Enable error on warning" ON)
if(("${CMAKE_CXX_COMPILER_ID}" MATCHES "GNU") OR ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang"))
set(COMPILER_IS_LIKE_GNU TRUE)
endif()
if(${COMPILER_IS_LIKE_GNU})
set(SPIRV_WARNINGS -Wall -Wextra -Wnon-virtual-dtor -Wno-missing-field-initializers)
option(SPIRV_WARN_EVERYTHING "Enable -Weverything" ${SPIRV_WARN_EVERYTHING})
if(${SPIRV_WARN_EVERYTHING})
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")
set(SPIRV_WARNINGS ${SPIRV_WARNINGS}
-Weverything -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-padded)
elseif("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
set(SPIRV_WARNINGS ${SPIRV_WARNINGS} -Wpedantic -pedantic-errors)
else()
message(STATUS "Unknown compiler ${CMAKE_CXX_COMPILER_ID}, "
"so SPIRV_WARN_EVERYTHING has no effect")
endif()
endif()
if(${SPIRV_WERROR})
set(SPIRV_WARNINGS ${SPIRV_WARNINGS} -Werror)
endif()
elseif(MSVC)
set(SPIRV_WARNINGS -D_CRT_SECURE_NO_WARNINGS -D_SCL_SECURE_NO_WARNINGS /wd4800)
if(${SPIRV_WERROR})
set(SPIRV_WARNINGS ${SPIRV_WARNINGS} /WX)
endif()
endif()
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/source)
option(SPIRV_COLOR_TERMINAL "Enable color terminal output" ON)
if(${SPIRV_COLOR_TERMINAL})
add_definitions(-DSPIRV_COLOR_TERMINAL)
endif()
option(SPIRV_LOG_DEBUG "Enable excessive debug output" OFF)
if(${SPIRV_LOG_DEBUG})
add_definitions(-DSPIRV_LOG_DEBUG)
endif()
if (DEFINED SPIRV_TOOLS_EXTRA_DEFINITIONS)
add_definitions(${SPIRV_TOOLS_EXTRA_DEFINITIONS})
endif()
function(spvtools_default_compile_options TARGET)
target_compile_options(${TARGET} PRIVATE ${SPIRV_WARNINGS})
if (${COMPILER_IS_LIKE_GNU})
target_compile_options(${TARGET} PRIVATE
-std=c++11 -fno-exceptions -fno-rtti)
target_compile_options(${TARGET} PRIVATE
-Wall -Wextra -Wno-long-long -Wshadow -Wundef -Wconversion
-Wno-sign-conversion)
# For good call stacks in profiles, keep the frame pointers.
if(NOT "${SPIRV_PERF}" STREQUAL "")
target_compile_options(${TARGET} PRIVATE -fno-omit-frame-pointer)
endif()
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")
set(SPIRV_USE_SANITIZER "" CACHE STRING
"Use the clang sanitizer [address|memory|thread|...]")
if(NOT "${SPIRV_USE_SANITIZER}" STREQUAL "")
target_compile_options(${TARGET} PRIVATE
-fsanitize=${SPIRV_USE_SANITIZER})
endif()
else()
target_compile_options(${TARGET} PRIVATE
-Wno-missing-field-initializers)
endif()
endif()
if (MSVC)
# Specify /EHs for exception handling. This makes using SPIRV-Tools as
# dependencies in other projects easier.
target_compile_options(${TARGET} PRIVATE /EHs)
endif()
# For MinGW cross compile, statically link to the C++ runtime.
# But it still depends on MSVCRT.dll.
if (${CMAKE_SYSTEM_NAME} MATCHES "Windows")
if (${CMAKE_CXX_COMPILER_ID} MATCHES "GNU")
set_target_properties(${TARGET} PROPERTIES
LINK_FLAGS -static -static-libgcc -static-libstdc++)
endif()
endif()
endfunction()
if(NOT COMMAND find_host_package)
macro(find_host_package)
find_package(${ARGN})
endmacro()
endif()
if(NOT COMMAND find_host_program)
macro(find_host_program)
find_program(${ARGN})
endmacro()
endif()
find_host_package(PythonInterp)
if("${CMAKE_SYSTEM_NAME}" STREQUAL "Linux")
macro(spvtools_check_symbol_exports TARGET)
add_test(NAME spirv-tools-symbol-exports-${TARGET}
COMMAND ${PYTHON_EXECUTABLE}
${spirv-tools_SOURCE_DIR}/utils/check_symbol_exports.py "$<TARGET_FILE:${TARGET}>")
endmacro()
else()
macro(spvtools_check_symbol_exports TARGET)
message("Skipping symbol exports test for ${TARGET}")
endmacro()
endif()
# Defaults to OFF if the user didn't set it.
option(SPIRV_SKIP_EXECUTABLES
"Skip building the executable and tests along with the library"
${SPIRV_SKIP_EXECUTABLES})
option(SPIRV_SKIP_TESTS
"Skip building tests along with the library" ${SPIRV_SKIP_TESTS})
if ("${SPIRV_SKIP_EXECUTABLES}")
set(SPIRV_SKIP_TESTS ON)
endif()
# Defaults to ON. The checks can be time consuming.
# Turn off if they take too long.
option(SPIRV_CHECK_CONTEXT "In a debug build, check if the IR context is in a valid state." ON)
if (${SPIRV_CHECK_CONTEXT})
add_definitions(-DSPIRV_CHECK_CONTEXT)
endif()
add_subdirectory(external)
if (TARGET effcee)
add_definitions(-DSPIRV_EFFCEE)
endif()
add_subdirectory(source)
add_subdirectory(tools)
add_subdirectory(test)
add_subdirectory(examples)
if(ENABLE_SPIRV_TOOLS_INSTALL)
install(
FILES
${CMAKE_CURRENT_SOURCE_DIR}/include/spirv-tools/libspirv.h
${CMAKE_CURRENT_SOURCE_DIR}/include/spirv-tools/libspirv.hpp
${CMAKE_CURRENT_SOURCE_DIR}/include/spirv-tools/optimizer.hpp
${CMAKE_CURRENT_SOURCE_DIR}/include/spirv-tools/linker.hpp
DESTINATION
${CMAKE_INSTALL_INCLUDEDIR}/spirv-tools/)
endif(ENABLE_SPIRV_TOOLS_INSTALL)
if (NOT "${SPIRV_SKIP_TESTS}")
add_test(NAME spirv-tools-copyrights
COMMAND ${PYTHON_EXECUTABLE} utils/check_copyright.py
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endif()
set(SPIRV_LIBRARIES "-lSPIRV-Tools -lSPIRV-Tools-link -lSPIRV-Tools-opt")
set(SPIRV_SHARED_LIBRARIES "-lSPIRV-Tools-shared")
if(SPIRV_BUILD_COMPRESSION)
set(SPIRV_LIBRARIES "${SPIRV_LIBRARIES} -lSPIRV-Tools-comp")
endif(SPIRV_BUILD_COMPRESSION)
# Build pkg-config file
# Use a first-class target so it's regenerated when relevant files are updated.
add_custom_target(spirv-tools-pkg-config ALL
COMMAND ${CMAKE_COMMAND}
-DCHANGES_FILE=${CMAKE_CURRENT_SOURCE_DIR}/CHANGES
-DTEMPLATE_FILE=${CMAKE_CURRENT_SOURCE_DIR}/cmake/SPIRV-Tools.pc.in
-DOUT_FILE=${CMAKE_CURRENT_BINARY_DIR}/SPIRV-Tools.pc
-DCMAKE_INSTALL_PREFIX=${CMAKE_INSTALL_PREFIX}
-DCMAKE_INSTALL_LIBDIR=${CMAKE_INSTALL_LIBDIR}
-DCMAKE_INSTALL_INCLUDEDIR=${CMAKE_INSTALL_INCLUDEDIR}
-DSPIRV_LIBRARIES=${SPIRV_LIBRARIES}
-P ${CMAKE_CURRENT_SOURCE_DIR}/cmake/write_pkg_config.cmake
DEPENDS "CHANGES" "cmake/SPIRV-Tools.pc.in" "cmake/write_pkg_config.cmake")
add_custom_target(spirv-tools-shared-pkg-config ALL
COMMAND ${CMAKE_COMMAND}
-DCHANGES_FILE=${CMAKE_CURRENT_SOURCE_DIR}/CHANGES
-DTEMPLATE_FILE=${CMAKE_CURRENT_SOURCE_DIR}/cmake/SPIRV-Tools-shared.pc.in
-DOUT_FILE=${CMAKE_CURRENT_BINARY_DIR}/SPIRV-Tools-shared.pc
-DCMAKE_INSTALL_PREFIX=${CMAKE_INSTALL_PREFIX}
-DCMAKE_INSTALL_LIBDIR=${CMAKE_INSTALL_LIBDIR}
-DCMAKE_INSTALL_INCLUDEDIR=${CMAKE_INSTALL_INCLUDEDIR}
-DSPIRV_SHARED_LIBRARIES=${SPIRV_SHARED_LIBRARIES}
-P ${CMAKE_CURRENT_SOURCE_DIR}/cmake/write_pkg_config.cmake
DEPENDS "CHANGES" "cmake/SPIRV-Tools-shared.pc.in" "cmake/write_pkg_config.cmake")
# Install pkg-config file
if (ENABLE_SPIRV_TOOLS_INSTALL)
install(
FILES
${CMAKE_CURRENT_BINARY_DIR}/SPIRV-Tools.pc
${CMAKE_CURRENT_BINARY_DIR}/SPIRV-Tools-shared.pc
DESTINATION
${CMAKE_INSTALL_LIBDIR}/pkgconfig)
endif()

189
3rdparty/spirv-tools/CONTRIBUTING.md vendored Normal file
View File

@ -0,0 +1,189 @@
# Contributing to SPIR-V Tools
## For users: Reporting bugs and requesting features
We organize known future work in GitHub projects. See [Tracking SPIRV-Tools work
with GitHub
projects](https://github.com/KhronosGroup/SPIRV-Tools/blob/master/projects.md)
for more.
To report a new bug or request a new feature, please file a GitHub issue. Please
ensure the bug has not already been reported by searching
[issues](https://github.com/KhronosGroup/SPIRV-Tools/issues) and
[projects](https://github.com/KhronosGroup/SPIRV-Tools/projects). If the bug has
not already been reported open a new one
[here](https://github.com/KhronosGroup/SPIRV-Tools/issues/new).
When opening a new issue for a bug, make sure you provide the following:
* A clear and descriptive title.
* We want a title that will make it easy for people to remember what the
issue is about. Simply using "Segfault in spirv-opt" is not helpful
because there could be (but hopefully aren't) multiple bugs with
segmentation faults with different causes.
* A test case that exposes the bug, with the steps and commands to reproduce
it.
* The easier it is for a developer to reproduce the problem, the quicker a
fix can be found and verified. It will also make it easier for someone
to possibly realize the bug is related to another issue.
For feature requests, we use
[issues](https://github.com/KhronosGroup/SPIRV-Tools/issues) as well. Please
create a new issue, as with bugs. In the issue provide
* A description of the problem that needs to be solved.
* Examples that demonstrate the problem.
## For developers: Contributing a patch
Before we can use your code, you must sign the [Khronos Open Source Contributor
License Agreement](https://cla-assistant.io/KhronosGroup/SPIRV-Tools) (CLA),
which you can do online. The CLA is necessary mainly because you own the
copyright to your changes, even after your contribution becomes part of our
codebase, so we need your permission to use and distribute your code. We also
need to be sure of various other things -- for instance that you'll tell us if
you know that your code infringes on other people's patents. You don't have to
sign the CLA until after you've submitted your code for review and a member has
approved it, but you must do it before we can put your code into our codebase.
See
[README.md](https://github.com/KhronosGroup/SPIRV-Tools/blob/master/README.md)
for instruction on how to get, build, and test the source. Once you have made
your changes:
* Ensure the code follows the [Google C++ Style
Guide](https://google.github.io/styleguide/cppguide.html). Running
`clang-format -style=file -i [modified-files]` can help.
* Create a pull request (PR) with your patch.
* Make sure the PR description clearly identified the problem, explains the
solution, and references the issue if applicable.
* If your patch completely fixes bug 1234, the commit message should say
`Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/1234`
When you do this, the issue will be closed automatically when the commit
goes into master. Also, this helps us update the [CHANGES](CHANGES) file.
* Watch the continuous builds to make sure they pass.
* Request a code review.
The reviewer can either approve your PR or request changes. If changes are
requested:
* Please add new commits to your branch, instead of amending your commit.
Adding new commits makes it easier for the reviewer to see what has changed
since the last review.
* Once you are ready for another round of reviews, add a comment at the
bottom, such as "Ready for review" or "Please take a look" (or "PTAL"). This
explicit handoff is useful when responding with multiple small commits.
After the PR has been reviewed it is the job of the reviewer to merge the PR.
Instructions for this are given below.
## For maintainers: Reviewing a PR
The formal code reviews are done on GitHub. Reviewers are to look for all of the
usual things:
* Coding style follows the [Google C++ Style
Guide](https://google.github.io/styleguide/cppguide.html)
* Identify potential functional problems.
* Identify code duplication.
* Ensure the unit tests have enough coverage.
When looking for functional problems, there are some common problems reviewers
should pay particular attention to:
* Does the code work for both Shader (Vulkan and OpenGL) and Kernel (OpenCL)
scenarios? The respective SPIR-V dialects are slightly different.
* Changes are made to a container while iterating through it. You have to be
careful that iterators are not invalidated or that elements are not skipped.
* C++11 and VS2013. We generally assume that we have a C++11 compliant
compiler. However, on Windows, we still support Visual Studio 2013, which is
not fully C++11 compliant. See
[here](https://msdn.microsoft.com/en-us/library/hh567368.aspx). In
particular, note that it does not provide default move-constructors or
move-assignments for classes. In general, r-value references do not work the
way you might assume they do.
* For SPIR-V transforms: The module is changed, but the analyses are not
updated. For example, a new instruction is added, but the def-use manager is
not updated. Later on, it is possible that the def-use manager will be used,
and give wrong results.
## For maintainers: Merging a PR
We intend to maintain a linear history on the GitHub master branch, and the
build and its tests should pass at each commit in that history. A linear
always-working history is easier to understand and to bisect in case we want to
find which commit introduced a bug.
### Initial merge setup
The following steps should be done exactly once (when you are about to merge a
PR for the first time):
* It is assumed that upstream points to
[git@github.com](mailto:git@github.com):KhronosGroup/SPIRV-Tools.git or
https://github.com/KhronosGroup/SPIRV-Tools.git.
* Find out the local name for the main github repo in your git configuration.
For example, in this configuration, it is labeled `upstream`.
```
git remote -v
[ ... ]
upstream https://github.com/KhronosGroup/SPIRV-Tools.git (fetch)
upstream https://github.com/KhronosGroup/SPIRV-Tools.git (push)
```
* Make sure that the `upstream` remote is set to fetch from the `refs/pull`
namespace:
```
git config --get-all remote.upstream.fetch
+refs/heads/*:refs/remotes/upstream/*
+refs/pull/*/head:refs/remotes/upstream/pr/*
```
* If the line `+refs/pull/*/head:refs/remotes/upstream/pr/*` is not present in
your configuration, you can add it with the command:
```
git config --local --add remote.upstream.fetch '+refs/pull/*/head:refs/remotes/upstream/pr/*'
```
### Merge workflow
The following steps should be done for every PR that you intend to merge:
* Make sure your local copy of the master branch is up to date:
```
git checkout master
git pull
```
* Fetch all pull requests refs:
```
git fetch upstream
```
* Checkout the particular pull request you are going to review:
```
git checkout pr/1048
```
* Rebase the PR on top of the master branch. If there are conflicts, send it
back to the author and ask them to rebase. During the interactive rebase be
sure to squash all of the commits down to a single commit.
```
git rebase -i master
```
* **Build and test the PR.**
* If all of the tests pass, push the commit `git push upstream HEAD:master`
* Close the PR and add a comment saying it was push using the commit that you
just pushed. See https://github.com/KhronosGroup/SPIRV-Tools/pull/935 as an
example.

202
3rdparty/spirv-tools/LICENSE vendored Normal file
View File

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

509
3rdparty/spirv-tools/README.md vendored Normal file
View File

@ -0,0 +1,509 @@
# SPIR-V Tools
[![Build Status](https://travis-ci.org/KhronosGroup/SPIRV-Tools.svg?branch=master)](https://travis-ci.org/KhronosGroup/SPIRV-Tools)
[![Build status](https://ci.appveyor.com/api/projects/status/gpue87cesrx3pi0d/branch/master?svg=true)](https://ci.appveyor.com/project/Khronoswebmaster/spirv-tools/branch/master)
## Overview
The SPIR-V Tools project provides an API and commands for processing SPIR-V
modules.
The project includes an assembler, binary module parser, disassembler,
validator, and optimizer for SPIR-V. Except for the optimizer, all are based
on a common static library. The library contains all of the implementation
details, and is used in the standalone tools whilst also enabling integration
into other code bases directly. The optimizer implementation resides in its
own library, which depends on the core library.
The interfaces have stabilized:
We don't anticipate making a breaking change for existing features.
SPIR-V is defined by the Khronos Group Inc.
See the [SPIR-V Registry][spirv-registry] for the SPIR-V specification,
headers, and XML registry.
## Versioning SPIRV-Tools
See [`CHANGES`](CHANGES) for a high level summary of recent changes, by version.
SPIRV-Tools project version numbers are of the form `v`*year*`.`*index* and with
an optional `-dev` suffix to indicate work in progress. For exampe, the
following versions are ordered from oldest to newest:
* `v2016.0`
* `v2016.1-dev`
* `v2016.1`
* `v2016.2-dev`
* `v2016.2`
Use the `--version` option on each command line tool to see the software
version. An API call reports the software version as a C-style string.
## Supported features
### Assembler, binary parser, and disassembler
* Support for SPIR-V 1.0, 1.1, 1.2, and 1.3
* Based on SPIR-V syntax described by JSON grammar files in the
[SPIRV-Headers](spirv-headers) repository.
* Support for extended instruction sets:
* GLSL std450 version 1.0 Rev 3
* OpenCL version 1.0 Rev 2
* Assembler only does basic syntax checking. No cross validation of
IDs or types is performed, except to check literal arguments to
`OpConstant`, `OpSpecConstant`, and `OpSwitch`.
See [`syntax.md`](syntax.md) for the assembly language syntax.
### Validator
The validator checks validation rules described by the SPIR-V specification.
Khronos recommends that tools that create or transform SPIR-V modules use the
validator to ensure their outputs are valid, and that tools that consume SPIR-V
modules optionally use the validator to protect themselves from bad inputs.
This is especially encouraged for debug and development scenarios.
The validator has one-sided error: it will only return an error when it has
implemented a rule check and the module violates that rule.
The validator is incomplete.
See the [CHANGES](CHANGES) file for reports on completed work, and
the [Validator
sub-project](https://github.com/KhronosGroup/SPIRV-Tools/projects/1) for planned
and in-progress work.
*Note*: The validator checks some Universal Limits, from section 2.17 of the SPIR-V spec.
The validator will fail on a module that exceeds those minimum upper bound limits.
It is [future work](https://github.com/KhronosGroup/SPIRV-Tools/projects/1#card-1052403)
to parameterize the validator to allow larger
limits accepted by a more than minimally capable SPIR-V consumer.
### Optimizer
*Note:* The optimizer is still under development.
Currently supported optimizations:
* General
* Strip debug info
* Specialization Constants
* Set spec constant default value
* Freeze spec constant
* Fold `OpSpecConstantOp` and `OpSpecConstantComposite`
* Unify constants
* Eliminate dead constant
* Code Reduction
* Inline all function calls exhaustively
* Convert local access chains to inserts/extracts
* Eliminate local load/store in single block
* Eliminate local load/store with single store
* Eliminate local load/store with multiple stores
* Eliminate local extract from insert
* Eliminate dead instructions (aggressive)
* Eliminate dead branches
* Merge single successor / single predecessor block pairs
* Eliminate common uniform loads
* Remove duplicates: Capabilities, extended instruction imports, types, and
decorations.
For the latest list with detailed documentation, please refer to
[`include/spirv-tools/optimizer.hpp`](include/spirv-tools/optimizer.hpp).
For suggestions on using the code reduction options, please refer to this [white paper](https://www.lunarg.com/shader-compiler-technologies/white-paper-spirv-opt/).
### Linker
*Note:* The linker is still under development.
Current features:
* Combine multiple SPIR-V binary modules together.
* Combine into a library (exports are retained) or an executable (no symbols
are exported).
See the [CHANGES](CHANGES) file for reports on completed work, and the [General
sub-project](https://github.com/KhronosGroup/SPIRV-Tools/projects/2) for
planned and in-progress work.
### Extras
* [Utility filters](#utility-filters)
* Build target `spirv-tools-vimsyntax` generates file `spvasm.vim`.
Copy that file into your `$HOME/.vim/syntax` directory to get SPIR-V assembly syntax
highlighting in Vim. This build target is not built by default.
## Contributing
The SPIR-V Tools project is maintained by members of the The Khronos Group Inc.,
and is hosted at https://github.com/KhronosGroup/SPIRV-Tools.
Consider joining the `public_spirv_tools_dev@khronos.org` mailing list, via
[https://www.khronos.org/spir/spirv-tools-mailing-list/](https://www.khronos.org/spir/spirv-tools-mailing-list/).
The mailing list is used to discuss development plans for the SPIRV-Tools as an open source project.
Once discussion is resolved,
specific work is tracked via issues and sometimes in one of the
[projects][spirv-tools-projects].
(To provide feedback on the SPIR-V _specification_, file an issue on the
[SPIRV-Headers][spirv-headers] GitHub repository.)
See [`projects.md`](projects.md) to see how we use the
[GitHub Project
feature](https://help.github.com/articles/tracking-the-progress-of-your-work-with-projects/)
to organize planned and in-progress work.
Contributions via merge request are welcome. Changes should:
* Be provided under the [Apache 2.0](#license).
* You'll be prompted with a one-time "click-through"
[Khronos Open Source Contributor License Agreement][spirv-tools-cla]
(CLA) dialog as part of submitting your pull request or
other contribution to GitHub.
* Include tests to cover updated functionality.
* C++ code should follow the [Google C++ Style Guide][cpp-style-guide].
* Code should be formatted with `clang-format`. Settings are defined by
the included [.clang-format](.clang-format) file.
We intend to maintain a linear history on the GitHub `master` branch.
### Source code organization
* `example`: demo code of using SPIRV-Tools APIs
* `external/googletest`: Intended location for the
[googletest][googletest] sources, not provided
* `external/effcee`: Location of [Effcee][effcee] sources, if the `effcee` library
is not already configured by an enclosing project.
* `external/re2`: Location of [RE2][re2] sources, if the `effcee` library is not already
configured by an enclosing project.
(The Effcee project already requires RE2.)
* `include/`: API clients should add this directory to the include search path
* `external/spirv-headers`: Intended location for
[SPIR-V headers][spirv-headers], not provided
* `include/spirv-tools/libspirv.h`: C API public interface
* `source/`: API implementation
* `test/`: Tests, using the [googletest][googletest] framework
* `tools/`: Command line executables
Example of getting sources, assuming SPIRV-Tools is configured as a standalone project:
git clone https://github.com/KhronosGroup/SPIRV-Tools.git spirv-tools
git clone https://github.com/KhronosGroup/SPIRV-Headers.git spirv-tools/external/spirv-headers
git clone https://github.com/google/googletest.git spirv-tools/external/googletest
git clone https://github.com/google/effcee.git spirv-tools/external/effcee
git clone https://github.com/google/re2.git spirv-tools/external/re2
### Tests
The project contains a number of tests, used to drive development
and ensure correctness. The tests are written using the
[googletest][googletest] framework. The `googletest`
source is not provided with this project. There are two ways to enable
tests:
* If SPIR-V Tools is configured as part of an enclosing project, then the
enclosing project should configure `googletest` before configuring SPIR-V Tools.
* If SPIR-V Tools is configured as a standalone project, then download the
`googletest` source into the `<spirv-dir>/external/googletest` directory before
configuring and building the project.
*Note*: You must use a version of googletest that includes
[a fix][googletest-pull-612] for [googletest issue 610][googletest-issue-610].
The fix is included on the googletest master branch any time after 2015-11-10.
In particular, googletest must be newer than version 1.7.0.
### Optional dependency on Effcee
Some tests depend on the [Effcee][effcee] library for stateful matching.
Effcee itself depends on [RE2][re2].
* If SPIRV-Tools is configured as part of a larger project that already uses
Effcee, then that project should include Effcee before SPIRV-Tools.
* Otherwise, SPIRV-Tools expects Effcee sources to appear in `external/effcee`
and RE2 sources to appear in `external/re2`.
Currently Effcee is an optional dependency, but soon it will be required.
## Build
Instead of building manually, you can also download the binaries for your
platform directly from the [master-tot release][master-tot-release] on GitHub.
Those binaries are automatically uploaded by the buildbots after successful
testing and they always reflect the current top of the tree of the master
branch.
The project uses [CMake][cmake] to generate platform-specific build
configurations. Assume that `<spirv-dir>` is the root directory of the checked
out code:
```sh
cd <spirv-dir>
git clone https://github.com/KhronosGroup/SPIRV-Headers.git external/spirv-headers
git clone https://github.com/google/googletest.git external/googletest # optional
mkdir build && cd build
cmake [-G <platform-generator>] <spirv-dir>
```
Once the build files have been generated, build using your preferred
development environment.
### CMake options
The following CMake options are supported:
* `SPIRV_COLOR_TERMINAL={ON|OFF}`, default `ON` - Enables color console output.
* `SPIRV_SKIP_TESTS={ON|OFF}`, default `OFF`- Build only the library and
the command line tools. This will prevent the tests from being built.
* `SPIRV_SKIP_EXECUTABLES={ON|OFF}`, default `OFF`- Build only the library, not
the command line tools and tests.
* `SPIRV_BUILD_COMPRESSION={ON|OFF}`, default `OFF`- Build SPIR-V compressing
codec.
* `SPIRV_USE_SANITIZER=<sanitizer>`, default is no sanitizing - On UNIX
platforms with an appropriate version of `clang` this option enables the use
of the sanitizers documented [here][clang-sanitizers].
This should only be used with a debug build.
* `SPIRV_WARN_EVERYTHING={ON|OFF}`, default `OFF` - On UNIX platforms enable
more strict warnings. The code might not compile with this option enabled.
For Clang, enables `-Weverything`. For GCC, enables `-Wpedantic`.
See [`CMakeLists.txt`](CMakeLists.txt) for details.
* `SPIRV_WERROR={ON|OFF}`, default `ON` - Forces a compilation error on any
warnings encountered by enabling the compiler-specific compiler front-end
option.
Additionally, you can pass additional C preprocessor definitions to SPIRV-Tools
via setting `SPIRV_TOOLS_EXTRA_DEFINITIONS`. For example, by setting it to
`/D_ITERATOR_DEBUG_LEVEL=0` on Windows, you can disable checked iterators and
iterator debugging.
## Library
### Usage
The internals of the library use C++11 features, and are exposed via both a C
and C++ API.
In order to use the library from an application, the include path should point
to `<spirv-dir>/include`, which will enable the application to include the
header `<spirv-dir>/include/spirv-tools/libspirv.h{|pp}` then linking against
the static library in `<spirv-build-dir>/source/libSPIRV-Tools.a` or
`<spirv-build-dir>/source/SPIRV-Tools.lib`.
For optimization, the header file is
`<spirv-dir>/include/spirv-tools/optimizer.hpp`, and the static library is
`<spirv-build-dir>/source/libSPIRV-Tools-opt.a` or
`<spirv-build-dir>/source/SPIRV-Tools-opt.lib`.
* `SPIRV-Tools` CMake target: Creates the static library:
* `<spirv-build-dir>/source/libSPIRV-Tools.a` on Linux and OS X.
* `<spirv-build-dir>/source/libSPIRV-Tools.lib` on Windows.
* `SPIRV-Tools-opt` CMake target: Creates the static library:
* `<spirv-build-dir>/source/libSPIRV-Tools-opt.a` on Linux and OS X.
* `<spirv-build-dir>/source/libSPIRV-Tools-opt.lib` on Windows.
#### Entry points
The interfaces are still under development, and are expected to change.
There are five main entry points into the library in the C interface:
* `spvTextToBinary`: An assembler, translating text to a binary SPIR-V module.
* `spvBinaryToText`: A disassembler, translating a binary SPIR-V module to
text.
* `spvBinaryParse`: The entry point to a binary parser API. It issues callbacks
for the header and each parsed instruction. The disassembler is implemented
as a client of `spvBinaryParse`.
* `spvValidate` implements the validator functionality. *Incomplete*
* `spvValidateBinary` implements the validator functionality. *Incomplete*
The C++ interface is comprised of three classes, `SpirvTools`, `Optimizer` and
`Linker`, all in the `spvtools` namespace.
* `SpirvTools` provides `Assemble`, `Disassemble`, and `Validate` methods.
* `Optimizer` provides methods for registering and running optimization passes.
* `Linker` provides methods for combining together multiple binaries.
## Command line tools
Command line tools, which wrap the above library functions, are provided to
assemble or disassemble shader files. It's a convention to name SPIR-V
assembly and binary files with suffix `.spvasm` and `.spv`, respectively.
### Assembler tool
The assembler reads the assembly language text, and emits the binary form.
The standalone assembler is the exectuable called `spirv-as`, and is located in
`<spirv-build-dir>/tools/spirv-as`. The functionality of the assembler is implemented
by the `spvTextToBinary` library function.
* `spirv-as` - the standalone assembler
* `<spirv-dir>/tools/as`
Use option `-h` to print help.
### Disassembler tool
The disassembler reads the binary form, and emits assembly language text.
The standalone disassembler is the executable called `spirv-dis`, and is located in
`<spirv-build-dir>/tools/spirv-dis`. The functionality of the disassembler is implemented
by the `spvBinaryToText` library function.
* `spirv-dis` - the standalone disassembler
* `<spirv-dir>/tools/dis`
Use option `-h` to print help.
The output includes syntax colouring when printing to the standard output stream,
on Linux, Windows, and OS X.
### Linker tool
The linker combines multiple SPIR-V binary modules together, resulting in a single
binary module as output.
This is a work in progress.
The linker does not support OpenCL program linking options related to math
flags. (See section 5.6.5.2 in OpenCL 1.2)
* `spirv-link` - the standalone linker
* `<spirv-dir>/tools/link`
### Optimizer tool
The optimizer processes a SPIR-V binary module, applying transformations
in the specified order.
This is a work in progress, with initially only few available transformations.
* `spirv-opt` - the standalone optimizer
* `<spirv-dir>/tools/opt`
### Validator tool
*Warning:* This functionality is under development, and is incomplete.
The standalone validator is the executable called `spirv-val`, and is located in
`<spirv-build-dir>/tools/spirv-val`. The functionality of the validator is implemented
by the `spvValidate` library function.
The validator operates on the binary form.
* `spirv-val` - the standalone validator
* `<spirv-dir>/tools/val`
### Control flow dumper tool
The control flow dumper prints the control flow graph for a SPIR-V module as a
[GraphViz](http://www.graphviz.org/) graph.
This is experimental.
* `spirv-cfg` - the control flow graph dumper
* `<spirv-dir>/tools/cfg`
### Utility filters
* `spirv-lesspipe.sh` - Automatically disassembles `.spv` binary files for the
`less` program, on compatible systems. For example, set the `LESSOPEN`
environment variable as follows, assuming both `spirv-lesspipe.sh` and
`spirv-dis` are on your executable search path:
```
export LESSOPEN='| spirv-lesspipe.sh "%s"'
```
Then you page through a disassembled module as follows:
```
less foo.spv
```
* The `spirv-lesspipe.sh` script will pass through any extra arguments to
`spirv-dis`. So, for example, you can turn off colours and friendly ID
naming as follows:
```
export LESSOPEN='| spirv-lesspipe.sh "%s" --no-color --raw-id'
```
* [vim-spirv](https://github.com/kbenzie/vim-spirv) - A vim plugin which
supports automatic disassembly of `.spv` files using the `:edit` command and
assembly using the `:write` command. The plugin also provides additional
features which include; syntax highlighting; highlighting of all ID's matching
the ID under the cursor; and highlighting errors where the `Instruction`
operand of `OpExtInst` is used without an appropriate `OpExtInstImport`.
* `50spirv-tools.el` - Automatically disassembles '.spv' binary files when
loaded into the emacs text editor, and re-assembles them when saved,
provided any modifications to the file are valid. This functionality
must be explicitly requested by defining the symbol
SPIRV_TOOLS_INSTALL_EMACS_HELPERS as follows:
```
cmake -DSPIRV_TOOLS_INSTALL_EMACS_HELPERS=true ...
```
In addition, this helper is only installed if the directory /etc/emacs/site-start.d
exists, which is typically true if emacs is installed on the system.
Note that symbol IDs are not currently preserved through a load/edit/save operation.
This may change if the ability is added to spirv-as.
### Tests
Tests are only built when googletest is found. Use `ctest` to run all the
tests.
## Future Work
<a name="future"></a>
_See the [projects pages](https://github.com/KhronosGroup/SPIRV-Tools/projects)
for more information._
### Assembler and disassembler
* The disassembler could emit helpful annotations in comments. For example:
* Use variable name information from debug instructions to annotate
key operations on variables.
* Show control flow information by annotating `OpLabel` instructions with
that basic block's predecessors.
* Error messages could be improved.
### Validator
This is a work in progress.
### Linker
* The linker could accept math transformations such as allowing MADs, or other
math flags passed at linking-time in OpenCL.
* Linkage attributes can not be applied through a group.
* Check decorations of linked functions attributes.
* Remove dead instructions, such as OpName targeting imported symbols.
## Licence
<a name="license"></a>
Full license terms are in [LICENSE](LICENSE)
```
Copyright (c) 2015-2016 The Khronos Group Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
```
[spirv-tools-cla]: https://cla-assistant.io/KhronosGroup/SPIRV-Tools
[spirv-tools-projects]: https://github.com/KhronosGroup/SPIRV-Tools/projects
[spirv-tools-mailing-list]: https://www.khronos.org/spir/spirv-tools-mailing-list
[spirv-registry]: https://www.khronos.org/registry/spir-v/
[spirv-headers]: https://github.com/KhronosGroup/SPIRV-Headers
[googletest]: https://github.com/google/googletest
[googletest-pull-612]: https://github.com/google/googletest/pull/612
[googletest-issue-610]: https://github.com/google/googletest/issues/610
[effcee]: https://github.com/google/effcee
[re2]: https://github.com/google/re2
[CMake]: https://cmake.org/
[cpp-style-guide]: https://google.github.io/styleguide/cppguide.html
[clang-sanitizers]: http://clang.llvm.org/docs/UsersManual.html#controlling-code-generation
[master-tot-release]: https://github.com/KhronosGroup/SPIRV-Tools/releases/tag/master-tot

View File

@ -0,0 +1,12 @@
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)
LOCAL_CPP_EXTENSION := .cc .cpp .cxx
LOCAL_SRC_FILES:=test.cpp
LOCAL_MODULE:=spirvtools_test
LOCAL_LDLIBS:=-landroid
LOCAL_CXXFLAGS:=-std=c++11 -fno-exceptions -fno-rtti -Werror
LOCAL_STATIC_LIBRARIES=SPIRV-Tools SPIRV-Tools-opt
include $(BUILD_SHARED_LIBRARY)
include $(LOCAL_PATH)/../Android.mk

View File

@ -0,0 +1,5 @@
APP_ABI := all
APP_BUILD_SCRIPT := Android.mk
APP_STL := gnustl_static
APP_PLATFORM := android-9
NDK_TOOLCHAIN_VERSION := 4.9

View File

@ -0,0 +1,22 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include "spirv-tools/libspirv.hpp"
#include "spirv-tools/optimizer.hpp"
void android_main(struct android_app* /*state*/) {
spvtools::SpirvTools tools(SPV_ENV_UNIVERSAL_1_2);
spvtools::Optimizer optimizer(SPV_ENV_UNIVERSAL_1_2);
}

View File

@ -0,0 +1,12 @@
prefix=@CMAKE_INSTALL_PREFIX@
exec_prefix=${prefix}
libdir=${prefix}/@CMAKE_INSTALL_LIBDIR@
includedir=${prefix}/@CMAKE_INSTALL_INCLUDEDIR@
Name: SPIRV-Tools
Description: Tools for SPIR-V
Version: @CURRENT_VERSION@
URL: https://github.com/KhronosGroup/SPIRV-Tools
Libs: -L${libdir} @SPIRV_SHARED_LIBRARIES@
Cflags: -I${includedir}

View File

@ -0,0 +1,12 @@
prefix=@CMAKE_INSTALL_PREFIX@
exec_prefix=${prefix}
libdir=${prefix}/@CMAKE_INSTALL_LIBDIR@
includedir=${prefix}/@CMAKE_INSTALL_INCLUDEDIR@
Name: SPIRV-Tools
Description: Tools for SPIR-V
Version: @CURRENT_VERSION@
URL: https://github.com/KhronosGroup/SPIRV-Tools
Libs: -L${libdir} @SPIRV_LIBRARIES@
Cflags: -I${includedir}

View File

@ -0,0 +1,31 @@
# Copyright (c) 2017 Pierre Moreau
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# First, retrieve the current version from CHANGES
file(STRINGS ${CHANGES_FILE} CHANGES_CONTENT)
string(
REGEX
MATCH "v[0-9]+(.[0-9]+)?(-dev)? [0-9]+-[0-9]+-[0-9]+"
FIRST_VERSION_LINE
${CHANGES_CONTENT})
string(
REGEX
REPLACE "^v([^ ]+) .+$" "\\1"
CURRENT_VERSION
"${FIRST_VERSION_LINE}")
# If this is a development version, replace "-dev" by ".0" as pkg-config nor
# CMake support "-dev" in the version.
# If it's not a "-dev" version then ensure it ends with ".1"
string(REGEX REPLACE "-dev.1" ".0" CURRENT_VERSION "${CURRENT_VERSION}.1")
configure_file(${TEMPLATE_FILE} ${OUT_FILE} @ONLY)

View File

@ -0,0 +1,35 @@
# Copyright (c) 2016 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Add a SPIR-V Tools example. Signature:
# add_spvtools_example(
# TARGET target_name
# SRCS src_file1.cpp src_file2.cpp
# LIBS lib_target1 lib_target2
# )
function(add_spvtools_example)
if (NOT ${SPIRV_SKIP_EXECUTABLES})
set(one_value_args TARGET)
set(multi_value_args SRCS LIBS)
cmake_parse_arguments(
ARG "" "${one_value_args}" "${multi_value_args}" ${ARGN})
add_executable(${ARG_TARGET} ${ARG_SRCS})
spvtools_default_compile_options(${ARG_TARGET})
target_link_libraries(${ARG_TARGET} PRIVATE ${ARG_LIBS})
set_property(TARGET ${ARG_TARGET} PROPERTY FOLDER "SPIRV-Tools examples")
endif()
endfunction()
add_subdirectory(cpp-interface)

View File

@ -0,0 +1,19 @@
# Copyright (c) 2016 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
add_spvtools_example(
TARGET spirv-tools-cpp-example
SRCS main.cpp
LIBS SPIRV-Tools-opt
)

View File

@ -0,0 +1,64 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This program demonstrates basic SPIR-V module processing using
// SPIRV-Tools C++ API:
// * Assembling
// * Validating
// * Optimizing
// * Disassembling
#include <iostream>
#include <string>
#include <vector>
#include "spirv-tools/libspirv.hpp"
#include "spirv-tools/optimizer.hpp"
int main() {
const std::string source =
" OpCapability Shader "
" OpMemoryModel Logical GLSL450 "
" OpSource GLSL 450 "
" OpDecorate %spec SpecId 1 "
" %int = OpTypeInt 32 1 "
" %spec = OpSpecConstant %int 0 "
"%const = OpConstant %int 42";
spvtools::SpirvTools core(SPV_ENV_VULKAN_1_0);
spvtools::Optimizer opt(SPV_ENV_VULKAN_1_0);
auto print_msg_to_stderr = [](spv_message_level_t, const char*,
const spv_position_t&, const char* m) {
std::cerr << "error: " << m << std::endl;
};
core.SetMessageConsumer(print_msg_to_stderr);
opt.SetMessageConsumer(print_msg_to_stderr);
std::vector<uint32_t> spirv;
if (!core.Assemble(source, &spirv)) return 1;
if (!core.Validate(spirv)) return 1;
opt.RegisterPass(spvtools::CreateSetSpecConstantDefaultValuePass({{1, "42"}}))
.RegisterPass(spvtools::CreateFreezeSpecConstantValuePass())
.RegisterPass(spvtools::CreateUnifyConstantPass())
.RegisterPass(spvtools::CreateStripDebugInfoPass());
if (!opt.Run(spirv.data(), spirv.size(), &spirv)) return 1;
std::string disassembly;
if (!core.Disassemble(spirv, &disassembly)) return 1;
std::cout << disassembly << "\n";
return 0;
}

View File

@ -0,0 +1,122 @@
# Copyright (c) 2015-2016 The Khronos Group Inc.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
if (DEFINED SPIRV-Headers_SOURCE_DIR)
# This allows flexible position of the SPIRV-Headers repo.
set(SPIRV_HEADER_DIR ${SPIRV-Headers_SOURCE_DIR})
else()
if (IS_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/SPIRV-Headers)
set(SPIRV_HEADER_DIR ${CMAKE_CURRENT_SOURCE_DIR}/SPIRV-Headers)
else()
set(SPIRV_HEADER_DIR ${CMAKE_CURRENT_SOURCE_DIR}/spirv-headers)
endif()
endif()
if (IS_DIRECTORY ${SPIRV_HEADER_DIR})
set(SPIRV_HEADER_INCLUDE_DIR ${SPIRV_HEADER_DIR}/include PARENT_SCOPE)
else()
message(FATAL_ERROR
"SPIRV-Headers was not found - please checkout a copy under external/.")
endif()
if (NOT ${SPIRV_SKIP_TESTS})
# Find gmock if we can. If it's not already configured, then try finding
# it in external/googletest.
if (TARGET gmock)
message(STATUS "Google Mock already configured")
else()
set(GMOCK_DIR ${CMAKE_CURRENT_SOURCE_DIR}/googletest/googlemock)
if(EXISTS ${GMOCK_DIR})
if(MSVC)
# Our tests use ::testing::Combine. Work around a compiler
# detection problem in googletest, where that template is
# accidentally disabled for VS 2017.
# See https://github.com/google/googletest/issues/1352
add_definitions(-DGTEST_HAS_COMBINE=1)
endif()
if(WIN32)
option(gtest_force_shared_crt
"Use shared (DLL) run-time lib even when Google Test is built as static lib."
ON)
endif()
add_subdirectory(${GMOCK_DIR} EXCLUDE_FROM_ALL)
endif()
endif()
if (TARGET gmock)
set(GTEST_TARGETS
gtest
gtest_main
gmock
gmock_main
)
foreach(target ${GTEST_TARGETS})
set_property(TARGET ${target} PROPERTY FOLDER GoogleTest)
endforeach()
endif()
set(SPIRV_ENABLE_EFFCEE ON)
if (MSVC)
if (MSVC_VERSION LESS 1900)
message(STATUS "SPIRV-Tools: Need Visual Studio 2015 or later for Effcee and RE2")
set(SPIRV_ENABLE_EFFCEE OFF)
endif()
endif()
if (SPIRV_ENABLE_EFFCEE)
# Find Effcee and RE2, for testing.
# Optional for now, but eventually we'll make this required.
# First find RE2, since Effcee depends on it.
# If already configured, then use that. Otherwise, prefer to find it under 're2'
# in this directory.
if (NOT TARGET re2)
# If we are configuring RE2, then turn off its testing. It takes a long time and
# does not add much value for us. If an enclosing project configured RE2, then it
# has already chosen whether to enable RE2 tesitng.
set(RE2_BUILD_TESTING OFF CACHE STRING "Run RE2 Tests")
if (NOT RE2_SOURCE_DIR)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/re2)
set(RE2_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}/re2" CACHE STRING "RE2 source dir" )
endif()
endif()
endif()
if (NOT TARGET effcee)
# Expect to find effcee in this directory.
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/effcee)
# If we're configuring RE2 (via Effcee), then turn off RE2 testing.
if (NOT TARGET re2)
set(RE2_BUILD_TESTING OFF)
endif()
if (MSVC)
# SPIRV-Tools uses the shared CRT with MSVC. Tell Effcee to do the same.
set(EFFCEE_ENABLE_SHARED_CRT ON)
endif()
add_subdirectory(effcee)
set_property(TARGET effcee PROPERTY FOLDER Effcee)
# Turn off warnings for effcee and re2
set_property(TARGET effcee APPEND PROPERTY COMPILE_OPTIONS -w)
set_property(TARGET re2 APPEND PROPERTY COMPILE_OPTIONS -w)
endif()
endif()
# TODO(dneto): Eventually, require this.
endif()
if (TARGET effcee)
message(STATUS "SPIRV-Tools: Effcee is configured")
else()
message(STATUS "SPIRV-Tools: Effcee is not configured. Skipping Effcee-based tests.")
endif()
endif()

View File

@ -0,0 +1,137 @@
// Copyright (c) 2017 The Khronos Group Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and/or associated documentation files (the "Materials"),
// to deal in the Materials without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Materials, and to permit persons to whom the
// Materials are furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Materials.
//
// MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS KHRONOS
// STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS SPECIFICATIONS AND
// HEADER INFORMATION ARE LOCATED AT https://www.khronos.org/registry/
//
// THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM,OUT OF OR IN CONNECTION WITH THE MATERIALS OR THE USE OR OTHER DEALINGS
// IN THE MATERIALS.
#ifndef SPIRV_EXTINST_DebugInfo_H_
#define SPIRV_EXTINST_DebugInfo_H_
#ifdef __cplusplus
extern "C" {
#endif
enum { DebugInfoVersion = 100, DebugInfoVersion_BitWidthPadding = 0x7fffffff };
enum { DebugInfoRevision = 1, DebugInfoRevision_BitWidthPadding = 0x7fffffff };
enum DebugInfoInstructions {
DebugInfoDebugInfoNone = 0,
DebugInfoDebugCompilationUnit = 1,
DebugInfoDebugTypeBasic = 2,
DebugInfoDebugTypePointer = 3,
DebugInfoDebugTypeQualifier = 4,
DebugInfoDebugTypeArray = 5,
DebugInfoDebugTypeVector = 6,
DebugInfoDebugTypedef = 7,
DebugInfoDebugTypeFunction = 8,
DebugInfoDebugTypeEnum = 9,
DebugInfoDebugTypeComposite = 10,
DebugInfoDebugTypeMember = 11,
DebugInfoDebugTypeInheritance = 12,
DebugInfoDebugTypePtrToMember = 13,
DebugInfoDebugTypeTemplate = 14,
DebugInfoDebugTypeTemplateParameter = 15,
DebugInfoDebugTypeTemplateTemplateParameter = 16,
DebugInfoDebugTypeTemplateParameterPack = 17,
DebugInfoDebugGlobalVariable = 18,
DebugInfoDebugFunctionDeclaration = 19,
DebugInfoDebugFunction = 20,
DebugInfoDebugLexicalBlock = 21,
DebugInfoDebugLexicalBlockDiscriminator = 22,
DebugInfoDebugScope = 23,
DebugInfoDebugNoScope = 24,
DebugInfoDebugInlinedAt = 25,
DebugInfoDebugLocalVariable = 26,
DebugInfoDebugInlinedVariable = 27,
DebugInfoDebugDeclare = 28,
DebugInfoDebugValue = 29,
DebugInfoDebugOperation = 30,
DebugInfoDebugExpression = 31,
DebugInfoDebugMacroDef = 32,
DebugInfoDebugMacroUndef = 33,
DebugInfoInstructionsMax = 0x7ffffff
};
enum DebugInfoDebugInfoFlags {
DebugInfoFlagIsProtected = 0x01,
DebugInfoFlagIsPrivate = 0x02,
DebugInfoFlagIsPublic = 0x03,
DebugInfoFlagIsLocal = 0x04,
DebugInfoFlagIsDefinition = 0x08,
DebugInfoFlagFwdDecl = 0x10,
DebugInfoFlagArtificial = 0x20,
DebugInfoFlagExplicit = 0x40,
DebugInfoFlagPrototyped = 0x80,
DebugInfoFlagObjectPointer = 0x100,
DebugInfoFlagStaticMember = 0x200,
DebugInfoFlagIndirectVariable = 0x400,
DebugInfoFlagLValueReference = 0x800,
DebugInfoFlagRValueReference = 0x1000,
DebugInfoFlagIsOptimized = 0x2000,
DebugInfoDebugInfoFlagsMax = 0x7ffffff
};
enum DebugInfoDebugBaseTypeAttributeEncoding {
DebugInfoUnspecified = 0,
DebugInfoAddress = 1,
DebugInfoBoolean = 2,
DebugInfoFloat = 4,
DebugInfoSigned = 5,
DebugInfoSignedChar = 6,
DebugInfoUnsigned = 7,
DebugInfoUnsignedChar = 8,
DebugInfoDebugBaseTypeAttributeEncodingMax = 0x7ffffff
};
enum DebugInfoDebugCompositeType {
DebugInfoClass = 0,
DebugInfoStructure = 1,
DebugInfoUnion = 2,
DebugInfoDebugCompositeTypeMax = 0x7ffffff
};
enum DebugInfoDebugTypeQualifier {
DebugInfoConstType = 0,
DebugInfoVolatileType = 1,
DebugInfoRestrictType = 2,
DebugInfoDebugTypeQualifierMax = 0x7ffffff
};
enum DebugInfoDebugOperation {
DebugInfoDeref = 0,
DebugInfoPlus = 1,
DebugInfoMinus = 2,
DebugInfoPlusUconst = 3,
DebugInfoBitPiece = 4,
DebugInfoSwap = 5,
DebugInfoXderef = 6,
DebugInfoStackValue = 7,
DebugInfoConstu = 8,
DebugInfoDebugOperationMax = 0x7ffffff
};
#ifdef __cplusplus
}
#endif
#endif // SPIRV_EXTINST_DebugInfo_H_

View File

@ -0,0 +1 @@
"v2018.3-dev", "SPIRV-Tools v2018.3-dev v2018.2-56-g3020104"

View File

@ -0,0 +1,410 @@
static const SpvCapability pygen_variable_caps_Addresses[] = {SpvCapabilityAddresses};
static const SpvCapability pygen_variable_caps_AddressesVariablePointersVariablePointersStorageBuffer[] = {SpvCapabilityAddresses, SpvCapabilityVariablePointers, SpvCapabilityVariablePointersStorageBuffer};
static const SpvCapability pygen_variable_caps_DerivativeControl[] = {SpvCapabilityDerivativeControl};
static const SpvCapability pygen_variable_caps_DeviceEnqueue[] = {SpvCapabilityDeviceEnqueue};
static const SpvCapability pygen_variable_caps_FragmentMaskAMD[] = {SpvCapabilityFragmentMaskAMD};
static const SpvCapability pygen_variable_caps_Geometry[] = {SpvCapabilityGeometry};
static const SpvCapability pygen_variable_caps_GeometryStreams[] = {SpvCapabilityGeometryStreams};
static const SpvCapability pygen_variable_caps_GroupNonUniform[] = {SpvCapabilityGroupNonUniform};
static const SpvCapability pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered[] = {SpvCapabilityGroupNonUniformArithmetic, SpvCapabilityGroupNonUniformClustered};
static const SpvCapability pygen_variable_caps_GroupNonUniformBallot[] = {SpvCapabilityGroupNonUniformBallot};
static const SpvCapability pygen_variable_caps_GroupNonUniformPartitionedNV[] = {SpvCapabilityGroupNonUniformPartitionedNV};
static const SpvCapability pygen_variable_caps_GroupNonUniformQuad[] = {SpvCapabilityGroupNonUniformQuad};
static const SpvCapability pygen_variable_caps_GroupNonUniformShuffle[] = {SpvCapabilityGroupNonUniformShuffle};
static const SpvCapability pygen_variable_caps_GroupNonUniformShuffleRelative[] = {SpvCapabilityGroupNonUniformShuffleRelative};
static const SpvCapability pygen_variable_caps_GroupNonUniformVote[] = {SpvCapabilityGroupNonUniformVote};
static const SpvCapability pygen_variable_caps_Groups[] = {SpvCapabilityGroups};
static const SpvCapability pygen_variable_caps_ImageQuery[] = {SpvCapabilityImageQuery};
static const SpvCapability pygen_variable_caps_Kernel[] = {SpvCapabilityKernel};
static const SpvCapability pygen_variable_caps_KernelImageQuery[] = {SpvCapabilityKernel, SpvCapabilityImageQuery};
static const SpvCapability pygen_variable_caps_LiteralSampler[] = {SpvCapabilityLiteralSampler};
static const SpvCapability pygen_variable_caps_Matrix[] = {SpvCapabilityMatrix};
static const SpvCapability pygen_variable_caps_NamedBarrier[] = {SpvCapabilityNamedBarrier};
static const SpvCapability pygen_variable_caps_PipeStorage[] = {SpvCapabilityPipeStorage};
static const SpvCapability pygen_variable_caps_Pipes[] = {SpvCapabilityPipes};
static const SpvCapability pygen_variable_caps_Shader[] = {SpvCapabilityShader};
static const SpvCapability pygen_variable_caps_SparseResidency[] = {SpvCapabilitySparseResidency};
static const SpvCapability pygen_variable_caps_SubgroupBallotKHR[] = {SpvCapabilitySubgroupBallotKHR};
static const SpvCapability pygen_variable_caps_SubgroupBufferBlockIOINTEL[] = {SpvCapabilitySubgroupBufferBlockIOINTEL};
static const SpvCapability pygen_variable_caps_SubgroupDispatch[] = {SpvCapabilitySubgroupDispatch};
static const SpvCapability pygen_variable_caps_SubgroupImageBlockIOINTEL[] = {SpvCapabilitySubgroupImageBlockIOINTEL};
static const SpvCapability pygen_variable_caps_SubgroupShuffleINTEL[] = {SpvCapabilitySubgroupShuffleINTEL};
static const SpvCapability pygen_variable_caps_SubgroupVoteKHR[] = {SpvCapabilitySubgroupVoteKHR};
static const libspirv::Extension pygen_variable_exts_SPV_AMD_shader_ballot[] = {libspirv::Extension::kSPV_AMD_shader_ballot};
static const libspirv::Extension pygen_variable_exts_SPV_AMD_shader_fragment_mask[] = {libspirv::Extension::kSPV_AMD_shader_fragment_mask};
static const libspirv::Extension pygen_variable_exts_SPV_GOOGLE_decorate_string[] = {libspirv::Extension::kSPV_GOOGLE_decorate_string};
static const libspirv::Extension pygen_variable_exts_SPV_GOOGLE_hlsl_functionality1[] = {libspirv::Extension::kSPV_GOOGLE_hlsl_functionality1};
static const libspirv::Extension pygen_variable_exts_SPV_KHR_shader_ballot[] = {libspirv::Extension::kSPV_KHR_shader_ballot};
static const libspirv::Extension pygen_variable_exts_SPV_KHR_subgroup_vote[] = {libspirv::Extension::kSPV_KHR_subgroup_vote};
static const libspirv::Extension pygen_variable_exts_SPV_NV_shader_subgroup_partitioned[] = {libspirv::Extension::kSPV_NV_shader_subgroup_partitioned};
static const spv_opcode_desc_t kOpcodeTableEntries[] = {
{"Nop", SpvOpNop, 0, nullptr, 0, {}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Undef", SpvOpUndef, 0, nullptr, 2, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SourceContinued", SpvOpSourceContinued, 0, nullptr, 1, {SPV_OPERAND_TYPE_LITERAL_STRING}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Source", SpvOpSource, 0, nullptr, 4, {SPV_OPERAND_TYPE_SOURCE_LANGUAGE, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_OPTIONAL_ID, SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SourceExtension", SpvOpSourceExtension, 0, nullptr, 1, {SPV_OPERAND_TYPE_LITERAL_STRING}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Name", SpvOpName, 0, nullptr, 2, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_STRING}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"MemberName", SpvOpMemberName, 0, nullptr, 3, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_STRING}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"String", SpvOpString, 0, nullptr, 2, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_LITERAL_STRING}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Line", SpvOpLine, 0, nullptr, 3, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Extension", SpvOpExtension, 0, nullptr, 1, {SPV_OPERAND_TYPE_LITERAL_STRING}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ExtInstImport", SpvOpExtInstImport, 0, nullptr, 2, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_LITERAL_STRING}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ExtInst", SpvOpExtInst, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"MemoryModel", SpvOpMemoryModel, 0, nullptr, 2, {SPV_OPERAND_TYPE_ADDRESSING_MODEL, SPV_OPERAND_TYPE_MEMORY_MODEL}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"EntryPoint", SpvOpEntryPoint, 0, nullptr, 4, {SPV_OPERAND_TYPE_EXECUTION_MODEL, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_STRING, SPV_OPERAND_TYPE_VARIABLE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ExecutionMode", SpvOpExecutionMode, 0, nullptr, 2, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_EXECUTION_MODE}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Capability", SpvOpCapability, 0, nullptr, 1, {SPV_OPERAND_TYPE_CAPABILITY}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeVoid", SpvOpTypeVoid, 0, nullptr, 1, {SPV_OPERAND_TYPE_RESULT_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeBool", SpvOpTypeBool, 0, nullptr, 1, {SPV_OPERAND_TYPE_RESULT_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeInt", SpvOpTypeInt, 0, nullptr, 3, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeFloat", SpvOpTypeFloat, 0, nullptr, 2, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeVector", SpvOpTypeVector, 0, nullptr, 3, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeMatrix", SpvOpTypeMatrix, 1, pygen_variable_caps_Matrix, 3, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeImage", SpvOpTypeImage, 0, nullptr, 9, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_DIMENSIONALITY, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT, SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeSampler", SpvOpTypeSampler, 0, nullptr, 1, {SPV_OPERAND_TYPE_RESULT_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeSampledImage", SpvOpTypeSampledImage, 0, nullptr, 2, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeArray", SpvOpTypeArray, 0, nullptr, 3, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeRuntimeArray", SpvOpTypeRuntimeArray, 1, pygen_variable_caps_Shader, 2, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeStruct", SpvOpTypeStruct, 0, nullptr, 2, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_VARIABLE_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeOpaque", SpvOpTypeOpaque, 1, pygen_variable_caps_Kernel, 2, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_LITERAL_STRING}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypePointer", SpvOpTypePointer, 0, nullptr, 3, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_STORAGE_CLASS, SPV_OPERAND_TYPE_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeFunction", SpvOpTypeFunction, 0, nullptr, 3, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeEvent", SpvOpTypeEvent, 1, pygen_variable_caps_Kernel, 1, {SPV_OPERAND_TYPE_RESULT_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeDeviceEvent", SpvOpTypeDeviceEvent, 1, pygen_variable_caps_DeviceEnqueue, 1, {SPV_OPERAND_TYPE_RESULT_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeReserveId", SpvOpTypeReserveId, 1, pygen_variable_caps_Pipes, 1, {SPV_OPERAND_TYPE_RESULT_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeQueue", SpvOpTypeQueue, 1, pygen_variable_caps_DeviceEnqueue, 1, {SPV_OPERAND_TYPE_RESULT_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypePipe", SpvOpTypePipe, 1, pygen_variable_caps_Pipes, 2, {SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ACCESS_QUALIFIER}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TypeForwardPointer", SpvOpTypeForwardPointer, 1, pygen_variable_caps_Addresses, 2, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_STORAGE_CLASS}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ConstantTrue", SpvOpConstantTrue, 0, nullptr, 2, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ConstantFalse", SpvOpConstantFalse, 0, nullptr, 2, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Constant", SpvOpConstant, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ConstantComposite", SpvOpConstantComposite, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_VARIABLE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ConstantSampler", SpvOpConstantSampler, 1, pygen_variable_caps_LiteralSampler, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ConstantNull", SpvOpConstantNull, 0, nullptr, 2, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SpecConstantTrue", SpvOpSpecConstantTrue, 0, nullptr, 2, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SpecConstantFalse", SpvOpSpecConstantFalse, 0, nullptr, 2, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SpecConstant", SpvOpSpecConstant, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SpecConstantComposite", SpvOpSpecConstantComposite, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_VARIABLE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SpecConstantOp", SpvOpSpecConstantOp, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Function", SpvOpFunction, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_FUNCTION_CONTROL, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FunctionParameter", SpvOpFunctionParameter, 0, nullptr, 2, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FunctionEnd", SpvOpFunctionEnd, 0, nullptr, 0, {}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FunctionCall", SpvOpFunctionCall, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Variable", SpvOpVariable, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_STORAGE_CLASS, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageTexelPointer", SpvOpImageTexelPointer, 0, nullptr, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Load", SpvOpLoad, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Store", SpvOpStore, 0, nullptr, 3, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CopyMemory", SpvOpCopyMemory, 0, nullptr, 3, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CopyMemorySized", SpvOpCopyMemorySized, 1, pygen_variable_caps_Addresses, 4, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AccessChain", SpvOpAccessChain, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"InBoundsAccessChain", SpvOpInBoundsAccessChain, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"PtrAccessChain", SpvOpPtrAccessChain, 3, pygen_variable_caps_AddressesVariablePointersVariablePointersStorageBuffer, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ArrayLength", SpvOpArrayLength, 1, pygen_variable_caps_Shader, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GenericPtrMemSemantics", SpvOpGenericPtrMemSemantics, 1, pygen_variable_caps_Kernel, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"InBoundsPtrAccessChain", SpvOpInBoundsPtrAccessChain, 1, pygen_variable_caps_Addresses, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Decorate", SpvOpDecorate, 0, nullptr, 2, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_DECORATION}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"MemberDecorate", SpvOpMemberDecorate, 0, nullptr, 3, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_DECORATION}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DecorationGroup", SpvOpDecorationGroup, 0, nullptr, 1, {SPV_OPERAND_TYPE_RESULT_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupDecorate", SpvOpGroupDecorate, 0, nullptr, 2, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupMemberDecorate", SpvOpGroupMemberDecorate, 0, nullptr, 2, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_ID_LITERAL_INTEGER}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"VectorExtractDynamic", SpvOpVectorExtractDynamic, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"VectorInsertDynamic", SpvOpVectorInsertDynamic, 0, nullptr, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"VectorShuffle", SpvOpVectorShuffle, 0, nullptr, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CompositeConstruct", SpvOpCompositeConstruct, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_VARIABLE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CompositeExtract", SpvOpCompositeExtract, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CompositeInsert", SpvOpCompositeInsert, 0, nullptr, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CopyObject", SpvOpCopyObject, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Transpose", SpvOpTranspose, 1, pygen_variable_caps_Matrix, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SampledImage", SpvOpSampledImage, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSampleImplicitLod", SpvOpImageSampleImplicitLod, 1, pygen_variable_caps_Shader, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSampleExplicitLod", SpvOpImageSampleExplicitLod, 0, nullptr, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSampleDrefImplicitLod", SpvOpImageSampleDrefImplicitLod, 1, pygen_variable_caps_Shader, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSampleDrefExplicitLod", SpvOpImageSampleDrefExplicitLod, 1, pygen_variable_caps_Shader, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSampleProjImplicitLod", SpvOpImageSampleProjImplicitLod, 1, pygen_variable_caps_Shader, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSampleProjExplicitLod", SpvOpImageSampleProjExplicitLod, 1, pygen_variable_caps_Shader, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSampleProjDrefImplicitLod", SpvOpImageSampleProjDrefImplicitLod, 1, pygen_variable_caps_Shader, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSampleProjDrefExplicitLod", SpvOpImageSampleProjDrefExplicitLod, 1, pygen_variable_caps_Shader, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageFetch", SpvOpImageFetch, 0, nullptr, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageGather", SpvOpImageGather, 1, pygen_variable_caps_Shader, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageDrefGather", SpvOpImageDrefGather, 1, pygen_variable_caps_Shader, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageRead", SpvOpImageRead, 0, nullptr, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageWrite", SpvOpImageWrite, 0, nullptr, 4, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Image", SpvOpImage, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageQueryFormat", SpvOpImageQueryFormat, 1, pygen_variable_caps_Kernel, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageQueryOrder", SpvOpImageQueryOrder, 1, pygen_variable_caps_Kernel, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageQuerySizeLod", SpvOpImageQuerySizeLod, 2, pygen_variable_caps_KernelImageQuery, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageQuerySize", SpvOpImageQuerySize, 2, pygen_variable_caps_KernelImageQuery, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageQueryLod", SpvOpImageQueryLod, 1, pygen_variable_caps_ImageQuery, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageQueryLevels", SpvOpImageQueryLevels, 2, pygen_variable_caps_KernelImageQuery, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageQuerySamples", SpvOpImageQuerySamples, 2, pygen_variable_caps_KernelImageQuery, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ConvertFToU", SpvOpConvertFToU, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ConvertFToS", SpvOpConvertFToS, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ConvertSToF", SpvOpConvertSToF, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ConvertUToF", SpvOpConvertUToF, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UConvert", SpvOpUConvert, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SConvert", SpvOpSConvert, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FConvert", SpvOpFConvert, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"QuantizeToF16", SpvOpQuantizeToF16, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ConvertPtrToU", SpvOpConvertPtrToU, 1, pygen_variable_caps_Addresses, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SatConvertSToU", SpvOpSatConvertSToU, 1, pygen_variable_caps_Kernel, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SatConvertUToS", SpvOpSatConvertUToS, 1, pygen_variable_caps_Kernel, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ConvertUToPtr", SpvOpConvertUToPtr, 1, pygen_variable_caps_Addresses, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"PtrCastToGeneric", SpvOpPtrCastToGeneric, 1, pygen_variable_caps_Kernel, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GenericCastToPtr", SpvOpGenericCastToPtr, 1, pygen_variable_caps_Kernel, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GenericCastToPtrExplicit", SpvOpGenericCastToPtrExplicit, 1, pygen_variable_caps_Kernel, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_STORAGE_CLASS}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Bitcast", SpvOpBitcast, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SNegate", SpvOpSNegate, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FNegate", SpvOpFNegate, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"IAdd", SpvOpIAdd, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FAdd", SpvOpFAdd, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ISub", SpvOpISub, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FSub", SpvOpFSub, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"IMul", SpvOpIMul, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FMul", SpvOpFMul, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UDiv", SpvOpUDiv, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SDiv", SpvOpSDiv, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FDiv", SpvOpFDiv, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UMod", SpvOpUMod, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SRem", SpvOpSRem, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SMod", SpvOpSMod, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FRem", SpvOpFRem, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FMod", SpvOpFMod, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"VectorTimesScalar", SpvOpVectorTimesScalar, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"MatrixTimesScalar", SpvOpMatrixTimesScalar, 1, pygen_variable_caps_Matrix, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"VectorTimesMatrix", SpvOpVectorTimesMatrix, 1, pygen_variable_caps_Matrix, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"MatrixTimesVector", SpvOpMatrixTimesVector, 1, pygen_variable_caps_Matrix, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"MatrixTimesMatrix", SpvOpMatrixTimesMatrix, 1, pygen_variable_caps_Matrix, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"OuterProduct", SpvOpOuterProduct, 1, pygen_variable_caps_Matrix, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Dot", SpvOpDot, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"IAddCarry", SpvOpIAddCarry, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ISubBorrow", SpvOpISubBorrow, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UMulExtended", SpvOpUMulExtended, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SMulExtended", SpvOpSMulExtended, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Any", SpvOpAny, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"All", SpvOpAll, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"IsNan", SpvOpIsNan, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"IsInf", SpvOpIsInf, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"IsFinite", SpvOpIsFinite, 1, pygen_variable_caps_Kernel, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"IsNormal", SpvOpIsNormal, 1, pygen_variable_caps_Kernel, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SignBitSet", SpvOpSignBitSet, 1, pygen_variable_caps_Kernel, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LessOrGreater", SpvOpLessOrGreater, 1, pygen_variable_caps_Kernel, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Ordered", SpvOpOrdered, 1, pygen_variable_caps_Kernel, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Unordered", SpvOpUnordered, 1, pygen_variable_caps_Kernel, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LogicalEqual", SpvOpLogicalEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LogicalNotEqual", SpvOpLogicalNotEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LogicalOr", SpvOpLogicalOr, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LogicalAnd", SpvOpLogicalAnd, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LogicalNot", SpvOpLogicalNot, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Select", SpvOpSelect, 0, nullptr, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"IEqual", SpvOpIEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"INotEqual", SpvOpINotEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UGreaterThan", SpvOpUGreaterThan, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SGreaterThan", SpvOpSGreaterThan, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UGreaterThanEqual", SpvOpUGreaterThanEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SGreaterThanEqual", SpvOpSGreaterThanEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ULessThan", SpvOpULessThan, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SLessThan", SpvOpSLessThan, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ULessThanEqual", SpvOpULessThanEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SLessThanEqual", SpvOpSLessThanEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FOrdEqual", SpvOpFOrdEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FUnordEqual", SpvOpFUnordEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FOrdNotEqual", SpvOpFOrdNotEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FUnordNotEqual", SpvOpFUnordNotEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FOrdLessThan", SpvOpFOrdLessThan, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FUnordLessThan", SpvOpFUnordLessThan, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FOrdGreaterThan", SpvOpFOrdGreaterThan, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FUnordGreaterThan", SpvOpFUnordGreaterThan, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FOrdLessThanEqual", SpvOpFOrdLessThanEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FUnordLessThanEqual", SpvOpFUnordLessThanEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FOrdGreaterThanEqual", SpvOpFOrdGreaterThanEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FUnordGreaterThanEqual", SpvOpFUnordGreaterThanEqual, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ShiftRightLogical", SpvOpShiftRightLogical, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ShiftRightArithmetic", SpvOpShiftRightArithmetic, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ShiftLeftLogical", SpvOpShiftLeftLogical, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"BitwiseOr", SpvOpBitwiseOr, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"BitwiseXor", SpvOpBitwiseXor, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"BitwiseAnd", SpvOpBitwiseAnd, 0, nullptr, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Not", SpvOpNot, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"BitFieldInsert", SpvOpBitFieldInsert, 1, pygen_variable_caps_Shader, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"BitFieldSExtract", SpvOpBitFieldSExtract, 1, pygen_variable_caps_Shader, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"BitFieldUExtract", SpvOpBitFieldUExtract, 1, pygen_variable_caps_Shader, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"BitReverse", SpvOpBitReverse, 1, pygen_variable_caps_Shader, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"BitCount", SpvOpBitCount, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DPdx", SpvOpDPdx, 1, pygen_variable_caps_Shader, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DPdy", SpvOpDPdy, 1, pygen_variable_caps_Shader, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Fwidth", SpvOpFwidth, 1, pygen_variable_caps_Shader, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DPdxFine", SpvOpDPdxFine, 1, pygen_variable_caps_DerivativeControl, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DPdyFine", SpvOpDPdyFine, 1, pygen_variable_caps_DerivativeControl, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FwidthFine", SpvOpFwidthFine, 1, pygen_variable_caps_DerivativeControl, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DPdxCoarse", SpvOpDPdxCoarse, 1, pygen_variable_caps_DerivativeControl, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DPdyCoarse", SpvOpDPdyCoarse, 1, pygen_variable_caps_DerivativeControl, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FwidthCoarse", SpvOpFwidthCoarse, 1, pygen_variable_caps_DerivativeControl, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"EmitVertex", SpvOpEmitVertex, 1, pygen_variable_caps_Geometry, 0, {}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"EndPrimitive", SpvOpEndPrimitive, 1, pygen_variable_caps_Geometry, 0, {}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"EmitStreamVertex", SpvOpEmitStreamVertex, 1, pygen_variable_caps_GeometryStreams, 1, {SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"EndStreamPrimitive", SpvOpEndStreamPrimitive, 1, pygen_variable_caps_GeometryStreams, 1, {SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ControlBarrier", SpvOpControlBarrier, 0, nullptr, 3, {SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"MemoryBarrier", SpvOpMemoryBarrier, 0, nullptr, 2, {SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicLoad", SpvOpAtomicLoad, 0, nullptr, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicStore", SpvOpAtomicStore, 0, nullptr, 4, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicExchange", SpvOpAtomicExchange, 0, nullptr, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicCompareExchange", SpvOpAtomicCompareExchange, 0, nullptr, 8, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicCompareExchangeWeak", SpvOpAtomicCompareExchangeWeak, 1, pygen_variable_caps_Kernel, 8, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicIIncrement", SpvOpAtomicIIncrement, 0, nullptr, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicIDecrement", SpvOpAtomicIDecrement, 0, nullptr, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicIAdd", SpvOpAtomicIAdd, 0, nullptr, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicISub", SpvOpAtomicISub, 0, nullptr, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicSMin", SpvOpAtomicSMin, 0, nullptr, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicUMin", SpvOpAtomicUMin, 0, nullptr, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicSMax", SpvOpAtomicSMax, 0, nullptr, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicUMax", SpvOpAtomicUMax, 0, nullptr, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicAnd", SpvOpAtomicAnd, 0, nullptr, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicOr", SpvOpAtomicOr, 0, nullptr, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicXor", SpvOpAtomicXor, 0, nullptr, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Phi", SpvOpPhi, 0, nullptr, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_VARIABLE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LoopMerge", SpvOpLoopMerge, 0, nullptr, 3, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LOOP_CONTROL}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SelectionMerge", SpvOpSelectionMerge, 0, nullptr, 2, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SELECTION_CONTROL}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Label", SpvOpLabel, 0, nullptr, 1, {SPV_OPERAND_TYPE_RESULT_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Branch", SpvOpBranch, 0, nullptr, 1, {SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"BranchConditional", SpvOpBranchConditional, 0, nullptr, 4, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Switch", SpvOpSwitch, 0, nullptr, 3, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Kill", SpvOpKill, 1, pygen_variable_caps_Shader, 0, {}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Return", SpvOpReturn, 0, nullptr, 0, {}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ReturnValue", SpvOpReturnValue, 0, nullptr, 1, {SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Unreachable", SpvOpUnreachable, 0, nullptr, 0, {}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LifetimeStart", SpvOpLifetimeStart, 1, pygen_variable_caps_Kernel, 2, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LifetimeStop", SpvOpLifetimeStop, 1, pygen_variable_caps_Kernel, 2, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupAsyncCopy", SpvOpGroupAsyncCopy, 1, pygen_variable_caps_Kernel, 8, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupWaitEvents", SpvOpGroupWaitEvents, 1, pygen_variable_caps_Kernel, 3, {SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupAll", SpvOpGroupAll, 1, pygen_variable_caps_Groups, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupAny", SpvOpGroupAny, 1, pygen_variable_caps_Groups, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupBroadcast", SpvOpGroupBroadcast, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupIAdd", SpvOpGroupIAdd, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupFAdd", SpvOpGroupFAdd, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupFMin", SpvOpGroupFMin, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupUMin", SpvOpGroupUMin, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupSMin", SpvOpGroupSMin, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupFMax", SpvOpGroupFMax, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupUMax", SpvOpGroupUMax, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupSMax", SpvOpGroupSMax, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ReadPipe", SpvOpReadPipe, 1, pygen_variable_caps_Pipes, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"WritePipe", SpvOpWritePipe, 1, pygen_variable_caps_Pipes, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ReservedReadPipe", SpvOpReservedReadPipe, 1, pygen_variable_caps_Pipes, 8, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ReservedWritePipe", SpvOpReservedWritePipe, 1, pygen_variable_caps_Pipes, 8, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ReserveReadPipePackets", SpvOpReserveReadPipePackets, 1, pygen_variable_caps_Pipes, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ReserveWritePipePackets", SpvOpReserveWritePipePackets, 1, pygen_variable_caps_Pipes, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CommitReadPipe", SpvOpCommitReadPipe, 1, pygen_variable_caps_Pipes, 4, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CommitWritePipe", SpvOpCommitWritePipe, 1, pygen_variable_caps_Pipes, 4, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"IsValidReserveId", SpvOpIsValidReserveId, 1, pygen_variable_caps_Pipes, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GetNumPipePackets", SpvOpGetNumPipePackets, 1, pygen_variable_caps_Pipes, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GetMaxPipePackets", SpvOpGetMaxPipePackets, 1, pygen_variable_caps_Pipes, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupReserveReadPipePackets", SpvOpGroupReserveReadPipePackets, 1, pygen_variable_caps_Pipes, 7, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupReserveWritePipePackets", SpvOpGroupReserveWritePipePackets, 1, pygen_variable_caps_Pipes, 7, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupCommitReadPipe", SpvOpGroupCommitReadPipe, 1, pygen_variable_caps_Pipes, 5, {SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GroupCommitWritePipe", SpvOpGroupCommitWritePipe, 1, pygen_variable_caps_Pipes, 5, {SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"EnqueueMarker", SpvOpEnqueueMarker, 1, pygen_variable_caps_DeviceEnqueue, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"EnqueueKernel", SpvOpEnqueueKernel, 1, pygen_variable_caps_DeviceEnqueue, 13, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GetKernelNDrangeSubGroupCount", SpvOpGetKernelNDrangeSubGroupCount, 1, pygen_variable_caps_DeviceEnqueue, 7, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GetKernelNDrangeMaxSubGroupSize", SpvOpGetKernelNDrangeMaxSubGroupSize, 1, pygen_variable_caps_DeviceEnqueue, 7, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GetKernelWorkGroupSize", SpvOpGetKernelWorkGroupSize, 1, pygen_variable_caps_DeviceEnqueue, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GetKernelPreferredWorkGroupSizeMultiple", SpvOpGetKernelPreferredWorkGroupSizeMultiple, 1, pygen_variable_caps_DeviceEnqueue, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"RetainEvent", SpvOpRetainEvent, 1, pygen_variable_caps_DeviceEnqueue, 1, {SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ReleaseEvent", SpvOpReleaseEvent, 1, pygen_variable_caps_DeviceEnqueue, 1, {SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CreateUserEvent", SpvOpCreateUserEvent, 1, pygen_variable_caps_DeviceEnqueue, 2, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"IsValidEvent", SpvOpIsValidEvent, 1, pygen_variable_caps_DeviceEnqueue, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SetUserEventStatus", SpvOpSetUserEventStatus, 1, pygen_variable_caps_DeviceEnqueue, 2, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CaptureEventProfilingInfo", SpvOpCaptureEventProfilingInfo, 1, pygen_variable_caps_DeviceEnqueue, 3, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GetDefaultQueue", SpvOpGetDefaultQueue, 1, pygen_variable_caps_DeviceEnqueue, 2, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"BuildNDRange", SpvOpBuildNDRange, 1, pygen_variable_caps_DeviceEnqueue, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSparseSampleImplicitLod", SpvOpImageSparseSampleImplicitLod, 1, pygen_variable_caps_SparseResidency, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSparseSampleExplicitLod", SpvOpImageSparseSampleExplicitLod, 1, pygen_variable_caps_SparseResidency, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSparseSampleDrefImplicitLod", SpvOpImageSparseSampleDrefImplicitLod, 1, pygen_variable_caps_SparseResidency, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSparseSampleDrefExplicitLod", SpvOpImageSparseSampleDrefExplicitLod, 1, pygen_variable_caps_SparseResidency, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSparseSampleProjImplicitLod", SpvOpImageSparseSampleProjImplicitLod, 1, pygen_variable_caps_SparseResidency, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, 0xffffffffu},
{"ImageSparseSampleProjExplicitLod", SpvOpImageSparseSampleProjExplicitLod, 1, pygen_variable_caps_SparseResidency, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_IMAGE}, 1, 1, 0, nullptr, 0xffffffffu},
{"ImageSparseSampleProjDrefImplicitLod", SpvOpImageSparseSampleProjDrefImplicitLod, 1, pygen_variable_caps_SparseResidency, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, 0xffffffffu},
{"ImageSparseSampleProjDrefExplicitLod", SpvOpImageSparseSampleProjDrefExplicitLod, 1, pygen_variable_caps_SparseResidency, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_IMAGE}, 1, 1, 0, nullptr, 0xffffffffu},
{"ImageSparseFetch", SpvOpImageSparseFetch, 1, pygen_variable_caps_SparseResidency, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSparseGather", SpvOpImageSparseGather, 1, pygen_variable_caps_SparseResidency, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSparseDrefGather", SpvOpImageSparseDrefGather, 1, pygen_variable_caps_SparseResidency, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSparseTexelsResident", SpvOpImageSparseTexelsResident, 1, pygen_variable_caps_SparseResidency, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NoLine", SpvOpNoLine, 0, nullptr, 0, {}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicFlagTestAndSet", SpvOpAtomicFlagTestAndSet, 1, pygen_variable_caps_Kernel, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicFlagClear", SpvOpAtomicFlagClear, 1, pygen_variable_caps_Kernel, 3, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageSparseRead", SpvOpImageSparseRead, 1, pygen_variable_caps_SparseResidency, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_IMAGE}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SizeOf", SpvOpSizeOf, 1, pygen_variable_caps_Addresses, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,1)},
{"TypePipeStorage", SpvOpTypePipeStorage, 1, pygen_variable_caps_PipeStorage, 1, {SPV_OPERAND_TYPE_RESULT_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,1)},
{"ConstantPipeStorage", SpvOpConstantPipeStorage, 1, pygen_variable_caps_PipeStorage, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,1)},
{"CreatePipeFromPipeStorage", SpvOpCreatePipeFromPipeStorage, 1, pygen_variable_caps_PipeStorage, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,1)},
{"GetKernelLocalSizeForSubgroupCount", SpvOpGetKernelLocalSizeForSubgroupCount, 1, pygen_variable_caps_SubgroupDispatch, 7, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,1)},
{"GetKernelMaxNumSubgroups", SpvOpGetKernelMaxNumSubgroups, 1, pygen_variable_caps_SubgroupDispatch, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,1)},
{"TypeNamedBarrier", SpvOpTypeNamedBarrier, 1, pygen_variable_caps_NamedBarrier, 1, {SPV_OPERAND_TYPE_RESULT_ID}, 1, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,1)},
{"NamedBarrierInitialize", SpvOpNamedBarrierInitialize, 1, pygen_variable_caps_NamedBarrier, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,1)},
{"MemoryNamedBarrier", SpvOpMemoryNamedBarrier, 1, pygen_variable_caps_NamedBarrier, 3, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,1)},
{"ModuleProcessed", SpvOpModuleProcessed, 0, nullptr, 1, {SPV_OPERAND_TYPE_LITERAL_STRING}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,1)},
{"ExecutionModeId", SpvOpExecutionModeId, 0, nullptr, 2, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_EXECUTION_MODE}, 0, 0, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,2)},
{"DecorateId", SpvOpDecorateId, 0, nullptr, 2, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_DECORATION}, 0, 0, 1, pygen_variable_exts_SPV_GOOGLE_hlsl_functionality1, SPV_SPIRV_VERSION_WORD(1,2)},
{"GroupNonUniformElect", SpvOpGroupNonUniformElect, 1, pygen_variable_caps_GroupNonUniform, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformAll", SpvOpGroupNonUniformAll, 1, pygen_variable_caps_GroupNonUniformVote, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformAny", SpvOpGroupNonUniformAny, 1, pygen_variable_caps_GroupNonUniformVote, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformAllEqual", SpvOpGroupNonUniformAllEqual, 1, pygen_variable_caps_GroupNonUniformVote, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformBroadcast", SpvOpGroupNonUniformBroadcast, 1, pygen_variable_caps_GroupNonUniformBallot, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformBroadcastFirst", SpvOpGroupNonUniformBroadcastFirst, 1, pygen_variable_caps_GroupNonUniformBallot, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformBallot", SpvOpGroupNonUniformBallot, 1, pygen_variable_caps_GroupNonUniformBallot, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformInverseBallot", SpvOpGroupNonUniformInverseBallot, 1, pygen_variable_caps_GroupNonUniformBallot, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformBallotBitExtract", SpvOpGroupNonUniformBallotBitExtract, 1, pygen_variable_caps_GroupNonUniformBallot, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformBallotBitCount", SpvOpGroupNonUniformBallotBitCount, 1, pygen_variable_caps_GroupNonUniformBallot, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformBallotFindLSB", SpvOpGroupNonUniformBallotFindLSB, 1, pygen_variable_caps_GroupNonUniformBallot, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformBallotFindMSB", SpvOpGroupNonUniformBallotFindMSB, 1, pygen_variable_caps_GroupNonUniformBallot, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformShuffle", SpvOpGroupNonUniformShuffle, 1, pygen_variable_caps_GroupNonUniformShuffle, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformShuffleXor", SpvOpGroupNonUniformShuffleXor, 1, pygen_variable_caps_GroupNonUniformShuffle, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformShuffleUp", SpvOpGroupNonUniformShuffleUp, 1, pygen_variable_caps_GroupNonUniformShuffleRelative, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformShuffleDown", SpvOpGroupNonUniformShuffleDown, 1, pygen_variable_caps_GroupNonUniformShuffleRelative, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformIAdd", SpvOpGroupNonUniformIAdd, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformFAdd", SpvOpGroupNonUniformFAdd, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformIMul", SpvOpGroupNonUniformIMul, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformFMul", SpvOpGroupNonUniformFMul, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformSMin", SpvOpGroupNonUniformSMin, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformUMin", SpvOpGroupNonUniformUMin, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformFMin", SpvOpGroupNonUniformFMin, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformSMax", SpvOpGroupNonUniformSMax, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformUMax", SpvOpGroupNonUniformUMax, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformFMax", SpvOpGroupNonUniformFMax, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformBitwiseAnd", SpvOpGroupNonUniformBitwiseAnd, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformBitwiseOr", SpvOpGroupNonUniformBitwiseOr, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformBitwiseXor", SpvOpGroupNonUniformBitwiseXor, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformLogicalAnd", SpvOpGroupNonUniformLogicalAnd, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformLogicalOr", SpvOpGroupNonUniformLogicalOr, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformLogicalXor", SpvOpGroupNonUniformLogicalXor, 2, pygen_variable_caps_GroupNonUniformArithmeticGroupNonUniformClustered, 6, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformQuadBroadcast", SpvOpGroupNonUniformQuadBroadcast, 1, pygen_variable_caps_GroupNonUniformQuad, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformQuadSwap", SpvOpGroupNonUniformQuadSwap, 1, pygen_variable_caps_GroupNonUniformQuad, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, SPV_SPIRV_VERSION_WORD(1,3)},
{"SubgroupBallotKHR", SpvOpSubgroupBallotKHR, 1, pygen_variable_caps_SubgroupBallotKHR, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_KHR_shader_ballot, 0xffffffffu},
{"SubgroupFirstInvocationKHR", SpvOpSubgroupFirstInvocationKHR, 1, pygen_variable_caps_SubgroupBallotKHR, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_KHR_shader_ballot, 0xffffffffu},
{"SubgroupAllKHR", SpvOpSubgroupAllKHR, 1, pygen_variable_caps_SubgroupVoteKHR, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_KHR_subgroup_vote, 0xffffffffu},
{"SubgroupAnyKHR", SpvOpSubgroupAnyKHR, 1, pygen_variable_caps_SubgroupVoteKHR, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_KHR_subgroup_vote, 0xffffffffu},
{"SubgroupAllEqualKHR", SpvOpSubgroupAllEqualKHR, 1, pygen_variable_caps_SubgroupVoteKHR, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_KHR_subgroup_vote, 0xffffffffu},
{"SubgroupReadInvocationKHR", SpvOpSubgroupReadInvocationKHR, 1, pygen_variable_caps_SubgroupBallotKHR, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_KHR_shader_ballot, 0xffffffffu},
{"GroupIAddNonUniformAMD", SpvOpGroupIAddNonUniformAMD, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_AMD_shader_ballot, 0xffffffffu},
{"GroupFAddNonUniformAMD", SpvOpGroupFAddNonUniformAMD, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_AMD_shader_ballot, 0xffffffffu},
{"GroupFMinNonUniformAMD", SpvOpGroupFMinNonUniformAMD, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_AMD_shader_ballot, 0xffffffffu},
{"GroupUMinNonUniformAMD", SpvOpGroupUMinNonUniformAMD, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_AMD_shader_ballot, 0xffffffffu},
{"GroupSMinNonUniformAMD", SpvOpGroupSMinNonUniformAMD, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_AMD_shader_ballot, 0xffffffffu},
{"GroupFMaxNonUniformAMD", SpvOpGroupFMaxNonUniformAMD, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_AMD_shader_ballot, 0xffffffffu},
{"GroupUMaxNonUniformAMD", SpvOpGroupUMaxNonUniformAMD, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_AMD_shader_ballot, 0xffffffffu},
{"GroupSMaxNonUniformAMD", SpvOpGroupSMaxNonUniformAMD, 1, pygen_variable_caps_Groups, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_SCOPE_ID, SPV_OPERAND_TYPE_GROUP_OPERATION, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_AMD_shader_ballot, 0xffffffffu},
{"FragmentMaskFetchAMD", SpvOpFragmentMaskFetchAMD, 1, pygen_variable_caps_FragmentMaskAMD, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_AMD_shader_fragment_mask, 0xffffffffu},
{"FragmentFetchAMD", SpvOpFragmentFetchAMD, 1, pygen_variable_caps_FragmentMaskAMD, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_AMD_shader_fragment_mask, 0xffffffffu},
{"GroupNonUniformPartitionNV", SpvOpGroupNonUniformPartitionNV, 1, pygen_variable_caps_GroupNonUniformPartitionedNV, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 1, pygen_variable_exts_SPV_NV_shader_subgroup_partitioned, 0xffffffffu},
{"SubgroupShuffleINTEL", SpvOpSubgroupShuffleINTEL, 1, pygen_variable_caps_SubgroupShuffleINTEL, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, 0xffffffffu},
{"SubgroupShuffleDownINTEL", SpvOpSubgroupShuffleDownINTEL, 1, pygen_variable_caps_SubgroupShuffleINTEL, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, 0xffffffffu},
{"SubgroupShuffleUpINTEL", SpvOpSubgroupShuffleUpINTEL, 1, pygen_variable_caps_SubgroupShuffleINTEL, 5, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, 0xffffffffu},
{"SubgroupShuffleXorINTEL", SpvOpSubgroupShuffleXorINTEL, 1, pygen_variable_caps_SubgroupShuffleINTEL, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, 0xffffffffu},
{"SubgroupBlockReadINTEL", SpvOpSubgroupBlockReadINTEL, 1, pygen_variable_caps_SubgroupBufferBlockIOINTEL, 3, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, 0xffffffffu},
{"SubgroupBlockWriteINTEL", SpvOpSubgroupBlockWriteINTEL, 1, pygen_variable_caps_SubgroupBufferBlockIOINTEL, 2, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, 0xffffffffu},
{"SubgroupImageBlockReadINTEL", SpvOpSubgroupImageBlockReadINTEL, 1, pygen_variable_caps_SubgroupImageBlockIOINTEL, 4, {SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 1, 1, 0, nullptr, 0xffffffffu},
{"SubgroupImageBlockWriteINTEL", SpvOpSubgroupImageBlockWriteINTEL, 1, pygen_variable_caps_SubgroupImageBlockIOINTEL, 3, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, 0, 0, 0, nullptr, 0xffffffffu},
{"DecorateStringGOOGLE", SpvOpDecorateStringGOOGLE, 0, nullptr, 2, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_DECORATION}, 0, 0, 1, pygen_variable_exts_SPV_GOOGLE_decorate_string, 0xffffffffu},
{"MemberDecorateStringGOOGLE", SpvOpMemberDecorateStringGOOGLE, 0, nullptr, 3, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_DECORATION}, 0, 0, 1, pygen_variable_exts_SPV_GOOGLE_decorate_string, 0xffffffffu}
};

View File

@ -0,0 +1,38 @@
static const spv_ext_inst_desc_t debuginfo_entries[] = {
{"DebugInfoNone", 0, 0, nullptr, {SPV_OPERAND_TYPE_NONE}},
{"DebugCompilationUnit", 1, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_NONE}},
{"DebugTypeBasic", 2, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING, SPV_OPERAND_TYPE_NONE}},
{"DebugTypePointer", 3, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_STORAGE_CLASS, SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS, SPV_OPERAND_TYPE_NONE}},
{"DebugTypeQualifier", 4, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER, SPV_OPERAND_TYPE_NONE}},
{"DebugTypeArray", 5, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugTypeVector", 6, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_NONE}},
{"DebugTypedef", 7, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugTypeFunction", 8, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugTypeEnum", 9, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS, SPV_OPERAND_TYPE_VARIABLE_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugTypeComposite", 10, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS, SPV_OPERAND_TYPE_VARIABLE_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugTypeMember", 11, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS, SPV_OPERAND_TYPE_OPTIONAL_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugTypeInheritance", 12, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS, SPV_OPERAND_TYPE_NONE}},
{"DebugTypePtrToMember", 13, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugTypeTemplate", 14, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugTypeTemplateParameter", 15, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_NONE}},
{"DebugTypeTemplateTemplateParameter", 16, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_NONE}},
{"DebugTypeTemplateParameterPack", 17, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_VARIABLE_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugGlobalVariable", 18, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS, SPV_OPERAND_TYPE_OPTIONAL_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugFunctionDeclaration", 19, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS, SPV_OPERAND_TYPE_NONE}},
{"DebugFunction", 20, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugLexicalBlock", 21, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugLexicalBlockDiscriminator", 22, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugScope", 23, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugNoScope", 24, 0, nullptr, {SPV_OPERAND_TYPE_NONE}},
{"DebugInlinedAt", 25, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugLocalVariable", 26, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER, SPV_OPERAND_TYPE_NONE}},
{"DebugInlinedVariable", 27, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugDeclare", 28, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugValue", 29, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugOperation", 30, 0, nullptr, {SPV_OPERAND_TYPE_DEBUG_OPERATION, SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER, SPV_OPERAND_TYPE_NONE}},
{"DebugExpression", 31, 0, nullptr, {SPV_OPERAND_TYPE_VARIABLE_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugMacroDef", 32, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_OPTIONAL_ID, SPV_OPERAND_TYPE_NONE}},
{"DebugMacroUndef", 33, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}}
};

View File

@ -0,0 +1,317 @@
const char* ExtensionToString(Extension extension) {
switch (extension) {
case Extension::kSPV_AMD_gcn_shader:
return "SPV_AMD_gcn_shader";
case Extension::kSPV_AMD_gpu_shader_half_float:
return "SPV_AMD_gpu_shader_half_float";
case Extension::kSPV_AMD_gpu_shader_half_float_fetch:
return "SPV_AMD_gpu_shader_half_float_fetch";
case Extension::kSPV_AMD_gpu_shader_int16:
return "SPV_AMD_gpu_shader_int16";
case Extension::kSPV_AMD_shader_ballot:
return "SPV_AMD_shader_ballot";
case Extension::kSPV_AMD_shader_explicit_vertex_parameter:
return "SPV_AMD_shader_explicit_vertex_parameter";
case Extension::kSPV_AMD_shader_fragment_mask:
return "SPV_AMD_shader_fragment_mask";
case Extension::kSPV_AMD_shader_image_load_store_lod:
return "SPV_AMD_shader_image_load_store_lod";
case Extension::kSPV_AMD_shader_trinary_minmax:
return "SPV_AMD_shader_trinary_minmax";
case Extension::kSPV_AMD_texture_gather_bias_lod:
return "SPV_AMD_texture_gather_bias_lod";
case Extension::kSPV_EXT_descriptor_indexing:
return "SPV_EXT_descriptor_indexing";
case Extension::kSPV_EXT_fragment_fully_covered:
return "SPV_EXT_fragment_fully_covered";
case Extension::kSPV_EXT_shader_stencil_export:
return "SPV_EXT_shader_stencil_export";
case Extension::kSPV_EXT_shader_viewport_index_layer:
return "SPV_EXT_shader_viewport_index_layer";
case Extension::kSPV_GOOGLE_decorate_string:
return "SPV_GOOGLE_decorate_string";
case Extension::kSPV_GOOGLE_hlsl_functionality1:
return "SPV_GOOGLE_hlsl_functionality1";
case Extension::kSPV_INTEL_subgroups:
return "SPV_INTEL_subgroups";
case Extension::kSPV_KHR_16bit_storage:
return "SPV_KHR_16bit_storage";
case Extension::kSPV_KHR_device_group:
return "SPV_KHR_device_group";
case Extension::kSPV_KHR_multiview:
return "SPV_KHR_multiview";
case Extension::kSPV_KHR_post_depth_coverage:
return "SPV_KHR_post_depth_coverage";
case Extension::kSPV_KHR_shader_atomic_counter_ops:
return "SPV_KHR_shader_atomic_counter_ops";
case Extension::kSPV_KHR_shader_ballot:
return "SPV_KHR_shader_ballot";
case Extension::kSPV_KHR_shader_draw_parameters:
return "SPV_KHR_shader_draw_parameters";
case Extension::kSPV_KHR_storage_buffer_storage_class:
return "SPV_KHR_storage_buffer_storage_class";
case Extension::kSPV_KHR_subgroup_vote:
return "SPV_KHR_subgroup_vote";
case Extension::kSPV_KHR_variable_pointers:
return "SPV_KHR_variable_pointers";
case Extension::kSPV_NVX_multiview_per_view_attributes:
return "SPV_NVX_multiview_per_view_attributes";
case Extension::kSPV_NV_geometry_shader_passthrough:
return "SPV_NV_geometry_shader_passthrough";
case Extension::kSPV_NV_sample_mask_override_coverage:
return "SPV_NV_sample_mask_override_coverage";
case Extension::kSPV_NV_shader_subgroup_partitioned:
return "SPV_NV_shader_subgroup_partitioned";
case Extension::kSPV_NV_stereo_view_rendering:
return "SPV_NV_stereo_view_rendering";
case Extension::kSPV_NV_viewport_array2:
return "SPV_NV_viewport_array2";
case Extension::kSPV_VALIDATOR_ignore_type_decl_unique:
return "SPV_VALIDATOR_ignore_type_decl_unique";
};
return "";
}
bool GetExtensionFromString(const char* str, Extension* extension) {
static const char* known_ext_strs[] = { "SPV_AMD_gcn_shader", "SPV_AMD_gpu_shader_half_float", "SPV_AMD_gpu_shader_half_float_fetch", "SPV_AMD_gpu_shader_int16", "SPV_AMD_shader_ballot", "SPV_AMD_shader_explicit_vertex_parameter", "SPV_AMD_shader_fragment_mask", "SPV_AMD_shader_image_load_store_lod", "SPV_AMD_shader_trinary_minmax", "SPV_AMD_texture_gather_bias_lod", "SPV_EXT_descriptor_indexing", "SPV_EXT_fragment_fully_covered", "SPV_EXT_shader_stencil_export", "SPV_EXT_shader_viewport_index_layer", "SPV_GOOGLE_decorate_string", "SPV_GOOGLE_hlsl_functionality1", "SPV_INTEL_subgroups", "SPV_KHR_16bit_storage", "SPV_KHR_device_group", "SPV_KHR_multiview", "SPV_KHR_post_depth_coverage", "SPV_KHR_shader_atomic_counter_ops", "SPV_KHR_shader_ballot", "SPV_KHR_shader_draw_parameters", "SPV_KHR_storage_buffer_storage_class", "SPV_KHR_subgroup_vote", "SPV_KHR_variable_pointers", "SPV_NVX_multiview_per_view_attributes", "SPV_NV_geometry_shader_passthrough", "SPV_NV_sample_mask_override_coverage", "SPV_NV_shader_subgroup_partitioned", "SPV_NV_stereo_view_rendering", "SPV_NV_viewport_array2", "SPV_VALIDATOR_ignore_type_decl_unique" };
static const Extension known_ext_ids[] = { Extension::kSPV_AMD_gcn_shader, Extension::kSPV_AMD_gpu_shader_half_float, Extension::kSPV_AMD_gpu_shader_half_float_fetch, Extension::kSPV_AMD_gpu_shader_int16, Extension::kSPV_AMD_shader_ballot, Extension::kSPV_AMD_shader_explicit_vertex_parameter, Extension::kSPV_AMD_shader_fragment_mask, Extension::kSPV_AMD_shader_image_load_store_lod, Extension::kSPV_AMD_shader_trinary_minmax, Extension::kSPV_AMD_texture_gather_bias_lod, Extension::kSPV_EXT_descriptor_indexing, Extension::kSPV_EXT_fragment_fully_covered, Extension::kSPV_EXT_shader_stencil_export, Extension::kSPV_EXT_shader_viewport_index_layer, Extension::kSPV_GOOGLE_decorate_string, Extension::kSPV_GOOGLE_hlsl_functionality1, Extension::kSPV_INTEL_subgroups, Extension::kSPV_KHR_16bit_storage, Extension::kSPV_KHR_device_group, Extension::kSPV_KHR_multiview, Extension::kSPV_KHR_post_depth_coverage, Extension::kSPV_KHR_shader_atomic_counter_ops, Extension::kSPV_KHR_shader_ballot, Extension::kSPV_KHR_shader_draw_parameters, Extension::kSPV_KHR_storage_buffer_storage_class, Extension::kSPV_KHR_subgroup_vote, Extension::kSPV_KHR_variable_pointers, Extension::kSPV_NVX_multiview_per_view_attributes, Extension::kSPV_NV_geometry_shader_passthrough, Extension::kSPV_NV_sample_mask_override_coverage, Extension::kSPV_NV_shader_subgroup_partitioned, Extension::kSPV_NV_stereo_view_rendering, Extension::kSPV_NV_viewport_array2, Extension::kSPV_VALIDATOR_ignore_type_decl_unique };
const auto b = std::begin(known_ext_strs);
const auto e = std::end(known_ext_strs);
const auto found = std::equal_range(
b, e, str, [](const char* str1, const char* str2) {
return std::strcmp(str1, str2) < 0;
});
if (found.first == e || found.first == found.second) return false;
*extension = known_ext_ids[found.first - b];
return true;
}
const char* CapabilityToString(SpvCapability capability) {
switch (capability) {
case SpvCapabilityMatrix:
return "Matrix";
case SpvCapabilityShader:
return "Shader";
case SpvCapabilityGeometry:
return "Geometry";
case SpvCapabilityTessellation:
return "Tessellation";
case SpvCapabilityAddresses:
return "Addresses";
case SpvCapabilityLinkage:
return "Linkage";
case SpvCapabilityKernel:
return "Kernel";
case SpvCapabilityVector16:
return "Vector16";
case SpvCapabilityFloat16Buffer:
return "Float16Buffer";
case SpvCapabilityFloat16:
return "Float16";
case SpvCapabilityFloat64:
return "Float64";
case SpvCapabilityInt64:
return "Int64";
case SpvCapabilityInt64Atomics:
return "Int64Atomics";
case SpvCapabilityImageBasic:
return "ImageBasic";
case SpvCapabilityImageReadWrite:
return "ImageReadWrite";
case SpvCapabilityImageMipmap:
return "ImageMipmap";
case SpvCapabilityPipes:
return "Pipes";
case SpvCapabilityGroups:
return "Groups";
case SpvCapabilityDeviceEnqueue:
return "DeviceEnqueue";
case SpvCapabilityLiteralSampler:
return "LiteralSampler";
case SpvCapabilityAtomicStorage:
return "AtomicStorage";
case SpvCapabilityInt16:
return "Int16";
case SpvCapabilityTessellationPointSize:
return "TessellationPointSize";
case SpvCapabilityGeometryPointSize:
return "GeometryPointSize";
case SpvCapabilityImageGatherExtended:
return "ImageGatherExtended";
case SpvCapabilityStorageImageMultisample:
return "StorageImageMultisample";
case SpvCapabilityUniformBufferArrayDynamicIndexing:
return "UniformBufferArrayDynamicIndexing";
case SpvCapabilitySampledImageArrayDynamicIndexing:
return "SampledImageArrayDynamicIndexing";
case SpvCapabilityStorageBufferArrayDynamicIndexing:
return "StorageBufferArrayDynamicIndexing";
case SpvCapabilityStorageImageArrayDynamicIndexing:
return "StorageImageArrayDynamicIndexing";
case SpvCapabilityClipDistance:
return "ClipDistance";
case SpvCapabilityCullDistance:
return "CullDistance";
case SpvCapabilityImageCubeArray:
return "ImageCubeArray";
case SpvCapabilitySampleRateShading:
return "SampleRateShading";
case SpvCapabilityImageRect:
return "ImageRect";
case SpvCapabilitySampledRect:
return "SampledRect";
case SpvCapabilityGenericPointer:
return "GenericPointer";
case SpvCapabilityInt8:
return "Int8";
case SpvCapabilityInputAttachment:
return "InputAttachment";
case SpvCapabilitySparseResidency:
return "SparseResidency";
case SpvCapabilityMinLod:
return "MinLod";
case SpvCapabilitySampled1D:
return "Sampled1D";
case SpvCapabilityImage1D:
return "Image1D";
case SpvCapabilitySampledCubeArray:
return "SampledCubeArray";
case SpvCapabilitySampledBuffer:
return "SampledBuffer";
case SpvCapabilityImageBuffer:
return "ImageBuffer";
case SpvCapabilityImageMSArray:
return "ImageMSArray";
case SpvCapabilityStorageImageExtendedFormats:
return "StorageImageExtendedFormats";
case SpvCapabilityImageQuery:
return "ImageQuery";
case SpvCapabilityDerivativeControl:
return "DerivativeControl";
case SpvCapabilityInterpolationFunction:
return "InterpolationFunction";
case SpvCapabilityTransformFeedback:
return "TransformFeedback";
case SpvCapabilityGeometryStreams:
return "GeometryStreams";
case SpvCapabilityStorageImageReadWithoutFormat:
return "StorageImageReadWithoutFormat";
case SpvCapabilityStorageImageWriteWithoutFormat:
return "StorageImageWriteWithoutFormat";
case SpvCapabilityMultiViewport:
return "MultiViewport";
case SpvCapabilitySubgroupDispatch:
return "SubgroupDispatch";
case SpvCapabilityNamedBarrier:
return "NamedBarrier";
case SpvCapabilityPipeStorage:
return "PipeStorage";
case SpvCapabilityGroupNonUniform:
return "GroupNonUniform";
case SpvCapabilityGroupNonUniformVote:
return "GroupNonUniformVote";
case SpvCapabilityGroupNonUniformArithmetic:
return "GroupNonUniformArithmetic";
case SpvCapabilityGroupNonUniformBallot:
return "GroupNonUniformBallot";
case SpvCapabilityGroupNonUniformShuffle:
return "GroupNonUniformShuffle";
case SpvCapabilityGroupNonUniformShuffleRelative:
return "GroupNonUniformShuffleRelative";
case SpvCapabilityGroupNonUniformClustered:
return "GroupNonUniformClustered";
case SpvCapabilityGroupNonUniformQuad:
return "GroupNonUniformQuad";
case SpvCapabilitySubgroupBallotKHR:
return "SubgroupBallotKHR";
case SpvCapabilityDrawParameters:
return "DrawParameters";
case SpvCapabilitySubgroupVoteKHR:
return "SubgroupVoteKHR";
case SpvCapabilityStorageBuffer16BitAccess:
return "StorageBuffer16BitAccess";
case SpvCapabilityUniformAndStorageBuffer16BitAccess:
return "UniformAndStorageBuffer16BitAccess";
case SpvCapabilityStoragePushConstant16:
return "StoragePushConstant16";
case SpvCapabilityStorageInputOutput16:
return "StorageInputOutput16";
case SpvCapabilityDeviceGroup:
return "DeviceGroup";
case SpvCapabilityMultiView:
return "MultiView";
case SpvCapabilityVariablePointersStorageBuffer:
return "VariablePointersStorageBuffer";
case SpvCapabilityVariablePointers:
return "VariablePointers";
case SpvCapabilityAtomicStorageOps:
return "AtomicStorageOps";
case SpvCapabilitySampleMaskPostDepthCoverage:
return "SampleMaskPostDepthCoverage";
case SpvCapabilityFloat16ImageAMD:
return "Float16ImageAMD";
case SpvCapabilityImageGatherBiasLodAMD:
return "ImageGatherBiasLodAMD";
case SpvCapabilityFragmentMaskAMD:
return "FragmentMaskAMD";
case SpvCapabilityStencilExportEXT:
return "StencilExportEXT";
case SpvCapabilityImageReadWriteLodAMD:
return "ImageReadWriteLodAMD";
case SpvCapabilitySampleMaskOverrideCoverageNV:
return "SampleMaskOverrideCoverageNV";
case SpvCapabilityGeometryShaderPassthroughNV:
return "GeometryShaderPassthroughNV";
case SpvCapabilityShaderViewportIndexLayerEXT:
return "ShaderViewportIndexLayerEXT";
case SpvCapabilityShaderViewportMaskNV:
return "ShaderViewportMaskNV";
case SpvCapabilityShaderStereoViewNV:
return "ShaderStereoViewNV";
case SpvCapabilityPerViewAttributesNV:
return "PerViewAttributesNV";
case SpvCapabilityFragmentFullyCoveredEXT:
return "FragmentFullyCoveredEXT";
case SpvCapabilityShaderNonUniformEXT:
return "ShaderNonUniformEXT";
case SpvCapabilityRuntimeDescriptorArrayEXT:
return "RuntimeDescriptorArrayEXT";
case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
return "InputAttachmentArrayDynamicIndexingEXT";
case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
return "UniformTexelBufferArrayDynamicIndexingEXT";
case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
return "StorageTexelBufferArrayDynamicIndexingEXT";
case SpvCapabilityUniformBufferArrayNonUniformIndexingEXT:
return "UniformBufferArrayNonUniformIndexingEXT";
case SpvCapabilitySampledImageArrayNonUniformIndexingEXT:
return "SampledImageArrayNonUniformIndexingEXT";
case SpvCapabilityStorageBufferArrayNonUniformIndexingEXT:
return "StorageBufferArrayNonUniformIndexingEXT";
case SpvCapabilityStorageImageArrayNonUniformIndexingEXT:
return "StorageImageArrayNonUniformIndexingEXT";
case SpvCapabilityInputAttachmentArrayNonUniformIndexingEXT:
return "InputAttachmentArrayNonUniformIndexingEXT";
case SpvCapabilityUniformTexelBufferArrayNonUniformIndexingEXT:
return "UniformTexelBufferArrayNonUniformIndexingEXT";
case SpvCapabilityStorageTexelBufferArrayNonUniformIndexingEXT:
return "StorageTexelBufferArrayNonUniformIndexingEXT";
case SpvCapabilitySubgroupShuffleINTEL:
return "SubgroupShuffleINTEL";
case SpvCapabilitySubgroupBufferBlockIOINTEL:
return "SubgroupBufferBlockIOINTEL";
case SpvCapabilitySubgroupImageBlockIOINTEL:
return "SubgroupImageBlockIOINTEL";
case SpvCapabilityGroupNonUniformPartitionedNV:
return "GroupNonUniformPartitionedNV";
case SpvCapabilityMax:
assert(0 && "Attempting to convert SpvCapabilityMax to string");
return "";
};
return "";
}

View File

@ -0,0 +1,34 @@
kSPV_AMD_gcn_shader,
kSPV_AMD_gpu_shader_half_float,
kSPV_AMD_gpu_shader_half_float_fetch,
kSPV_AMD_gpu_shader_int16,
kSPV_AMD_shader_ballot,
kSPV_AMD_shader_explicit_vertex_parameter,
kSPV_AMD_shader_fragment_mask,
kSPV_AMD_shader_image_load_store_lod,
kSPV_AMD_shader_trinary_minmax,
kSPV_AMD_texture_gather_bias_lod,
kSPV_EXT_descriptor_indexing,
kSPV_EXT_fragment_fully_covered,
kSPV_EXT_shader_stencil_export,
kSPV_EXT_shader_viewport_index_layer,
kSPV_GOOGLE_decorate_string,
kSPV_GOOGLE_hlsl_functionality1,
kSPV_INTEL_subgroups,
kSPV_KHR_16bit_storage,
kSPV_KHR_device_group,
kSPV_KHR_multiview,
kSPV_KHR_post_depth_coverage,
kSPV_KHR_shader_atomic_counter_ops,
kSPV_KHR_shader_ballot,
kSPV_KHR_shader_draw_parameters,
kSPV_KHR_storage_buffer_storage_class,
kSPV_KHR_subgroup_vote,
kSPV_KHR_variable_pointers,
kSPV_NVX_multiview_per_view_attributes,
kSPV_NV_geometry_shader_passthrough,
kSPV_NV_sample_mask_override_coverage,
kSPV_NV_shader_subgroup_partitioned,
kSPV_NV_stereo_view_rendering,
kSPV_NV_viewport_array2,
kSPV_VALIDATOR_ignore_type_decl_unique

View File

@ -0,0 +1,19 @@
{0, "Khronos", "", "Khronos"},
{1, "LunarG", "", "LunarG"},
{2, "Valve", "", "Valve"},
{3, "Codeplay", "", "Codeplay"},
{4, "NVIDIA", "", "NVIDIA"},
{5, "ARM", "", "ARM"},
{6, "Khronos", "LLVM/SPIR-V Translator", "Khronos LLVM/SPIR-V Translator"},
{7, "Khronos", "SPIR-V Tools Assembler", "Khronos SPIR-V Tools Assembler"},
{8, "Khronos", "Glslang Reference Front End", "Khronos Glslang Reference Front End"},
{9, "Qualcomm", "", "Qualcomm"},
{10, "AMD", "", "AMD"},
{11, "Intel", "", "Intel"},
{12, "Imagination", "", "Imagination"},
{13, "Google", "Shaderc over Glslang", "Google Shaderc over Glslang"},
{14, "Google", "spiregg", "Google spiregg"},
{15, "Google", "rspirv", "Google rspirv"},
{16, "X-LEGEND", "Mesa-IR/SPIR-V Translator", "X-LEGEND Mesa-IR/SPIR-V Translator"},
{17, "Khronos", "SPIR-V Tools Linker", "Khronos SPIR-V Tools Linker"},
{18, "Wine", "VKD3D Shader Compiler", "Wine VKD3D Shader Compiler"},

View File

@ -0,0 +1,86 @@
static const SpvCapability pygen_variable_caps_Float64[] = {SpvCapabilityFloat64};
static const SpvCapability pygen_variable_caps_InterpolationFunction[] = {SpvCapabilityInterpolationFunction};
static const spv_ext_inst_desc_t glsl_entries[] = {
{"Round", 1, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"RoundEven", 2, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Trunc", 3, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"FAbs", 4, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"SAbs", 5, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"FSign", 6, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"SSign", 7, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Floor", 8, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Ceil", 9, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Fract", 10, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Radians", 11, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Degrees", 12, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Sin", 13, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Cos", 14, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Tan", 15, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Asin", 16, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Acos", 17, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Atan", 18, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Sinh", 19, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Cosh", 20, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Tanh", 21, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Asinh", 22, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Acosh", 23, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Atanh", 24, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Atan2", 25, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Pow", 26, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Exp", 27, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Log", 28, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Exp2", 29, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Log2", 30, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Sqrt", 31, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"InverseSqrt", 32, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Determinant", 33, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"MatrixInverse", 34, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Modf", 35, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"ModfStruct", 36, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"FMin", 37, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"UMin", 38, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"SMin", 39, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"FMax", 40, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"UMax", 41, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"SMax", 42, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"FClamp", 43, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"UClamp", 44, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"SClamp", 45, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"FMix", 46, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"IMix", 47, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Step", 48, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"SmoothStep", 49, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Fma", 50, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Frexp", 51, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"FrexpStruct", 52, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Ldexp", 53, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"PackSnorm4x8", 54, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"PackUnorm4x8", 55, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"PackSnorm2x16", 56, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"PackUnorm2x16", 57, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"PackHalf2x16", 58, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"PackDouble2x32", 59, 1, pygen_variable_caps_Float64, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"UnpackSnorm2x16", 60, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"UnpackUnorm2x16", 61, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"UnpackHalf2x16", 62, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"UnpackSnorm4x8", 63, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"UnpackUnorm4x8", 64, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"UnpackDouble2x32", 65, 1, pygen_variable_caps_Float64, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Length", 66, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Distance", 67, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Cross", 68, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Normalize", 69, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"FaceForward", 70, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Reflect", 71, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"Refract", 72, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"FindILsb", 73, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"FindSMsb", 74, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"FindUMsb", 75, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"InterpolateAtCentroid", 76, 1, pygen_variable_caps_InterpolationFunction, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"InterpolateAtSample", 77, 1, pygen_variable_caps_InterpolationFunction, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"InterpolateAtOffset", 78, 1, pygen_variable_caps_InterpolationFunction, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"NMin", 79, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"NMax", 80, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"NClamp", 81, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}}
};

View File

@ -0,0 +1,166 @@
static const spv_ext_inst_desc_t opencl_entries[] = {
{"acos", 0, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"acosh", 1, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"acospi", 2, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"asin", 3, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"asinh", 4, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"asinpi", 5, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"atan", 6, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"atan2", 7, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"atanh", 8, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"atanpi", 9, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"atan2pi", 10, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"cbrt", 11, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"ceil", 12, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"copysign", 13, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"cos", 14, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"cosh", 15, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"cospi", 16, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"erfc", 17, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"erf", 18, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"exp", 19, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"exp2", 20, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"exp10", 21, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"expm1", 22, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"fabs", 23, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"fdim", 24, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"floor", 25, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"fma", 26, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"fmax", 27, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"fmin", 28, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"fmod", 29, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"fract", 30, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"frexp", 31, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"hypot", 32, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"ilogb", 33, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"ldexp", 34, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"lgamma", 35, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"lgamma_r", 36, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"log", 37, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"log2", 38, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"log10", 39, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"log1p", 40, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"logb", 41, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"mad", 42, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"maxmag", 43, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"minmag", 44, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"modf", 45, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"nan", 46, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"nextafter", 47, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"pow", 48, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"pown", 49, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"powr", 50, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"remainder", 51, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"remquo", 52, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"rint", 53, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"rootn", 54, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"round", 55, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"rsqrt", 56, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"sin", 57, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"sincos", 58, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"sinh", 59, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"sinpi", 60, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"sqrt", 61, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"tan", 62, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"tanh", 63, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"tanpi", 64, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"tgamma", 65, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"trunc", 66, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"half_cos", 67, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"half_divide", 68, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"half_exp", 69, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"half_exp2", 70, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"half_exp10", 71, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"half_log", 72, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"half_log2", 73, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"half_log10", 74, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"half_powr", 75, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"half_recip", 76, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"half_rsqrt", 77, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"half_sin", 78, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"half_sqrt", 79, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"half_tan", 80, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"native_cos", 81, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"native_divide", 82, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"native_exp", 83, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"native_exp2", 84, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"native_exp10", 85, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"native_log", 86, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"native_log2", 87, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"native_log10", 88, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"native_powr", 89, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"native_recip", 90, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"native_rsqrt", 91, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"native_sin", 92, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"native_sqrt", 93, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"native_tan", 94, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"fclamp", 95, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"degrees", 96, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"fmax_common", 97, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"fmin_common", 98, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"mix", 99, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"radians", 100, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"step", 101, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"smoothstep", 102, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"sign", 103, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"cross", 104, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"distance", 105, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"length", 106, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"normalize", 107, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"fast_distance", 108, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"fast_length", 109, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"fast_normalize", 110, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_abs", 141, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_abs_diff", 142, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_add_sat", 143, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_add_sat", 144, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_hadd", 145, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_hadd", 146, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_rhadd", 147, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_rhadd", 148, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_clamp", 149, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_clamp", 150, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"clz", 151, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"ctz", 152, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_mad_hi", 153, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_mad_sat", 154, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_mad_sat", 155, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_max", 156, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_max", 157, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_min", 158, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_min", 159, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_mul_hi", 160, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"rotate", 161, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_sub_sat", 162, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_sub_sat", 163, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_upsample", 164, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_upsample", 165, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"popcount", 166, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_mad24", 167, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_mad24", 168, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"s_mul24", 169, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_mul24", 170, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"vloadn", 171, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_NONE}},
{"vstoren", 172, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"vload_half", 173, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"vload_halfn", 174, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_NONE}},
{"vstore_half", 175, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"vstore_half_r", 176, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_FP_ROUNDING_MODE, SPV_OPERAND_TYPE_NONE}},
{"vstore_halfn", 177, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"vstore_halfn_r", 178, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_FP_ROUNDING_MODE, SPV_OPERAND_TYPE_NONE}},
{"vloada_halfn", 179, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_NONE}},
{"vstorea_halfn", 180, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"vstorea_halfn_r", 181, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_FP_ROUNDING_MODE, SPV_OPERAND_TYPE_NONE}},
{"shuffle", 182, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"shuffle2", 183, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"printf", 184, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_VARIABLE_ID, SPV_OPERAND_TYPE_NONE}},
{"prefetch", 185, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"bitselect", 186, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"select", 187, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_abs", 201, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_abs_diff", 202, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_mul_hi", 203, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"u_mad_hi", 204, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}}
};

View File

@ -0,0 +1,744 @@
static const SpvCapability pygen_variable_caps_Addresses[] = {SpvCapabilityAddresses};
static const SpvCapability pygen_variable_caps_AtomicStorage[] = {SpvCapabilityAtomicStorage};
static const SpvCapability pygen_variable_caps_ClipDistance[] = {SpvCapabilityClipDistance};
static const SpvCapability pygen_variable_caps_CullDistance[] = {SpvCapabilityCullDistance};
static const SpvCapability pygen_variable_caps_DeviceEnqueue[] = {SpvCapabilityDeviceEnqueue};
static const SpvCapability pygen_variable_caps_DeviceGroup[] = {SpvCapabilityDeviceGroup};
static const SpvCapability pygen_variable_caps_DrawParameters[] = {SpvCapabilityDrawParameters};
static const SpvCapability pygen_variable_caps_FragmentFullyCoveredEXT[] = {SpvCapabilityFragmentFullyCoveredEXT};
static const SpvCapability pygen_variable_caps_GenericPointer[] = {SpvCapabilityGenericPointer};
static const SpvCapability pygen_variable_caps_Geometry[] = {SpvCapabilityGeometry};
static const SpvCapability pygen_variable_caps_GeometryTessellation[] = {SpvCapabilityGeometry, SpvCapabilityTessellation};
static const SpvCapability pygen_variable_caps_GeometryShaderPassthroughNV[] = {SpvCapabilityGeometryShaderPassthroughNV};
static const SpvCapability pygen_variable_caps_GeometryStreams[] = {SpvCapabilityGeometryStreams};
static const SpvCapability pygen_variable_caps_GroupNonUniform[] = {SpvCapabilityGroupNonUniform};
static const SpvCapability pygen_variable_caps_GroupNonUniformClustered[] = {SpvCapabilityGroupNonUniformClustered};
static const SpvCapability pygen_variable_caps_GroupNonUniformPartitionedNV[] = {SpvCapabilityGroupNonUniformPartitionedNV};
static const SpvCapability pygen_variable_caps_ImageBasic[] = {SpvCapabilityImageBasic};
static const SpvCapability pygen_variable_caps_ImageBuffer[] = {SpvCapabilityImageBuffer};
static const SpvCapability pygen_variable_caps_ImageBufferShaderNonUniformEXT[] = {SpvCapabilityImageBuffer, SpvCapabilityShaderNonUniformEXT};
static const SpvCapability pygen_variable_caps_ImageGatherExtended[] = {SpvCapabilityImageGatherExtended};
static const SpvCapability pygen_variable_caps_InputAttachment[] = {SpvCapabilityInputAttachment};
static const SpvCapability pygen_variable_caps_InputAttachmentShaderNonUniformEXT[] = {SpvCapabilityInputAttachment, SpvCapabilityShaderNonUniformEXT};
static const SpvCapability pygen_variable_caps_Int64[] = {SpvCapabilityInt64};
static const SpvCapability pygen_variable_caps_Kernel[] = {SpvCapabilityKernel};
static const SpvCapability pygen_variable_caps_KernelGroupNonUniform[] = {SpvCapabilityKernel, SpvCapabilityGroupNonUniform};
static const SpvCapability pygen_variable_caps_KernelGroupNonUniformSubgroupBallotKHR[] = {SpvCapabilityKernel, SpvCapabilityGroupNonUniform, SpvCapabilitySubgroupBallotKHR};
static const SpvCapability pygen_variable_caps_KernelGroupNonUniformArithmeticGroupNonUniformBallot[] = {SpvCapabilityKernel, SpvCapabilityGroupNonUniformArithmetic, SpvCapabilityGroupNonUniformBallot};
static const SpvCapability pygen_variable_caps_Linkage[] = {SpvCapabilityLinkage};
static const SpvCapability pygen_variable_caps_Matrix[] = {SpvCapabilityMatrix};
static const SpvCapability pygen_variable_caps_MinLod[] = {SpvCapabilityMinLod};
static const SpvCapability pygen_variable_caps_MultiView[] = {SpvCapabilityMultiView};
static const SpvCapability pygen_variable_caps_MultiViewport[] = {SpvCapabilityMultiViewport};
static const SpvCapability pygen_variable_caps_PerViewAttributesNV[] = {SpvCapabilityPerViewAttributesNV};
static const SpvCapability pygen_variable_caps_Pipes[] = {SpvCapabilityPipes};
static const SpvCapability pygen_variable_caps_SampleMaskOverrideCoverageNV[] = {SpvCapabilitySampleMaskOverrideCoverageNV};
static const SpvCapability pygen_variable_caps_SampleMaskPostDepthCoverage[] = {SpvCapabilitySampleMaskPostDepthCoverage};
static const SpvCapability pygen_variable_caps_SampleRateShading[] = {SpvCapabilitySampleRateShading};
static const SpvCapability pygen_variable_caps_Sampled1D[] = {SpvCapabilitySampled1D};
static const SpvCapability pygen_variable_caps_SampledBuffer[] = {SpvCapabilitySampledBuffer};
static const SpvCapability pygen_variable_caps_SampledBufferShaderNonUniformEXT[] = {SpvCapabilitySampledBuffer, SpvCapabilityShaderNonUniformEXT};
static const SpvCapability pygen_variable_caps_SampledCubeArray[] = {SpvCapabilitySampledCubeArray};
static const SpvCapability pygen_variable_caps_SampledRect[] = {SpvCapabilitySampledRect};
static const SpvCapability pygen_variable_caps_Shader[] = {SpvCapabilityShader};
static const SpvCapability pygen_variable_caps_ShaderKernel[] = {SpvCapabilityShader, SpvCapabilityKernel};
static const SpvCapability pygen_variable_caps_ShaderNonUniformEXT[] = {SpvCapabilityShaderNonUniformEXT};
static const SpvCapability pygen_variable_caps_ShaderStereoViewNV[] = {SpvCapabilityShaderStereoViewNV};
static const SpvCapability pygen_variable_caps_ShaderViewportIndexLayerNV[] = {SpvCapabilityShaderViewportIndexLayerNV};
static const SpvCapability pygen_variable_caps_ShaderViewportMaskNV[] = {SpvCapabilityShaderViewportMaskNV};
static const SpvCapability pygen_variable_caps_StencilExportEXT[] = {SpvCapabilityStencilExportEXT};
static const SpvCapability pygen_variable_caps_StorageBuffer16BitAccessStorageUniformBufferBlock16[] = {SpvCapabilityStorageBuffer16BitAccess, SpvCapabilityStorageUniformBufferBlock16};
static const SpvCapability pygen_variable_caps_StorageImageExtendedFormats[] = {SpvCapabilityStorageImageExtendedFormats};
static const SpvCapability pygen_variable_caps_SubgroupBallotKHRGroupNonUniformBallot[] = {SpvCapabilitySubgroupBallotKHR, SpvCapabilityGroupNonUniformBallot};
static const SpvCapability pygen_variable_caps_SubgroupDispatch[] = {SpvCapabilitySubgroupDispatch};
static const SpvCapability pygen_variable_caps_Tessellation[] = {SpvCapabilityTessellation};
static const SpvCapability pygen_variable_caps_TransformFeedback[] = {SpvCapabilityTransformFeedback};
static const SpvCapability pygen_variable_caps_VariablePointersStorageBuffer[] = {SpvCapabilityVariablePointersStorageBuffer};
static const libspirv::Extension pygen_variable_exts_SPV_AMD_gpu_shader_half_float_fetch[] = {libspirv::Extension::kSPV_AMD_gpu_shader_half_float_fetch};
static const libspirv::Extension pygen_variable_exts_SPV_AMD_shader_explicit_vertex_parameter[] = {libspirv::Extension::kSPV_AMD_shader_explicit_vertex_parameter};
static const libspirv::Extension pygen_variable_exts_SPV_AMD_shader_fragment_mask[] = {libspirv::Extension::kSPV_AMD_shader_fragment_mask};
static const libspirv::Extension pygen_variable_exts_SPV_AMD_shader_image_load_store_lod[] = {libspirv::Extension::kSPV_AMD_shader_image_load_store_lod};
static const libspirv::Extension pygen_variable_exts_SPV_AMD_texture_gather_bias_lod[] = {libspirv::Extension::kSPV_AMD_texture_gather_bias_lod};
static const libspirv::Extension pygen_variable_exts_SPV_EXT_descriptor_indexing[] = {libspirv::Extension::kSPV_EXT_descriptor_indexing};
static const libspirv::Extension pygen_variable_exts_SPV_EXT_fragment_fully_covered[] = {libspirv::Extension::kSPV_EXT_fragment_fully_covered};
static const libspirv::Extension pygen_variable_exts_SPV_EXT_shader_stencil_export[] = {libspirv::Extension::kSPV_EXT_shader_stencil_export};
static const libspirv::Extension pygen_variable_exts_SPV_EXT_shader_viewport_index_layer[] = {libspirv::Extension::kSPV_EXT_shader_viewport_index_layer};
static const libspirv::Extension pygen_variable_exts_SPV_GOOGLE_hlsl_functionality1[] = {libspirv::Extension::kSPV_GOOGLE_hlsl_functionality1};
static const libspirv::Extension pygen_variable_exts_SPV_INTEL_subgroups[] = {libspirv::Extension::kSPV_INTEL_subgroups};
static const libspirv::Extension pygen_variable_exts_SPV_KHR_16bit_storage[] = {libspirv::Extension::kSPV_KHR_16bit_storage};
static const libspirv::Extension pygen_variable_exts_SPV_KHR_device_group[] = {libspirv::Extension::kSPV_KHR_device_group};
static const libspirv::Extension pygen_variable_exts_SPV_KHR_multiview[] = {libspirv::Extension::kSPV_KHR_multiview};
static const libspirv::Extension pygen_variable_exts_SPV_KHR_post_depth_coverage[] = {libspirv::Extension::kSPV_KHR_post_depth_coverage};
static const libspirv::Extension pygen_variable_exts_SPV_KHR_shader_atomic_counter_ops[] = {libspirv::Extension::kSPV_KHR_shader_atomic_counter_ops};
static const libspirv::Extension pygen_variable_exts_SPV_KHR_shader_ballot[] = {libspirv::Extension::kSPV_KHR_shader_ballot};
static const libspirv::Extension pygen_variable_exts_SPV_KHR_shader_draw_parameters[] = {libspirv::Extension::kSPV_KHR_shader_draw_parameters};
static const libspirv::Extension pygen_variable_exts_SPV_KHR_storage_buffer_storage_classSPV_KHR_variable_pointers[] = {libspirv::Extension::kSPV_KHR_storage_buffer_storage_class, libspirv::Extension::kSPV_KHR_variable_pointers};
static const libspirv::Extension pygen_variable_exts_SPV_KHR_subgroup_vote[] = {libspirv::Extension::kSPV_KHR_subgroup_vote};
static const libspirv::Extension pygen_variable_exts_SPV_KHR_variable_pointers[] = {libspirv::Extension::kSPV_KHR_variable_pointers};
static const libspirv::Extension pygen_variable_exts_SPV_NVX_multiview_per_view_attributes[] = {libspirv::Extension::kSPV_NVX_multiview_per_view_attributes};
static const libspirv::Extension pygen_variable_exts_SPV_NV_geometry_shader_passthrough[] = {libspirv::Extension::kSPV_NV_geometry_shader_passthrough};
static const libspirv::Extension pygen_variable_exts_SPV_NV_sample_mask_override_coverage[] = {libspirv::Extension::kSPV_NV_sample_mask_override_coverage};
static const libspirv::Extension pygen_variable_exts_SPV_NV_shader_subgroup_partitioned[] = {libspirv::Extension::kSPV_NV_shader_subgroup_partitioned};
static const libspirv::Extension pygen_variable_exts_SPV_NV_stereo_view_rendering[] = {libspirv::Extension::kSPV_NV_stereo_view_rendering};
static const libspirv::Extension pygen_variable_exts_SPV_NV_viewport_array2[] = {libspirv::Extension::kSPV_NV_viewport_array2};
static const spv_operand_desc_t pygen_variable_ImageOperandsEntries[] = {
{"None", 0x0000, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Bias", 0x0001, 1, pygen_variable_caps_Shader, 0, nullptr, {SPV_OPERAND_TYPE_ID}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Lod", 0x0002, 0, nullptr, 0, nullptr, {SPV_OPERAND_TYPE_ID}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Grad", 0x0004, 0, nullptr, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ConstOffset", 0x0008, 0, nullptr, 0, nullptr, {SPV_OPERAND_TYPE_ID}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Offset", 0x0010, 1, pygen_variable_caps_ImageGatherExtended, 0, nullptr, {SPV_OPERAND_TYPE_ID}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ConstOffsets", 0x0020, 0, nullptr, 0, nullptr, {SPV_OPERAND_TYPE_ID}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Sample", 0x0040, 0, nullptr, 0, nullptr, {SPV_OPERAND_TYPE_ID}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"MinLod", 0x0080, 1, pygen_variable_caps_MinLod, 0, nullptr, {SPV_OPERAND_TYPE_ID}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_FPFastMathModeEntries[] = {
{"None", 0x0000, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NotNaN", 0x0001, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NotInf", 0x0002, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NSZ", 0x0004, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AllowRecip", 0x0008, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Fast", 0x0010, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_SelectionControlEntries[] = {
{"None", 0x0000, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Flatten", 0x0001, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DontFlatten", 0x0002, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_LoopControlEntries[] = {
{"None", 0x0000, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Unroll", 0x0001, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DontUnroll", 0x0002, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DependencyInfinite", 0x0004, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,1)},
{"DependencyLength", 0x0008, 0, nullptr, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1,1)}
};
static const spv_operand_desc_t pygen_variable_FunctionControlEntries[] = {
{"None", 0x0000, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Inline", 0x0001, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DontInline", 0x0002, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Pure", 0x0004, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Const", 0x0008, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_MemorySemanticsEntries[] = {
{"None", 0x0000, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Relaxed", 0x0000, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Acquire", 0x0002, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Release", 0x0004, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AcquireRelease", 0x0008, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SequentiallyConsistent", 0x0010, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UniformMemory", 0x0040, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SubgroupMemory", 0x0080, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"WorkgroupMemory", 0x0100, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CrossWorkgroupMemory", 0x0200, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicCounterMemory", 0x0400, 1, pygen_variable_caps_AtomicStorage, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageMemory", 0x0800, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_MemoryAccessEntries[] = {
{"None", 0x0000, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Volatile", 0x0001, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Aligned", 0x0002, 0, nullptr, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Nontemporal", 0x0004, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_KernelProfilingInfoEntries[] = {
{"None", 0x0000, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CmdExecTime", 0x0001, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_SourceLanguageEntries[] = {
{"Unknown", 0, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ESSL", 1, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GLSL", 2, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"OpenCL_C", 3, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"OpenCL_CPP", 4, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"HLSL", 5, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_ExecutionModelEntries[] = {
{"Vertex", 0, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TessellationControl", 1, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TessellationEvaluation", 2, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Geometry", 3, 1, pygen_variable_caps_Geometry, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Fragment", 4, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GLCompute", 5, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Kernel", 6, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_AddressingModelEntries[] = {
{"Logical", 0, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Physical32", 1, 1, pygen_variable_caps_Addresses, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Physical64", 2, 1, pygen_variable_caps_Addresses, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_MemoryModelEntries[] = {
{"Simple", 0, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GLSL450", 1, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"OpenCL", 2, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_ExecutionModeEntries[] = {
{"Invocations", 0, 1, pygen_variable_caps_Geometry, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SpacingEqual", 1, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SpacingFractionalEven", 2, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SpacingFractionalOdd", 3, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"VertexOrderCw", 4, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"VertexOrderCcw", 5, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"PixelCenterInteger", 6, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"OriginUpperLeft", 7, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"OriginLowerLeft", 8, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"EarlyFragmentTests", 9, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"PointMode", 10, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Xfb", 11, 1, pygen_variable_caps_TransformFeedback, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DepthReplacing", 12, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DepthGreater", 14, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DepthLess", 15, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DepthUnchanged", 16, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LocalSize", 17, 0, nullptr, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LocalSizeHint", 18, 1, pygen_variable_caps_Kernel, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"InputPoints", 19, 1, pygen_variable_caps_Geometry, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"InputLines", 20, 1, pygen_variable_caps_Geometry, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"InputLinesAdjacency", 21, 1, pygen_variable_caps_Geometry, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Triangles", 22, 2, pygen_variable_caps_GeometryTessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"InputTrianglesAdjacency", 23, 1, pygen_variable_caps_Geometry, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Quads", 24, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Isolines", 25, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"OutputVertices", 26, 2, pygen_variable_caps_GeometryTessellation, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"OutputPoints", 27, 1, pygen_variable_caps_Geometry, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"OutputLineStrip", 28, 1, pygen_variable_caps_Geometry, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"OutputTriangleStrip", 29, 1, pygen_variable_caps_Geometry, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"VecTypeHint", 30, 1, pygen_variable_caps_Kernel, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ContractionOff", 31, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Initializer", 33, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,1)},
{"Finalizer", 34, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,1)},
{"SubgroupSize", 35, 1, pygen_variable_caps_SubgroupDispatch, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1,1)},
{"SubgroupsPerWorkgroup", 36, 1, pygen_variable_caps_SubgroupDispatch, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1,1)},
{"SubgroupsPerWorkgroupId", 37, 1, pygen_variable_caps_SubgroupDispatch, 0, nullptr, {SPV_OPERAND_TYPE_ID}, SPV_SPIRV_VERSION_WORD(1,2)},
{"LocalSizeId", 38, 0, nullptr, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID}, SPV_SPIRV_VERSION_WORD(1,2)},
{"LocalSizeHintId", 39, 1, pygen_variable_caps_Kernel, 0, nullptr, {SPV_OPERAND_TYPE_ID}, SPV_SPIRV_VERSION_WORD(1,2)},
{"PostDepthCoverage", 4446, 1, pygen_variable_caps_SampleMaskPostDepthCoverage, 1, pygen_variable_exts_SPV_KHR_post_depth_coverage, {}, 0xffffffffu},
{"StencilRefReplacingEXT", 5027, 1, pygen_variable_caps_StencilExportEXT, 1, pygen_variable_exts_SPV_EXT_shader_stencil_export, {}, 0xffffffffu}
};
static const spv_operand_desc_t pygen_variable_StorageClassEntries[] = {
{"UniformConstant", 0, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Input", 1, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Uniform", 2, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Output", 3, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Workgroup", 4, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CrossWorkgroup", 5, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Private", 6, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Function", 7, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Generic", 8, 1, pygen_variable_caps_GenericPointer, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"PushConstant", 9, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicCounter", 10, 1, pygen_variable_caps_AtomicStorage, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Image", 11, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"StorageBuffer", 12, 1, pygen_variable_caps_Shader, 2, pygen_variable_exts_SPV_KHR_storage_buffer_storage_classSPV_KHR_variable_pointers, {}, SPV_SPIRV_VERSION_WORD(1,3)}
};
static const spv_operand_desc_t pygen_variable_DimEntries[] = {
{"1D", 0, 1, pygen_variable_caps_Sampled1D, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"2D", 1, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"3D", 2, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Cube", 3, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rect", 4, 1, pygen_variable_caps_SampledRect, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Buffer", 5, 1, pygen_variable_caps_SampledBuffer, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SubpassData", 6, 1, pygen_variable_caps_InputAttachment, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_SamplerAddressingModeEntries[] = {
{"None", 0, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ClampToEdge", 1, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Clamp", 2, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Repeat", 3, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"RepeatMirrored", 4, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_SamplerFilterModeEntries[] = {
{"Nearest", 0, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Linear", 1, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_ImageFormatEntries[] = {
{"Unknown", 0, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rgba32f", 1, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rgba16f", 2, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"R32f", 3, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rgba8", 4, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rgba8Snorm", 5, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rg32f", 6, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rg16f", 7, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"R11fG11fB10f", 8, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"R16f", 9, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rgba16", 10, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rgb10A2", 11, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rg16", 12, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rg8", 13, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"R16", 14, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"R8", 15, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rgba16Snorm", 16, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rg16Snorm", 17, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rg8Snorm", 18, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"R16Snorm", 19, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"R8Snorm", 20, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rgba32i", 21, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rgba16i", 22, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rgba8i", 23, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"R32i", 24, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rg32i", 25, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rg16i", 26, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rg8i", 27, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"R16i", 28, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"R8i", 29, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rgba32ui", 30, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rgba16ui", 31, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rgba8ui", 32, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"R32ui", 33, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rgb10a2ui", 34, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rg32ui", 35, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rg16ui", 36, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rg8ui", 37, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"R16ui", 38, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"R8ui", 39, 1, pygen_variable_caps_StorageImageExtendedFormats, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_ImageChannelOrderEntries[] = {
{"R", 0, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"A", 1, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"RG", 2, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"RA", 3, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"RGB", 4, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"RGBA", 5, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"BGRA", 6, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ARGB", 7, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Intensity", 8, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Luminance", 9, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Rx", 10, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"RGx", 11, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"RGBx", 12, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Depth", 13, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DepthStencil", 14, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"sRGB", 15, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"sRGBx", 16, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"sRGBA", 17, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"sBGRA", 18, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ABGR", 19, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_ImageChannelDataTypeEntries[] = {
{"SnormInt8", 0, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SnormInt16", 1, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UnormInt8", 2, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UnormInt16", 3, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UnormShort565", 4, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UnormShort555", 5, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UnormInt101010", 6, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SignedInt8", 7, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SignedInt16", 8, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SignedInt32", 9, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UnsignedInt8", 10, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UnsignedInt16", 11, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UnsignedInt32", 12, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"HalfFloat", 13, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Float", 14, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UnormInt24", 15, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UnormInt101010_2", 16, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_FPRoundingModeEntries[] = {
{"RTE", 0, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"RTZ", 1, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"RTP", 2, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"RTN", 3, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_LinkageTypeEntries[] = {
{"Export", 0, 1, pygen_variable_caps_Linkage, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Import", 1, 1, pygen_variable_caps_Linkage, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_AccessQualifierEntries[] = {
{"ReadOnly", 0, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"WriteOnly", 1, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ReadWrite", 2, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_FunctionParameterAttributeEntries[] = {
{"Zext", 0, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Sext", 1, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ByVal", 2, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Sret", 3, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NoAlias", 4, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NoCapture", 5, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NoWrite", 6, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NoReadWrite", 7, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_DecorationEntries[] = {
{"RelaxedPrecision", 0, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SpecId", 1, 2, pygen_variable_caps_ShaderKernel, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Block", 2, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"BufferBlock", 3, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"RowMajor", 4, 1, pygen_variable_caps_Matrix, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ColMajor", 5, 1, pygen_variable_caps_Matrix, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ArrayStride", 6, 1, pygen_variable_caps_Shader, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"MatrixStride", 7, 1, pygen_variable_caps_Matrix, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GLSLShared", 8, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GLSLPacked", 9, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CPacked", 10, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"BuiltIn", 11, 0, nullptr, 0, nullptr, {SPV_OPERAND_TYPE_BUILT_IN}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NoPerspective", 13, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Flat", 14, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Patch", 15, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Centroid", 16, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Sample", 17, 1, pygen_variable_caps_SampleRateShading, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Invariant", 18, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Restrict", 19, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Aliased", 20, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Volatile", 21, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Constant", 22, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Coherent", 23, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NonWritable", 24, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NonReadable", 25, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Uniform", 26, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SaturatedConversion", 28, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Stream", 29, 1, pygen_variable_caps_GeometryStreams, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Location", 30, 1, pygen_variable_caps_Shader, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Component", 31, 1, pygen_variable_caps_Shader, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Index", 32, 1, pygen_variable_caps_Shader, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Binding", 33, 1, pygen_variable_caps_Shader, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DescriptorSet", 34, 1, pygen_variable_caps_Shader, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Offset", 35, 1, pygen_variable_caps_Shader, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"XfbBuffer", 36, 1, pygen_variable_caps_TransformFeedback, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"XfbStride", 37, 1, pygen_variable_caps_TransformFeedback, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FuncParamAttr", 38, 1, pygen_variable_caps_Kernel, 0, nullptr, {SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FPRoundingMode", 39, 0, nullptr, 0, nullptr, {SPV_OPERAND_TYPE_FP_ROUNDING_MODE}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FPFastMathMode", 40, 1, pygen_variable_caps_Kernel, 0, nullptr, {SPV_OPERAND_TYPE_FP_FAST_MATH_MODE}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LinkageAttributes", 41, 1, pygen_variable_caps_Linkage, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_STRING, SPV_OPERAND_TYPE_LINKAGE_TYPE}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NoContraction", 42, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"InputAttachmentIndex", 43, 1, pygen_variable_caps_InputAttachment, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Alignment", 44, 1, pygen_variable_caps_Kernel, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"MaxByteOffset", 45, 1, pygen_variable_caps_Addresses, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1,1)},
{"AlignmentId", 46, 1, pygen_variable_caps_Kernel, 0, nullptr, {SPV_OPERAND_TYPE_ID}, SPV_SPIRV_VERSION_WORD(1,2)},
{"MaxByteOffsetId", 47, 1, pygen_variable_caps_Addresses, 0, nullptr, {SPV_OPERAND_TYPE_ID}, SPV_SPIRV_VERSION_WORD(1,2)},
{"ExplicitInterpAMD", 4999, 0, nullptr, 1, pygen_variable_exts_SPV_AMD_shader_explicit_vertex_parameter, {}, 0xffffffffu},
{"OverrideCoverageNV", 5248, 1, pygen_variable_caps_SampleMaskOverrideCoverageNV, 0, nullptr, {}, 0xffffffffu},
{"PassthroughNV", 5250, 1, pygen_variable_caps_GeometryShaderPassthroughNV, 0, nullptr, {}, 0xffffffffu},
{"ViewportRelativeNV", 5252, 1, pygen_variable_caps_ShaderViewportMaskNV, 0, nullptr, {}, 0xffffffffu},
{"SecondaryViewportRelativeNV", 5256, 1, pygen_variable_caps_ShaderStereoViewNV, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, 0xffffffffu},
{"NonUniformEXT", 5300, 1, pygen_variable_caps_ShaderNonUniformEXT, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"HlslCounterBufferGOOGLE", 5634, 0, nullptr, 1, pygen_variable_exts_SPV_GOOGLE_hlsl_functionality1, {SPV_OPERAND_TYPE_ID}, 0xffffffffu},
{"HlslSemanticGOOGLE", 5635, 0, nullptr, 1, pygen_variable_exts_SPV_GOOGLE_hlsl_functionality1, {SPV_OPERAND_TYPE_LITERAL_STRING}, 0xffffffffu}
};
static const spv_operand_desc_t pygen_variable_BuiltInEntries[] = {
{"Position", 0, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"PointSize", 1, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ClipDistance", 3, 1, pygen_variable_caps_ClipDistance, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CullDistance", 4, 1, pygen_variable_caps_CullDistance, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"VertexId", 5, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"InstanceId", 6, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"PrimitiveId", 7, 2, pygen_variable_caps_GeometryTessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"InvocationId", 8, 2, pygen_variable_caps_GeometryTessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Layer", 9, 1, pygen_variable_caps_Geometry, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ViewportIndex", 10, 1, pygen_variable_caps_MultiViewport, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TessLevelOuter", 11, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TessLevelInner", 12, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TessCoord", 13, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"PatchVertices", 14, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FragCoord", 15, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"PointCoord", 16, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FrontFacing", 17, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SampleId", 18, 1, pygen_variable_caps_SampleRateShading, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SamplePosition", 19, 1, pygen_variable_caps_SampleRateShading, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SampleMask", 20, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FragDepth", 22, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"HelperInvocation", 23, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NumWorkgroups", 24, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"WorkgroupSize", 25, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"WorkgroupId", 26, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LocalInvocationId", 27, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GlobalInvocationId", 28, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LocalInvocationIndex", 29, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"WorkDim", 30, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GlobalSize", 31, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"EnqueuedWorkgroupSize", 32, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GlobalOffset", 33, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GlobalLinearId", 34, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SubgroupSize", 36, 3, pygen_variable_caps_KernelGroupNonUniformSubgroupBallotKHR, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SubgroupMaxSize", 37, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NumSubgroups", 38, 2, pygen_variable_caps_KernelGroupNonUniform, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"NumEnqueuedSubgroups", 39, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SubgroupId", 40, 2, pygen_variable_caps_KernelGroupNonUniform, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SubgroupLocalInvocationId", 41, 3, pygen_variable_caps_KernelGroupNonUniformSubgroupBallotKHR, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"VertexIndex", 42, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"InstanceIndex", 43, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SubgroupEqMask", 4416, 2, pygen_variable_caps_SubgroupBallotKHRGroupNonUniformBallot, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"SubgroupEqMaskKHR", 4416, 2, pygen_variable_caps_SubgroupBallotKHRGroupNonUniformBallot, 1, pygen_variable_exts_SPV_KHR_shader_ballot, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"SubgroupGeMask", 4417, 2, pygen_variable_caps_SubgroupBallotKHRGroupNonUniformBallot, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"SubgroupGeMaskKHR", 4417, 2, pygen_variable_caps_SubgroupBallotKHRGroupNonUniformBallot, 1, pygen_variable_exts_SPV_KHR_shader_ballot, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"SubgroupGtMask", 4418, 2, pygen_variable_caps_SubgroupBallotKHRGroupNonUniformBallot, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"SubgroupGtMaskKHR", 4418, 2, pygen_variable_caps_SubgroupBallotKHRGroupNonUniformBallot, 1, pygen_variable_exts_SPV_KHR_shader_ballot, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"SubgroupLeMask", 4419, 2, pygen_variable_caps_SubgroupBallotKHRGroupNonUniformBallot, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"SubgroupLeMaskKHR", 4419, 2, pygen_variable_caps_SubgroupBallotKHRGroupNonUniformBallot, 1, pygen_variable_exts_SPV_KHR_shader_ballot, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"SubgroupLtMask", 4420, 2, pygen_variable_caps_SubgroupBallotKHRGroupNonUniformBallot, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"SubgroupLtMaskKHR", 4420, 2, pygen_variable_caps_SubgroupBallotKHRGroupNonUniformBallot, 1, pygen_variable_exts_SPV_KHR_shader_ballot, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"BaseVertex", 4424, 1, pygen_variable_caps_DrawParameters, 1, pygen_variable_exts_SPV_KHR_shader_draw_parameters, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"BaseInstance", 4425, 1, pygen_variable_caps_DrawParameters, 1, pygen_variable_exts_SPV_KHR_shader_draw_parameters, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"DrawIndex", 4426, 1, pygen_variable_caps_DrawParameters, 1, pygen_variable_exts_SPV_KHR_shader_draw_parameters, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"DeviceIndex", 4438, 1, pygen_variable_caps_DeviceGroup, 1, pygen_variable_exts_SPV_KHR_device_group, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"ViewIndex", 4440, 1, pygen_variable_caps_MultiView, 1, pygen_variable_exts_SPV_KHR_multiview, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"BaryCoordNoPerspAMD", 4992, 0, nullptr, 1, pygen_variable_exts_SPV_AMD_shader_explicit_vertex_parameter, {}, 0xffffffffu},
{"BaryCoordNoPerspCentroidAMD", 4993, 0, nullptr, 1, pygen_variable_exts_SPV_AMD_shader_explicit_vertex_parameter, {}, 0xffffffffu},
{"BaryCoordNoPerspSampleAMD", 4994, 0, nullptr, 1, pygen_variable_exts_SPV_AMD_shader_explicit_vertex_parameter, {}, 0xffffffffu},
{"BaryCoordSmoothAMD", 4995, 0, nullptr, 1, pygen_variable_exts_SPV_AMD_shader_explicit_vertex_parameter, {}, 0xffffffffu},
{"BaryCoordSmoothCentroidAMD", 4996, 0, nullptr, 1, pygen_variable_exts_SPV_AMD_shader_explicit_vertex_parameter, {}, 0xffffffffu},
{"BaryCoordSmoothSampleAMD", 4997, 0, nullptr, 1, pygen_variable_exts_SPV_AMD_shader_explicit_vertex_parameter, {}, 0xffffffffu},
{"BaryCoordPullModelAMD", 4998, 0, nullptr, 1, pygen_variable_exts_SPV_AMD_shader_explicit_vertex_parameter, {}, 0xffffffffu},
{"FragStencilRefEXT", 5014, 1, pygen_variable_caps_StencilExportEXT, 1, pygen_variable_exts_SPV_EXT_shader_stencil_export, {}, 0xffffffffu},
{"ViewportMaskNV", 5253, 1, pygen_variable_caps_ShaderViewportMaskNV, 0, nullptr, {}, 0xffffffffu},
{"SecondaryPositionNV", 5257, 1, pygen_variable_caps_ShaderStereoViewNV, 0, nullptr, {}, 0xffffffffu},
{"SecondaryViewportMaskNV", 5258, 1, pygen_variable_caps_ShaderStereoViewNV, 0, nullptr, {}, 0xffffffffu},
{"PositionPerViewNV", 5261, 1, pygen_variable_caps_PerViewAttributesNV, 0, nullptr, {}, 0xffffffffu},
{"ViewportMaskPerViewNV", 5262, 1, pygen_variable_caps_PerViewAttributesNV, 0, nullptr, {}, 0xffffffffu},
{"FullyCoveredEXT", 5264, 1, pygen_variable_caps_FragmentFullyCoveredEXT, 1, pygen_variable_exts_SPV_EXT_fragment_fully_covered, {}, 0xffffffffu}
};
static const spv_operand_desc_t pygen_variable_ScopeEntries[] = {
{"CrossDevice", 0, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Device", 1, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Workgroup", 2, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Subgroup", 3, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Invocation", 4, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_GroupOperationEntries[] = {
{"Reduce", 0, 3, pygen_variable_caps_KernelGroupNonUniformArithmeticGroupNonUniformBallot, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"InclusiveScan", 1, 3, pygen_variable_caps_KernelGroupNonUniformArithmeticGroupNonUniformBallot, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ExclusiveScan", 2, 3, pygen_variable_caps_KernelGroupNonUniformArithmeticGroupNonUniformBallot, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ClusteredReduce", 3, 1, pygen_variable_caps_GroupNonUniformClustered, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"PartitionedReduceNV", 6, 1, pygen_variable_caps_GroupNonUniformPartitionedNV, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"PartitionedInclusiveScanNV", 7, 1, pygen_variable_caps_GroupNonUniformPartitionedNV, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"PartitionedExclusiveScanNV", 8, 1, pygen_variable_caps_GroupNonUniformPartitionedNV, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_KernelEnqueueFlagsEntries[] = {
{"NoWait", 0, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"WaitKernel", 1, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"WaitWorkGroup", 2, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_CapabilityEntries[] = {
{"Matrix", 0, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Shader", 1, 1, pygen_variable_caps_Matrix, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Geometry", 2, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Tessellation", 3, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Addresses", 4, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Linkage", 5, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Kernel", 6, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Vector16", 7, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Float16Buffer", 8, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Float16", 9, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Float64", 10, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Int64", 11, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Int64Atomics", 12, 1, pygen_variable_caps_Int64, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageBasic", 13, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageReadWrite", 14, 1, pygen_variable_caps_ImageBasic, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageMipmap", 15, 1, pygen_variable_caps_ImageBasic, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Pipes", 17, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Groups", 18, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DeviceEnqueue", 19, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"LiteralSampler", 20, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"AtomicStorage", 21, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Int16", 22, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TessellationPointSize", 23, 1, pygen_variable_caps_Tessellation, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GeometryPointSize", 24, 1, pygen_variable_caps_Geometry, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageGatherExtended", 25, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"StorageImageMultisample", 27, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UniformBufferArrayDynamicIndexing", 28, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SampledImageArrayDynamicIndexing", 29, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"StorageBufferArrayDynamicIndexing", 30, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"StorageImageArrayDynamicIndexing", 31, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ClipDistance", 32, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"CullDistance", 33, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageCubeArray", 34, 1, pygen_variable_caps_SampledCubeArray, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SampleRateShading", 35, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageRect", 36, 1, pygen_variable_caps_SampledRect, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SampledRect", 37, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GenericPointer", 38, 1, pygen_variable_caps_Addresses, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Int8", 39, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"InputAttachment", 40, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SparseResidency", 41, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"MinLod", 42, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Sampled1D", 43, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Image1D", 44, 1, pygen_variable_caps_Sampled1D, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SampledCubeArray", 45, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SampledBuffer", 46, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageBuffer", 47, 1, pygen_variable_caps_SampledBuffer, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageMSArray", 48, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"StorageImageExtendedFormats", 49, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"ImageQuery", 50, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"DerivativeControl", 51, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"InterpolationFunction", 52, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"TransformFeedback", 53, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"GeometryStreams", 54, 1, pygen_variable_caps_Geometry, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"StorageImageReadWithoutFormat", 55, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"StorageImageWriteWithoutFormat", 56, 1, pygen_variable_caps_Shader, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"MultiViewport", 57, 1, pygen_variable_caps_Geometry, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SubgroupDispatch", 58, 1, pygen_variable_caps_DeviceEnqueue, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,1)},
{"NamedBarrier", 59, 1, pygen_variable_caps_Kernel, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,1)},
{"PipeStorage", 60, 1, pygen_variable_caps_Pipes, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,1)},
{"GroupNonUniform", 61, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformVote", 62, 1, pygen_variable_caps_GroupNonUniform, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformArithmetic", 63, 1, pygen_variable_caps_GroupNonUniform, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformBallot", 64, 1, pygen_variable_caps_GroupNonUniform, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformShuffle", 65, 1, pygen_variable_caps_GroupNonUniform, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformShuffleRelative", 66, 1, pygen_variable_caps_GroupNonUniform, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformClustered", 67, 1, pygen_variable_caps_GroupNonUniform, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"GroupNonUniformQuad", 68, 1, pygen_variable_caps_GroupNonUniform, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"SubgroupBallotKHR", 4423, 0, nullptr, 1, pygen_variable_exts_SPV_KHR_shader_ballot, {}, 0xffffffffu},
{"DrawParameters", 4427, 1, pygen_variable_caps_Shader, 1, pygen_variable_exts_SPV_KHR_shader_draw_parameters, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"SubgroupVoteKHR", 4431, 0, nullptr, 1, pygen_variable_exts_SPV_KHR_subgroup_vote, {}, 0xffffffffu},
{"StorageBuffer16BitAccess", 4433, 0, nullptr, 1, pygen_variable_exts_SPV_KHR_16bit_storage, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"StorageUniformBufferBlock16", 4433, 0, nullptr, 1, pygen_variable_exts_SPV_KHR_16bit_storage, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"StorageUniform16", 4434, 2, pygen_variable_caps_StorageBuffer16BitAccessStorageUniformBufferBlock16, 1, pygen_variable_exts_SPV_KHR_16bit_storage, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"UniformAndStorageBuffer16BitAccess", 4434, 2, pygen_variable_caps_StorageBuffer16BitAccessStorageUniformBufferBlock16, 1, pygen_variable_exts_SPV_KHR_16bit_storage, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"StoragePushConstant16", 4435, 0, nullptr, 1, pygen_variable_exts_SPV_KHR_16bit_storage, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"StorageInputOutput16", 4436, 0, nullptr, 1, pygen_variable_exts_SPV_KHR_16bit_storage, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"DeviceGroup", 4437, 0, nullptr, 1, pygen_variable_exts_SPV_KHR_device_group, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"MultiView", 4439, 1, pygen_variable_caps_Shader, 1, pygen_variable_exts_SPV_KHR_multiview, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"VariablePointersStorageBuffer", 4441, 1, pygen_variable_caps_Shader, 1, pygen_variable_exts_SPV_KHR_variable_pointers, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"VariablePointers", 4442, 1, pygen_variable_caps_VariablePointersStorageBuffer, 1, pygen_variable_exts_SPV_KHR_variable_pointers, {}, SPV_SPIRV_VERSION_WORD(1,3)},
{"AtomicStorageOps", 4445, 0, nullptr, 1, pygen_variable_exts_SPV_KHR_shader_atomic_counter_ops, {}, 0xffffffffu},
{"SampleMaskPostDepthCoverage", 4447, 0, nullptr, 1, pygen_variable_exts_SPV_KHR_post_depth_coverage, {}, 0xffffffffu},
{"Float16ImageAMD", 5008, 1, pygen_variable_caps_Shader, 1, pygen_variable_exts_SPV_AMD_gpu_shader_half_float_fetch, {}, 0xffffffffu},
{"ImageGatherBiasLodAMD", 5009, 1, pygen_variable_caps_Shader, 1, pygen_variable_exts_SPV_AMD_texture_gather_bias_lod, {}, 0xffffffffu},
{"FragmentMaskAMD", 5010, 1, pygen_variable_caps_Shader, 1, pygen_variable_exts_SPV_AMD_shader_fragment_mask, {}, 0xffffffffu},
{"StencilExportEXT", 5013, 1, pygen_variable_caps_Shader, 1, pygen_variable_exts_SPV_EXT_shader_stencil_export, {}, 0xffffffffu},
{"ImageReadWriteLodAMD", 5015, 1, pygen_variable_caps_Shader, 1, pygen_variable_exts_SPV_AMD_shader_image_load_store_lod, {}, 0xffffffffu},
{"SampleMaskOverrideCoverageNV", 5249, 1, pygen_variable_caps_SampleRateShading, 1, pygen_variable_exts_SPV_NV_sample_mask_override_coverage, {}, 0xffffffffu},
{"GeometryShaderPassthroughNV", 5251, 1, pygen_variable_caps_Geometry, 1, pygen_variable_exts_SPV_NV_geometry_shader_passthrough, {}, 0xffffffffu},
{"ShaderViewportIndexLayerEXT", 5254, 1, pygen_variable_caps_MultiViewport, 1, pygen_variable_exts_SPV_EXT_shader_viewport_index_layer, {}, 0xffffffffu},
{"ShaderViewportIndexLayerNV", 5254, 1, pygen_variable_caps_MultiViewport, 1, pygen_variable_exts_SPV_NV_viewport_array2, {}, 0xffffffffu},
{"ShaderViewportMaskNV", 5255, 1, pygen_variable_caps_ShaderViewportIndexLayerNV, 1, pygen_variable_exts_SPV_NV_viewport_array2, {}, 0xffffffffu},
{"ShaderStereoViewNV", 5259, 1, pygen_variable_caps_ShaderViewportMaskNV, 1, pygen_variable_exts_SPV_NV_stereo_view_rendering, {}, 0xffffffffu},
{"PerViewAttributesNV", 5260, 1, pygen_variable_caps_MultiView, 1, pygen_variable_exts_SPV_NVX_multiview_per_view_attributes, {}, 0xffffffffu},
{"FragmentFullyCoveredEXT", 5265, 1, pygen_variable_caps_Shader, 1, pygen_variable_exts_SPV_EXT_fragment_fully_covered, {}, 0xffffffffu},
{"GroupNonUniformPartitionedNV", 5297, 0, nullptr, 1, pygen_variable_exts_SPV_NV_shader_subgroup_partitioned, {}, 0xffffffffu},
{"ShaderNonUniformEXT", 5301, 1, pygen_variable_caps_Shader, 1, pygen_variable_exts_SPV_EXT_descriptor_indexing, {}, 0xffffffffu},
{"RuntimeDescriptorArrayEXT", 5302, 1, pygen_variable_caps_Shader, 1, pygen_variable_exts_SPV_EXT_descriptor_indexing, {}, 0xffffffffu},
{"InputAttachmentArrayDynamicIndexingEXT", 5303, 1, pygen_variable_caps_InputAttachment, 1, pygen_variable_exts_SPV_EXT_descriptor_indexing, {}, 0xffffffffu},
{"UniformTexelBufferArrayDynamicIndexingEXT", 5304, 1, pygen_variable_caps_SampledBuffer, 1, pygen_variable_exts_SPV_EXT_descriptor_indexing, {}, 0xffffffffu},
{"StorageTexelBufferArrayDynamicIndexingEXT", 5305, 1, pygen_variable_caps_ImageBuffer, 1, pygen_variable_exts_SPV_EXT_descriptor_indexing, {}, 0xffffffffu},
{"UniformBufferArrayNonUniformIndexingEXT", 5306, 1, pygen_variable_caps_ShaderNonUniformEXT, 1, pygen_variable_exts_SPV_EXT_descriptor_indexing, {}, 0xffffffffu},
{"SampledImageArrayNonUniformIndexingEXT", 5307, 1, pygen_variable_caps_ShaderNonUniformEXT, 1, pygen_variable_exts_SPV_EXT_descriptor_indexing, {}, 0xffffffffu},
{"StorageBufferArrayNonUniformIndexingEXT", 5308, 1, pygen_variable_caps_ShaderNonUniformEXT, 1, pygen_variable_exts_SPV_EXT_descriptor_indexing, {}, 0xffffffffu},
{"StorageImageArrayNonUniformIndexingEXT", 5309, 1, pygen_variable_caps_ShaderNonUniformEXT, 1, pygen_variable_exts_SPV_EXT_descriptor_indexing, {}, 0xffffffffu},
{"InputAttachmentArrayNonUniformIndexingEXT", 5310, 2, pygen_variable_caps_InputAttachmentShaderNonUniformEXT, 1, pygen_variable_exts_SPV_EXT_descriptor_indexing, {}, 0xffffffffu},
{"UniformTexelBufferArrayNonUniformIndexingEXT", 5311, 2, pygen_variable_caps_SampledBufferShaderNonUniformEXT, 1, pygen_variable_exts_SPV_EXT_descriptor_indexing, {}, 0xffffffffu},
{"StorageTexelBufferArrayNonUniformIndexingEXT", 5312, 2, pygen_variable_caps_ImageBufferShaderNonUniformEXT, 1, pygen_variable_exts_SPV_EXT_descriptor_indexing, {}, 0xffffffffu},
{"SubgroupShuffleINTEL", 5568, 0, nullptr, 1, pygen_variable_exts_SPV_INTEL_subgroups, {}, 0xffffffffu},
{"SubgroupBufferBlockIOINTEL", 5569, 0, nullptr, 1, pygen_variable_exts_SPV_INTEL_subgroups, {}, 0xffffffffu},
{"SubgroupImageBlockIOINTEL", 5570, 0, nullptr, 1, pygen_variable_exts_SPV_INTEL_subgroups, {}, 0xffffffffu}
};
static const spv_operand_desc_t pygen_variable_DebugInfoFlagsEntries[] = {
{"FlagIsProtected", 0x01, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FlagIsPrivate", 0x02, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FlagIsPublic", 0x03, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FlagIsLocal", 0x04, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FlagIsDefinition", 0x08, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FlagFwdDecl", 0x10, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FlagArtificial", 0x20, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FlagExplicit", 0x40, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FlagPrototyped", 0x80, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FlagObjectPointer", 0x100, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FlagStaticMember", 0x200, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FlagIndirectVariable", 0x400, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FlagLValueReference", 0x800, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FlagRValueReference", 0x1000, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"FlagIsOptimized", 0x2000, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_DebugBaseTypeAttributeEncodingEntries[] = {
{"Unspecified", 0, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Address", 1, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Boolean", 2, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Float", 4, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Signed", 5, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"SignedChar", 6, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Unsigned", 7, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"UnsignedChar", 8, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_DebugCompositeTypeEntries[] = {
{"Class", 0, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Structure", 1, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Union", 2, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_DebugTypeQualifierEntries[] = {
{"ConstType", 0, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"VolatileType", 1, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"RestrictType", 2, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_t pygen_variable_DebugOperationEntries[] = {
{"Deref", 0, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Plus", 1, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Minus", 2, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"PlusUconst", 3, 0, nullptr, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"BitPiece", 4, 0, nullptr, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Swap", 5, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Xderef", 6, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"StackValue", 7, 0, nullptr, 0, nullptr, {}, SPV_SPIRV_VERSION_WORD(1, 0)},
{"Constu", 8, 0, nullptr, 0, nullptr, {SPV_OPERAND_TYPE_LITERAL_INTEGER}, SPV_SPIRV_VERSION_WORD(1, 0)}
};
static const spv_operand_desc_group_t pygen_variable_OperandInfoTable[] = {
{SPV_OPERAND_TYPE_IMAGE, ARRAY_SIZE(pygen_variable_ImageOperandsEntries), pygen_variable_ImageOperandsEntries},
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, ARRAY_SIZE(pygen_variable_FPFastMathModeEntries), pygen_variable_FPFastMathModeEntries},
{SPV_OPERAND_TYPE_SELECTION_CONTROL, ARRAY_SIZE(pygen_variable_SelectionControlEntries), pygen_variable_SelectionControlEntries},
{SPV_OPERAND_TYPE_LOOP_CONTROL, ARRAY_SIZE(pygen_variable_LoopControlEntries), pygen_variable_LoopControlEntries},
{SPV_OPERAND_TYPE_FUNCTION_CONTROL, ARRAY_SIZE(pygen_variable_FunctionControlEntries), pygen_variable_FunctionControlEntries},
{SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, ARRAY_SIZE(pygen_variable_MemorySemanticsEntries), pygen_variable_MemorySemanticsEntries},
{SPV_OPERAND_TYPE_MEMORY_ACCESS, ARRAY_SIZE(pygen_variable_MemoryAccessEntries), pygen_variable_MemoryAccessEntries},
{SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO, ARRAY_SIZE(pygen_variable_KernelProfilingInfoEntries), pygen_variable_KernelProfilingInfoEntries},
{SPV_OPERAND_TYPE_SOURCE_LANGUAGE, ARRAY_SIZE(pygen_variable_SourceLanguageEntries), pygen_variable_SourceLanguageEntries},
{SPV_OPERAND_TYPE_EXECUTION_MODEL, ARRAY_SIZE(pygen_variable_ExecutionModelEntries), pygen_variable_ExecutionModelEntries},
{SPV_OPERAND_TYPE_ADDRESSING_MODEL, ARRAY_SIZE(pygen_variable_AddressingModelEntries), pygen_variable_AddressingModelEntries},
{SPV_OPERAND_TYPE_MEMORY_MODEL, ARRAY_SIZE(pygen_variable_MemoryModelEntries), pygen_variable_MemoryModelEntries},
{SPV_OPERAND_TYPE_EXECUTION_MODE, ARRAY_SIZE(pygen_variable_ExecutionModeEntries), pygen_variable_ExecutionModeEntries},
{SPV_OPERAND_TYPE_STORAGE_CLASS, ARRAY_SIZE(pygen_variable_StorageClassEntries), pygen_variable_StorageClassEntries},
{SPV_OPERAND_TYPE_DIMENSIONALITY, ARRAY_SIZE(pygen_variable_DimEntries), pygen_variable_DimEntries},
{SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE, ARRAY_SIZE(pygen_variable_SamplerAddressingModeEntries), pygen_variable_SamplerAddressingModeEntries},
{SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE, ARRAY_SIZE(pygen_variable_SamplerFilterModeEntries), pygen_variable_SamplerFilterModeEntries},
{SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT, ARRAY_SIZE(pygen_variable_ImageFormatEntries), pygen_variable_ImageFormatEntries},
{SPV_OPERAND_TYPE_IMAGE_CHANNEL_ORDER, ARRAY_SIZE(pygen_variable_ImageChannelOrderEntries), pygen_variable_ImageChannelOrderEntries},
{SPV_OPERAND_TYPE_IMAGE_CHANNEL_DATA_TYPE, ARRAY_SIZE(pygen_variable_ImageChannelDataTypeEntries), pygen_variable_ImageChannelDataTypeEntries},
{SPV_OPERAND_TYPE_FP_ROUNDING_MODE, ARRAY_SIZE(pygen_variable_FPRoundingModeEntries), pygen_variable_FPRoundingModeEntries},
{SPV_OPERAND_TYPE_LINKAGE_TYPE, ARRAY_SIZE(pygen_variable_LinkageTypeEntries), pygen_variable_LinkageTypeEntries},
{SPV_OPERAND_TYPE_ACCESS_QUALIFIER, ARRAY_SIZE(pygen_variable_AccessQualifierEntries), pygen_variable_AccessQualifierEntries},
{SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE, ARRAY_SIZE(pygen_variable_FunctionParameterAttributeEntries), pygen_variable_FunctionParameterAttributeEntries},
{SPV_OPERAND_TYPE_DECORATION, ARRAY_SIZE(pygen_variable_DecorationEntries), pygen_variable_DecorationEntries},
{SPV_OPERAND_TYPE_BUILT_IN, ARRAY_SIZE(pygen_variable_BuiltInEntries), pygen_variable_BuiltInEntries},
{SPV_OPERAND_TYPE_SCOPE_ID, ARRAY_SIZE(pygen_variable_ScopeEntries), pygen_variable_ScopeEntries},
{SPV_OPERAND_TYPE_GROUP_OPERATION, ARRAY_SIZE(pygen_variable_GroupOperationEntries), pygen_variable_GroupOperationEntries},
{SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS, ARRAY_SIZE(pygen_variable_KernelEnqueueFlagsEntries), pygen_variable_KernelEnqueueFlagsEntries},
{SPV_OPERAND_TYPE_CAPABILITY, ARRAY_SIZE(pygen_variable_CapabilityEntries), pygen_variable_CapabilityEntries},
{SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS, ARRAY_SIZE(pygen_variable_DebugInfoFlagsEntries), pygen_variable_DebugInfoFlagsEntries},
{SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING, ARRAY_SIZE(pygen_variable_DebugBaseTypeAttributeEncodingEntries), pygen_variable_DebugBaseTypeAttributeEncodingEntries},
{SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE, ARRAY_SIZE(pygen_variable_DebugCompositeTypeEntries), pygen_variable_DebugCompositeTypeEntries},
{SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER, ARRAY_SIZE(pygen_variable_DebugTypeQualifierEntries), pygen_variable_DebugTypeQualifierEntries},
{SPV_OPERAND_TYPE_DEBUG_OPERATION, ARRAY_SIZE(pygen_variable_DebugOperationEntries), pygen_variable_DebugOperationEntries},
{SPV_OPERAND_TYPE_OPTIONAL_IMAGE, ARRAY_SIZE(pygen_variable_ImageOperandsEntries), pygen_variable_ImageOperandsEntries},
{SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS, ARRAY_SIZE(pygen_variable_MemoryAccessEntries), pygen_variable_MemoryAccessEntries},
{SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER, ARRAY_SIZE(pygen_variable_AccessQualifierEntries), pygen_variable_AccessQualifierEntries}
};

View File

@ -0,0 +1,7 @@
static const spv_ext_inst_desc_t spv_amd_gcn_shader_entries[] = {
{"CubeFaceIndexAMD", 1, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"CubeFaceCoordAMD", 2, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"TimeAMD", 3, 0, nullptr, {SPV_OPERAND_TYPE_NONE}}
};

View File

@ -0,0 +1,8 @@
static const spv_ext_inst_desc_t spv_amd_shader_ballot_entries[] = {
{"SwizzleInvocationsAMD", 1, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"SwizzleInvocationsMaskedAMD", 2, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"WriteInvocationAMD", 3, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"MbcntAMD", 4, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}}
};

View File

@ -0,0 +1,5 @@
static const spv_ext_inst_desc_t spv_amd_shader_explicit_vertex_parameter_entries[] = {
{"InterpolateAtVertexAMD", 1, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}}
};

View File

@ -0,0 +1,13 @@
static const spv_ext_inst_desc_t spv_amd_shader_trinary_minmax_entries[] = {
{"FMin3AMD", 1, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"UMin3AMD", 2, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"SMin3AMD", 3, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"FMax3AMD", 4, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"UMax3AMD", 5, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"SMax3AMD", 6, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"FMid3AMD", 7, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"UMid3AMD", 8, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}},
{"SMid3AMD", 9, 0, nullptr, {SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_NONE}}
};

View File

@ -0,0 +1,586 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPIRV_TOOLS_LIBSPIRV_H_
#define SPIRV_TOOLS_LIBSPIRV_H_
#ifdef __cplusplus
extern "C" {
#else
#include <stdbool.h>
#endif
#include <stddef.h>
#include <stdint.h>
#if defined(SPIRV_TOOLS_SHAREDLIB)
#if defined(_WIN32)
#if defined(SPIRV_TOOLS_IMPLEMENTATION)
#define SPIRV_TOOLS_EXPORT __declspec(dllexport)
#else
#define SPIRV_TOOLS_EXPORT __declspec(dllimport)
#endif
#else
#if defined(SPIRV_TOOLS_IMPLEMENTATION)
#define SPIRV_TOOLS_EXPORT __attribute__((visibility("default")))
#else
#define SPIRV_TOOLS_EXPORT
#endif
#endif
#else
#define SPIRV_TOOLS_EXPORT
#endif
// Helpers
#define SPV_BIT(shift) (1 << (shift))
#define SPV_FORCE_16_BIT_ENUM(name) _##name = 0x7fff
#define SPV_FORCE_32_BIT_ENUM(name) _##name = 0x7fffffff
// Enumerations
typedef enum spv_result_t {
SPV_SUCCESS = 0,
SPV_UNSUPPORTED = 1,
SPV_END_OF_STREAM = 2,
SPV_WARNING = 3,
SPV_FAILED_MATCH = 4,
SPV_REQUESTED_TERMINATION = 5, // Success, but signals early termination.
SPV_ERROR_INTERNAL = -1,
SPV_ERROR_OUT_OF_MEMORY = -2,
SPV_ERROR_INVALID_POINTER = -3,
SPV_ERROR_INVALID_BINARY = -4,
SPV_ERROR_INVALID_TEXT = -5,
SPV_ERROR_INVALID_TABLE = -6,
SPV_ERROR_INVALID_VALUE = -7,
SPV_ERROR_INVALID_DIAGNOSTIC = -8,
SPV_ERROR_INVALID_LOOKUP = -9,
SPV_ERROR_INVALID_ID = -10,
SPV_ERROR_INVALID_CFG = -11,
SPV_ERROR_INVALID_LAYOUT = -12,
SPV_ERROR_INVALID_CAPABILITY = -13,
SPV_ERROR_INVALID_DATA = -14, // Indicates data rules validation failure.
SPV_ERROR_MISSING_EXTENSION = -15,
SPV_ERROR_WRONG_VERSION = -16, // Indicates wrong SPIR-V version
SPV_FORCE_32_BIT_ENUM(spv_result_t)
} spv_result_t;
// Severity levels of messages communicated to the consumer.
typedef enum spv_message_level_t {
SPV_MSG_FATAL, // Unrecoverable error due to environment.
// Will exit the program immediately. E.g.,
// out of memory.
SPV_MSG_INTERNAL_ERROR, // Unrecoverable error due to SPIRV-Tools
// internals.
// Will exit the program immediately. E.g.,
// unimplemented feature.
SPV_MSG_ERROR, // Normal error due to user input.
SPV_MSG_WARNING, // Warning information.
SPV_MSG_INFO, // General information.
SPV_MSG_DEBUG, // Debug information.
} spv_message_level_t;
typedef enum spv_endianness_t {
SPV_ENDIANNESS_LITTLE,
SPV_ENDIANNESS_BIG,
SPV_FORCE_32_BIT_ENUM(spv_endianness_t)
} spv_endianness_t;
// The kinds of operands that an instruction may have.
//
// Some operand types are "concrete". The binary parser uses a concrete
// operand type to describe an operand of a parsed instruction.
//
// The assembler uses all operand types. In addition to determining what
// kind of value an operand may be, non-concrete operand types capture the
// fact that an operand might be optional (may be absent, or present exactly
// once), or might occur zero or more times.
//
// Sometimes we also need to be able to express the fact that an operand
// is a member of an optional tuple of values. In that case the first member
// would be optional, and the subsequent members would be required.
typedef enum spv_operand_type_t {
// A sentinel value.
SPV_OPERAND_TYPE_NONE = 0,
// Set 1: Operands that are IDs.
SPV_OPERAND_TYPE_ID,
SPV_OPERAND_TYPE_TYPE_ID,
SPV_OPERAND_TYPE_RESULT_ID,
SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, // SPIR-V Sec 3.25
SPV_OPERAND_TYPE_SCOPE_ID, // SPIR-V Sec 3.27
// Set 2: Operands that are literal numbers.
SPV_OPERAND_TYPE_LITERAL_INTEGER, // Always unsigned 32-bits.
// The Instruction argument to OpExtInst. It's an unsigned 32-bit literal
// number indicating which instruction to use from an extended instruction
// set.
SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER,
// The Opcode argument to OpSpecConstantOp. It determines the operation
// to be performed on constant operands to compute a specialization constant
// result.
SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER,
// A literal number whose format and size are determined by a previous operand
// in the same instruction. It's a signed integer, an unsigned integer, or a
// floating point number. It also has a specified bit width. The width
// may be larger than 32, which would require such a typed literal value to
// occupy multiple SPIR-V words.
SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER,
// Set 3: The literal string operand type.
SPV_OPERAND_TYPE_LITERAL_STRING,
// Set 4: Operands that are a single word enumerated value.
SPV_OPERAND_TYPE_SOURCE_LANGUAGE, // SPIR-V Sec 3.2
SPV_OPERAND_TYPE_EXECUTION_MODEL, // SPIR-V Sec 3.3
SPV_OPERAND_TYPE_ADDRESSING_MODEL, // SPIR-V Sec 3.4
SPV_OPERAND_TYPE_MEMORY_MODEL, // SPIR-V Sec 3.5
SPV_OPERAND_TYPE_EXECUTION_MODE, // SPIR-V Sec 3.6
SPV_OPERAND_TYPE_STORAGE_CLASS, // SPIR-V Sec 3.7
SPV_OPERAND_TYPE_DIMENSIONALITY, // SPIR-V Sec 3.8
SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE, // SPIR-V Sec 3.9
SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE, // SPIR-V Sec 3.10
SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT, // SPIR-V Sec 3.11
SPV_OPERAND_TYPE_IMAGE_CHANNEL_ORDER, // SPIR-V Sec 3.12
SPV_OPERAND_TYPE_IMAGE_CHANNEL_DATA_TYPE, // SPIR-V Sec 3.13
SPV_OPERAND_TYPE_FP_ROUNDING_MODE, // SPIR-V Sec 3.16
SPV_OPERAND_TYPE_LINKAGE_TYPE, // SPIR-V Sec 3.17
SPV_OPERAND_TYPE_ACCESS_QUALIFIER, // SPIR-V Sec 3.18
SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE, // SPIR-V Sec 3.19
SPV_OPERAND_TYPE_DECORATION, // SPIR-V Sec 3.20
SPV_OPERAND_TYPE_BUILT_IN, // SPIR-V Sec 3.21
SPV_OPERAND_TYPE_GROUP_OPERATION, // SPIR-V Sec 3.28
SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS, // SPIR-V Sec 3.29
SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO, // SPIR-V Sec 3.30
SPV_OPERAND_TYPE_CAPABILITY, // SPIR-V Sec 3.31
// Set 5: Operands that are a single word bitmask.
// Sometimes a set bit indicates the instruction requires still more operands.
SPV_OPERAND_TYPE_IMAGE, // SPIR-V Sec 3.14
SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, // SPIR-V Sec 3.15
SPV_OPERAND_TYPE_SELECTION_CONTROL, // SPIR-V Sec 3.22
SPV_OPERAND_TYPE_LOOP_CONTROL, // SPIR-V Sec 3.23
SPV_OPERAND_TYPE_FUNCTION_CONTROL, // SPIR-V Sec 3.24
SPV_OPERAND_TYPE_MEMORY_ACCESS, // SPIR-V Sec 3.26
// The remaining operand types are only used internally by the assembler.
// There are two categories:
// Optional : expands to 0 or 1 operand, like ? in regular expressions.
// Variable : expands to 0, 1 or many operands or pairs of operands.
// This is similar to * in regular expressions.
// Macros for defining bounds on optional and variable operand types.
// Any variable operand type is also optional.
#define FIRST_OPTIONAL(ENUM) ENUM, SPV_OPERAND_TYPE_FIRST_OPTIONAL_TYPE = ENUM
#define FIRST_VARIABLE(ENUM) ENUM, SPV_OPERAND_TYPE_FIRST_VARIABLE_TYPE = ENUM
#define LAST_VARIABLE(ENUM) \
ENUM, SPV_OPERAND_TYPE_LAST_VARIABLE_TYPE = ENUM, \
SPV_OPERAND_TYPE_LAST_OPTIONAL_TYPE = ENUM
// An optional operand represents zero or one logical operands.
// In an instruction definition, this may only appear at the end of the
// operand types.
FIRST_OPTIONAL(SPV_OPERAND_TYPE_OPTIONAL_ID),
// An optional image operand type.
SPV_OPERAND_TYPE_OPTIONAL_IMAGE,
// An optional memory access type.
SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS,
// An optional literal integer.
SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER,
// An optional literal number, which may be either integer or floating point.
SPV_OPERAND_TYPE_OPTIONAL_LITERAL_NUMBER,
// Like SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER, but optional, and integral.
SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER,
// An optional literal string.
SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING,
// An optional access qualifier
SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER,
// An optional context-independent value, or CIV. CIVs are tokens that we can
// assemble regardless of where they occur -- literals, IDs, immediate
// integers, etc.
SPV_OPERAND_TYPE_OPTIONAL_CIV,
// A variable operand represents zero or more logical operands.
// In an instruction definition, this may only appear at the end of the
// operand types.
FIRST_VARIABLE(SPV_OPERAND_TYPE_VARIABLE_ID),
SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER,
// A sequence of zero or more pairs of (typed literal integer, Id).
// Expands to zero or more:
// (SPV_OPERAND_TYPE_TYPED_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID)
// where the literal number must always be an integer of some sort.
SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER_ID,
// A sequence of zero or more pairs of (Id, Literal integer)
LAST_VARIABLE(SPV_OPERAND_TYPE_VARIABLE_ID_LITERAL_INTEGER),
// The following are concrete enum types.
SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS, // DebugInfo Sec 3.2. A mask.
SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING, // DebugInfo Sec 3.3
SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE, // DebugInfo Sec 3.4
SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER, // DebugInfo Sec 3.5
SPV_OPERAND_TYPE_DEBUG_OPERATION, // DebugInfo Sec 3.6
// This is a sentinel value, and does not represent an operand type.
// It should come last.
SPV_OPERAND_TYPE_NUM_OPERAND_TYPES,
SPV_FORCE_32_BIT_ENUM(spv_operand_type_t)
} spv_operand_type_t;
typedef enum spv_ext_inst_type_t {
SPV_EXT_INST_TYPE_NONE = 0,
SPV_EXT_INST_TYPE_GLSL_STD_450,
SPV_EXT_INST_TYPE_OPENCL_STD,
SPV_EXT_INST_TYPE_SPV_AMD_SHADER_EXPLICIT_VERTEX_PARAMETER,
SPV_EXT_INST_TYPE_SPV_AMD_SHADER_TRINARY_MINMAX,
SPV_EXT_INST_TYPE_SPV_AMD_GCN_SHADER,
SPV_EXT_INST_TYPE_SPV_AMD_SHADER_BALLOT,
SPV_EXT_INST_TYPE_DEBUGINFO,
SPV_FORCE_32_BIT_ENUM(spv_ext_inst_type_t)
} spv_ext_inst_type_t;
// This determines at a high level the kind of a binary-encoded literal
// number, but not the bit width.
// In principle, these could probably be folded into new entries in
// spv_operand_type_t. But then we'd have some special case differences
// between the assembler and disassembler.
typedef enum spv_number_kind_t {
SPV_NUMBER_NONE = 0, // The default for value initialization.
SPV_NUMBER_UNSIGNED_INT,
SPV_NUMBER_SIGNED_INT,
SPV_NUMBER_FLOATING,
} spv_number_kind_t;
typedef enum spv_text_to_binary_options_t {
SPV_TEXT_TO_BINARY_OPTION_NONE = SPV_BIT(0),
// Numeric IDs in the binary will have the same values as in the source.
// Non-numeric IDs are allocated by filling in the gaps, starting with 1
// and going up.
SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS = SPV_BIT(1),
SPV_FORCE_32_BIT_ENUM(spv_text_to_binary_options_t)
} spv_text_to_binary_options_t;
typedef enum spv_binary_to_text_options_t {
SPV_BINARY_TO_TEXT_OPTION_NONE = SPV_BIT(0),
SPV_BINARY_TO_TEXT_OPTION_PRINT = SPV_BIT(1),
SPV_BINARY_TO_TEXT_OPTION_COLOR = SPV_BIT(2),
SPV_BINARY_TO_TEXT_OPTION_INDENT = SPV_BIT(3),
SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET = SPV_BIT(4),
// Do not output the module header as leading comments in the assembly.
SPV_BINARY_TO_TEXT_OPTION_NO_HEADER = SPV_BIT(5),
// Use friendly names where possible. The heuristic may expand over
// time, but will use common names for scalar types, and debug names from
// OpName instructions.
SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES = SPV_BIT(6),
SPV_FORCE_32_BIT_ENUM(spv_binary_to_text_options_t)
} spv_binary_to_text_options_t;
// Structures
// Information about an operand parsed from a binary SPIR-V module.
// Note that the values are not included. You still need access to the binary
// to extract the values.
typedef struct spv_parsed_operand_t {
// Location of the operand, in words from the start of the instruction.
uint16_t offset;
// Number of words occupied by this operand.
uint16_t num_words;
// The "concrete" operand type. See the definition of spv_operand_type_t
// for details.
spv_operand_type_t type;
// If type is a literal number type, then number_kind says whether it's
// a signed integer, an unsigned integer, or a floating point number.
spv_number_kind_t number_kind;
// The number of bits for a literal number type.
uint32_t number_bit_width;
} spv_parsed_operand_t;
// An instruction parsed from a binary SPIR-V module.
typedef struct spv_parsed_instruction_t {
// An array of words for this instruction, in native endianness.
const uint32_t* words;
// The number of words in this instruction.
uint16_t num_words;
uint16_t opcode;
// The extended instruction type, if opcode is OpExtInst. Otherwise
// this is the "none" value.
spv_ext_inst_type_t ext_inst_type;
// The type id, or 0 if this instruction doesn't have one.
uint32_t type_id;
// The result id, or 0 if this instruction doesn't have one.
uint32_t result_id;
// The array of parsed operands.
const spv_parsed_operand_t* operands;
uint16_t num_operands;
} spv_parsed_instruction_t;
typedef struct spv_const_binary_t {
const uint32_t* code;
const size_t wordCount;
} spv_const_binary_t;
typedef struct spv_binary_t {
uint32_t* code;
size_t wordCount;
} spv_binary_t;
typedef struct spv_text_t {
const char* str;
size_t length;
} spv_text_t;
typedef struct spv_position_t {
size_t line;
size_t column;
size_t index;
} spv_position_t;
typedef struct spv_diagnostic_t {
spv_position_t position;
char* error;
bool isTextSource;
} spv_diagnostic_t;
// Opaque struct containing the context used to operate on a SPIR-V module.
// Its object is used by various translation API functions.
typedef struct spv_context_t spv_context_t;
typedef struct spv_validator_options_t spv_validator_options_t;
// Type Definitions
typedef spv_const_binary_t* spv_const_binary;
typedef spv_binary_t* spv_binary;
typedef spv_text_t* spv_text;
typedef spv_position_t* spv_position;
typedef spv_diagnostic_t* spv_diagnostic;
typedef const spv_context_t* spv_const_context;
typedef spv_context_t* spv_context;
typedef spv_validator_options_t* spv_validator_options;
typedef const spv_validator_options_t* spv_const_validator_options;
// Platform API
// Returns the SPIRV-Tools software version as a null-terminated string.
// The contents of the underlying storage is valid for the remainder of
// the process.
SPIRV_TOOLS_EXPORT const char* spvSoftwareVersionString(void);
// Returns a null-terminated string containing the name of the project,
// the software version string, and commit details.
// The contents of the underlying storage is valid for the remainder of
// the process.
SPIRV_TOOLS_EXPORT const char* spvSoftwareVersionDetailsString(void);
// Certain target environments impose additional restrictions on SPIR-V, so it's
// often necessary to specify which one applies. SPV_ENV_UNIVERSAL means
// environment-agnostic SPIR-V.
typedef enum {
SPV_ENV_UNIVERSAL_1_0, // SPIR-V 1.0 latest revision, no other restrictions.
SPV_ENV_VULKAN_1_0, // Vulkan 1.0 latest revision.
SPV_ENV_UNIVERSAL_1_1, // SPIR-V 1.1 latest revision, no other restrictions.
SPV_ENV_OPENCL_2_1, // OpenCL Full Profile 2.1 latest revision.
SPV_ENV_OPENCL_2_2, // OpenCL Full Profile 2.2 latest revision.
SPV_ENV_OPENGL_4_0, // OpenGL 4.0 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_OPENGL_4_1, // OpenGL 4.1 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_OPENGL_4_2, // OpenGL 4.2 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_OPENGL_4_3, // OpenGL 4.3 plus GL_ARB_gl_spirv, latest revisions.
// There is no variant for OpenGL 4.4.
SPV_ENV_OPENGL_4_5, // OpenGL 4.5 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_UNIVERSAL_1_2, // SPIR-V 1.2, latest revision, no other restrictions.
SPV_ENV_OPENCL_1_2, // OpenCL Full Profile 1.2 plus cl_khr_il_program,
// latest revision.
SPV_ENV_OPENCL_EMBEDDED_1_2, // OpenCL Embedded Profile 1.2 plus
// cl_khr_il_program, latest revision.
SPV_ENV_OPENCL_2_0, // OpenCL Full Profile 2.0 plus cl_khr_il_program,
// latest revision.
SPV_ENV_OPENCL_EMBEDDED_2_0, // OpenCL Embedded Profile 2.0 plus
// cl_khr_il_program, latest revision.
SPV_ENV_OPENCL_EMBEDDED_2_1, // OpenCL Embedded Profile 2.1 latest revision.
SPV_ENV_OPENCL_EMBEDDED_2_2, // OpenCL Embedded Profile 2.2 latest revision.
SPV_ENV_UNIVERSAL_1_3, // SPIR-V 1.3 latest revision, no other restrictions.
SPV_ENV_VULKAN_1_1, // Vulkan 1.1 latest revision.
} spv_target_env;
// SPIR-V Validator can be parameterized with the following Universal Limits.
typedef enum {
spv_validator_limit_max_struct_members,
spv_validator_limit_max_struct_depth,
spv_validator_limit_max_local_variables,
spv_validator_limit_max_global_variables,
spv_validator_limit_max_switch_branches,
spv_validator_limit_max_function_args,
spv_validator_limit_max_control_flow_nesting_depth,
spv_validator_limit_max_access_chain_indexes,
} spv_validator_limit;
// Returns a string describing the given SPIR-V target environment.
SPIRV_TOOLS_EXPORT const char* spvTargetEnvDescription(spv_target_env env);
// Creates a context object. Returns null if env is invalid.
SPIRV_TOOLS_EXPORT spv_context spvContextCreate(spv_target_env env);
// Destroys the given context object.
SPIRV_TOOLS_EXPORT void spvContextDestroy(spv_context context);
// Creates a Validator options object with default options. Returns a valid
// options object. The object remains valid until it is passed into
// spvValidatorOptionsDestroy.
SPIRV_TOOLS_EXPORT spv_validator_options spvValidatorOptionsCreate(void);
// Destroys the given Validator options object.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsDestroy(
spv_validator_options options);
// Records the maximum Universal Limit that is considered valid in the given
// Validator options object. <options> argument must be a valid options object.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetUniversalLimit(
spv_validator_options options, spv_validator_limit limit_type,
uint32_t limit);
// Record whether or not the validator should relax the rules on types for
// stores to structs. When relaxed, it will allow a type mismatch as long as
// the types are structs with the same layout. Two structs have the same layout
// if
//
// 1) the members of the structs are either the same type or are structs with
// same layout, and
//
// 2) the decorations that affect the memory layout are identical for both
// types. Other decorations are not relevant.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxStoreStruct(
spv_validator_options options, bool val);
// Records whether or not the validator should relax the rules on pointer usage
// in logical addressing mode.
//
// When relaxed, it will allow the following usage cases of pointers:
// 1) OpVariable allocating an object whose type is a pointer type
// 2) OpReturnValue returning a pointer value
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxLogicalPointer(
spv_validator_options options, bool val);
// Encodes the given SPIR-V assembly text to its binary representation. The
// length parameter specifies the number of bytes for text. Encoded binary will
// be stored into *binary. Any error will be written into *diagnostic if
// diagnostic is non-null. The generated binary is independent of the context
// and may outlive it.
SPIRV_TOOLS_EXPORT spv_result_t spvTextToBinary(const spv_const_context context,
const char* text,
const size_t length,
spv_binary* binary,
spv_diagnostic* diagnostic);
// Encodes the given SPIR-V assembly text to its binary representation. Same as
// spvTextToBinary but with options. The options parameter is a bit field of
// spv_text_to_binary_options_t.
SPIRV_TOOLS_EXPORT spv_result_t spvTextToBinaryWithOptions(
const spv_const_context context, const char* text, const size_t length,
const uint32_t options, spv_binary* binary, spv_diagnostic* diagnostic);
// Frees an allocated text stream. This is a no-op if the text parameter
// is a null pointer.
SPIRV_TOOLS_EXPORT void spvTextDestroy(spv_text text);
// Decodes the given SPIR-V binary representation to its assembly text. The
// word_count parameter specifies the number of words for binary. The options
// parameter is a bit field of spv_binary_to_text_options_t. Decoded text will
// be stored into *text. Any error will be written into *diagnostic if
// diagnostic is non-null.
SPIRV_TOOLS_EXPORT spv_result_t spvBinaryToText(const spv_const_context context,
const uint32_t* binary,
const size_t word_count,
const uint32_t options,
spv_text* text,
spv_diagnostic* diagnostic);
// Frees a binary stream from memory. This is a no-op if binary is a null
// pointer.
SPIRV_TOOLS_EXPORT void spvBinaryDestroy(spv_binary binary);
// Validates a SPIR-V binary for correctness. Any errors will be written into
// *diagnostic if diagnostic is non-null.
SPIRV_TOOLS_EXPORT spv_result_t spvValidate(const spv_const_context context,
const spv_const_binary binary,
spv_diagnostic* diagnostic);
// Validates a SPIR-V binary for correctness. Uses the provided Validator
// options. Any errors will be written into *diagnostic if diagnostic is
// non-null.
SPIRV_TOOLS_EXPORT spv_result_t spvValidateWithOptions(
const spv_const_context context, const spv_const_validator_options options,
const spv_const_binary binary, spv_diagnostic* diagnostic);
// Validates a raw SPIR-V binary for correctness. Any errors will be written
// into *diagnostic if diagnostic is non-null.
SPIRV_TOOLS_EXPORT spv_result_t
spvValidateBinary(const spv_const_context context, const uint32_t* words,
const size_t num_words, spv_diagnostic* diagnostic);
// Creates a diagnostic object. The position parameter specifies the location in
// the text/binary stream. The message parameter, copied into the diagnostic
// object, contains the error message to display.
SPIRV_TOOLS_EXPORT spv_diagnostic
spvDiagnosticCreate(const spv_position position, const char* message);
// Destroys a diagnostic object. This is a no-op if diagnostic is a null
// pointer.
SPIRV_TOOLS_EXPORT void spvDiagnosticDestroy(spv_diagnostic diagnostic);
// Prints the diagnostic to stderr.
SPIRV_TOOLS_EXPORT spv_result_t
spvDiagnosticPrint(const spv_diagnostic diagnostic);
// The binary parser interface.
// A pointer to a function that accepts a parsed SPIR-V header.
// The integer arguments are the 32-bit words from the header, as specified
// in SPIR-V 1.0 Section 2.3 Table 1.
// The function should return SPV_SUCCESS if parsing should continue.
typedef spv_result_t (*spv_parsed_header_fn_t)(
void* user_data, spv_endianness_t endian, uint32_t magic, uint32_t version,
uint32_t generator, uint32_t id_bound, uint32_t reserved);
// A pointer to a function that accepts a parsed SPIR-V instruction.
// The parsed_instruction value is transient: it may be overwritten
// or released immediately after the function has returned. That also
// applies to the words array member of the parsed instruction. The
// function should return SPV_SUCCESS if and only if parsing should
// continue.
typedef spv_result_t (*spv_parsed_instruction_fn_t)(
void* user_data, const spv_parsed_instruction_t* parsed_instruction);
// Parses a SPIR-V binary, specified as counted sequence of 32-bit words.
// Parsing feedback is provided via two callbacks provided as function
// pointers. Each callback function pointer can be a null pointer, in
// which case it is never called. Otherwise, in a valid parse the
// parsed-header callback is called once, and then the parsed-instruction
// callback once for each instruction in the stream. The user_data parameter
// is supplied as context to the callbacks. Returns SPV_SUCCESS on successful
// parse where the callbacks always return SPV_SUCCESS. For an invalid parse,
// returns a status code other than SPV_SUCCESS, and if diagnostic is non-null
// also emits a diagnostic. If a callback returns anything other than
// SPV_SUCCESS, then that status code is returned, no further callbacks are
// issued, and no additional diagnostics are emitted.
SPIRV_TOOLS_EXPORT spv_result_t spvBinaryParse(
const spv_const_context context, void* user_data, const uint32_t* words,
const size_t num_words, spv_parsed_header_fn_t parse_header,
spv_parsed_instruction_fn_t parse_instruction, spv_diagnostic* diagnostic);
#ifdef __cplusplus
}
#endif
#endif // SPIRV_TOOLS_LIBSPIRV_H_

View File

@ -0,0 +1,174 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPIRV_TOOLS_LIBSPIRV_HPP_
#define SPIRV_TOOLS_LIBSPIRV_HPP_
#include <functional>
#include <memory>
#include <string>
#include <vector>
#include "spirv-tools/libspirv.h"
namespace spvtools {
// Message consumer. The C strings for source and message are only alive for the
// specific invocation.
using MessageConsumer = std::function<void(
spv_message_level_t /* level */, const char* /* source */,
const spv_position_t& /* position */, const char* /* message */
)>;
// C++ RAII wrapper around the C context object spv_context.
class Context {
public:
// Constructs a context targeting the given environment |env|.
//
// The constructed instance will have an empty message consumer, which just
// ignores all messages from the library. Use SetMessageConsumer() to supply
// one if messages are of concern.
explicit Context(spv_target_env env);
// Enables move constructor/assignment operations.
Context(Context&& other);
Context& operator=(Context&& other);
// Disables copy constructor/assignment operations.
Context(const Context&) = delete;
Context& operator=(const Context&) = delete;
// Destructs this instance.
~Context();
// Sets the message consumer to the given |consumer|. The |consumer| will be
// invoked once for each message communicated from the library.
void SetMessageConsumer(MessageConsumer consumer);
// Returns the underlying spv_context.
spv_context& CContext();
const spv_context& CContext() const;
private:
spv_context context_;
};
// A RAII wrapper around a validator options object.
class ValidatorOptions {
public:
ValidatorOptions() : options_(spvValidatorOptionsCreate()) {}
~ValidatorOptions() { spvValidatorOptionsDestroy(options_); }
// Allow implicit conversion to the underlying object.
operator spv_validator_options() const { return options_; }
// Sets a limit.
void SetUniversalLimit(spv_validator_limit limit_type, uint32_t limit) {
spvValidatorOptionsSetUniversalLimit(options_, limit_type, limit);
}
void SetRelaxStructStore(bool val) {
spvValidatorOptionsSetRelaxStoreStruct(options_, val);
}
// Records whether or not the validator should relax the rules on pointer
// usage in logical addressing mode.
//
// When relaxed, it will allow the following usage cases of pointers:
// 1) OpVariable allocating an object whose type is a pointer type
// 2) OpReturnValue returning a pointer value
void SetRelaxLogicalPointer(bool val) {
spvValidatorOptionsSetRelaxLogicalPointer(options_, val);
}
private:
spv_validator_options options_;
};
// C++ interface for SPIRV-Tools functionalities. It wraps the context
// (including target environment and the corresponding SPIR-V grammar) and
// provides methods for assembling, disassembling, and validating.
//
// Instances of this class provide basic thread-safety guarantee.
class SpirvTools {
public:
enum {
// Default assembling option used by assemble():
kDefaultAssembleOption = SPV_TEXT_TO_BINARY_OPTION_NONE,
// Default disassembling option used by Disassemble():
// * Avoid prefix comments from decoding the SPIR-V module header, and
// * Use friendly names for variables.
kDefaultDisassembleOption = SPV_BINARY_TO_TEXT_OPTION_NO_HEADER |
SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES
};
// Constructs an instance targeting the given environment |env|.
//
// The constructed instance will have an empty message consumer, which just
// ignores all messages from the library. Use SetMessageConsumer() to supply
// one if messages are of concern.
explicit SpirvTools(spv_target_env env);
// Disables copy/move constructor/assignment operations.
SpirvTools(const SpirvTools&) = delete;
SpirvTools(SpirvTools&&) = delete;
SpirvTools& operator=(const SpirvTools&) = delete;
SpirvTools& operator=(SpirvTools&&) = delete;
// Destructs this instance.
~SpirvTools();
// Sets the message consumer to the given |consumer|. The |consumer| will be
// invoked once for each message communicated from the library.
void SetMessageConsumer(MessageConsumer consumer);
// Assembles the given assembly |text| and writes the result to |binary|.
// Returns true on successful assembling. |binary| will be kept untouched if
// assembling is unsuccessful.
bool Assemble(const std::string& text, std::vector<uint32_t>* binary,
uint32_t options = kDefaultAssembleOption) const;
// |text_size| specifies the number of bytes in |text|. A terminating null
// character is not required to present in |text| as long as |text| is valid.
bool Assemble(const char* text, size_t text_size,
std::vector<uint32_t>* binary,
uint32_t options = kDefaultAssembleOption) const;
// Disassembles the given SPIR-V |binary| with the given |options| and writes
// the assembly to |text|. Returns ture on successful disassembling. |text|
// will be kept untouched if diassembling is unsuccessful.
bool Disassemble(const std::vector<uint32_t>& binary, std::string* text,
uint32_t options = kDefaultDisassembleOption) const;
// |binary_size| specifies the number of words in |binary|.
bool Disassemble(const uint32_t* binary, size_t binary_size,
std::string* text,
uint32_t options = kDefaultDisassembleOption) const;
// Validates the given SPIR-V |binary|. Returns true if no issues are found.
// Otherwise, returns false and communicates issues via the message consumer
// registered.
bool Validate(const std::vector<uint32_t>& binary) const;
// |binary_size| specifies the number of words in |binary|.
bool Validate(const uint32_t* binary, size_t binary_size) const;
// Like the previous overload, but takes an options object.
bool Validate(const uint32_t* binary, size_t binary_size,
const ValidatorOptions& options) const;
private:
struct Impl; // Opaque struct for holding the data fields used by this class.
std::unique_ptr<Impl> impl_; // Unique pointer to implementation data.
};
} // namespace spvtools
#endif // SPIRV_TOOLS_LIBSPIRV_HPP_

View File

@ -0,0 +1,97 @@
// Copyright (c) 2017 Pierre Moreau
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPIRV_TOOLS_LINKER_HPP_
#define SPIRV_TOOLS_LINKER_HPP_
#include <cstdint>
#include <memory>
#include <vector>
#include "libspirv.hpp"
namespace spvtools {
class LinkerOptions {
public:
LinkerOptions()
: create_library_(false),
verify_ids_(false),
allow_partial_linkage_(false) {}
// Returns whether a library or an executable should be produced by the
// linking phase.
//
// All exported symbols are kept when creating a library, whereas they will
// be removed when creating an executable.
// The returned value will be true if creating a library, and false if
// creating an executable.
bool GetCreateLibrary() const { return create_library_; }
// Sets whether a library or an executable should be produced.
void SetCreateLibrary(bool create_library) {
create_library_ = create_library;
}
// Returns whether to verify the uniqueness of the unique ids in the merged
// context.
bool GetVerifyIds() const { return verify_ids_; }
// Sets whether to verify the uniqueness of the unique ids in the merged
// context.
void SetVerifyIds(bool verify_ids) { verify_ids_ = verify_ids; }
// Returns whether to allow for imported symbols to have no corresponding
// exported symbols
bool GetAllowPartialLinkage() const { return allow_partial_linkage_; }
// Sets whether to allow for imported symbols to have no corresponding
// exported symbols
void SetAllowPartialLinkage(bool allow_partial_linkage) {
allow_partial_linkage_ = allow_partial_linkage;
}
private:
bool create_library_;
bool verify_ids_;
bool allow_partial_linkage_;
};
// Links one or more SPIR-V modules into a new SPIR-V module. That is, combine
// several SPIR-V modules into one, resolving link dependencies between them.
//
// At least one binary has to be provided in |binaries|. Those binaries do not
// have to be valid, but they should be at least parseable.
// The functions can fail due to the following:
// * The given context was not initialised using `spvContextCreate()`;
// * No input modules were given;
// * One or more of those modules were not parseable;
// * The input modules used different addressing or memory models;
// * The ID or global variable number limit were exceeded;
// * Some entry points were defined multiple times;
// * Some imported symbols did not have an exported counterpart;
// * Possibly other reasons.
spv_result_t Link(const Context& context,
const std::vector<std::vector<uint32_t>>& binaries,
std::vector<uint32_t>* linked_binary,
const LinkerOptions& options = LinkerOptions());
spv_result_t Link(const Context& context, const uint32_t* const* binaries,
const size_t* binary_sizes, size_t num_binaries,
std::vector<uint32_t>* linked_binary,
const LinkerOptions& options = LinkerOptions());
} // namespace spvtools
#endif // SPIRV_TOOLS_LINKER_HPP_

View File

@ -0,0 +1,557 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPIRV_TOOLS_OPTIMIZER_HPP_
#define SPIRV_TOOLS_OPTIMIZER_HPP_
#include <memory>
#include <ostream>
#include <string>
#include <unordered_map>
#include <vector>
#include "libspirv.hpp"
namespace spvtools {
// C++ interface for SPIR-V optimization functionalities. It wraps the context
// (including target environment and the corresponding SPIR-V grammar) and
// provides methods for registering optimization passes and optimizing.
//
// Instances of this class provides basic thread-safety guarantee.
class Optimizer {
public:
// The token for an optimization pass. It is returned via one of the
// Create*Pass() standalone functions at the end of this header file and
// consumed by the RegisterPass() method. Tokens are one-time objects that
// only support move; copying is not allowed.
struct PassToken {
struct Impl; // Opaque struct for holding inernal data.
PassToken(std::unique_ptr<Impl>);
// Tokens can only be moved. Copying is disabled.
PassToken(const PassToken&) = delete;
PassToken(PassToken&&);
PassToken& operator=(const PassToken&) = delete;
PassToken& operator=(PassToken&&);
~PassToken();
std::unique_ptr<Impl> impl_; // Unique pointer to internal data.
};
// Constructs an instance with the given target |env|, which is used to decode
// the binaries to be optimized later.
//
// The constructed instance will have an empty message consumer, which just
// ignores all messages from the library. Use SetMessageConsumer() to supply
// one if messages are of concern.
explicit Optimizer(spv_target_env env);
// Disables copy/move constructor/assignment operations.
Optimizer(const Optimizer&) = delete;
Optimizer(Optimizer&&) = delete;
Optimizer& operator=(const Optimizer&) = delete;
Optimizer& operator=(Optimizer&&) = delete;
// Destructs this instance.
~Optimizer();
// Sets the message consumer to the given |consumer|. The |consumer| will be
// invoked once for each message communicated from the library.
void SetMessageConsumer(MessageConsumer consumer);
// Registers the given |pass| to this optimizer. Passes will be run in the
// exact order of registration. The token passed in will be consumed by this
// method.
Optimizer& RegisterPass(PassToken&& pass);
// Registers passes that attempt to improve performance of generated code.
// This sequence of passes is subject to constant review and will change
// from time to time.
Optimizer& RegisterPerformancePasses();
// Registers passes that attempt to improve the size of generated code.
// This sequence of passes is subject to constant review and will change
// from time to time.
Optimizer& RegisterSizePasses();
// Registers passes that attempt to legalize the generated code.
//
// Note: this recipe is specially for legalizing SPIR-V. It should be used
// by compilers after translating HLSL source code literally. It should
// *not* be used by general workloads for performance or size improvement.
//
// This sequence of passes is subject to constant review and will change
// from time to time.
Optimizer& RegisterLegalizationPasses();
// Optimizes the given SPIR-V module |original_binary| and writes the
// optimized binary into |optimized_binary|.
// Returns true on successful optimization, whether or not the module is
// modified. Returns false if errors occur when processing |original_binary|
// using any of the registered passes. In that case, no further passes are
// executed and the contents in |optimized_binary| may be invalid.
//
// It's allowed to alias |original_binary| to the start of |optimized_binary|.
bool Run(const uint32_t* original_binary, size_t original_binary_size,
std::vector<uint32_t>* optimized_binary) const;
// Returns a vector of strings with all the pass names added to this
// optimizer's pass manager. These strings are valid until the associated
// pass manager is destroyed.
std::vector<const char*> GetPassNames() const;
// Sets the option to print the disassembly before each pass and after the
// last pass. If |out| is null, then no output is generated. Otherwise,
// output is sent to the |out| output stream.
Optimizer& SetPrintAll(std::ostream* out);
// Sets the option to print the resource utilization of each pass. If |out|
// is null, then no output is generated. Otherwise, output is sent to the
// |out| output stream.
Optimizer& SetTimeReport(std::ostream* out);
private:
struct Impl; // Opaque struct for holding internal data.
std::unique_ptr<Impl> impl_; // Unique pointer to internal data.
};
// Creates a null pass.
// A null pass does nothing to the SPIR-V module to be optimized.
Optimizer::PassToken CreateNullPass();
// Creates a strip-debug-info pass.
// A strip-debug-info pass removes all debug instructions (as documented in
// Section 3.32.2 of the SPIR-V spec) of the SPIR-V module to be optimized.
Optimizer::PassToken CreateStripDebugInfoPass();
// Creates a strip-reflect-info pass.
// A strip-reflect-info pass removes all reflections instructions.
// For now, this is limited to removing decorations defined in
// SPV_GOOGLE_hlsl_functionality1. The coverage may expand in
// the future.
Optimizer::PassToken CreateStripReflectInfoPass();
// Creates an eliminate-dead-functions pass.
// An eliminate-dead-functions pass will remove all functions that are not in
// the call trees rooted at entry points and exported functions. These
// functions are not needed because they will never be called.
Optimizer::PassToken CreateEliminateDeadFunctionsPass();
// Creates a set-spec-constant-default-value pass from a mapping from spec-ids
// to the default values in the form of string.
// A set-spec-constant-default-value pass sets the default values for the
// spec constants that have SpecId decorations (i.e., those defined by
// OpSpecConstant{|True|False} instructions).
Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
const std::unordered_map<uint32_t, std::string>& id_value_map);
// Creates a set-spec-constant-default-value pass from a mapping from spec-ids
// to the default values in the form of bit pattern.
// A set-spec-constant-default-value pass sets the default values for the
// spec constants that have SpecId decorations (i.e., those defined by
// OpSpecConstant{|True|False} instructions).
Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
const std::unordered_map<uint32_t, std::vector<uint32_t>>& id_value_map);
// Creates a flatten-decoration pass.
// A flatten-decoration pass replaces grouped decorations with equivalent
// ungrouped decorations. That is, it replaces each OpDecorationGroup
// instruction and associated OpGroupDecorate and OpGroupMemberDecorate
// instructions with equivalent OpDecorate and OpMemberDecorate instructions.
// The pass does not attempt to preserve debug information for instructions
// it removes.
Optimizer::PassToken CreateFlattenDecorationPass();
// Creates a freeze-spec-constant-value pass.
// A freeze-spec-constant pass specializes the value of spec constants to
// their default values. This pass only processes the spec constants that have
// SpecId decorations (defined by OpSpecConstant, OpSpecConstantTrue, or
// OpSpecConstantFalse instructions) and replaces them with their normal
// counterparts (OpConstant, OpConstantTrue, or OpConstantFalse). The
// corresponding SpecId annotation instructions will also be removed. This
// pass does not fold the newly added normal constants and does not process
// other spec constants defined by OpSpecConstantComposite or
// OpSpecConstantOp.
Optimizer::PassToken CreateFreezeSpecConstantValuePass();
// Creates a fold-spec-constant-op-and-composite pass.
// A fold-spec-constant-op-and-composite pass folds spec constants defined by
// OpSpecConstantOp or OpSpecConstantComposite instruction, to normal Constants
// defined by OpConstantTrue, OpConstantFalse, OpConstant, OpConstantNull, or
// OpConstantComposite instructions. Note that spec constants defined with
// OpSpecConstant, OpSpecConstantTrue, or OpSpecConstantFalse instructions are
// not handled, as these instructions indicate their value are not determined
// and can be changed in future. A spec constant is foldable if all of its
// value(s) can be determined from the module. E.g., an integer spec constant
// defined with OpSpecConstantOp instruction can be folded if its value won't
// change later. This pass will replace the original OpSpecContantOp instruction
// with an OpConstant instruction. When folding composite spec constants,
// new instructions may be inserted to define the components of the composite
// constant first, then the original spec constants will be replaced by
// OpConstantComposite instructions.
//
// There are some operations not supported yet:
// OpSConvert, OpFConvert, OpQuantizeToF16 and
// all the operations under Kernel capability.
// TODO(qining): Add support for the operations listed above.
Optimizer::PassToken CreateFoldSpecConstantOpAndCompositePass();
// Creates a unify-constant pass.
// A unify-constant pass de-duplicates the constants. Constants with the exact
// same value and identical form will be unified and only one constant will
// be kept for each unique pair of type and value.
// There are several cases not handled by this pass:
// 1) Constants defined by OpConstantNull instructions (null constants) and
// constants defined by OpConstantFalse, OpConstant or OpConstantComposite
// with value 0 (zero-valued normal constants) are not considered equivalent.
// So null constants won't be used to replace zero-valued normal constants,
// vice versa.
// 2) Whenever there are decorations to the constant's result id id, the
// constant won't be handled, which means, it won't be used to replace any
// other constants, neither can other constants replace it.
// 3) NaN in float point format with different bit patterns are not unified.
Optimizer::PassToken CreateUnifyConstantPass();
// Creates a eliminate-dead-constant pass.
// A eliminate-dead-constant pass removes dead constants, including normal
// contants defined by OpConstant, OpConstantComposite, OpConstantTrue, or
// OpConstantFalse and spec constants defined by OpSpecConstant,
// OpSpecConstantComposite, OpSpecConstantTrue, OpSpecConstantFalse or
// OpSpecConstantOp.
Optimizer::PassToken CreateEliminateDeadConstantPass();
// Creates a strength-reduction pass.
// A strength-reduction pass will look for opportunities to replace an
// instruction with an equivalent and less expensive one. For example,
// multiplying by a power of 2 can be replaced by a bit shift.
Optimizer::PassToken CreateStrengthReductionPass();
// Creates a block merge pass.
// This pass searches for blocks with a single Branch to a block with no
// other predecessors and merges the blocks into a single block. Continue
// blocks and Merge blocks are not candidates for the second block.
//
// The pass is most useful after Dead Branch Elimination, which can leave
// such sequences of blocks. Merging them makes subsequent passes more
// effective, such as single block local store-load elimination.
//
// While this pass reduces the number of occurrences of this sequence, at
// this time it does not guarantee all such sequences are eliminated.
//
// Presence of phi instructions can inhibit this optimization. Handling
// these is left for future improvements.
Optimizer::PassToken CreateBlockMergePass();
// Creates an exhaustive inline pass.
// An exhaustive inline pass attempts to exhaustively inline all function
// calls in all functions in an entry point call tree. The intent is to enable,
// albeit through brute force, analysis and optimization across function
// calls by subsequent optimization passes. As the inlining is exhaustive,
// there is no attempt to optimize for size or runtime performance. Functions
// that are not in the call tree of an entry point are not changed.
Optimizer::PassToken CreateInlineExhaustivePass();
// Creates an opaque inline pass.
// An opaque inline pass inlines all function calls in all functions in all
// entry point call trees where the called function contains an opaque type
// in either its parameter types or return type. An opaque type is currently
// defined as Image, Sampler or SampledImage. The intent is to enable, albeit
// through brute force, analysis and optimization across these function calls
// by subsequent passes in order to remove the storing of opaque types which is
// not legal in Vulkan. Functions that are not in the call tree of an entry
// point are not changed.
Optimizer::PassToken CreateInlineOpaquePass();
// Creates a single-block local variable load/store elimination pass.
// For every entry point function, do single block memory optimization of
// function variables referenced only with non-access-chain loads and stores.
// For each targeted variable load, if previous store to that variable in the
// block, replace the load's result id with the value id of the store.
// If previous load within the block, replace the current load's result id
// with the previous load's result id. In either case, delete the current
// load. Finally, check if any remaining stores are useless, and delete store
// and variable if possible.
//
// The presence of access chain references and function calls can inhibit
// the above optimization.
//
// Only modules with relaxed logical addressing (see opt/instruction.h) are
// currently processed.
//
// This pass is most effective if preceeded by Inlining and
// LocalAccessChainConvert. This pass will reduce the work needed to be done
// by LocalSingleStoreElim and LocalMultiStoreElim.
//
// Only functions in the call tree of an entry point are processed.
Optimizer::PassToken CreateLocalSingleBlockLoadStoreElimPass();
// Create dead branch elimination pass.
// For each entry point function, this pass will look for SelectionMerge
// BranchConditionals with constant condition and convert to a Branch to
// the indicated label. It will delete resulting dead blocks.
//
// For all phi functions in merge block, replace all uses with the id
// corresponding to the living predecessor.
//
// Note that some branches and blocks may be left to avoid creating invalid
// control flow. Improving this is left to future work.
//
// This pass is most effective when preceeded by passes which eliminate
// local loads and stores, effectively propagating constant values where
// possible.
Optimizer::PassToken CreateDeadBranchElimPass();
// Creates an SSA local variable load/store elimination pass.
// For every entry point function, eliminate all loads and stores of function
// scope variables only referenced with non-access-chain loads and stores.
// Eliminate the variables as well.
//
// The presence of access chain references and function calls can inhibit
// the above optimization.
//
// Only shader modules with relaxed logical addressing (see opt/instruction.h)
// are currently processed. Currently modules with any extensions enabled are
// not processed. This is left for future work.
//
// This pass is most effective if preceeded by Inlining and
// LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim
// will reduce the work that this pass has to do.
Optimizer::PassToken CreateLocalMultiStoreElimPass();
// Creates a local access chain conversion pass.
// A local access chain conversion pass identifies all function scope
// variables which are accessed only with loads, stores and access chains
// with constant indices. It then converts all loads and stores of such
// variables into equivalent sequences of loads, stores, extracts and inserts.
//
// This pass only processes entry point functions. It currently only converts
// non-nested, non-ptr access chains. It does not process modules with
// non-32-bit integer types present. Optional memory access options on loads
// and stores are ignored as we are only processing function scope variables.
//
// This pass unifies access to these variables to a single mode and simplifies
// subsequent analysis and elimination of these variables along with their
// loads and stores allowing values to propagate to their points of use where
// possible.
Optimizer::PassToken CreateLocalAccessChainConvertPass();
// Creates a local single store elimination pass.
// For each entry point function, this pass eliminates loads and stores for
// function scope variable that are stored to only once, where possible. Only
// whole variable loads and stores are eliminated; access-chain references are
// not optimized. Replace all loads of such variables with the value that is
// stored and eliminate any resulting dead code.
//
// Currently, the presence of access chains and function calls can inhibit this
// pass, however the Inlining and LocalAccessChainConvert passes can make it
// more effective. In additional, many non-load/store memory operations are
// not supported and will prohibit optimization of a function. Support of
// these operations are future work.
//
// Only shader modules with relaxed logical addressing (see opt/instruction.h)
// are currently processed.
//
// This pass will reduce the work needed to be done by LocalSingleBlockElim
// and LocalMultiStoreElim and can improve the effectiveness of other passes
// such as DeadBranchElimination which depend on values for their analysis.
Optimizer::PassToken CreateLocalSingleStoreElimPass();
// Creates an insert/extract elimination pass.
// This pass processes each entry point function in the module, searching for
// extracts on a sequence of inserts. It further searches the sequence for an
// insert with indices identical to the extract. If such an insert can be
// found before hitting a conflicting insert, the extract's result id is
// replaced with the id of the values from the insert.
//
// Besides removing extracts this pass enables subsequent dead code elimination
// passes to delete the inserts. This pass performs best after access chains are
// converted to inserts and extracts and local loads and stores are eliminated.
Optimizer::PassToken CreateInsertExtractElimPass();
// Creates a dead insert elimination pass.
// This pass processes each entry point function in the module, searching for
// unreferenced inserts into composite types. These are most often unused
// stores to vector components. They are unused because they are never
// referenced, or because there is another insert to the same component between
// the insert and the reference. After removing the inserts, dead code
// elimination is attempted on the inserted values.
//
// This pass performs best after access chains are converted to inserts and
// extracts and local loads and stores are eliminated. While executing this
// pass can be advantageous on its own, it is also advantageous to execute
// this pass after CreateInsertExtractPass() as it will remove any unused
// inserts created by that pass.
Optimizer::PassToken CreateDeadInsertElimPass();
// Creates a pass to consolidate uniform references.
// For each entry point function in the module, first change all constant index
// access chain loads into equivalent composite extracts. Then consolidate
// identical uniform loads into one uniform load. Finally, consolidate
// identical uniform extracts into one uniform extract. This may require
// moving a load or extract to a point which dominates all uses.
//
// This pass requires a module to have structured control flow ie shader
// capability. It also requires logical addressing ie Addresses capability
// is not enabled. It also currently does not support any extensions.
//
// This pass currently only optimizes loads with a single index.
Optimizer::PassToken CreateCommonUniformElimPass();
// Create aggressive dead code elimination pass
// This pass eliminates unused code from the module. In addition,
// it detects and eliminates code which may have spurious uses but which do
// not contribute to the output of the function. The most common cause of
// such code sequences is summations in loops whose result is no longer used
// due to dead code elimination. This optimization has additional compile
// time cost over standard dead code elimination.
//
// This pass only processes entry point functions. It also only processes
// shaders with relaxed logical addressing (see opt/instruction.h). It
// currently will not process functions with function calls. Unreachable
// functions are deleted.
//
// This pass will be made more effective by first running passes that remove
// dead control flow and inlines function calls.
//
// This pass can be especially useful after running Local Access Chain
// Conversion, which tends to cause cycles of dead code to be left after
// Store/Load elimination passes are completed. These cycles cannot be
// eliminated with standard dead code elimination.
Optimizer::PassToken CreateAggressiveDCEPass();
// Creates a compact ids pass.
// The pass remaps result ids to a compact and gapless range starting from %1.
Optimizer::PassToken CreateCompactIdsPass();
// Creates a remove duplicate pass.
// This pass removes various duplicates:
// * duplicate capabilities;
// * duplicate extended instruction imports;
// * duplicate types;
// * duplicate decorations.
Optimizer::PassToken CreateRemoveDuplicatesPass();
// Creates a CFG cleanup pass.
// This pass removes cruft from the control flow graph of functions that are
// reachable from entry points and exported functions. It currently includes the
// following functionality:
//
// - Removal of unreachable basic blocks.
Optimizer::PassToken CreateCFGCleanupPass();
// Create dead variable elimination pass.
// This pass will delete module scope variables, along with their decorations,
// that are not referenced.
Optimizer::PassToken CreateDeadVariableEliminationPass();
// create merge return pass.
// changes functions that have multiple return statements so they have a single
// return statement.
//
// for structured control flow it is assumed that the only unreachable blocks in
// the function are trivial merge and continue blocks.
//
// a trivial merge block contains the label and an opunreachable instructions,
// nothing else. a trivial continue block contain a label and an opbranch to
// the header, nothing else.
//
// these conditions are guaranteed to be met after running dead-branch
// elimination.
Optimizer::PassToken CreateMergeReturnPass();
// Create value numbering pass.
// This pass will look for instructions in the same basic block that compute the
// same value, and remove the redundant ones.
Optimizer::PassToken CreateLocalRedundancyEliminationPass();
// Create LICM pass.
// This pass will look for invariant instructions inside loops and hoist them to
// the loops preheader.
Optimizer::PassToken CreateLoopInvariantCodeMotionPass();
// Creates a loop unswitch pass.
// This pass will look for loop independent branch conditions and move the
// condition out of the loop and version the loop based on the taken branch.
// Works best after LICM and local multi store elimination pass.
Optimizer::PassToken CreateLoopUnswitchPass();
// Create global value numbering pass.
// This pass will look for instructions where the same value is computed on all
// paths leading to the instruction. Those instructions are deleted.
Optimizer::PassToken CreateRedundancyEliminationPass();
// Create scalar replacement pass.
// This pass replaces composite function scope variables with variables for each
// element if those elements are accessed individually.
Optimizer::PassToken CreateScalarReplacementPass();
// Create a private to local pass.
// This pass looks for variables delcared in the private storage class that are
// used in only one function. Those variables are moved to the function storage
// class in the function that they are used.
Optimizer::PassToken CreatePrivateToLocalPass();
// Creates a conditional constant propagation (CCP) pass.
// This pass implements the SSA-CCP algorithm in
//
// Constant propagation with conditional branches,
// Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
//
// Constant values in expressions and conditional jumps are folded and
// simplified. This may reduce code size by removing never executed jump targets
// and computations with constant operands.
Optimizer::PassToken CreateCCPPass();
// Creates a workaround driver bugs pass. This pass attempts to work around
// a known driver bug (issue #1209) by identifying the bad code sequences and
// rewriting them.
//
// Current workaround: Avoid OpUnreachable instructions in loops.
Optimizer::PassToken CreateWorkaround1209Pass();
// Creates a pass that converts if-then-else like assignments into OpSelect.
Optimizer::PassToken CreateIfConversionPass();
// Creates a pass that will replace instructions that are not valid for the
// current shader stage by constants. Has no effect on non-shader modules.
Optimizer::PassToken CreateReplaceInvalidOpcodePass();
// Creates a pass that simplifies instructions using the instruction folder.
Optimizer::PassToken CreateSimplificationPass();
// Create loop unroller pass.
// Creates a pass to unroll loops which have the "Unroll" loop control
// mask set. The loops must meet a specific criteria in order to be unrolled
// safely this criteria is checked before doing the unroll by the
// LoopUtils::CanPerformUnroll method. Any loop that does not meet the criteria
// won't be unrolled. See CanPerformUnroll LoopUtils.h for more information.
Optimizer::PassToken CreateLoopUnrollPass(bool fully_unroll, int factor = 0);
// Create the SSA rewrite pass.
// This pass converts load/store operations on function local variables into
// operations on SSA IDs. This allows SSA optimizers to act on these variables.
// Only variables that are local to the function and of supported types are
// processed (see IsSSATargetVar for details).
Optimizer::PassToken CreateSSARewritePass();
// Create copy propagate arrays pass.
// This pass looks to copy propagate memory references for arrays. It looks
// for specific code patterns to recognize array copies.
Optimizer::PassToken CreateCopyPropagateArraysPass();
} // namespace spvtools
#endif // SPIRV_TOOLS_OPTIMIZER_HPP_

82
3rdparty/spirv-tools/projects.md vendored Normal file
View File

@ -0,0 +1,82 @@
# Tracking SPIRV-Tools work with GitHub projects
We are experimenting with using the [GitHub Project
feature](https://help.github.com/articles/tracking-the-progress-of-your-work-with-projects/)
to track progress toward large goals.
For more on GitHub Projects in general, see:
* [Introductory blog post](https://github.com/blog/2256-a-whole-new-github-universe-announcing-new-tools-forums-and-features)
* [Introductory video](https://www.youtube.com/watch?v=C6MGKHkNtxU)
The current SPIRV-Tools project list can be found at
[https://github.com/KhronosGroup/SPIRV-Tools/projects](https://github.com/KhronosGroup/SPIRV-Tools/projects)
## How we use a Project
A GitHub Project is a set of work with an overall purpose, and
consists of a collection of *Cards*.
Each card is either a *Note* or a regular GitHub *Issue.*
A Note can be converted to an Issue.
In our projects, a card represents work, i.e. a change that can
be applied to the repository.
The work could be a feature, a bug to be fixed, documentation to be
updated, etc.
A project and its cards are used as a [Kanban
board](https://en.wikipedia.org/wiki/Kanban_board), where cards progress
through a workflow starting with ideas through to implementation and completion.
In our usage, a *project manager* is someone who organizes the work.
They manage the creation and movement of cards
through the project workflow:
* They create cards to capture ideas, or to decompose large ideas into smaller
ones.
* They determine if the work for a card has been completed.
* Normally they are the person (or persons) who can approve and merge a pull
request into the `master` branch.
Our projects organize cards into the following columns:
* `Ideas`: Work which could be done, captured either as Cards or Notes.
* A card in this column could be marked as a [PLACEHOLDER](#placeholders).
* `Ready to start`: Issues which represent work we'd like to do, and which
are not blocked by other work.
* The issue should be narrow enough that it can usually be addressed by a
single pull request.
* We want these to be Issues (not Notes) so that someone can claim the work
by updating the Issue with their intent to do the work.
Once an Issue is claimed, the project manager moves the corresponding card
from `Ready to start` to `In progress`.
* `In progress`: Issues which were in `Ready to start` but which have been
claimed by someone.
* `Done`: Issues which have been resolved, by completing their work.
* The changes have been applied to the repository, typically by being pushed
into the `master` branch.
* Other kinds of work could update repository settings, for example.
* `Rejected ideas`: Work which has been considered, but which we don't want
implemented.
* We keep rejected ideas so they are not proposed again. This serves
as a form of institutional memory.
* We should record why an idea is rejected. For this reason, a rejected
idea is likely to be an Issue which has been closed.
## Prioritization
We are considering prioritizing cards in the `Ideas` and `Ready to start`
columns so that things that should be considered first float up to the top.
Experience will tell us if we stick to that rule, and if it proves helpful.
## Placeholders
A *placeholder* is a Note or Issue that represents a possibly large amount
of work that can be broadly defined but which may not have been broken down
into small implementable pieces of work.
Use a placeholder to capture a big idea, but without doing the upfront work
to consider all the details of how it should be implemented.
Over time, break off pieces of the placeholder into implementable Issues.
Move those Issues into the `Ready to start` column when they become unblocked.
We delete the placeholder when all its work has been decomposed into
implementable cards.

View File

@ -0,0 +1,362 @@
# Copyright (c) 2015-2016 The Khronos Group Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set(GRAMMAR_PROCESSING_SCRIPT "${spirv-tools_SOURCE_DIR}/utils/generate_grammar_tables.py")
set(VIMSYNTAX_PROCESSING_SCRIPT "${spirv-tools_SOURCE_DIR}/utils/generate_vim_syntax.py")
set(XML_REGISTRY_PROCESSING_SCRIPT "${spirv-tools_SOURCE_DIR}/utils/generate_registry_tables.py")
set(LANG_HEADER_PROCESSING_SCRIPT "${spirv-tools_SOURCE_DIR}/utils/generate_language_headers.py")
# For now, assume the DebugInfo grammar file is in the current directory.
# It might migrate to SPIRV-Headers.
set(DEBUGINFO_GRAMMAR_JSON_FILE "${CMAKE_CURRENT_SOURCE_DIR}/extinst.debuginfo.grammar.json")
# macro() definitions are used in the following because we need to append .inc
# file paths into some global lists (*_CPP_DEPENDS). And those global lists are
# later used by set_source_files_properties() calls.
# function() definitions are not suitable because they create new scopes.
macro(spvtools_core_tables VERSION)
set(GRAMMAR_JSON_FILE "${SPIRV_HEADER_INCLUDE_DIR}/spirv/${VERSION}/spirv.core.grammar.json")
set(GRAMMAR_INSTS_INC_FILE "${spirv-tools_BINARY_DIR}/core.insts-${VERSION}.inc")
set(GRAMMAR_KINDS_INC_FILE "${spirv-tools_BINARY_DIR}/operand.kinds-${VERSION}.inc")
add_custom_command(OUTPUT ${GRAMMAR_INSTS_INC_FILE} ${GRAMMAR_KINDS_INC_FILE}
COMMAND ${PYTHON_EXECUTABLE} ${GRAMMAR_PROCESSING_SCRIPT}
--spirv-core-grammar=${GRAMMAR_JSON_FILE}
--extinst-debuginfo-grammar=${DEBUGINFO_GRAMMAR_JSON_FILE}
--core-insts-output=${GRAMMAR_INSTS_INC_FILE}
--operand-kinds-output=${GRAMMAR_KINDS_INC_FILE}
DEPENDS ${GRAMMAR_PROCESSING_SCRIPT} ${GRAMMAR_JSON_FILE} ${DEBUGINFO_GRAMMAR_JSON_FILE}
COMMENT "Generate info tables for SPIR-V v${VERSION} core instructions and operands.")
list(APPEND OPCODE_CPP_DEPENDS ${GRAMMAR_INSTS_INC_FILE})
list(APPEND OPERAND_CPP_DEPENDS ${GRAMMAR_KINDS_INC_FILE})
endmacro(spvtools_core_tables)
macro(spvtools_enum_string_mapping VERSION)
set(GRAMMAR_JSON_FILE "${SPIRV_HEADER_INCLUDE_DIR}/spirv/${VERSION}/spirv.core.grammar.json")
set(GRAMMAR_EXTENSION_ENUM_INC_FILE "${spirv-tools_BINARY_DIR}/extension_enum.inc")
set(GRAMMAR_ENUM_STRING_MAPPING_INC_FILE "${spirv-tools_BINARY_DIR}/enum_string_mapping.inc")
add_custom_command(OUTPUT ${GRAMMAR_EXTENSION_ENUM_INC_FILE}
${GRAMMAR_ENUM_STRING_MAPPING_INC_FILE}
COMMAND ${PYTHON_EXECUTABLE} ${GRAMMAR_PROCESSING_SCRIPT}
--spirv-core-grammar=${GRAMMAR_JSON_FILE}
--extinst-debuginfo-grammar=${DEBUGINFO_GRAMMAR_JSON_FILE}
--extension-enum-output=${GRAMMAR_EXTENSION_ENUM_INC_FILE}
--enum-string-mapping-output=${GRAMMAR_ENUM_STRING_MAPPING_INC_FILE}
DEPENDS ${GRAMMAR_PROCESSING_SCRIPT} ${GRAMMAR_JSON_FILE} ${DEBUGINFO_GRAMMAR_JSON_FILE}
COMMENT "Generate enum-string mapping for SPIR-V v${VERSION}.")
list(APPEND EXTENSION_H_DEPENDS ${GRAMMAR_EXTENSION_ENUM_INC_FILE})
list(APPEND ENUM_STRING_MAPPING_CPP_DEPENDS ${GRAMMAR_ENUM_STRING_MAPPING_INC_FILE})
endmacro(spvtools_enum_string_mapping)
macro(spvtools_vimsyntax VERSION CLVERSION)
set(GRAMMAR_JSON_FILE "${SPIRV_HEADER_INCLUDE_DIR}/spirv/${VERSION}/spirv.core.grammar.json")
set(GLSL_GRAMMAR_JSON_FILE "${SPIRV_HEADER_INCLUDE_DIR}/spirv/${VERSION}/extinst.glsl.std.450.grammar.json")
set(OPENCL_GRAMMAR_JSON_FILE "${SPIRV_HEADER_INCLUDE_DIR}/spirv/${VERSION}/extinst.opencl.std.100.grammar.json")
set(VIMSYNTAX_FILE "${spirv-tools_BINARY_DIR}/spvasm.vim")
add_custom_command(OUTPUT ${VIMSYNTAX_FILE}
COMMAND ${PYTHON_EXECUTABLE} ${VIMSYNTAX_PROCESSING_SCRIPT}
--spirv-core-grammar=${GRAMMAR_JSON_FILE}
--extinst-debuginfo-grammar=${DEBUGINFO_GRAMMAR_JSON_FILE}
--extinst-glsl-grammar=${GLSL_GRAMMAR_JSON_FILE}
--extinst-opencl-grammar=${OPENCL_GRAMMAR_JSON_FILE}
>${VIMSYNTAX_FILE}
DEPENDS ${VIMSYNTAX_PROCESSING_SCRIPT} ${GRAMMAR_JSON_FILE}
${GLSL_GRAMMAR_JSON_FILE} ${OPENCL_GRAMMAR_JSON_FILE} ${DEBUGINFO_GRAMMAR_JSON_FILE}
COMMENT "Generate spvasm.vim: Vim syntax file for SPIR-V assembly.")
endmacro(spvtools_vimsyntax)
macro(spvtools_glsl_tables VERSION)
set(CORE_GRAMMAR_JSON_FILE "${SPIRV_HEADER_INCLUDE_DIR}/spirv/${VERSION}/spirv.core.grammar.json")
set(GLSL_GRAMMAR_JSON_FILE "${SPIRV_HEADER_INCLUDE_DIR}/spirv/${VERSION}/extinst.glsl.std.450.grammar.json")
set(GRAMMAR_INC_FILE "${spirv-tools_BINARY_DIR}/glsl.std.450.insts.inc")
add_custom_command(OUTPUT ${GRAMMAR_INC_FILE}
COMMAND ${PYTHON_EXECUTABLE} ${GRAMMAR_PROCESSING_SCRIPT}
--extinst-glsl-grammar=${GLSL_GRAMMAR_JSON_FILE}
--glsl-insts-output=${GRAMMAR_INC_FILE}
DEPENDS ${GRAMMAR_PROCESSING_SCRIPT} ${CORE_GRAMMAR_JSON_FILE} ${GLSL_GRAMMAR_JSON_FILE}
COMMENT "Generate info tables for GLSL extended instructions and operands v${VERSION}.")
list(APPEND EXTINST_CPP_DEPENDS ${GRAMMAR_INC_FILE})
endmacro(spvtools_glsl_tables)
macro(spvtools_opencl_tables VERSION)
set(CORE_GRAMMAR_JSON_FILE "${SPIRV_HEADER_INCLUDE_DIR}/spirv/${VERSION}/spirv.core.grammar.json")
set(OPENCL_GRAMMAR_JSON_FILE "${SPIRV_HEADER_INCLUDE_DIR}/spirv/${VERSION}/extinst.opencl.std.100.grammar.json")
set(GRAMMAR_INC_FILE "${spirv-tools_BINARY_DIR}/opencl.std.insts.inc")
add_custom_command(OUTPUT ${GRAMMAR_INC_FILE}
COMMAND ${PYTHON_EXECUTABLE} ${GRAMMAR_PROCESSING_SCRIPT}
--extinst-opencl-grammar=${OPENCL_GRAMMAR_JSON_FILE}
--opencl-insts-output=${GRAMMAR_INC_FILE}
DEPENDS ${GRAMMAR_PROCESSING_SCRIPT} ${CORE_GRAMMAR_JSON_FILE} ${OPENCL_GRAMMAR_JSON_FILE}
COMMENT "Generate info tables for OpenCL extended instructions and operands v${VERSION}.")
list(APPEND EXTINST_CPP_DEPENDS ${GRAMMAR_INC_FILE})
endmacro(spvtools_opencl_tables)
macro(spvtools_vendor_tables VENDOR_TABLE)
set(INSTS_FILE "${spirv-tools_BINARY_DIR}/${VENDOR_TABLE}.insts.inc")
set(GRAMMAR_FILE "${spirv-tools_SOURCE_DIR}/source/extinst.${VENDOR_TABLE}.grammar.json")
add_custom_command(OUTPUT ${INSTS_FILE}
COMMAND ${PYTHON_EXECUTABLE} ${GRAMMAR_PROCESSING_SCRIPT}
--extinst-vendor-grammar=${GRAMMAR_FILE}
--vendor-insts-output=${INSTS_FILE}
DEPENDS ${GRAMMAR_PROCESSING_SCRIPT} ${GRAMMAR_FILE}
COMMENT "Generate extended instruction tables for ${VENDOR_TABLE}.")
list(APPEND EXTINST_CPP_DEPENDS ${INSTS_FILE})
add_custom_target(spirv-tools-${VENDOR_TABLE} DEPENDS ${INSTS_FILE})
set_property(TARGET spirv-tools-${VENDOR_TABLE} PROPERTY FOLDER "SPIRV-Tools build")
endmacro(spvtools_vendor_tables)
macro(spvtools_extinst_lang_headers NAME GRAMMAR_FILE)
set(OUTBASE ${spirv-tools_BINARY_DIR}/${NAME})
set(OUT_H ${OUTBASE}.h)
add_custom_command(OUTPUT ${OUT_H}
COMMAND ${PYTHON_EXECUTABLE} ${LANG_HEADER_PROCESSING_SCRIPT}
--extinst-name=${NAME}
--extinst-grammar=${GRAMMAR_FILE}
--extinst-output-base=${OUTBASE}
DEPENDS ${LANG_HEADER_PROCESSING_SCRIPT} ${GRAMMAR_FILE}
COMMENT "Generate language specific header for ${NAME}.")
list(APPEND EXTINST_CPP_DEPENDS ${OUT_H})
add_custom_target(spirv-tools-header-${NAME} DEPENDS ${OUT_H})
set_property(TARGET spirv-tools-header-${NAME} PROPERTY FOLDER "SPIRV-Tools build")
endmacro(spvtools_extinst_lang_headers)
spvtools_core_tables("unified1")
spvtools_enum_string_mapping("unified1")
spvtools_opencl_tables("unified1")
spvtools_glsl_tables("unified1")
spvtools_vendor_tables("spv-amd-shader-explicit-vertex-parameter")
spvtools_vendor_tables("spv-amd-shader-trinary-minmax")
spvtools_vendor_tables("spv-amd-gcn-shader")
spvtools_vendor_tables("spv-amd-shader-ballot")
spvtools_vendor_tables("debuginfo")
spvtools_extinst_lang_headers("DebugInfo" ${DEBUGINFO_GRAMMAR_JSON_FILE})
spvtools_vimsyntax("unified1" "1.0")
add_custom_target(spirv-tools-vimsyntax DEPENDS ${VIMSYNTAX_FILE})
set_property(TARGET spirv-tools-vimsyntax PROPERTY FOLDER "SPIRV-Tools utilities")
# Extract the list of known generators from the SPIR-V XML registry file.
set(GENERATOR_INC_FILE ${spirv-tools_BINARY_DIR}/generators.inc)
set(SPIRV_XML_REGISTRY_FILE ${SPIRV_HEADER_INCLUDE_DIR}/spirv/spir-v.xml)
add_custom_command(OUTPUT ${GENERATOR_INC_FILE}
COMMAND ${PYTHON_EXECUTABLE} ${XML_REGISTRY_PROCESSING_SCRIPT}
--xml=${SPIRV_XML_REGISTRY_FILE}
--generator-output=${GENERATOR_INC_FILE}
DEPENDS ${XML_REGISTRY_PROCESSING_SCRIPT} ${SPIRV_XML_REGISTRY_FILE}
COMMENT "Generate tables based on the SPIR-V XML registry.")
list(APPEND OPCODE_CPP_DEPENDS ${GENERATOR_INC_FILE})
# The following .cpp files include the above generated .inc files.
# Add those .inc files as their dependencies.
#
# Why using such an awkward way?
# * If we use add_custom_target() to define a target to generate all .inc files
# and let ${SPIRV_TOOLS} depend on it, then we need to run ninja twice every
# time the grammar is updated: the first time is for generating those .inc
# files, and the second time is for rebuilding .cpp files, when ninja finds
# out that .inc files are updated.
# * If we use add_custom_command() with PRE_BUILD, then the grammar processing
# script will always run no matter whether the grammar is updated.
# * add_dependencies() is used to add *target* dependencies to a target.
# * The following solution only generates .inc files when the script or the
# grammar files is updated, and in a single ninja run.
set_source_files_properties(
${CMAKE_CURRENT_SOURCE_DIR}/opcode.cpp
PROPERTIES OBJECT_DEPENDS "${OPCODE_CPP_DEPENDS}")
set_source_files_properties(
${CMAKE_CURRENT_SOURCE_DIR}/operand.cpp
PROPERTIES OBJECT_DEPENDS "${OPERAND_CPP_DEPENDS}")
set_source_files_properties(
${CMAKE_CURRENT_SOURCE_DIR}/ext_inst.cpp
PROPERTIES OBJECT_DEPENDS "${EXTINST_CPP_DEPENDS}")
set_source_files_properties(
${CMAKE_CURRENT_SOURCE_DIR}/enum_string_mapping.cpp
PROPERTIES OBJECT_DEPENDS "${ENUM_STRING_MAPPING_CPP_DEPENDS}")
set_source_files_properties(
${CMAKE_CURRENT_SOURCE_DIR}/extension.h
PROPERTIES HEADER_FILE_ONLY TRUE)
set_source_files_properties(
${CMAKE_CURRENT_SOURCE_DIR}/extension.h
PROPERTIES OBJECT_DEPENDS "${EXTENSION_H_DEPENDS}")
set(SPIRV_TOOLS_BUILD_VERSION_INC
${spirv-tools_BINARY_DIR}/build-version.inc)
set(SPIRV_TOOLS_BUILD_VERSION_INC_GENERATOR
${spirv-tools_SOURCE_DIR}/utils/update_build_version.py)
set(SPIRV_TOOLS_CHANGES_FILE
${spirv-tools_SOURCE_DIR}/CHANGES)
add_custom_command(OUTPUT ${SPIRV_TOOLS_BUILD_VERSION_INC}
COMMAND ${PYTHON_EXECUTABLE}
${SPIRV_TOOLS_BUILD_VERSION_INC_GENERATOR}
${spirv-tools_SOURCE_DIR} ${SPIRV_TOOLS_BUILD_VERSION_INC}
DEPENDS ${SPIRV_TOOLS_BUILD_VERSION_INC_GENERATOR}
${SPIRV_TOOLS_CHANGES_FILE}
COMMENT "Update build-version.inc in the SPIRV-Tools build directory (if necessary).")
# Convenience target for standalone generation of the build-version.inc file.
# This is not required for any dependence chain.
add_custom_target(spirv-tools-build-version
DEPENDS ${SPIRV_TOOLS_BUILD_VERSION_INC})
set_property(TARGET spirv-tools-build-version PROPERTY FOLDER "SPIRV-Tools build")
add_subdirectory(comp)
add_subdirectory(opt)
add_subdirectory(link)
set(SPIRV_SOURCES
${spirv-tools_SOURCE_DIR}/include/spirv-tools/libspirv.h
${CMAKE_CURRENT_SOURCE_DIR}/util/bitutils.h
${CMAKE_CURRENT_SOURCE_DIR}/util/bit_stream.h
${CMAKE_CURRENT_SOURCE_DIR}/util/hex_float.h
${CMAKE_CURRENT_SOURCE_DIR}/util/parse_number.h
${CMAKE_CURRENT_SOURCE_DIR}/util/string_utils.h
${CMAKE_CURRENT_SOURCE_DIR}/util/timer.h
${CMAKE_CURRENT_SOURCE_DIR}/assembly_grammar.h
${CMAKE_CURRENT_SOURCE_DIR}/binary.h
${CMAKE_CURRENT_SOURCE_DIR}/cfa.h
${CMAKE_CURRENT_SOURCE_DIR}/diagnostic.h
${CMAKE_CURRENT_SOURCE_DIR}/disassemble.h
${CMAKE_CURRENT_SOURCE_DIR}/enum_set.h
${CMAKE_CURRENT_SOURCE_DIR}/enum_string_mapping.h
${CMAKE_CURRENT_SOURCE_DIR}/ext_inst.h
${CMAKE_CURRENT_SOURCE_DIR}/extensions.h
${CMAKE_CURRENT_SOURCE_DIR}/id_descriptor.h
${CMAKE_CURRENT_SOURCE_DIR}/instruction.h
${CMAKE_CURRENT_SOURCE_DIR}/latest_version_glsl_std_450_header.h
${CMAKE_CURRENT_SOURCE_DIR}/latest_version_opencl_std_header.h
${CMAKE_CURRENT_SOURCE_DIR}/latest_version_spirv_header.h
${CMAKE_CURRENT_SOURCE_DIR}/macro.h
${CMAKE_CURRENT_SOURCE_DIR}/name_mapper.h
${CMAKE_CURRENT_SOURCE_DIR}/opcode.h
${CMAKE_CURRENT_SOURCE_DIR}/operand.h
${CMAKE_CURRENT_SOURCE_DIR}/parsed_operand.h
${CMAKE_CURRENT_SOURCE_DIR}/print.h
${CMAKE_CURRENT_SOURCE_DIR}/spirv_constant.h
${CMAKE_CURRENT_SOURCE_DIR}/spirv_definition.h
${CMAKE_CURRENT_SOURCE_DIR}/spirv_endian.h
${CMAKE_CURRENT_SOURCE_DIR}/spirv_target_env.h
${CMAKE_CURRENT_SOURCE_DIR}/spirv_validator_options.h
${CMAKE_CURRENT_SOURCE_DIR}/table.h
${CMAKE_CURRENT_SOURCE_DIR}/text.h
${CMAKE_CURRENT_SOURCE_DIR}/text_handler.h
${CMAKE_CURRENT_SOURCE_DIR}/validate.h
${CMAKE_CURRENT_SOURCE_DIR}/util/bit_stream.cpp
${CMAKE_CURRENT_SOURCE_DIR}/util/parse_number.cpp
${CMAKE_CURRENT_SOURCE_DIR}/util/string_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/assembly_grammar.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/diagnostic.cpp
${CMAKE_CURRENT_SOURCE_DIR}/disassemble.cpp
${CMAKE_CURRENT_SOURCE_DIR}/enum_string_mapping.cpp
${CMAKE_CURRENT_SOURCE_DIR}/ext_inst.cpp
${CMAKE_CURRENT_SOURCE_DIR}/extensions.cpp
${CMAKE_CURRENT_SOURCE_DIR}/id_descriptor.cpp
${CMAKE_CURRENT_SOURCE_DIR}/libspirv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/message.cpp
${CMAKE_CURRENT_SOURCE_DIR}/name_mapper.cpp
${CMAKE_CURRENT_SOURCE_DIR}/opcode.cpp
${CMAKE_CURRENT_SOURCE_DIR}/operand.cpp
${CMAKE_CURRENT_SOURCE_DIR}/parsed_operand.cpp
${CMAKE_CURRENT_SOURCE_DIR}/print.cpp
${CMAKE_CURRENT_SOURCE_DIR}/software_version.cpp
${CMAKE_CURRENT_SOURCE_DIR}/spirv_endian.cpp
${CMAKE_CURRENT_SOURCE_DIR}/spirv_stats.cpp
${CMAKE_CURRENT_SOURCE_DIR}/spirv_target_env.cpp
${CMAKE_CURRENT_SOURCE_DIR}/spirv_validator_options.cpp
${CMAKE_CURRENT_SOURCE_DIR}/table.cpp
${CMAKE_CURRENT_SOURCE_DIR}/text.cpp
${CMAKE_CURRENT_SOURCE_DIR}/text_handler.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_adjacency.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_arithmetics.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_atomics.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_barriers.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_bitwise.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_builtins.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_capability.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_cfg.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_composites.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_conversion.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_datarules.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_decorations.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_derivatives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_ext_inst.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_id.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_image.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_instruction.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_layout.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_literals.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_logicals.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_type_unique.cpp
${CMAKE_CURRENT_SOURCE_DIR}/val/decoration.h
${CMAKE_CURRENT_SOURCE_DIR}/val/basic_block.cpp
${CMAKE_CURRENT_SOURCE_DIR}/val/construct.cpp
${CMAKE_CURRENT_SOURCE_DIR}/val/function.cpp
${CMAKE_CURRENT_SOURCE_DIR}/val/instruction.cpp
${CMAKE_CURRENT_SOURCE_DIR}/val/validation_state.cpp)
if (${SPIRV_TIMER_ENABLED})
set(SPIRV_SOURCES
${SPIRV_SOURCES}
${CMAKE_CURRENT_SOURCE_DIR}/util/timer.cpp)
endif()
# The software_version.cpp file includes build-version.inc.
# Rebuild the software_version.cpp object file if it is older than
# build-version.inc or whenever build-version.inc itself is out of
# date. In the latter case, rebuild build-version.inc first.
# CMake is not smart enough to detect this dependency automatically.
# Without this, the dependency detection system for #included files
# does not kick in on a clean build for the following reason: The
# build will fail early because it doesn't know how to build the
# missing source file build-version.inc. That occurs before the
# preprocessor is run on software_version.cpp to detect the
# #include dependency.
set_source_files_properties(
${CMAKE_CURRENT_SOURCE_DIR}/software_version.cpp
PROPERTIES OBJECT_DEPENDS "${SPIRV_TOOLS_BUILD_VERSION_INC}")
add_library(${SPIRV_TOOLS} ${SPIRV_SOURCES})
spvtools_default_compile_options(${SPIRV_TOOLS})
target_include_directories(${SPIRV_TOOLS}
PUBLIC ${spirv-tools_SOURCE_DIR}/include
PRIVATE ${spirv-tools_BINARY_DIR}
PRIVATE ${SPIRV_HEADER_INCLUDE_DIR}
)
set_property(TARGET ${SPIRV_TOOLS} PROPERTY FOLDER "SPIRV-Tools libraries")
spvtools_check_symbol_exports(${SPIRV_TOOLS})
add_library(${SPIRV_TOOLS}-shared SHARED ${SPIRV_SOURCES})
spvtools_default_compile_options(${SPIRV_TOOLS}-shared)
target_include_directories(${SPIRV_TOOLS}-shared
PUBLIC ${spirv-tools_SOURCE_DIR}/include
PRIVATE ${spirv-tools_BINARY_DIR}
PRIVATE ${SPIRV_HEADER_INCLUDE_DIR}
)
set_target_properties(${SPIRV_TOOLS}-shared PROPERTIES CXX_VISIBILITY_PRESET hidden)
set_property(TARGET ${SPIRV_TOOLS}-shared PROPERTY FOLDER "SPIRV-Tools libraries")
spvtools_check_symbol_exports(${SPIRV_TOOLS}-shared)
target_compile_definitions(${SPIRV_TOOLS}-shared
PRIVATE SPIRV_TOOLS_IMPLEMENTATION
PUBLIC SPIRV_TOOLS_SHAREDLIB
)
if(ENABLE_SPIRV_TOOLS_INSTALL)
install(TARGETS ${SPIRV_TOOLS} ${SPIRV_TOOLS}-shared
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR})
endif(ENABLE_SPIRV_TOOLS_INSTALL)

View File

@ -0,0 +1,263 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "assembly_grammar.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include "ext_inst.h"
#include "opcode.h"
#include "operand.h"
#include "table.h"
namespace {
/// @brief Parses a mask expression string for the given operand type.
///
/// A mask expression is a sequence of one or more terms separated by '|',
/// where each term a named enum value for the given type. No whitespace
/// is permitted.
///
/// On success, the value is written to pValue.
///
/// @param[in] operandTable operand lookup table
/// @param[in] type of the operand
/// @param[in] textValue word of text to be parsed
/// @param[out] pValue where the resulting value is written
///
/// @return result code
spv_result_t spvTextParseMaskOperand(spv_target_env env,
const spv_operand_table operandTable,
const spv_operand_type_t type,
const char* textValue, uint32_t* pValue) {
if (textValue == nullptr) return SPV_ERROR_INVALID_TEXT;
size_t text_length = strlen(textValue);
if (text_length == 0) return SPV_ERROR_INVALID_TEXT;
const char* text_end = textValue + text_length;
// We only support mask expressions in ASCII, so the separator value is a
// char.
const char separator = '|';
// Accumulate the result by interpreting one word at a time, scanning
// from left to right.
uint32_t value = 0;
const char* begin = textValue; // The left end of the current word.
const char* end = nullptr; // One character past the end of the current word.
do {
end = std::find(begin, text_end, separator);
spv_operand_desc entry = nullptr;
if (spvOperandTableNameLookup(env, operandTable, type, begin, end - begin,
&entry)) {
return SPV_ERROR_INVALID_TEXT;
}
value |= entry->value;
// Advance to the next word by skipping over the separator.
begin = end + 1;
} while (end != text_end);
*pValue = value;
return SPV_SUCCESS;
}
// Associates an opcode with its name.
struct SpecConstantOpcodeEntry {
SpvOp opcode;
const char* name;
};
// All the opcodes allowed as the operation for OpSpecConstantOp.
// The name does not have the usual "Op" prefix. For example opcode SpvOpIAdd
// is associated with the name "IAdd".
//
// clang-format off
#define CASE(NAME) { SpvOp##NAME, #NAME }
const SpecConstantOpcodeEntry kOpSpecConstantOpcodes[] = {
// Conversion
CASE(SConvert),
CASE(FConvert),
CASE(ConvertFToS),
CASE(ConvertSToF),
CASE(ConvertFToU),
CASE(ConvertUToF),
CASE(UConvert),
CASE(ConvertPtrToU),
CASE(ConvertUToPtr),
CASE(GenericCastToPtr),
CASE(PtrCastToGeneric),
CASE(Bitcast),
CASE(QuantizeToF16),
// Arithmetic
CASE(SNegate),
CASE(Not),
CASE(IAdd),
CASE(ISub),
CASE(IMul),
CASE(UDiv),
CASE(SDiv),
CASE(UMod),
CASE(SRem),
CASE(SMod),
CASE(ShiftRightLogical),
CASE(ShiftRightArithmetic),
CASE(ShiftLeftLogical),
CASE(BitwiseOr),
CASE(BitwiseAnd),
CASE(BitwiseXor),
CASE(FNegate),
CASE(FAdd),
CASE(FSub),
CASE(FMul),
CASE(FDiv),
CASE(FRem),
CASE(FMod),
// Composite
CASE(VectorShuffle),
CASE(CompositeExtract),
CASE(CompositeInsert),
// Logical
CASE(LogicalOr),
CASE(LogicalAnd),
CASE(LogicalNot),
CASE(LogicalEqual),
CASE(LogicalNotEqual),
CASE(Select),
// Comparison
CASE(IEqual),
CASE(INotEqual),
CASE(ULessThan),
CASE(SLessThan),
CASE(UGreaterThan),
CASE(SGreaterThan),
CASE(ULessThanEqual),
CASE(SLessThanEqual),
CASE(UGreaterThanEqual),
CASE(SGreaterThanEqual),
// Memory
CASE(AccessChain),
CASE(InBoundsAccessChain),
CASE(PtrAccessChain),
CASE(InBoundsPtrAccessChain),
};
// The 59 is determined by counting the opcodes listed in the spec.
static_assert(59 == sizeof(kOpSpecConstantOpcodes)/sizeof(kOpSpecConstantOpcodes[0]),
"OpSpecConstantOp opcode table is incomplete");
#undef CASE
// clang-format on
const size_t kNumOpSpecConstantOpcodes =
sizeof(kOpSpecConstantOpcodes) / sizeof(kOpSpecConstantOpcodes[0]);
} // anonymous namespace
namespace libspirv {
bool AssemblyGrammar::isValid() const {
return operandTable_ && opcodeTable_ && extInstTable_;
}
CapabilitySet AssemblyGrammar::filterCapsAgainstTargetEnv(
const SpvCapability* cap_array, uint32_t count) const {
CapabilitySet cap_set;
for (uint32_t i = 0; i < count; ++i) {
spv_operand_desc cap_desc = {};
if (SPV_SUCCESS == lookupOperand(SPV_OPERAND_TYPE_CAPABILITY,
static_cast<uint32_t>(cap_array[i]),
&cap_desc)) {
// spvOperandTableValueLookup() filters capabilities internally
// according to the current target environment by itself. So we
// should be safe to add this capability if the lookup succeeds.
cap_set.Add(cap_array[i]);
}
}
return cap_set;
}
spv_result_t AssemblyGrammar::lookupOpcode(const char* name,
spv_opcode_desc* desc) const {
return spvOpcodeTableNameLookup(target_env_, opcodeTable_, name, desc);
}
spv_result_t AssemblyGrammar::lookupOpcode(SpvOp opcode,
spv_opcode_desc* desc) const {
return spvOpcodeTableValueLookup(target_env_, opcodeTable_, opcode, desc);
}
spv_result_t AssemblyGrammar::lookupOperand(spv_operand_type_t type,
const char* name, size_t name_len,
spv_operand_desc* desc) const {
return spvOperandTableNameLookup(target_env_, operandTable_, type, name,
name_len, desc);
}
spv_result_t AssemblyGrammar::lookupOperand(spv_operand_type_t type,
uint32_t operand,
spv_operand_desc* desc) const {
return spvOperandTableValueLookup(target_env_, operandTable_, type, operand,
desc);
}
spv_result_t AssemblyGrammar::lookupSpecConstantOpcode(const char* name,
SpvOp* opcode) const {
const auto* last = kOpSpecConstantOpcodes + kNumOpSpecConstantOpcodes;
const auto* found =
std::find_if(kOpSpecConstantOpcodes, last,
[name](const SpecConstantOpcodeEntry& entry) {
return 0 == strcmp(name, entry.name);
});
if (found == last) return SPV_ERROR_INVALID_LOOKUP;
*opcode = found->opcode;
return SPV_SUCCESS;
}
spv_result_t AssemblyGrammar::lookupSpecConstantOpcode(SpvOp opcode) const {
const auto* last = kOpSpecConstantOpcodes + kNumOpSpecConstantOpcodes;
const auto* found =
std::find_if(kOpSpecConstantOpcodes, last,
[opcode](const SpecConstantOpcodeEntry& entry) {
return opcode == entry.opcode;
});
if (found == last) return SPV_ERROR_INVALID_LOOKUP;
return SPV_SUCCESS;
}
spv_result_t AssemblyGrammar::parseMaskOperand(const spv_operand_type_t type,
const char* textValue,
uint32_t* pValue) const {
return spvTextParseMaskOperand(target_env_, operandTable_, type, textValue,
pValue);
}
spv_result_t AssemblyGrammar::lookupExtInst(spv_ext_inst_type_t type,
const char* textValue,
spv_ext_inst_desc* extInst) const {
return spvExtInstTableNameLookup(extInstTable_, type, textValue, extInst);
}
spv_result_t AssemblyGrammar::lookupExtInst(spv_ext_inst_type_t type,
uint32_t firstWord,
spv_ext_inst_desc* extInst) const {
return spvExtInstTableValueLookup(extInstTable_, type, firstWord, extInst);
}
void AssemblyGrammar::pushOperandTypesForMask(
const spv_operand_type_t type, const uint32_t mask,
spv_operand_pattern_t* pattern) const {
spvPushOperandTypesForMask(target_env_, operandTable_, type, mask, pattern);
}
} // namespace libspirv

View File

@ -0,0 +1,137 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_ASSEMBLY_GRAMMAR_H_
#define LIBSPIRV_ASSEMBLY_GRAMMAR_H_
#include "enum_set.h"
#include "latest_version_spirv_header.h"
#include "operand.h"
#include "spirv-tools/libspirv.h"
#include "table.h"
namespace libspirv {
// Encapsulates the grammar to use for SPIR-V assembly.
// Contains methods to query for valid instructions and operands.
class AssemblyGrammar {
public:
explicit AssemblyGrammar(const spv_const_context context)
: target_env_(context->target_env),
operandTable_(context->operand_table),
opcodeTable_(context->opcode_table),
extInstTable_(context->ext_inst_table) {}
// Returns true if the internal tables have been initialized with valid data.
bool isValid() const;
// Returns the SPIR-V target environment.
spv_target_env target_env() const { return target_env_; }
// Removes capabilities not available in the current target environment and
// returns the rest.
CapabilitySet filterCapsAgainstTargetEnv(const SpvCapability* cap_array,
uint32_t count) const;
// Fills in the desc parameter with the information about the opcode
// of the given name. Returns SPV_SUCCESS if the opcode was found, and
// SPV_ERROR_INVALID_LOOKUP if the opcode does not exist.
spv_result_t lookupOpcode(const char* name, spv_opcode_desc* desc) const;
// Fills in the desc parameter with the information about the opcode
// of the valid. Returns SPV_SUCCESS if the opcode was found, and
// SPV_ERROR_INVALID_LOOKUP if the opcode does not exist.
spv_result_t lookupOpcode(SpvOp opcode, spv_opcode_desc* desc) const;
// Fills in the desc parameter with the information about the given
// operand. Returns SPV_SUCCESS if the operand was found, and
// SPV_ERROR_INVALID_LOOKUP otherwise.
spv_result_t lookupOperand(spv_operand_type_t type, const char* name,
size_t name_len, spv_operand_desc* desc) const;
// Fills in the desc parameter with the information about the given
// operand. Returns SPV_SUCCESS if the operand was found, and
// SPV_ERROR_INVALID_LOOKUP otherwise.
spv_result_t lookupOperand(spv_operand_type_t type, uint32_t operand,
spv_operand_desc* desc) const;
// Finds operand entry in the grammar table and returns its name.
// Returns "Unknown" if not found.
const char* lookupOperandName(spv_operand_type_t type,
uint32_t operand) const {
spv_operand_desc desc = nullptr;
if (lookupOperand(type, operand, &desc) != SPV_SUCCESS || !desc) {
return "Unknown";
}
return desc->name;
}
// Finds the opcode for the given OpSpecConstantOp opcode name. The name
// should not have the "Op" prefix. For example, "IAdd" corresponds to
// the integer add opcode for OpSpecConstantOp. On success, returns
// SPV_SUCCESS and sends the discovered operation code through the opcode
// parameter. On failure, returns SPV_ERROR_INVALID_LOOKUP.
spv_result_t lookupSpecConstantOpcode(const char* name, SpvOp* opcode) const;
// Returns SPV_SUCCESS if the given opcode is valid as the opcode operand
// to OpSpecConstantOp.
spv_result_t lookupSpecConstantOpcode(SpvOp opcode) const;
// Parses a mask expression string for the given operand type.
//
// A mask expression is a sequence of one or more terms separated by '|',
// where each term is a named enum value for a given type. No whitespace
// is permitted.
//
// On success, the value is written to pValue, and SPV_SUCCESS is returned.
// The operand type is defined by the type parameter, and the text to be
// parsed is defined by the textValue parameter.
spv_result_t parseMaskOperand(const spv_operand_type_t type,
const char* textValue, uint32_t* pValue) const;
// Writes the extended operand with the given type and text to the *extInst
// parameter.
// Returns SPV_SUCCESS if the value could be found.
spv_result_t lookupExtInst(spv_ext_inst_type_t type, const char* textValue,
spv_ext_inst_desc* extInst) const;
// Writes the extended operand with the given type and first encoded word
// to the *extInst parameter.
// Returns SPV_SUCCESS if the value could be found.
spv_result_t lookupExtInst(spv_ext_inst_type_t type, uint32_t firstWord,
spv_ext_inst_desc* extInst) const;
// Inserts the operands expected after the given typed mask onto the end
// of the given pattern.
//
// Each set bit in the mask represents zero or more operand types that
// should be appended onto the pattern. Operands for a less significant
// bit must always match before operands for a more significant bit, so
// the operands for a less significant bit must appear closer to the end
// of the pattern stack.
//
// If a set bit is unknown, then we assume it has no operands.
void pushOperandTypesForMask(const spv_operand_type_t type,
const uint32_t mask,
spv_operand_pattern_t* pattern) const;
private:
const spv_target_env target_env_;
const spv_operand_table operandTable_;
const spv_opcode_table opcodeTable_;
const spv_ext_inst_table extInstTable_;
};
} // namespace libspirv
#endif // LIBSPIRV_ASSEMBLY_GRAMMAR_H_

789
3rdparty/spirv-tools/source/binary.cpp vendored Normal file
View File

@ -0,0 +1,789 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "binary.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <iterator>
#include <limits>
#include <unordered_map>
#include <vector>
#include "assembly_grammar.h"
#include "diagnostic.h"
#include "ext_inst.h"
#include "latest_version_spirv_header.h"
#include "opcode.h"
#include "operand.h"
#include "spirv_constant.h"
#include "spirv_endian.h"
spv_result_t spvBinaryHeaderGet(const spv_const_binary binary,
const spv_endianness_t endian,
spv_header_t* pHeader) {
if (!binary->code) return SPV_ERROR_INVALID_BINARY;
if (binary->wordCount < SPV_INDEX_INSTRUCTION)
return SPV_ERROR_INVALID_BINARY;
if (!pHeader) return SPV_ERROR_INVALID_POINTER;
// TODO: Validation checking?
pHeader->magic = spvFixWord(binary->code[SPV_INDEX_MAGIC_NUMBER], endian);
pHeader->version = spvFixWord(binary->code[SPV_INDEX_VERSION_NUMBER], endian);
pHeader->generator =
spvFixWord(binary->code[SPV_INDEX_GENERATOR_NUMBER], endian);
pHeader->bound = spvFixWord(binary->code[SPV_INDEX_BOUND], endian);
pHeader->schema = spvFixWord(binary->code[SPV_INDEX_SCHEMA], endian);
pHeader->instructions = &binary->code[SPV_INDEX_INSTRUCTION];
return SPV_SUCCESS;
}
namespace {
// A SPIR-V binary parser. A parser instance communicates detailed parse
// results via callbacks.
class Parser {
public:
// The user_data value is provided to the callbacks as context.
Parser(const spv_const_context context, void* user_data,
spv_parsed_header_fn_t parsed_header_fn,
spv_parsed_instruction_fn_t parsed_instruction_fn)
: grammar_(context),
consumer_(context->consumer),
user_data_(user_data),
parsed_header_fn_(parsed_header_fn),
parsed_instruction_fn_(parsed_instruction_fn) {}
// Parses the specified binary SPIR-V module, issuing callbacks on a parsed
// header and for each parsed instruction. Returns SPV_SUCCESS on success.
// Otherwise returns an error code and issues a diagnostic.
spv_result_t parse(const uint32_t* words, size_t num_words,
spv_diagnostic* diagnostic);
private:
// All remaining methods work on the current module parse state.
// Like the parse method, but works on the current module parse state.
spv_result_t parseModule();
// Parses an instruction at the current position of the binary. Assumes
// the header has been parsed, the endian has been set, and the word index is
// still in range. Advances the parsing position past the instruction, and
// updates other parsing state for the current module.
// On success, returns SPV_SUCCESS and issues the parsed-instruction callback.
// On failure, returns an error code and issues a diagnostic.
spv_result_t parseInstruction();
// Parses an instruction operand with the given type, for an instruction
// starting at inst_offset words into the SPIR-V binary.
// If the SPIR-V binary is the same endianness as the host, then the
// endian_converted_inst_words parameter is ignored. Otherwise, this method
// appends the words for this operand, converted to host native endianness,
// to the end of endian_converted_inst_words. This method also updates the
// expected_operands parameter, and the scalar members of the inst parameter.
// On success, returns SPV_SUCCESS, advances past the operand, and pushes a
// new entry on to the operands vector. Otherwise returns an error code and
// issues a diagnostic.
spv_result_t parseOperand(size_t inst_offset, spv_parsed_instruction_t* inst,
const spv_operand_type_t type,
std::vector<uint32_t>* endian_converted_inst_words,
std::vector<spv_parsed_operand_t>* operands,
spv_operand_pattern_t* expected_operands);
// Records the numeric type for an operand according to the type information
// associated with the given non-zero type Id. This can fail if the type Id
// is not a type Id, or if the type Id does not reference a scalar numeric
// type. On success, return SPV_SUCCESS and populates the num_words,
// number_kind, and number_bit_width fields of parsed_operand.
spv_result_t setNumericTypeInfoForType(spv_parsed_operand_t* parsed_operand,
uint32_t type_id);
// Records the number type for an instruction at the given offset, if that
// instruction generates a type. For types that aren't scalar numbers,
// record something with number kind SPV_NUMBER_NONE.
void recordNumberType(size_t inst_offset,
const spv_parsed_instruction_t* inst);
// Returns a diagnostic stream object initialized with current position in
// the input stream, and for the given error code. Any data written to the
// returned object will be propagated to the current parse's diagnostic
// object.
libspirv::DiagnosticStream diagnostic(spv_result_t error) {
return libspirv::DiagnosticStream({0, 0, _.word_index}, consumer_, error);
}
// Returns a diagnostic stream object with the default parse error code.
libspirv::DiagnosticStream diagnostic() {
// The default failure for parsing is invalid binary.
return diagnostic(SPV_ERROR_INVALID_BINARY);
}
// Issues a diagnostic describing an exhaustion of input condition when
// trying to decode an instruction operand, and returns
// SPV_ERROR_INVALID_BINARY.
spv_result_t exhaustedInputDiagnostic(size_t inst_offset, SpvOp opcode,
spv_operand_type_t type) {
return diagnostic() << "End of input reached while decoding Op"
<< spvOpcodeString(opcode) << " starting at word "
<< inst_offset
<< ((_.word_index < _.num_words) ? ": truncated "
: ": missing ")
<< spvOperandTypeStr(type) << " operand at word offset "
<< _.word_index - inst_offset << ".";
}
// Returns the endian-corrected word at the current position.
uint32_t peek() const { return peekAt(_.word_index); }
// Returns the endian-corrected word at the given position.
uint32_t peekAt(size_t index) const {
assert(index < _.num_words);
return spvFixWord(_.words[index], _.endian);
}
// Data members
const libspirv::AssemblyGrammar grammar_; // SPIR-V syntax utility.
const spvtools::MessageConsumer& consumer_; // Message consumer callback.
void* const user_data_; // Context for the callbacks
const spv_parsed_header_fn_t parsed_header_fn_; // Parsed header callback
const spv_parsed_instruction_fn_t
parsed_instruction_fn_; // Parsed instruction callback
// Describes the format of a typed literal number.
struct NumberType {
spv_number_kind_t type;
uint32_t bit_width;
};
// The state used to parse a single SPIR-V binary module.
struct State {
State(const uint32_t* words_arg, size_t num_words_arg,
spv_diagnostic* diagnostic_arg)
: words(words_arg),
num_words(num_words_arg),
diagnostic(diagnostic_arg),
word_index(0),
endian(),
requires_endian_conversion(false) {
// Temporary storage for parser state within a single instruction.
// Most instructions require fewer than 25 words or operands.
operands.reserve(25);
endian_converted_words.reserve(25);
expected_operands.reserve(25);
}
State() : State(0, 0, nullptr) {}
const uint32_t* words; // Words in the binary SPIR-V module.
size_t num_words; // Number of words in the module.
spv_diagnostic* diagnostic; // Where diagnostics go.
size_t word_index; // The current position in words.
spv_endianness_t endian; // The endianness of the binary.
// Is the SPIR-V binary in a different endiannes from the host native
// endianness?
bool requires_endian_conversion;
// Maps a result ID to its type ID. By convention:
// - a result ID that is a type definition maps to itself.
// - a result ID without a type maps to 0. (E.g. for OpLabel)
std::unordered_map<uint32_t, uint32_t> id_to_type_id;
// Maps a type ID to its number type description.
std::unordered_map<uint32_t, NumberType> type_id_to_number_type_info;
// Maps an ExtInstImport id to the extended instruction type.
std::unordered_map<uint32_t, spv_ext_inst_type_t>
import_id_to_ext_inst_type;
// Used by parseOperand
std::vector<spv_parsed_operand_t> operands;
std::vector<uint32_t> endian_converted_words;
spv_operand_pattern_t expected_operands;
} _;
};
spv_result_t Parser::parse(const uint32_t* words, size_t num_words,
spv_diagnostic* diagnostic_arg) {
_ = State(words, num_words, diagnostic_arg);
const spv_result_t result = parseModule();
// Clear the module state. The tables might be big.
_ = State();
return result;
}
spv_result_t Parser::parseModule() {
if (!_.words) return diagnostic() << "Missing module.";
if (_.num_words < SPV_INDEX_INSTRUCTION)
return diagnostic() << "Module has incomplete header: only " << _.num_words
<< " words instead of " << SPV_INDEX_INSTRUCTION;
// Check the magic number and detect the module's endianness.
spv_const_binary_t binary{_.words, _.num_words};
if (spvBinaryEndianness(&binary, &_.endian)) {
return diagnostic() << "Invalid SPIR-V magic number '" << std::hex
<< _.words[0] << "'.";
}
_.requires_endian_conversion = !spvIsHostEndian(_.endian);
// Process the header.
spv_header_t header;
if (spvBinaryHeaderGet(&binary, _.endian, &header)) {
// It turns out there is no way to trigger this error since the only
// failure cases are already handled above, with better messages.
return diagnostic(SPV_ERROR_INTERNAL)
<< "Internal error: unhandled header parse failure";
}
if (parsed_header_fn_) {
if (auto error = parsed_header_fn_(user_data_, _.endian, header.magic,
header.version, header.generator,
header.bound, header.schema)) {
return error;
}
}
// Process the instructions.
_.word_index = SPV_INDEX_INSTRUCTION;
while (_.word_index < _.num_words)
if (auto error = parseInstruction()) return error;
// Running off the end should already have been reported earlier.
assert(_.word_index == _.num_words);
return SPV_SUCCESS;
}
spv_result_t Parser::parseInstruction() {
// The zero values for all members except for opcode are the
// correct initial values.
spv_parsed_instruction_t inst = {};
const uint32_t first_word = peek();
// If the module's endianness is different from the host native endianness,
// then converted_words contains the the endian-translated words in the
// instruction.
_.endian_converted_words.clear();
_.endian_converted_words.push_back(first_word);
// After a successful parse of the instruction, the inst.operands member
// will point to this vector's storage.
_.operands.clear();
assert(_.word_index < _.num_words);
// Decompose and check the first word.
uint16_t inst_word_count = 0;
spvOpcodeSplit(first_word, &inst_word_count, &inst.opcode);
if (inst_word_count < 1) {
return diagnostic() << "Invalid instruction word count: "
<< inst_word_count;
}
spv_opcode_desc opcode_desc;
if (grammar_.lookupOpcode(static_cast<SpvOp>(inst.opcode), &opcode_desc))
return diagnostic() << "Invalid opcode: " << inst.opcode;
// Advance past the opcode word. But remember the of the start
// of the instruction.
const size_t inst_offset = _.word_index;
_.word_index++;
// Maintains the ordered list of expected operand types.
// For many instructions we only need the {numTypes, operandTypes}
// entries in opcode_desc. However, sometimes we need to modify
// the list as we parse the operands. This occurs when an operand
// has its own logical operands (such as the LocalSize operand for
// ExecutionMode), or for extended instructions that may have their
// own operands depending on the selected extended instruction.
_.expected_operands.clear();
for (auto i = 0; i < opcode_desc->numTypes; i++)
_.expected_operands.push_back(
opcode_desc->operandTypes[opcode_desc->numTypes - i - 1]);
while (_.word_index < inst_offset + inst_word_count) {
const uint16_t inst_word_index = uint16_t(_.word_index - inst_offset);
if (_.expected_operands.empty()) {
return diagnostic() << "Invalid instruction Op" << opcode_desc->name
<< " starting at word " << inst_offset
<< ": expected no more operands after "
<< inst_word_index
<< " words, but stated word count is "
<< inst_word_count << ".";
}
spv_operand_type_t type =
spvTakeFirstMatchableOperand(&_.expected_operands);
if (auto error =
parseOperand(inst_offset, &inst, type, &_.endian_converted_words,
&_.operands, &_.expected_operands)) {
return error;
}
}
if (!_.expected_operands.empty() &&
!spvOperandIsOptional(_.expected_operands.back())) {
return diagnostic() << "End of input reached while decoding Op"
<< opcode_desc->name << " starting at word "
<< inst_offset << ": expected more operands after "
<< inst_word_count << " words.";
}
if ((inst_offset + inst_word_count) != _.word_index) {
return diagnostic() << "Invalid word count: Op" << opcode_desc->name
<< " starting at word " << inst_offset
<< " says it has " << inst_word_count
<< " words, but found " << _.word_index - inst_offset
<< " words instead.";
}
// Check the computed length of the endian-converted words vector against
// the declared number of words in the instruction. If endian conversion
// is required, then they should match. If no endian conversion was
// performed, then the vector only contains the initial opcode/word-count
// word.
assert(!_.requires_endian_conversion ||
(inst_word_count == _.endian_converted_words.size()));
assert(_.requires_endian_conversion ||
(_.endian_converted_words.size() == 1));
recordNumberType(inst_offset, &inst);
if (_.requires_endian_conversion) {
// We must wait until here to set this pointer, because the vector might
// have been be resized while we accumulated its elements.
inst.words = _.endian_converted_words.data();
} else {
// If no conversion is required, then just point to the underlying binary.
// This saves time and space.
inst.words = _.words + inst_offset;
}
inst.num_words = inst_word_count;
// We must wait until here to set this pointer, because the vector might
// have been be resized while we accumulated its elements.
inst.operands = _.operands.data();
inst.num_operands = uint16_t(_.operands.size());
// Issue the callback. The callee should know that all the storage in inst
// is transient, and will disappear immediately afterward.
if (parsed_instruction_fn_) {
if (auto error = parsed_instruction_fn_(user_data_, &inst)) return error;
}
return SPV_SUCCESS;
}
spv_result_t Parser::parseOperand(size_t inst_offset,
spv_parsed_instruction_t* inst,
const spv_operand_type_t type,
std::vector<uint32_t>* words,
std::vector<spv_parsed_operand_t>* operands,
spv_operand_pattern_t* expected_operands) {
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
// We'll fill in this result as we go along.
spv_parsed_operand_t parsed_operand;
parsed_operand.offset = uint16_t(_.word_index - inst_offset);
// Most operands occupy one word. This might be be adjusted later.
parsed_operand.num_words = 1;
// The type argument is the one used by the grammar to parse the instruction.
// But it can exposes internal parser details such as whether an operand is
// optional or actually represents a variable-length sequence of operands.
// The resulting type should be adjusted to avoid those internal details.
// In most cases, the resulting operand type is the same as the grammar type.
parsed_operand.type = type;
// Assume non-numeric values. This will be updated for literal numbers.
parsed_operand.number_kind = SPV_NUMBER_NONE;
parsed_operand.number_bit_width = 0;
if (_.word_index >= _.num_words)
return exhaustedInputDiagnostic(inst_offset, opcode, type);
const uint32_t word = peek();
// Do the words in this operand have to be converted to native endianness?
// True for all but literal strings.
bool convert_operand_endianness = true;
switch (type) {
case SPV_OPERAND_TYPE_TYPE_ID:
if (!word)
return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Type Id is 0";
inst->type_id = word;
break;
case SPV_OPERAND_TYPE_RESULT_ID:
if (!word)
return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Result Id is 0";
inst->result_id = word;
// Save the result ID to type ID mapping.
// In the grammar, type ID always appears before result ID.
if (_.id_to_type_id.find(inst->result_id) != _.id_to_type_id.end())
return diagnostic(SPV_ERROR_INVALID_ID)
<< "Id " << inst->result_id << " is defined more than once";
// Record it.
// A regular value maps to its type. Some instructions (e.g. OpLabel)
// have no type Id, and will map to 0. The result Id for a
// type-generating instruction (e.g. OpTypeInt) maps to itself.
_.id_to_type_id[inst->result_id] =
spvOpcodeGeneratesType(opcode) ? inst->result_id : inst->type_id;
break;
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_OPTIONAL_ID:
if (!word) return diagnostic(SPV_ERROR_INVALID_ID) << "Id is 0";
parsed_operand.type = SPV_OPERAND_TYPE_ID;
if (opcode == SpvOpExtInst && parsed_operand.offset == 3) {
// The current word is the extended instruction set Id.
// Set the extended instruction set type for the current instruction.
auto ext_inst_type_iter = _.import_id_to_ext_inst_type.find(word);
if (ext_inst_type_iter == _.import_id_to_ext_inst_type.end()) {
return diagnostic(SPV_ERROR_INVALID_ID)
<< "OpExtInst set Id " << word
<< " does not reference an OpExtInstImport result Id";
}
inst->ext_inst_type = ext_inst_type_iter->second;
}
break;
case SPV_OPERAND_TYPE_SCOPE_ID:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID:
// Check for trivially invalid values. The operand descriptions already
// have the word "ID" in them.
if (!word) return diagnostic() << spvOperandTypeStr(type) << " is 0";
break;
case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: {
assert(SpvOpExtInst == opcode);
assert(inst->ext_inst_type != SPV_EXT_INST_TYPE_NONE);
spv_ext_inst_desc ext_inst;
if (grammar_.lookupExtInst(inst->ext_inst_type, word, &ext_inst))
return diagnostic() << "Invalid extended instruction number: " << word;
spvPushOperandTypes(ext_inst->operandTypes, expected_operands);
} break;
case SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER: {
assert(SpvOpSpecConstantOp == opcode);
if (grammar_.lookupSpecConstantOpcode(SpvOp(word))) {
return diagnostic()
<< "Invalid " << spvOperandTypeStr(type) << ": " << word;
}
spv_opcode_desc opcode_entry = nullptr;
if (grammar_.lookupOpcode(SpvOp(word), &opcode_entry)) {
return diagnostic(SPV_ERROR_INTERNAL)
<< "OpSpecConstant opcode table out of sync";
}
// OpSpecConstant opcodes must have a type and result. We've already
// processed them, so skip them when preparing to parse the other
// operants for the opcode.
assert(opcode_entry->hasType);
assert(opcode_entry->hasResult);
assert(opcode_entry->numTypes >= 2);
spvPushOperandTypes(opcode_entry->operandTypes + 2, expected_operands);
} break;
case SPV_OPERAND_TYPE_LITERAL_INTEGER:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER:
// These are regular single-word literal integer operands.
// Post-parsing validation should check the range of the parsed value.
parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_INTEGER;
// It turns out they are always unsigned integers!
parsed_operand.number_kind = SPV_NUMBER_UNSIGNED_INT;
parsed_operand.number_bit_width = 32;
break;
case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER:
case SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER:
parsed_operand.type = SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER;
if (opcode == SpvOpSwitch) {
// The literal operands have the same type as the value
// referenced by the selector Id.
const uint32_t selector_id = peekAt(inst_offset + 1);
const auto type_id_iter = _.id_to_type_id.find(selector_id);
if (type_id_iter == _.id_to_type_id.end() ||
type_id_iter->second == 0) {
return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
<< " has no type";
}
uint32_t type_id = type_id_iter->second;
if (selector_id == type_id) {
// Recall that by convention, a result ID that is a type definition
// maps to itself.
return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
<< " is a type, not a value";
}
if (auto error = setNumericTypeInfoForType(&parsed_operand, type_id))
return error;
if (parsed_operand.number_kind != SPV_NUMBER_UNSIGNED_INT &&
parsed_operand.number_kind != SPV_NUMBER_SIGNED_INT) {
return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
<< " is not a scalar integer";
}
} else {
assert(opcode == SpvOpConstant || opcode == SpvOpSpecConstant);
// The literal number type is determined by the type Id for the
// constant.
assert(inst->type_id);
if (auto error =
setNumericTypeInfoForType(&parsed_operand, inst->type_id))
return error;
}
break;
case SPV_OPERAND_TYPE_LITERAL_STRING:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING: {
convert_operand_endianness = false;
const char* string =
reinterpret_cast<const char*>(_.words + _.word_index);
// Compute the length of the string, but make sure we don't run off the
// end of the input.
const size_t remaining_input_bytes =
sizeof(uint32_t) * (_.num_words - _.word_index);
const size_t string_num_content_bytes =
spv_strnlen_s(string, remaining_input_bytes);
// If there was no terminating null byte, then that's an end-of-input
// error.
if (string_num_content_bytes == remaining_input_bytes)
return exhaustedInputDiagnostic(inst_offset, opcode, type);
// Account for null in the word length, so add 1 for null, then add 3 to
// make sure we round up. The following is equivalent to:
// (string_num_content_bytes + 1 + 3) / 4
const size_t string_num_words = string_num_content_bytes / 4 + 1;
// Make sure we can record the word count without overflow.
//
// This error can't currently be triggered because of validity
// checks elsewhere.
if (string_num_words > std::numeric_limits<uint16_t>::max()) {
return diagnostic() << "Literal string is longer than "
<< std::numeric_limits<uint16_t>::max()
<< " words: " << string_num_words << " words long";
}
parsed_operand.num_words = uint16_t(string_num_words);
parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_STRING;
if (SpvOpExtInstImport == opcode) {
// Record the extended instruction type for the ID for this import.
// There is only one string literal argument to OpExtInstImport,
// so it's sufficient to guard this just on the opcode.
const spv_ext_inst_type_t ext_inst_type =
spvExtInstImportTypeGet(string);
if (SPV_EXT_INST_TYPE_NONE == ext_inst_type) {
return diagnostic()
<< "Invalid extended instruction import '" << string << "'";
}
// We must have parsed a valid result ID. It's a condition
// of the grammar, and we only accept non-zero result Ids.
assert(inst->result_id);
_.import_id_to_ext_inst_type[inst->result_id] = ext_inst_type;
}
} break;
case SPV_OPERAND_TYPE_CAPABILITY:
case SPV_OPERAND_TYPE_SOURCE_LANGUAGE:
case SPV_OPERAND_TYPE_EXECUTION_MODEL:
case SPV_OPERAND_TYPE_ADDRESSING_MODEL:
case SPV_OPERAND_TYPE_MEMORY_MODEL:
case SPV_OPERAND_TYPE_EXECUTION_MODE:
case SPV_OPERAND_TYPE_STORAGE_CLASS:
case SPV_OPERAND_TYPE_DIMENSIONALITY:
case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE:
case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE:
case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT:
case SPV_OPERAND_TYPE_FP_ROUNDING_MODE:
case SPV_OPERAND_TYPE_LINKAGE_TYPE:
case SPV_OPERAND_TYPE_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE:
case SPV_OPERAND_TYPE_DECORATION:
case SPV_OPERAND_TYPE_BUILT_IN:
case SPV_OPERAND_TYPE_GROUP_OPERATION:
case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS:
case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO:
case SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING:
case SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE:
case SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER:
case SPV_OPERAND_TYPE_DEBUG_OPERATION: {
// A single word that is a plain enum value.
// Map an optional operand type to its corresponding concrete type.
if (type == SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER)
parsed_operand.type = SPV_OPERAND_TYPE_ACCESS_QUALIFIER;
spv_operand_desc entry;
if (grammar_.lookupOperand(type, word, &entry)) {
return diagnostic()
<< "Invalid " << spvOperandTypeStr(parsed_operand.type)
<< " operand: " << word;
}
// Prepare to accept operands to this operand, if needed.
spvPushOperandTypes(entry->operandTypes, expected_operands);
} break;
case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE:
case SPV_OPERAND_TYPE_FUNCTION_CONTROL:
case SPV_OPERAND_TYPE_LOOP_CONTROL:
case SPV_OPERAND_TYPE_IMAGE:
case SPV_OPERAND_TYPE_OPTIONAL_IMAGE:
case SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS:
case SPV_OPERAND_TYPE_SELECTION_CONTROL:
case SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS: {
// This operand is a mask.
// Map an optional operand type to its corresponding concrete type.
if (type == SPV_OPERAND_TYPE_OPTIONAL_IMAGE)
parsed_operand.type = SPV_OPERAND_TYPE_IMAGE;
else if (type == SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS)
parsed_operand.type = SPV_OPERAND_TYPE_MEMORY_ACCESS;
// Check validity of set mask bits. Also prepare for operands for those
// masks if they have any. To get operand order correct, scan from
// MSB to LSB since we can only prepend operands to a pattern.
// The only case in the grammar where you have more than one mask bit
// having an operand is for image operands. See SPIR-V 3.14 Image
// Operands.
uint32_t remaining_word = word;
for (uint32_t mask = (1u << 31); remaining_word; mask >>= 1) {
if (remaining_word & mask) {
spv_operand_desc entry;
if (grammar_.lookupOperand(type, mask, &entry)) {
return diagnostic()
<< "Invalid " << spvOperandTypeStr(parsed_operand.type)
<< " operand: " << word << " has invalid mask component "
<< mask;
}
remaining_word ^= mask;
spvPushOperandTypes(entry->operandTypes, expected_operands);
}
}
if (word == 0) {
// An all-zeroes mask *might* also be valid.
spv_operand_desc entry;
if (SPV_SUCCESS == grammar_.lookupOperand(type, 0, &entry)) {
// Prepare for its operands, if any.
spvPushOperandTypes(entry->operandTypes, expected_operands);
}
}
} break;
default:
return diagnostic() << "Internal error: Unhandled operand type: " << type;
}
assert(spvOperandIsConcrete(parsed_operand.type));
operands->push_back(parsed_operand);
const size_t index_after_operand = _.word_index + parsed_operand.num_words;
// Avoid buffer overrun for the cases where the operand has more than one
// word, and where it isn't a string. (Those other cases have already been
// handled earlier.) For example, this error can occur for a multi-word
// argument to OpConstant, or a multi-word case literal operand for OpSwitch.
if (_.num_words < index_after_operand)
return exhaustedInputDiagnostic(inst_offset, opcode, type);
if (_.requires_endian_conversion) {
// Copy instruction words. Translate to native endianness as needed.
if (convert_operand_endianness) {
const spv_endianness_t endianness = _.endian;
std::transform(_.words + _.word_index, _.words + index_after_operand,
std::back_inserter(*words),
[endianness](const uint32_t raw_word) {
return spvFixWord(raw_word, endianness);
});
} else {
words->insert(words->end(), _.words + _.word_index,
_.words + index_after_operand);
}
}
// Advance past the operand.
_.word_index = index_after_operand;
return SPV_SUCCESS;
}
spv_result_t Parser::setNumericTypeInfoForType(
spv_parsed_operand_t* parsed_operand, uint32_t type_id) {
assert(type_id != 0);
auto type_info_iter = _.type_id_to_number_type_info.find(type_id);
if (type_info_iter == _.type_id_to_number_type_info.end()) {
return diagnostic() << "Type Id " << type_id << " is not a type";
}
const NumberType& info = type_info_iter->second;
if (info.type == SPV_NUMBER_NONE) {
// This is a valid type, but for something other than a scalar number.
return diagnostic() << "Type Id " << type_id
<< " is not a scalar numeric type";
}
parsed_operand->number_kind = info.type;
parsed_operand->number_bit_width = info.bit_width;
// Round up the word count.
parsed_operand->num_words = static_cast<uint16_t>((info.bit_width + 31) / 32);
return SPV_SUCCESS;
}
void Parser::recordNumberType(size_t inst_offset,
const spv_parsed_instruction_t* inst) {
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
if (spvOpcodeGeneratesType(opcode)) {
NumberType info = {SPV_NUMBER_NONE, 0};
if (SpvOpTypeInt == opcode) {
const bool is_signed = peekAt(inst_offset + 3) != 0;
info.type = is_signed ? SPV_NUMBER_SIGNED_INT : SPV_NUMBER_UNSIGNED_INT;
info.bit_width = peekAt(inst_offset + 2);
} else if (SpvOpTypeFloat == opcode) {
info.type = SPV_NUMBER_FLOATING;
info.bit_width = peekAt(inst_offset + 2);
}
// The *result* Id of a type generating instruction is the type Id.
_.type_id_to_number_type_info[inst->result_id] = info;
}
}
} // anonymous namespace
spv_result_t spvBinaryParse(const spv_const_context context, void* user_data,
const uint32_t* code, const size_t num_words,
spv_parsed_header_fn_t parsed_header,
spv_parsed_instruction_fn_t parsed_instruction,
spv_diagnostic* diagnostic) {
spv_context_t hijack_context = *context;
if (diagnostic) {
*diagnostic = nullptr;
libspirv::UseDiagnosticAsMessageConsumer(&hijack_context, diagnostic);
}
Parser parser(&hijack_context, user_data, parsed_header, parsed_instruction);
return parser.parse(code, num_words, diagnostic);
}
// TODO(dneto): This probably belongs in text.cpp since that's the only place
// that a spv_binary_t value is created.
void spvBinaryDestroy(spv_binary binary) {
if (!binary) return;
delete[] binary->code;
delete binary;
}
size_t spv_strnlen_s(const char* str, size_t strsz) {
if (!str) return 0;
for (size_t i = 0; i < strsz; i++) {
if (!str[i]) return i;
}
return strsz;
}

36
3rdparty/spirv-tools/source/binary.h vendored Normal file
View File

@ -0,0 +1,36 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_BINARY_H_
#define LIBSPIRV_BINARY_H_
#include "spirv-tools/libspirv.h"
#include "spirv_definition.h"
// Functions
// Grabs the header from the SPIR-V module given in the binary parameter. The
// endian parameter specifies the endianness of the binary module. On success,
// returns SPV_SUCCESS and writes the parsed header into *header.
spv_result_t spvBinaryHeaderGet(const spv_const_binary binary,
const spv_endianness_t endian,
spv_header_t* header);
// Returns the number of non-null characters in str before the first null
// character, or strsz if there is no null character. Examines at most the
// first strsz characters in str. Returns 0 if str is nullptr. This is a
// replacement for C11's strnlen_s which might not exist in all environments.
size_t spv_strnlen_s(const char* str, size_t strsz);
#endif // LIBSPIRV_BINARY_H_

338
3rdparty/spirv-tools/source/cfa.h vendored Normal file
View File

@ -0,0 +1,338 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPVTOOLS_CFA_H_
#define SPVTOOLS_CFA_H_
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <map>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using std::find;
using std::function;
using std::get;
using std::pair;
using std::unordered_map;
using std::unordered_set;
using std::vector;
namespace spvtools {
// Control Flow Analysis of control flow graphs of basic block nodes |BB|.
template <class BB>
class CFA {
using bb_ptr = BB*;
using cbb_ptr = const BB*;
using bb_iter = typename std::vector<BB*>::const_iterator;
using get_blocks_func = std::function<const std::vector<BB*>*(const BB*)>;
struct block_info {
cbb_ptr block; ///< pointer to the block
bb_iter iter; ///< Iterator to the current child node being processed
};
/// Returns true if a block with @p id is found in the @p work_list vector
///
/// @param[in] work_list Set of blocks visited in the the depth first
/// traversal
/// of the CFG
/// @param[in] id The ID of the block being checked
///
/// @return true if the edge work_list.back().block->id() => id is a back-edge
static bool FindInWorkList(const std::vector<block_info>& work_list,
uint32_t id);
public:
/// @brief Depth first traversal starting from the \p entry BasicBlock
///
/// This function performs a depth first traversal from the \p entry
/// BasicBlock and calls the pre/postorder functions when it needs to process
/// the node in pre order, post order. It also calls the backedge function
/// when a back edge is encountered.
///
/// @param[in] entry The root BasicBlock of a CFG
/// @param[in] successor_func A function which will return a pointer to the
/// successor nodes
/// @param[in] preorder A function that will be called for every block in a
/// CFG following preorder traversal semantics
/// @param[in] postorder A function that will be called for every block in a
/// CFG following postorder traversal semantics
/// @param[in] backedge A function that will be called when a backedge is
/// encountered during a traversal
/// NOTE: The @p successor_func and predecessor_func each return a pointer to
/// a
/// collection such that iterators to that collection remain valid for the
/// lifetime of the algorithm.
static void DepthFirstTraversal(
const BB* entry, get_blocks_func successor_func,
std::function<void(cbb_ptr)> preorder,
std::function<void(cbb_ptr)> postorder,
std::function<void(cbb_ptr, cbb_ptr)> backedge);
/// @brief Calculates dominator edges for a set of blocks
///
/// Computes dominators using the algorithm of Cooper, Harvey, and Kennedy
/// "A Simple, Fast Dominance Algorithm", 2001.
///
/// The algorithm assumes there is a unique root node (a node without
/// predecessors), and it is therefore at the end of the postorder vector.
///
/// This function calculates the dominator edges for a set of blocks in the
/// CFG.
/// Uses the dominator algorithm by Cooper et al.
///
/// @param[in] postorder A vector of blocks in post order traversal
/// order
/// in a CFG
/// @param[in] predecessor_func Function used to get the predecessor nodes of
/// a
/// block
///
/// @return the dominator tree of the graph, as a vector of pairs of nodes.
/// The first node in the pair is a node in the graph. The second node in the
/// pair is its immediate dominator in the sense of Cooper et.al., where a
/// block
/// without predecessors (such as the root node) is its own immediate
/// dominator.
static vector<pair<BB*, BB*>> CalculateDominators(
const vector<cbb_ptr>& postorder, get_blocks_func predecessor_func);
// Computes a minimal set of root nodes required to traverse, in the forward
// direction, the CFG represented by the given vector of blocks, and successor
// and predecessor functions. When considering adding two nodes, each having
// predecessors, favour using the one that appears earlier on the input blocks
// list.
static std::vector<BB*> TraversalRoots(const std::vector<BB*>& blocks,
get_blocks_func succ_func,
get_blocks_func pred_func);
static void ComputeAugmentedCFG(
std::vector<BB*>& ordered_blocks, BB* pseudo_entry_block,
BB* pseudo_exit_block,
std::unordered_map<const BB*, std::vector<BB*>>* augmented_successors_map,
std::unordered_map<const BB*, std::vector<BB*>>*
augmented_predecessors_map,
get_blocks_func succ_func, get_blocks_func pred_func);
};
template <class BB>
bool CFA<BB>::FindInWorkList(const vector<block_info>& work_list, uint32_t id) {
for (const auto b : work_list) {
if (b.block->id() == id) return true;
}
return false;
}
template <class BB>
void CFA<BB>::DepthFirstTraversal(const BB* entry,
get_blocks_func successor_func,
function<void(cbb_ptr)> preorder,
function<void(cbb_ptr)> postorder,
function<void(cbb_ptr, cbb_ptr)> backedge) {
unordered_set<uint32_t> processed;
/// NOTE: work_list is the sequence of nodes from the root node to the node
/// being processed in the traversal
vector<block_info> work_list;
work_list.reserve(10);
work_list.push_back({entry, begin(*successor_func(entry))});
preorder(entry);
processed.insert(entry->id());
while (!work_list.empty()) {
block_info& top = work_list.back();
if (top.iter == end(*successor_func(top.block))) {
postorder(top.block);
work_list.pop_back();
} else {
BB* child = *top.iter;
top.iter++;
if (FindInWorkList(work_list, child->id())) {
backedge(top.block, child);
}
if (processed.count(child->id()) == 0) {
preorder(child);
work_list.emplace_back(
block_info{child, begin(*successor_func(child))});
processed.insert(child->id());
}
}
}
}
template <class BB>
vector<pair<BB*, BB*>> CFA<BB>::CalculateDominators(
const vector<cbb_ptr>& postorder, get_blocks_func predecessor_func) {
struct block_detail {
size_t dominator; ///< The index of blocks's dominator in post order array
size_t postorder_index; ///< The index of the block in the post order array
};
const size_t undefined_dom = postorder.size();
unordered_map<cbb_ptr, block_detail> idoms;
for (size_t i = 0; i < postorder.size(); i++) {
idoms[postorder[i]] = {undefined_dom, i};
}
idoms[postorder.back()].dominator = idoms[postorder.back()].postorder_index;
bool changed = true;
while (changed) {
changed = false;
for (auto b = postorder.rbegin() + 1; b != postorder.rend(); ++b) {
const vector<BB*>& predecessors = *predecessor_func(*b);
// Find the first processed/reachable predecessor that is reachable
// in the forward traversal.
auto res = find_if(begin(predecessors), end(predecessors),
[&idoms, undefined_dom](BB* pred) {
return idoms.count(pred) &&
idoms[pred].dominator != undefined_dom;
});
if (res == end(predecessors)) continue;
const BB* idom = *res;
size_t idom_idx = idoms[idom].postorder_index;
// all other predecessors
for (const auto* p : predecessors) {
if (idom == p) continue;
// Only consider nodes reachable in the forward traversal.
// Otherwise the intersection doesn't make sense and will never
// terminate.
if (!idoms.count(p)) continue;
if (idoms[p].dominator != undefined_dom) {
size_t finger1 = idoms[p].postorder_index;
size_t finger2 = idom_idx;
while (finger1 != finger2) {
while (finger1 < finger2) {
finger1 = idoms[postorder[finger1]].dominator;
}
while (finger2 < finger1) {
finger2 = idoms[postorder[finger2]].dominator;
}
}
idom_idx = finger1;
}
}
if (idoms[*b].dominator != idom_idx) {
idoms[*b].dominator = idom_idx;
changed = true;
}
}
}
vector<pair<bb_ptr, bb_ptr>> out;
for (auto idom : idoms) {
// NOTE: performing a const cast for convenient usage with
// UpdateImmediateDominators
out.push_back({const_cast<BB*>(get<0>(idom)),
const_cast<BB*>(postorder[get<1>(idom).dominator])});
}
return out;
}
template <class BB>
std::vector<BB*> CFA<BB>::TraversalRoots(const std::vector<BB*>& blocks,
get_blocks_func succ_func,
get_blocks_func pred_func) {
// The set of nodes which have been visited from any of the roots so far.
std::unordered_set<const BB*> visited;
auto mark_visited = [&visited](const BB* b) { visited.insert(b); };
auto ignore_block = [](const BB*) {};
auto ignore_blocks = [](const BB*, const BB*) {};
auto traverse_from_root = [&mark_visited, &succ_func, &ignore_block,
&ignore_blocks](const BB* entry) {
DepthFirstTraversal(entry, succ_func, mark_visited, ignore_block,
ignore_blocks);
};
std::vector<BB*> result;
// First collect nodes without predecessors.
for (auto block : blocks) {
if (pred_func(block)->empty()) {
assert(visited.count(block) == 0 && "Malformed graph!");
result.push_back(block);
traverse_from_root(block);
}
}
// Now collect other stranded nodes. These must be in unreachable cycles.
for (auto block : blocks) {
if (visited.count(block) == 0) {
result.push_back(block);
traverse_from_root(block);
}
}
return result;
}
template <class BB>
void CFA<BB>::ComputeAugmentedCFG(
std::vector<BB*>& ordered_blocks, BB* pseudo_entry_block,
BB* pseudo_exit_block,
std::unordered_map<const BB*, std::vector<BB*>>* augmented_successors_map,
std::unordered_map<const BB*, std::vector<BB*>>* augmented_predecessors_map,
get_blocks_func succ_func, get_blocks_func pred_func) {
// Compute the successors of the pseudo-entry block, and
// the predecessors of the pseudo exit block.
auto sources = TraversalRoots(ordered_blocks, succ_func, pred_func);
// For the predecessor traversals, reverse the order of blocks. This
// will affect the post-dominance calculation as follows:
// - Suppose you have blocks A and B, with A appearing before B in
// the list of blocks.
// - Also, A branches only to B, and B branches only to A.
// - We want to compute A as dominating B, and B as post-dominating B.
// By using reversed blocks for predecessor traversal roots discovery,
// we'll add an edge from B to the pseudo-exit node, rather than from A.
// All this is needed to correctly process the dominance/post-dominance
// constraint when A is a loop header that points to itself as its
// own continue target, and B is the latch block for the loop.
std::vector<BB*> reversed_blocks(ordered_blocks.rbegin(),
ordered_blocks.rend());
auto sinks = TraversalRoots(reversed_blocks, pred_func, succ_func);
// Wire up the pseudo entry block.
(*augmented_successors_map)[pseudo_entry_block] = sources;
for (auto block : sources) {
auto& augmented_preds = (*augmented_predecessors_map)[block];
const auto preds = pred_func(block);
augmented_preds.reserve(1 + preds->size());
augmented_preds.push_back(pseudo_entry_block);
augmented_preds.insert(augmented_preds.end(), preds->begin(), preds->end());
}
// Wire up the pseudo exit block.
(*augmented_predecessors_map)[pseudo_exit_block] = sinks;
for (auto block : sinks) {
auto& augmented_succ = (*augmented_successors_map)[block];
const auto succ = succ_func(block);
augmented_succ.reserve(1 + succ->size());
augmented_succ.push_back(pseudo_exit_block);
augmented_succ.insert(augmented_succ.end(), succ->begin(), succ->end());
}
}
} // namespace spvtools
#endif // SPVTOOLS_CFA_H_

View File

@ -0,0 +1,38 @@
# Copyright (c) 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
if(SPIRV_BUILD_COMPRESSION)
add_library(SPIRV-Tools-comp markv_codec.cpp)
spvtools_default_compile_options(SPIRV-Tools-comp)
target_include_directories(SPIRV-Tools-comp
PUBLIC ${spirv-tools_SOURCE_DIR}/include
PUBLIC ${SPIRV_HEADER_INCLUDE_DIR}
PRIVATE ${spirv-tools_BINARY_DIR}
)
target_link_libraries(SPIRV-Tools-comp
PUBLIC ${SPIRV_TOOLS})
set_property(TARGET SPIRV-Tools-comp PROPERTY FOLDER "SPIRV-Tools libraries")
spvtools_check_symbol_exports(SPIRV-Tools-comp)
if(ENABLE_SPIRV_TOOLS_INSTALL)
install(TARGETS SPIRV-Tools-comp
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR})
endif(ENABLE_SPIRV_TOOLS_INSTALL)
endif(SPIRV_BUILD_COMPRESSION)

View File

@ -0,0 +1,74 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// MARK-V is a compression format for SPIR-V binaries. It strips away
// non-essential information (such as result ids which can be regenerated) and
// uses various bit reduction techiniques to reduce the size of the binary and
// make it more similar to other compressed SPIR-V files to further improve
// compression of the dataset.
#ifndef SPIRV_TOOLS_MARKV_HPP_
#define SPIRV_TOOLS_MARKV_HPP_
#include <string>
#include <vector>
#include "markv_model.h"
#include "spirv-tools/libspirv.hpp"
namespace spvtools {
struct MarkvCodecOptions {
bool validate_spirv_binary = false;
};
// Debug callback. Called once per instruction.
// |words| is instruction SPIR-V words.
// |bits| is a textual representation of the MARK-V bit sequence used to encode
// the instruction (char '0' for 0, char '1' for 1).
// |comment| contains all logs generated while processing the instruction.
using MarkvDebugConsumer =
std::function<bool(const std::vector<uint32_t>& words,
const std::string& bits, const std::string& comment)>;
// Logging callback. Called often (if decoder reads a single bit, the log
// consumer will receive 1 character string with that bit).
// This callback is more suitable for continous output than MarkvDebugConsumer,
// for example if the codec crashes it would allow to pinpoint on which operand
// or bit the crash happened.
// |snippet| could be any atomic fragment of text logged by the codec. It can
// contain a paragraph of text with newlines, or can be just one character.
using MarkvLogConsumer = std::function<void(const std::string& snippet)>;
// Encodes the given SPIR-V binary to MARK-V binary.
// |log_consumer| is optional (pass MarkvLogConsumer() to disable).
// |debug_consumer| is optional (pass MarkvDebugConsumer() to disable).
spv_result_t SpirvToMarkv(
spv_const_context context, const std::vector<uint32_t>& spirv,
const MarkvCodecOptions& options, const MarkvModel& markv_model,
MessageConsumer message_consumer, MarkvLogConsumer log_consumer,
MarkvDebugConsumer debug_consumer, std::vector<uint8_t>* markv);
// Decodes a SPIR-V binary from the given MARK-V binary.
// |log_consumer| is optional (pass MarkvLogConsumer() to disable).
// |debug_consumer| is optional (pass MarkvDebugConsumer() to disable).
spv_result_t MarkvToSpirv(
spv_const_context context, const std::vector<uint8_t>& markv,
const MarkvCodecOptions& options, const MarkvModel& markv_model,
MessageConsumer message_consumer, MarkvLogConsumer log_consumer,
MarkvDebugConsumer debug_consumer, std::vector<uint32_t>* spirv);
} // namespace spvtools
#endif // SPIRV_TOOLS_MARKV_HPP_

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,232 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_COMP_MARKV_MODEL_H_
#define LIBSPIRV_COMP_MARKV_MODEL_H_
#include <map>
#include <unordered_set>
#include <vector>
#include "latest_version_spirv_header.h"
#include "spirv-tools/libspirv.h"
#include "util/huffman_codec.h"
namespace spvtools {
// Base class for MARK-V models.
// The class contains encoding/decoding model with various constants and
// codecs used by the compression algorithm.
class MarkvModel {
public:
MarkvModel()
: operand_chunk_lengths_(
static_cast<size_t>(SPV_OPERAND_TYPE_NUM_OPERAND_TYPES), 0) {
// Set default values.
operand_chunk_lengths_[SPV_OPERAND_TYPE_TYPE_ID] = 4;
operand_chunk_lengths_[SPV_OPERAND_TYPE_RESULT_ID] = 8;
operand_chunk_lengths_[SPV_OPERAND_TYPE_ID] = 8;
operand_chunk_lengths_[SPV_OPERAND_TYPE_SCOPE_ID] = 8;
operand_chunk_lengths_[SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID] = 8;
operand_chunk_lengths_[SPV_OPERAND_TYPE_LITERAL_INTEGER] = 6;
operand_chunk_lengths_[SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER] = 6;
operand_chunk_lengths_[SPV_OPERAND_TYPE_CAPABILITY] = 6;
operand_chunk_lengths_[SPV_OPERAND_TYPE_SOURCE_LANGUAGE] = 3;
operand_chunk_lengths_[SPV_OPERAND_TYPE_EXECUTION_MODEL] = 3;
operand_chunk_lengths_[SPV_OPERAND_TYPE_ADDRESSING_MODEL] = 2;
operand_chunk_lengths_[SPV_OPERAND_TYPE_MEMORY_MODEL] = 2;
operand_chunk_lengths_[SPV_OPERAND_TYPE_EXECUTION_MODE] = 6;
operand_chunk_lengths_[SPV_OPERAND_TYPE_STORAGE_CLASS] = 4;
operand_chunk_lengths_[SPV_OPERAND_TYPE_DIMENSIONALITY] = 3;
operand_chunk_lengths_[SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE] = 3;
operand_chunk_lengths_[SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE] = 2;
operand_chunk_lengths_[SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT] = 6;
operand_chunk_lengths_[SPV_OPERAND_TYPE_FP_ROUNDING_MODE] = 2;
operand_chunk_lengths_[SPV_OPERAND_TYPE_LINKAGE_TYPE] = 2;
operand_chunk_lengths_[SPV_OPERAND_TYPE_ACCESS_QUALIFIER] = 2;
operand_chunk_lengths_[SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER] = 2;
operand_chunk_lengths_[SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE] = 3;
operand_chunk_lengths_[SPV_OPERAND_TYPE_DECORATION] = 6;
operand_chunk_lengths_[SPV_OPERAND_TYPE_BUILT_IN] = 6;
operand_chunk_lengths_[SPV_OPERAND_TYPE_GROUP_OPERATION] = 2;
operand_chunk_lengths_[SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS] = 2;
operand_chunk_lengths_[SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO] = 2;
operand_chunk_lengths_[SPV_OPERAND_TYPE_FP_FAST_MATH_MODE] = 4;
operand_chunk_lengths_[SPV_OPERAND_TYPE_FUNCTION_CONTROL] = 4;
operand_chunk_lengths_[SPV_OPERAND_TYPE_LOOP_CONTROL] = 4;
operand_chunk_lengths_[SPV_OPERAND_TYPE_IMAGE] = 4;
operand_chunk_lengths_[SPV_OPERAND_TYPE_OPTIONAL_IMAGE] = 4;
operand_chunk_lengths_[SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS] = 4;
operand_chunk_lengths_[SPV_OPERAND_TYPE_SELECTION_CONTROL] = 4;
operand_chunk_lengths_[SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER] = 6;
operand_chunk_lengths_[SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER] = 6;
}
uint32_t model_type() const { return model_type_; }
uint32_t model_version() const { return model_version_; }
uint32_t opcode_chunk_length() const { return opcode_chunk_length_; }
uint32_t num_operands_chunk_length() const {
return num_operands_chunk_length_;
}
uint32_t mtf_rank_chunk_length() const { return mtf_rank_chunk_length_; }
uint32_t u64_chunk_length() const { return u64_chunk_length_; }
uint32_t s64_chunk_length() const { return s64_chunk_length_; }
uint32_t s64_block_exponent() const { return s64_block_exponent_; }
enum class IdFallbackStrategy {
kRuleBased = 0,
kShortDescriptor,
};
IdFallbackStrategy id_fallback_strategy() const {
return id_fallback_strategy_;
}
// Returns a codec for common opcode_and_num_operands words for the given
// previous opcode. May return nullptr if the codec doesn't exist.
const spvutils::HuffmanCodec<uint64_t>*
GetOpcodeAndNumOperandsMarkovHuffmanCodec(uint32_t prev_opcode) const {
if (prev_opcode == SpvOpNop)
return opcode_and_num_operands_huffman_codec_.get();
const auto it =
opcode_and_num_operands_markov_huffman_codecs_.find(prev_opcode);
if (it == opcode_and_num_operands_markov_huffman_codecs_.end())
return nullptr;
return it->second.get();
}
// Returns a codec for common non-id words used for given operand slot.
// Operand slot is defined by the opcode and the operand index.
// May return nullptr if the codec doesn't exist.
const spvutils::HuffmanCodec<uint64_t>* GetNonIdWordHuffmanCodec(
uint32_t opcode, uint32_t operand_index) const {
const auto it = non_id_word_huffman_codecs_.find(
std::pair<uint32_t, uint32_t>(opcode, operand_index));
if (it == non_id_word_huffman_codecs_.end()) return nullptr;
return it->second.get();
}
// Returns a codec for common id descriptos used for given operand slot.
// Operand slot is defined by the opcode and the operand index.
// May return nullptr if the codec doesn't exist.
const spvutils::HuffmanCodec<uint64_t>* GetIdDescriptorHuffmanCodec(
uint32_t opcode, uint32_t operand_index) const {
const auto it = id_descriptor_huffman_codecs_.find(
std::pair<uint32_t, uint32_t>(opcode, operand_index));
if (it == id_descriptor_huffman_codecs_.end()) return nullptr;
return it->second.get();
}
// Returns a codec for common strings used by the given opcode.
// Operand slot is defined by the opcode and the operand index.
// May return nullptr if the codec doesn't exist.
const spvutils::HuffmanCodec<std::string>* GetLiteralStringHuffmanCodec(
uint32_t opcode) const {
const auto it = literal_string_huffman_codecs_.find(opcode);
if (it == literal_string_huffman_codecs_.end()) return nullptr;
return it->second.get();
}
// Checks if |descriptor| has a coding scheme in any of
// id_descriptor_huffman_codecs_.
bool DescriptorHasCodingScheme(uint32_t descriptor) const {
return descriptors_with_coding_scheme_.count(descriptor);
}
// Checks if any descriptor has a coding scheme.
bool AnyDescriptorHasCodingScheme() const {
return !descriptors_with_coding_scheme_.empty();
}
// Returns chunk length used for variable length encoding of spirv operand
// words.
uint32_t GetOperandVariableWidthChunkLength(spv_operand_type_t type) const {
return operand_chunk_lengths_.at(static_cast<size_t>(type));
}
// Sets model type.
void SetModelType(uint32_t in_model_type) { model_type_ = in_model_type; }
// Sets model version.
void SetModelVersion(uint32_t in_model_version) {
model_version_ = in_model_version;
}
// Returns value used by Huffman codecs as a signal that a value is not in the
// coding table.
static uint64_t GetMarkvNoneOfTheAbove() {
// Magic number.
return 1111111111111111111;
}
MarkvModel(const MarkvModel&) = delete;
const MarkvModel& operator=(const MarkvModel&) = delete;
protected:
// Huffman codec for base-rate of opcode_and_num_operands.
std::unique_ptr<spvutils::HuffmanCodec<uint64_t>>
opcode_and_num_operands_huffman_codec_;
// Huffman codecs for opcode_and_num_operands. The map key is previous opcode.
std::map<uint32_t, std::unique_ptr<spvutils::HuffmanCodec<uint64_t>>>
opcode_and_num_operands_markov_huffman_codecs_;
// Huffman codecs for non-id single-word operand values.
// The map key is pair <opcode, operand_index>.
std::map<std::pair<uint32_t, uint32_t>,
std::unique_ptr<spvutils::HuffmanCodec<uint64_t>>>
non_id_word_huffman_codecs_;
// Huffman codecs for id descriptors. The map key is pair
// <opcode, operand_index>.
std::map<std::pair<uint32_t, uint32_t>,
std::unique_ptr<spvutils::HuffmanCodec<uint64_t>>>
id_descriptor_huffman_codecs_;
// Set of all descriptors which have a coding scheme in any of
// id_descriptor_huffman_codecs_.
std::unordered_set<uint32_t> descriptors_with_coding_scheme_;
// Huffman codecs for literal strings. The map key is the opcode of the
// current instruction. This assumes, that there is no more than one literal
// string operand per instruction, but would still work even if this is not
// the case. Names and debug information strings are not collected.
std::map<uint32_t, std::unique_ptr<spvutils::HuffmanCodec<std::string>>>
literal_string_huffman_codecs_;
// Chunk lengths used for variable width encoding of operands (index is
// spv_operand_type of the operand).
std::vector<uint32_t> operand_chunk_lengths_;
uint32_t opcode_chunk_length_ = 7;
uint32_t num_operands_chunk_length_ = 3;
uint32_t mtf_rank_chunk_length_ = 5;
uint32_t u64_chunk_length_ = 8;
uint32_t s64_chunk_length_ = 8;
uint32_t s64_block_exponent_ = 10;
IdFallbackStrategy id_fallback_strategy_ =
IdFallbackStrategy::kShortDescriptor;
uint32_t model_type_ = 0;
uint32_t model_version_ = 0;
};
} // namespace spvtools
#endif // LIBSPIRV_COMP_MARKV_MODEL_H_

View File

@ -0,0 +1,186 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "diagnostic.h"
#include <cassert>
#include <cstring>
#include <iostream>
#include <sstream>
#include "table.h"
// Diagnostic API
spv_diagnostic spvDiagnosticCreate(const spv_position position,
const char* message) {
spv_diagnostic diagnostic = new spv_diagnostic_t;
if (!diagnostic) return nullptr;
size_t length = strlen(message) + 1;
diagnostic->error = new char[length];
if (!diagnostic->error) {
delete diagnostic;
return nullptr;
}
diagnostic->position = *position;
diagnostic->isTextSource = false;
memset(diagnostic->error, 0, length);
strncpy(diagnostic->error, message, length);
return diagnostic;
}
void spvDiagnosticDestroy(spv_diagnostic diagnostic) {
if (!diagnostic) return;
delete[] diagnostic->error;
delete diagnostic;
}
spv_result_t spvDiagnosticPrint(const spv_diagnostic diagnostic) {
if (!diagnostic) return SPV_ERROR_INVALID_DIAGNOSTIC;
if (diagnostic->isTextSource) {
// NOTE: This is a text position
// NOTE: add 1 to the line as editors start at line 1, we are counting new
// line characters to start at line 0
std::cerr << "error: " << diagnostic->position.line + 1 << ": "
<< diagnostic->position.column + 1 << ": " << diagnostic->error
<< "\n";
return SPV_SUCCESS;
} else {
// NOTE: Assume this is a binary position
std::cerr << "error: " << diagnostic->position.index << ": "
<< diagnostic->error << "\n";
return SPV_SUCCESS;
}
}
namespace libspirv {
DiagnosticStream::DiagnosticStream(DiagnosticStream&& other)
: stream_(),
position_(other.position_),
consumer_(other.consumer_),
error_(other.error_) {
// Prevent the other object from emitting output during destruction.
other.error_ = SPV_FAILED_MATCH;
// Some platforms are missing support for std::ostringstream functionality,
// including: move constructor, swap method. Either would have been a
// better choice than copying the string.
stream_ << other.stream_.str();
}
DiagnosticStream::~DiagnosticStream() {
if (error_ != SPV_FAILED_MATCH && consumer_ != nullptr) {
auto level = SPV_MSG_ERROR;
switch (error_) {
case SPV_SUCCESS:
case SPV_REQUESTED_TERMINATION: // Essentially success.
level = SPV_MSG_INFO;
break;
case SPV_WARNING:
level = SPV_MSG_WARNING;
break;
case SPV_UNSUPPORTED:
case SPV_ERROR_INTERNAL:
case SPV_ERROR_INVALID_TABLE:
level = SPV_MSG_INTERNAL_ERROR;
break;
case SPV_ERROR_OUT_OF_MEMORY:
level = SPV_MSG_FATAL;
break;
default:
break;
}
consumer_(level, "input", position_, stream_.str().c_str());
}
}
void UseDiagnosticAsMessageConsumer(spv_context context,
spv_diagnostic* diagnostic) {
assert(diagnostic && *diagnostic == nullptr);
auto create_diagnostic = [diagnostic](spv_message_level_t, const char*,
const spv_position_t& position,
const char* message) {
auto p = position;
spvDiagnosticDestroy(*diagnostic); // Avoid memory leak.
*diagnostic = spvDiagnosticCreate(&p, message);
};
libspirv::SetContextMessageConsumer(context, std::move(create_diagnostic));
}
std::string spvResultToString(spv_result_t res) {
std::string out;
switch (res) {
case SPV_SUCCESS:
out = "SPV_SUCCESS";
break;
case SPV_UNSUPPORTED:
out = "SPV_UNSUPPORTED";
break;
case SPV_END_OF_STREAM:
out = "SPV_END_OF_STREAM";
break;
case SPV_WARNING:
out = "SPV_WARNING";
break;
case SPV_FAILED_MATCH:
out = "SPV_FAILED_MATCH";
break;
case SPV_REQUESTED_TERMINATION:
out = "SPV_REQUESTED_TERMINATION";
break;
case SPV_ERROR_INTERNAL:
out = "SPV_ERROR_INTERNAL";
break;
case SPV_ERROR_OUT_OF_MEMORY:
out = "SPV_ERROR_OUT_OF_MEMORY";
break;
case SPV_ERROR_INVALID_POINTER:
out = "SPV_ERROR_INVALID_POINTER";
break;
case SPV_ERROR_INVALID_BINARY:
out = "SPV_ERROR_INVALID_BINARY";
break;
case SPV_ERROR_INVALID_TEXT:
out = "SPV_ERROR_INVALID_TEXT";
break;
case SPV_ERROR_INVALID_TABLE:
out = "SPV_ERROR_INVALID_TABLE";
break;
case SPV_ERROR_INVALID_VALUE:
out = "SPV_ERROR_INVALID_VALUE";
break;
case SPV_ERROR_INVALID_DIAGNOSTIC:
out = "SPV_ERROR_INVALID_DIAGNOSTIC";
break;
case SPV_ERROR_INVALID_LOOKUP:
out = "SPV_ERROR_INVALID_LOOKUP";
break;
case SPV_ERROR_INVALID_ID:
out = "SPV_ERROR_INVALID_ID";
break;
case SPV_ERROR_INVALID_CFG:
out = "SPV_ERROR_INVALID_CFG";
break;
case SPV_ERROR_INVALID_LAYOUT:
out = "SPV_ERROR_INVALID_LAYOUT";
break;
default:
out = "Unknown Error";
}
return out;
}
} // namespace libspirv

View File

@ -0,0 +1,75 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_DIAGNOSTIC_H_
#define LIBSPIRV_DIAGNOSTIC_H_
#include <sstream>
#include <string>
#include "spirv-tools/libspirv.hpp"
namespace libspirv {
// A DiagnosticStream remembers the current position of the input and an error
// code, and captures diagnostic messages via the left-shift operator.
// If the error code is not SPV_FAILED_MATCH, then captured messages are
// emitted during the destructor.
class DiagnosticStream {
public:
DiagnosticStream(spv_position_t position,
const spvtools::MessageConsumer& consumer,
spv_result_t error)
: position_(position), consumer_(consumer), error_(error) {}
// Creates a DiagnosticStream from an expiring DiagnosticStream.
// The new object takes the contents of the other, and prevents the
// other from emitting anything during destruction.
DiagnosticStream(DiagnosticStream&& other);
// Destroys a DiagnosticStream.
// If its status code is something other than SPV_FAILED_MATCH
// then emit the accumulated message to the consumer.
~DiagnosticStream();
// Adds the given value to the diagnostic message to be written.
template <typename T>
DiagnosticStream& operator<<(const T& val) {
stream_ << val;
return *this;
}
// Conversion operator to spv_result, returning the error code.
operator spv_result_t() { return error_; }
private:
std::ostringstream stream_;
spv_position_t position_;
spvtools::MessageConsumer consumer_; // Message consumer callback.
spv_result_t error_;
};
// Changes the MessageConsumer in |context| to one that updates |diagnostic|
// with the last message received.
//
// This function expects that |diagnostic| is not nullptr and its content is a
// nullptr.
void UseDiagnosticAsMessageConsumer(spv_context context,
spv_diagnostic* diagnostic);
std::string spvResultToString(spv_result_t res);
} // namespace libspirv
#endif // LIBSPIRV_DIAGNOSTIC_H_

View File

@ -0,0 +1,476 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file contains a disassembler: It converts a SPIR-V binary
// to text.
#include <algorithm>
#include <cassert>
#include <cstring>
#include <iomanip>
#include <memory>
#include <unordered_map>
#include "assembly_grammar.h"
#include "binary.h"
#include "diagnostic.h"
#include "disassemble.h"
#include "ext_inst.h"
#include "name_mapper.h"
#include "opcode.h"
#include "parsed_operand.h"
#include "print.h"
#include "spirv-tools/libspirv.h"
#include "spirv_constant.h"
#include "spirv_endian.h"
#include "util/hex_float.h"
namespace {
// A Disassembler instance converts a SPIR-V binary to its assembly
// representation.
class Disassembler {
public:
Disassembler(const libspirv::AssemblyGrammar& grammar, uint32_t options,
libspirv::NameMapper name_mapper)
: grammar_(grammar),
print_(spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_PRINT, options)),
color_(spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_COLOR, options)),
indent_(spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_INDENT, options)
? kStandardIndent
: 0),
text_(),
out_(print_ ? out_stream() : out_stream(text_)),
stream_(out_.get()),
header_(!spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_NO_HEADER, options)),
show_byte_offset_(spvIsInBitfield(
SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET, options)),
byte_offset_(0),
name_mapper_(std::move(name_mapper)) {}
// Emits the assembly header for the module, and sets up internal state
// so subsequent callbacks can handle the cases where the entire module
// is either big-endian or little-endian.
spv_result_t HandleHeader(spv_endianness_t endian, uint32_t version,
uint32_t generator, uint32_t id_bound,
uint32_t schema);
// Emits the assembly text for the given instruction.
spv_result_t HandleInstruction(const spv_parsed_instruction_t& inst);
// If not printing, populates text_result with the accumulated text.
// Returns SPV_SUCCESS on success.
spv_result_t SaveTextResult(spv_text* text_result) const;
private:
enum { kStandardIndent = 15 };
using out_stream = libspirv::out_stream;
// Emits an operand for the given instruction, where the instruction
// is at offset words from the start of the binary.
void EmitOperand(const spv_parsed_instruction_t& inst,
const uint16_t operand_index);
// Emits a mask expression for the given mask word of the specified type.
void EmitMaskOperand(const spv_operand_type_t type, const uint32_t word);
// Resets the output color, if color is turned on.
void ResetColor() {
if (color_) out_.get() << libspirv::clr::reset{print_};
}
// Sets the output to grey, if color is turned on.
void SetGrey() {
if (color_) out_.get() << libspirv::clr::grey{print_};
}
// Sets the output to blue, if color is turned on.
void SetBlue() {
if (color_) out_.get() << libspirv::clr::blue{print_};
}
// Sets the output to yellow, if color is turned on.
void SetYellow() {
if (color_) out_.get() << libspirv::clr::yellow{print_};
}
// Sets the output to red, if color is turned on.
void SetRed() {
if (color_) out_.get() << libspirv::clr::red{print_};
}
// Sets the output to green, if color is turned on.
void SetGreen() {
if (color_) out_.get() << libspirv::clr::green{print_};
}
const libspirv::AssemblyGrammar& grammar_;
const bool print_; // Should we also print to the standard output stream?
const bool color_; // Should we print in colour?
const int indent_; // How much to indent. 0 means don't indent
spv_endianness_t endian_; // The detected endianness of the binary.
std::stringstream text_; // Captures the text, if not printing.
out_stream out_; // The Output stream. Either to text_ or standard output.
std::ostream& stream_; // The output std::stream.
const bool header_; // Should we output header as the leading comment?
const bool show_byte_offset_; // Should we print byte offset, in hex?
size_t byte_offset_; // The number of bytes processed so far.
libspirv::NameMapper name_mapper_;
};
spv_result_t Disassembler::HandleHeader(spv_endianness_t endian,
uint32_t version, uint32_t generator,
uint32_t id_bound, uint32_t schema) {
endian_ = endian;
if (header_) {
SetGrey();
const char* generator_tool =
spvGeneratorStr(SPV_GENERATOR_TOOL_PART(generator));
stream_ << "; SPIR-V\n"
<< "; Version: " << SPV_SPIRV_VERSION_MAJOR_PART(version) << "."
<< SPV_SPIRV_VERSION_MINOR_PART(version) << "\n"
<< "; Generator: " << generator_tool;
// For unknown tools, print the numeric tool value.
if (0 == strcmp("Unknown", generator_tool)) {
stream_ << "(" << SPV_GENERATOR_TOOL_PART(generator) << ")";
}
// Print the miscellaneous part of the generator word on the same
// line as the tool name.
stream_ << "; " << SPV_GENERATOR_MISC_PART(generator) << "\n"
<< "; Bound: " << id_bound << "\n"
<< "; Schema: " << schema << "\n";
ResetColor();
}
byte_offset_ = SPV_INDEX_INSTRUCTION * sizeof(uint32_t);
return SPV_SUCCESS;
}
spv_result_t Disassembler::HandleInstruction(
const spv_parsed_instruction_t& inst) {
if (inst.result_id) {
SetBlue();
const std::string id_name = name_mapper_(inst.result_id);
if (indent_)
stream_ << std::setw(std::max(0, indent_ - 3 - int(id_name.size())));
stream_ << "%" << id_name;
ResetColor();
stream_ << " = ";
} else {
stream_ << std::string(indent_, ' ');
}
stream_ << "Op" << spvOpcodeString(static_cast<SpvOp>(inst.opcode));
for (uint16_t i = 0; i < inst.num_operands; i++) {
const spv_operand_type_t type = inst.operands[i].type;
assert(type != SPV_OPERAND_TYPE_NONE);
if (type == SPV_OPERAND_TYPE_RESULT_ID) continue;
stream_ << " ";
EmitOperand(inst, i);
}
if (show_byte_offset_) {
SetGrey();
auto saved_flags = stream_.flags();
auto saved_fill = stream_.fill();
stream_ << " ; 0x" << std::setw(8) << std::hex << std::setfill('0')
<< byte_offset_;
stream_.flags(saved_flags);
stream_.fill(saved_fill);
ResetColor();
}
byte_offset_ += inst.num_words * sizeof(uint32_t);
stream_ << "\n";
return SPV_SUCCESS;
}
void Disassembler::EmitOperand(const spv_parsed_instruction_t& inst,
const uint16_t operand_index) {
assert(operand_index < inst.num_operands);
const spv_parsed_operand_t& operand = inst.operands[operand_index];
const uint32_t word = inst.words[operand.offset];
switch (operand.type) {
case SPV_OPERAND_TYPE_RESULT_ID:
assert(false && "<result-id> is not supposed to be handled here");
SetBlue();
stream_ << "%" << name_mapper_(word);
break;
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_TYPE_ID:
case SPV_OPERAND_TYPE_SCOPE_ID:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID:
SetYellow();
stream_ << "%" << name_mapper_(word);
break;
case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: {
spv_ext_inst_desc ext_inst;
if (grammar_.lookupExtInst(inst.ext_inst_type, word, &ext_inst))
assert(false && "should have caught this earlier");
SetRed();
stream_ << ext_inst->name;
} break;
case SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER: {
spv_opcode_desc opcode_desc;
if (grammar_.lookupOpcode(SpvOp(word), &opcode_desc))
assert(false && "should have caught this earlier");
SetRed();
stream_ << opcode_desc->name;
} break;
case SPV_OPERAND_TYPE_LITERAL_INTEGER:
case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER: {
SetRed();
libspirv::EmitNumericLiteral(&stream_, inst, operand);
ResetColor();
} break;
case SPV_OPERAND_TYPE_LITERAL_STRING: {
stream_ << "\"";
SetGreen();
// Strings are always little-endian, and null-terminated.
// Write out the characters, escaping as needed, and without copying
// the entire string.
auto c_str = reinterpret_cast<const char*>(inst.words + operand.offset);
for (auto p = c_str; *p; ++p) {
if (*p == '"' || *p == '\\') stream_ << '\\';
stream_ << *p;
}
ResetColor();
stream_ << '"';
} break;
case SPV_OPERAND_TYPE_CAPABILITY:
case SPV_OPERAND_TYPE_SOURCE_LANGUAGE:
case SPV_OPERAND_TYPE_EXECUTION_MODEL:
case SPV_OPERAND_TYPE_ADDRESSING_MODEL:
case SPV_OPERAND_TYPE_MEMORY_MODEL:
case SPV_OPERAND_TYPE_EXECUTION_MODE:
case SPV_OPERAND_TYPE_STORAGE_CLASS:
case SPV_OPERAND_TYPE_DIMENSIONALITY:
case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE:
case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE:
case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT:
case SPV_OPERAND_TYPE_FP_ROUNDING_MODE:
case SPV_OPERAND_TYPE_LINKAGE_TYPE:
case SPV_OPERAND_TYPE_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE:
case SPV_OPERAND_TYPE_DECORATION:
case SPV_OPERAND_TYPE_BUILT_IN:
case SPV_OPERAND_TYPE_GROUP_OPERATION:
case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS:
case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO:
case SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING:
case SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE:
case SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER:
case SPV_OPERAND_TYPE_DEBUG_OPERATION: {
spv_operand_desc entry;
if (grammar_.lookupOperand(operand.type, word, &entry))
assert(false && "should have caught this earlier");
stream_ << entry->name;
} break;
case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE:
case SPV_OPERAND_TYPE_FUNCTION_CONTROL:
case SPV_OPERAND_TYPE_LOOP_CONTROL:
case SPV_OPERAND_TYPE_IMAGE:
case SPV_OPERAND_TYPE_MEMORY_ACCESS:
case SPV_OPERAND_TYPE_SELECTION_CONTROL:
case SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS:
EmitMaskOperand(operand.type, word);
break;
default:
assert(false && "unhandled or invalid case");
}
ResetColor();
}
void Disassembler::EmitMaskOperand(const spv_operand_type_t type,
const uint32_t word) {
// Scan the mask from least significant bit to most significant bit. For each
// set bit, emit the name of that bit. Separate multiple names with '|'.
uint32_t remaining_word = word;
uint32_t mask;
int num_emitted = 0;
for (mask = 1; remaining_word; mask <<= 1) {
if (remaining_word & mask) {
remaining_word ^= mask;
spv_operand_desc entry;
if (grammar_.lookupOperand(type, mask, &entry))
assert(false && "should have caught this earlier");
if (num_emitted) stream_ << "|";
stream_ << entry->name;
num_emitted++;
}
}
if (!num_emitted) {
// An operand value of 0 was provided, so represent it by the name
// of the 0 value. In many cases, that's "None".
spv_operand_desc entry;
if (SPV_SUCCESS == grammar_.lookupOperand(type, 0, &entry))
stream_ << entry->name;
}
}
spv_result_t Disassembler::SaveTextResult(spv_text* text_result) const {
if (!print_) {
size_t length = text_.str().size();
char* str = new char[length + 1];
if (!str) return SPV_ERROR_OUT_OF_MEMORY;
strncpy(str, text_.str().c_str(), length + 1);
spv_text text = new spv_text_t();
if (!text) {
delete[] str;
return SPV_ERROR_OUT_OF_MEMORY;
}
text->str = str;
text->length = length;
*text_result = text;
}
return SPV_SUCCESS;
}
spv_result_t DisassembleHeader(void* user_data, spv_endianness_t endian,
uint32_t /* magic */, uint32_t version,
uint32_t generator, uint32_t id_bound,
uint32_t schema) {
assert(user_data);
auto disassembler = static_cast<Disassembler*>(user_data);
return disassembler->HandleHeader(endian, version, generator, id_bound,
schema);
}
spv_result_t DisassembleInstruction(
void* user_data, const spv_parsed_instruction_t* parsed_instruction) {
assert(user_data);
auto disassembler = static_cast<Disassembler*>(user_data);
return disassembler->HandleInstruction(*parsed_instruction);
}
// Simple wrapper class to provide extra data necessary for targeted
// instruction disassembly.
class WrappedDisassembler {
public:
WrappedDisassembler(Disassembler* dis, const uint32_t* binary, size_t wc)
: disassembler_(dis), inst_binary_(binary), word_count_(wc) {}
Disassembler* disassembler() { return disassembler_; }
const uint32_t* inst_binary() const { return inst_binary_; }
size_t word_count() const { return word_count_; }
private:
Disassembler* disassembler_;
const uint32_t* inst_binary_;
const size_t word_count_;
};
spv_result_t DisassembleTargetHeader(void* user_data, spv_endianness_t endian,
uint32_t /* magic */, uint32_t version,
uint32_t generator, uint32_t id_bound,
uint32_t schema) {
assert(user_data);
auto wrapped = static_cast<WrappedDisassembler*>(user_data);
return wrapped->disassembler()->HandleHeader(endian, version, generator,
id_bound, schema);
}
spv_result_t DisassembleTargetInstruction(
void* user_data, const spv_parsed_instruction_t* parsed_instruction) {
assert(user_data);
auto wrapped = static_cast<WrappedDisassembler*>(user_data);
// Check if this is the instruction we want to disassemble.
if (wrapped->word_count() == parsed_instruction->num_words &&
std::equal(wrapped->inst_binary(),
wrapped->inst_binary() + wrapped->word_count(),
parsed_instruction->words)) {
// Found the target instruction. Disassemble it and signal that we should
// stop searching so we don't output the same instruction again.
if (auto error =
wrapped->disassembler()->HandleInstruction(*parsed_instruction))
return error;
return SPV_REQUESTED_TERMINATION;
}
return SPV_SUCCESS;
}
} // anonymous namespace
spv_result_t spvBinaryToText(const spv_const_context context,
const uint32_t* code, const size_t wordCount,
const uint32_t options, spv_text* pText,
spv_diagnostic* pDiagnostic) {
spv_context_t hijack_context = *context;
if (pDiagnostic) {
*pDiagnostic = nullptr;
libspirv::UseDiagnosticAsMessageConsumer(&hijack_context, pDiagnostic);
}
const libspirv::AssemblyGrammar grammar(&hijack_context);
if (!grammar.isValid()) return SPV_ERROR_INVALID_TABLE;
// Generate friendly names for Ids if requested.
std::unique_ptr<libspirv::FriendlyNameMapper> friendly_mapper;
libspirv::NameMapper name_mapper = libspirv::GetTrivialNameMapper();
if (options & SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) {
friendly_mapper.reset(
new libspirv::FriendlyNameMapper(&hijack_context, code, wordCount));
name_mapper = friendly_mapper->GetNameMapper();
}
// Now disassemble!
Disassembler disassembler(grammar, options, name_mapper);
if (auto error = spvBinaryParse(&hijack_context, &disassembler, code,
wordCount, DisassembleHeader,
DisassembleInstruction, pDiagnostic)) {
return error;
}
return disassembler.SaveTextResult(pText);
}
std::string spvtools::spvInstructionBinaryToText(const spv_target_env env,
const uint32_t* instCode,
const size_t instWordCount,
const uint32_t* code,
const size_t wordCount,
const uint32_t options) {
spv_context context = spvContextCreate(env);
const libspirv::AssemblyGrammar grammar(context);
if (!grammar.isValid()) {
spvContextDestroy(context);
return "";
}
// Generate friendly names for Ids if requested.
std::unique_ptr<libspirv::FriendlyNameMapper> friendly_mapper;
libspirv::NameMapper name_mapper = libspirv::GetTrivialNameMapper();
if (options & SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) {
friendly_mapper.reset(
new libspirv::FriendlyNameMapper(context, code, wordCount));
name_mapper = friendly_mapper->GetNameMapper();
}
// Now disassemble!
Disassembler disassembler(grammar, options, name_mapper);
WrappedDisassembler wrapped(&disassembler, instCode, instWordCount);
spvBinaryParse(context, &wrapped, code, wordCount, DisassembleTargetHeader,
DisassembleTargetInstruction, nullptr);
spv_text text = nullptr;
std::string output;
if (disassembler.SaveTextResult(&text) == SPV_SUCCESS) {
output.assign(text->str, text->str + text->length);
// Drop trailing newline characters.
while (!output.empty() && output.back() == '\n') output.pop_back();
}
spvTextDestroy(text);
spvContextDestroy(context);
return output;
}

View File

@ -0,0 +1,38 @@
// Copyright (c) 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPIRV_TOOLS_DISASSEMBLE_H_
#define SPIRV_TOOLS_DISASSEMBLE_H_
#include <string>
#include "spirv-tools/libspirv.h"
namespace spvtools {
// Decodes the given SPIR-V instruction binary representation to its assembly
// text. The context is inferred from the provided module binary. The options
// parameter is a bit field of spv_binary_to_text_options_t. Decoded text will
// be stored into *text. Any error will be written into *diagnostic if
// diagnostic is non-null.
std::string spvInstructionBinaryToText(const spv_target_env env,
const uint32_t* inst_binary,
const size_t inst_word_count,
const uint32_t* binary,
const size_t word_count,
const uint32_t options);
} // namespace spvtools
#endif // SPIRV_TOOLS_DISASSEMBLE_H_

172
3rdparty/spirv-tools/source/enum_set.h vendored Normal file
View File

@ -0,0 +1,172 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_ENUM_SET_H
#define LIBSPIRV_ENUM_SET_H
#include <cstdint>
#include <functional>
#include <memory>
#include <set>
#include <utility>
#include "latest_version_spirv_header.h"
namespace libspirv {
// A set of values of a 32-bit enum type.
// It is fast and compact for the common case, where enum values
// are at most 63. But it can represent enums with larger values,
// as may appear in extensions.
template <typename EnumType>
class EnumSet {
private:
// The ForEach method will call the functor on enum values in
// enum value order (lowest to highest). To make that easier, use
// an ordered set for the overflow values.
using OverflowSetType = std::set<uint32_t>;
public:
// Construct an empty set.
EnumSet() {}
// Construct an set with just the given enum value.
explicit EnumSet(EnumType c) { Add(c); }
// Construct an set from an initializer list of enum values.
EnumSet(std::initializer_list<EnumType> cs) {
for (auto c : cs) Add(c);
}
EnumSet(uint32_t count, const EnumType* ptr) {
for (uint32_t i = 0; i < count; ++i) Add(ptr[i]);
}
// Copy constructor.
EnumSet(const EnumSet& other) { *this = other; }
// Move constructor. The moved-from set is emptied.
EnumSet(EnumSet&& other) {
mask_ = other.mask_;
overflow_ = std::move(other.overflow_);
other.mask_ = 0;
other.overflow_.reset(nullptr);
}
// Assignment operator.
EnumSet& operator=(const EnumSet& other) {
if (&other != this) {
mask_ = other.mask_;
overflow_.reset(other.overflow_ ? new OverflowSetType(*other.overflow_)
: nullptr);
}
return *this;
}
// Adds the given enum value to the set. This has no effect if the
// enum value is already in the set.
void Add(EnumType c) { AddWord(ToWord(c)); }
// Returns true if this enum value is in the set.
bool Contains(EnumType c) const { return ContainsWord(ToWord(c)); }
// Applies f to each enum in the set, in order from smallest enum
// value to largest.
void ForEach(std::function<void(EnumType)> f) const {
for (uint32_t i = 0; i < 64; ++i) {
if (mask_ & AsMask(i)) f(static_cast<EnumType>(i));
}
if (overflow_) {
for (uint32_t c : *overflow_) f(static_cast<EnumType>(c));
}
}
// Returns true if the set is empty.
bool IsEmpty() const {
if (mask_) return false;
if (overflow_ && !overflow_->empty()) return false;
return true;
}
// Returns true if the set contains ANY of the elements of |in_set|,
// or if |in_set| is empty.
bool HasAnyOf(const EnumSet<EnumType>& in_set) const {
if (in_set.IsEmpty()) return true;
if (mask_ & in_set.mask_) return true;
if (!overflow_ || !in_set.overflow_) return false;
for (uint32_t item : *in_set.overflow_) {
if (overflow_->find(item) != overflow_->end()) return true;
}
return false;
}
private:
// Adds the given enum value (as a 32-bit word) to the set. This has no
// effect if the enum value is already in the set.
void AddWord(uint32_t word) {
if (auto new_bits = AsMask(word)) {
mask_ |= new_bits;
} else {
Overflow().insert(word);
}
}
// Returns true if the enum represented as a 32-bit word is in the set.
bool ContainsWord(uint32_t word) const {
// We shouldn't call Overflow() since this is a const method.
if (auto bits = AsMask(word)) {
return (mask_ & bits) != 0;
} else if (auto overflow = overflow_.get()) {
return overflow->find(word) != overflow->end();
}
// The word is large, but the set doesn't have large members, so
// it doesn't have an overflow set.
return false;
}
// Returns the enum value as a uint32_t.
uint32_t ToWord(EnumType value) const {
static_assert(sizeof(EnumType) <= sizeof(uint32_t),
"EnumType must statically castable to uint32_t");
return static_cast<uint32_t>(value);
}
// Determines whether the given enum value can be represented
// as a bit in a uint64_t mask. If so, then returns that mask bit.
// Otherwise, returns 0.
uint64_t AsMask(uint32_t word) const {
if (word > 63) return 0;
return uint64_t(1) << word;
}
// Ensures that overflow_set_ references a set. A new empty set is
// allocated if one doesn't exist yet. Returns overflow_set_.
OverflowSetType& Overflow() {
if (overflow_.get() == nullptr) {
overflow_.reset(new OverflowSetType);
}
return *overflow_;
}
// Enums with values up to 63 are stored as bits in this mask.
uint64_t mask_ = 0;
// Enums with values larger than 63 are stored in this set.
// This set should normally be empty or very small.
std::unique_ptr<OverflowSetType> overflow_ = {};
};
// A set of SpvCapability, optimized for small capability values.
using CapabilitySet = EnumSet<SpvCapability>;
} // namespace libspirv
#endif // LIBSPIRV_ENUM_SET_H

View File

@ -0,0 +1,29 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "enum_string_mapping.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <string>
#include <unordered_map>
#include "extensions.h"
namespace libspirv {
#include "enum_string_mapping.inc"
} // namespace libspirv

View File

@ -0,0 +1,36 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_ENUM_STRING_MAPPING_H_
#define LIBSPIRV_ENUM_STRING_MAPPING_H_
#include <string>
#include "extensions.h"
#include "latest_version_spirv_header.h"
namespace libspirv {
// Finds Extension enum corresponding to |str|. Returns false if not found.
bool GetExtensionFromString(const char* str, Extension* extension);
// Returns text string corresponding to |extension|.
const char* ExtensionToString(Extension extension);
// Returns text string corresponding to |capability|.
const char* CapabilityToString(SpvCapability capability);
} // namespace libspirv
#endif // LIBSPIRV_ENUM_STRING_MAPPING_H_

161
3rdparty/spirv-tools/source/ext_inst.cpp vendored Normal file
View File

@ -0,0 +1,161 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ext_inst.h"
#include <cassert>
#include <cstring>
// DebugInfo extended instruction set.
// See https://www.khronos.org/registry/spir-v/specs/1.0/DebugInfo.html
// TODO(dneto): DebugInfo.h should probably move to SPIRV-Headers.
#include "DebugInfo.h"
#include "latest_version_glsl_std_450_header.h"
#include "latest_version_opencl_std_header.h"
#include "macro.h"
#include "spirv_definition.h"
#include "debuginfo.insts.inc" // defines opencl_entries
#include "glsl.std.450.insts.inc" // defines glsl_entries
#include "opencl.std.insts.inc" // defines opencl_entries
#include "spv-amd-gcn-shader.insts.inc"
#include "spv-amd-shader-ballot.insts.inc"
#include "spv-amd-shader-explicit-vertex-parameter.insts.inc"
#include "spv-amd-shader-trinary-minmax.insts.inc"
static const spv_ext_inst_group_t kGroups_1_0[] = {
{SPV_EXT_INST_TYPE_GLSL_STD_450, ARRAY_SIZE(glsl_entries), glsl_entries},
{SPV_EXT_INST_TYPE_OPENCL_STD, ARRAY_SIZE(opencl_entries), opencl_entries},
{SPV_EXT_INST_TYPE_SPV_AMD_SHADER_EXPLICIT_VERTEX_PARAMETER,
ARRAY_SIZE(spv_amd_shader_explicit_vertex_parameter_entries),
spv_amd_shader_explicit_vertex_parameter_entries},
{SPV_EXT_INST_TYPE_SPV_AMD_SHADER_TRINARY_MINMAX,
ARRAY_SIZE(spv_amd_shader_trinary_minmax_entries),
spv_amd_shader_trinary_minmax_entries},
{SPV_EXT_INST_TYPE_SPV_AMD_GCN_SHADER,
ARRAY_SIZE(spv_amd_gcn_shader_entries), spv_amd_gcn_shader_entries},
{SPV_EXT_INST_TYPE_SPV_AMD_SHADER_BALLOT,
ARRAY_SIZE(spv_amd_shader_ballot_entries), spv_amd_shader_ballot_entries},
{SPV_EXT_INST_TYPE_DEBUGINFO, ARRAY_SIZE(debuginfo_entries),
debuginfo_entries},
};
static const spv_ext_inst_table_t kTable_1_0 = {ARRAY_SIZE(kGroups_1_0),
kGroups_1_0};
spv_result_t spvExtInstTableGet(spv_ext_inst_table* pExtInstTable,
spv_target_env env) {
if (!pExtInstTable) return SPV_ERROR_INVALID_POINTER;
switch (env) {
// The extended instruction sets are all version 1.0 so far.
case SPV_ENV_UNIVERSAL_1_0:
case SPV_ENV_VULKAN_1_0:
case SPV_ENV_UNIVERSAL_1_1:
case SPV_ENV_UNIVERSAL_1_2:
case SPV_ENV_OPENCL_1_2:
case SPV_ENV_OPENCL_EMBEDDED_1_2:
case SPV_ENV_OPENCL_2_0:
case SPV_ENV_OPENCL_EMBEDDED_2_0:
case SPV_ENV_OPENCL_2_1:
case SPV_ENV_OPENCL_EMBEDDED_2_1:
case SPV_ENV_OPENCL_2_2:
case SPV_ENV_OPENCL_EMBEDDED_2_2:
case SPV_ENV_OPENGL_4_0:
case SPV_ENV_OPENGL_4_1:
case SPV_ENV_OPENGL_4_2:
case SPV_ENV_OPENGL_4_3:
case SPV_ENV_OPENGL_4_5:
case SPV_ENV_UNIVERSAL_1_3:
case SPV_ENV_VULKAN_1_1:
*pExtInstTable = &kTable_1_0;
return SPV_SUCCESS;
default:
assert(0 && "Unknown spv_target_env in spvExtInstTableGet()");
return SPV_ERROR_INVALID_TABLE;
}
}
spv_ext_inst_type_t spvExtInstImportTypeGet(const char* name) {
// The names are specified by the respective extension instruction
// specifications.
if (!strcmp("GLSL.std.450", name)) {
return SPV_EXT_INST_TYPE_GLSL_STD_450;
}
if (!strcmp("OpenCL.std", name)) {
return SPV_EXT_INST_TYPE_OPENCL_STD;
}
if (!strcmp("SPV_AMD_shader_explicit_vertex_parameter", name)) {
return SPV_EXT_INST_TYPE_SPV_AMD_SHADER_EXPLICIT_VERTEX_PARAMETER;
}
if (!strcmp("SPV_AMD_shader_trinary_minmax", name)) {
return SPV_EXT_INST_TYPE_SPV_AMD_SHADER_TRINARY_MINMAX;
}
if (!strcmp("SPV_AMD_gcn_shader", name)) {
return SPV_EXT_INST_TYPE_SPV_AMD_GCN_SHADER;
}
if (!strcmp("SPV_AMD_shader_ballot", name)) {
return SPV_EXT_INST_TYPE_SPV_AMD_SHADER_BALLOT;
}
if (!strcmp("DebugInfo", name)) {
return SPV_EXT_INST_TYPE_DEBUGINFO;
}
return SPV_EXT_INST_TYPE_NONE;
}
spv_result_t spvExtInstTableNameLookup(const spv_ext_inst_table table,
const spv_ext_inst_type_t type,
const char* name,
spv_ext_inst_desc* pEntry) {
if (!table) return SPV_ERROR_INVALID_TABLE;
if (!pEntry) return SPV_ERROR_INVALID_POINTER;
for (uint32_t groupIndex = 0; groupIndex < table->count; groupIndex++) {
const auto& group = table->groups[groupIndex];
if (type != group.type) continue;
for (uint32_t index = 0; index < group.count; index++) {
const auto& entry = group.entries[index];
if (!strcmp(name, entry.name)) {
*pEntry = &entry;
return SPV_SUCCESS;
}
}
}
return SPV_ERROR_INVALID_LOOKUP;
}
spv_result_t spvExtInstTableValueLookup(const spv_ext_inst_table table,
const spv_ext_inst_type_t type,
const uint32_t value,
spv_ext_inst_desc* pEntry) {
if (!table) return SPV_ERROR_INVALID_TABLE;
if (!pEntry) return SPV_ERROR_INVALID_POINTER;
for (uint32_t groupIndex = 0; groupIndex < table->count; groupIndex++) {
const auto& group = table->groups[groupIndex];
if (type != group.type) continue;
for (uint32_t index = 0; index < group.count; index++) {
const auto& entry = group.entries[index];
if (value == entry.ext_inst) {
*pEntry = &entry;
return SPV_SUCCESS;
}
}
}
return SPV_ERROR_INVALID_LOOKUP;
}

40
3rdparty/spirv-tools/source/ext_inst.h vendored Normal file
View File

@ -0,0 +1,40 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_EXT_INST_H_
#define LIBSPIRV_EXT_INST_H_
#include "spirv-tools/libspirv.h"
#include "table.h"
// Gets the type of the extended instruction set with the specified name.
spv_ext_inst_type_t spvExtInstImportTypeGet(const char* name);
// Finds the named extented instruction of the given type in the given extended
// instruction table. On success, returns SPV_SUCCESS and writes a handle of
// the instruction entry into *entry.
spv_result_t spvExtInstTableNameLookup(const spv_ext_inst_table table,
const spv_ext_inst_type_t type,
const char* name,
spv_ext_inst_desc* entry);
// Finds the extented instruction of the given type in the given extended
// instruction table by value. On success, returns SPV_SUCCESS and writes a
// handle of the instruction entry into *entry.
spv_result_t spvExtInstTableValueLookup(const spv_ext_inst_table table,
const spv_ext_inst_type_t type,
const uint32_t value,
spv_ext_inst_desc* pEntry);
#endif // LIBSPIRV_EXT_INST_H_

View File

@ -0,0 +1,44 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "extensions.h"
#include <cassert>
#include <sstream>
#include <string>
#include "enum_string_mapping.h"
namespace libspirv {
std::string GetExtensionString(const spv_parsed_instruction_t* inst) {
if (inst->opcode != SpvOpExtension) return "ERROR_not_op_extension";
assert(inst->num_operands == 1);
const auto& operand = inst->operands[0];
assert(operand.type == SPV_OPERAND_TYPE_LITERAL_STRING);
assert(inst->num_words > operand.offset);
return reinterpret_cast<const char*>(inst->words + operand.offset);
}
std::string ExtensionSetToString(const ExtensionSet& extensions) {
std::stringstream ss;
extensions.ForEach(
[&ss](Extension ext) { ss << ExtensionToString(ext) << " "; });
return ss.str();
}
} // namespace libspirv

View File

@ -0,0 +1,40 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_EXTENSIONS_H_
#define LIBSPIRV_EXTENSIONS_H_
#include <string>
#include "enum_set.h"
#include "spirv-tools/libspirv.h"
namespace libspirv {
// The known SPIR-V extensions.
enum Extension {
#include "extension_enum.inc"
};
using ExtensionSet = EnumSet<Extension>;
// Returns literal string operand of OpExtension instruction.
std::string GetExtensionString(const spv_parsed_instruction_t* inst);
// Returns text string listing |extensions| separated by whitespace.
std::string ExtensionSetToString(const ExtensionSet& extensions);
} // namespace libspirv
#endif // LIBSPIRV_EXTENSIONS_H_

View File

@ -0,0 +1,568 @@
{
"copyright" : [
"Copyright (c) 2017 The Khronos Group Inc.",
"",
"Permission is hereby granted, free of charge, to any person obtaining a copy",
"of this software and/or associated documentation files (the \"Materials\"),",
"to deal in the Materials without restriction, including without limitation",
"the rights to use, copy, modify, merge, publish, distribute, sublicense,",
"and/or sell copies of the Materials, and to permit persons to whom the",
"Materials are furnished to do so, subject to the following conditions:",
"",
"The above copyright notice and this permission notice shall be included in",
"all copies or substantial portions of the Materials.",
"",
"MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS KHRONOS",
"STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS SPECIFICATIONS AND",
"HEADER INFORMATION ARE LOCATED AT https://www.khronos.org/registry/ ",
"",
"THE MATERIALS ARE PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS",
"OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,",
"FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL",
"THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER",
"LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING",
"FROM,OUT OF OR IN CONNECTION WITH THE MATERIALS OR THE USE OR OTHER DEALINGS",
"IN THE MATERIALS."
],
"version" : 100,
"revision" : 1,
"instructions" : [
{
"opname" : "DebugInfoNone",
"opcode" : 0
},
{
"opname" : "DebugCompilationUnit",
"opcode" : 1,
"operands" : [
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Version'" },
{ "kind" : "LiteralInteger", "name" : "'DWARF Version'" }
]
},
{
"opname" : "DebugTypeBasic",
"opcode" : 2,
"operands" : [
{ "kind" : "IdRef", "name" : "'Name'" },
{ "kind" : "IdRef", "name" : "'Size'" },
{ "kind" : "DebugBaseTypeAttributeEncoding", "name" : "'Encoding'" }
]
},
{
"opname" : "DebugTypePointer",
"opcode" : 3,
"operands" : [
{ "kind" : "IdRef", "name" : "'Base Type'" },
{ "kind" : "StorageClass", "name" : "'Storage Class'" },
{ "kind" : "DebugInfoFlags", "name" : "'Literal Flags'" }
]
},
{
"opname" : "DebugTypeQualifier",
"opcode" : 4,
"operands" : [
{ "kind" : "IdRef", "name" : "'Base Type'" },
{ "kind" : "DebugTypeQualifier", "name" : "'Type Qualifier'" }
]
},
{
"opname" : "DebugTypeArray",
"opcode" : 5,
"operands" : [
{ "kind" : "IdRef", "name" : "'Base Type'" },
{ "kind" : "IdRef", "name" : "'Component Counts'", "quantifier" : "*" }
]
},
{
"opname" : "DebugTypeVector",
"opcode" : 6,
"operands" : [
{ "kind" : "IdRef", "name" : "'Base Type'" },
{ "kind" : "LiteralInteger", "name" : "'Component Count'" }
]
},
{
"opname" : "DebugTypedef",
"opcode" : 7,
"operands" : [
{ "kind" : "IdRef", "name" : "'Name'" },
{ "kind" : "IdRef", "name" : "'Base Type'" },
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "LiteralInteger", "name" : "'Column'" },
{ "kind" : "IdRef", "name" : "'Parent'" }
]
},
{
"opname" : "DebugTypeFunction",
"opcode" : 8,
"operands" : [
{ "kind" : "IdRef", "name" : "'Return Type'" },
{ "kind" : "IdRef", "name" : "'Paramter Types'", "quantifier" : "*" }
]
},
{
"opname" : "DebugTypeEnum",
"opcode" : 9,
"operands" : [
{ "kind" : "IdRef", "name" : "'Name'" },
{ "kind" : "IdRef", "name" : "'Underlying Type'" },
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "LiteralInteger", "name" : "'Column'" },
{ "kind" : "IdRef", "name" : "'Parent'" },
{ "kind" : "IdRef", "name" : "'Size'" },
{ "kind" : "DebugInfoFlags", "name" : "'Flags'" },
{ "kind" : "PairIdRefIdRef", "name" : "'Value, Name, Value, Name, ...'", "quantifier" : "*" }
]
},
{
"opname" : "DebugTypeComposite",
"opcode" : 10,
"operands" : [
{ "kind" : "IdRef", "name" : "'Name'" },
{ "kind" : "DebugCompositeType", "name" : "'Tag'" },
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "LiteralInteger", "name" : "'Column'" },
{ "kind" : "IdRef", "name" : "'Parent'" },
{ "kind" : "IdRef", "name" : "'Size'" },
{ "kind" : "DebugInfoFlags", "name" : "'Flags'" },
{ "kind" : "IdRef", "name" : "'Members'", "quantifier" : "*" }
]
},
{
"opname" : "DebugTypeMember",
"opcode" : 11,
"operands" : [
{ "kind" : "IdRef", "name" : "'Name'" },
{ "kind" : "IdRef", "name" : "'Type'" },
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "LiteralInteger", "name" : "'Column'" },
{ "kind" : "IdRef", "name" : "'Parent'" },
{ "kind" : "IdRef", "name" : "'Offset'" },
{ "kind" : "IdRef", "name" : "'Size'" },
{ "kind" : "DebugInfoFlags", "name" : "'Flags'" },
{ "kind" : "IdRef", "name" : "'Value'", "quantifier" : "?" }
]
},
{
"opname" : "DebugTypeInheritance",
"opcode" : 12,
"operands" : [
{ "kind" : "IdRef", "name" : "'Child'" },
{ "kind" : "IdRef", "name" : "'Parent'" },
{ "kind" : "IdRef", "name" : "'Offset'" },
{ "kind" : "IdRef", "name" : "'Size'" },
{ "kind" : "DebugInfoFlags", "name" : "'Flags'" }
]
},
{
"opname" : "DebugTypePtrToMember",
"opcode" : 13,
"operands" : [
{ "kind" : "IdRef", "name" : "'Member Type'" },
{ "kind" : "IdRef", "name" : "'Parent'" }
]
},
{
"opname" : "DebugTypeTemplate",
"opcode" : 14,
"operands" : [
{ "kind" : "IdRef", "name" : "'Target'" },
{ "kind" : "IdRef", "name" : "'Parameters'", "quantifier" : "*" }
]
},
{
"opname" : "DebugTypeTemplateParameter",
"opcode" : 15,
"operands" : [
{ "kind" : "IdRef", "name" : "'Name'" },
{ "kind" : "IdRef", "name" : "'Actual Type'" },
{ "kind" : "IdRef", "name" : "'Value'" },
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "LiteralInteger", "name" : "'Column'" }
]
},
{
"opname" : "DebugTypeTemplateTemplateParameter",
"opcode" : 16,
"operands" : [
{ "kind" : "IdRef", "name" : "'Name'" },
{ "kind" : "IdRef", "name" : "'Template Name'" },
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "LiteralInteger", "name" : "'Column'" }
]
},
{
"opname" : "DebugTypeTemplateParameterPack",
"opcode" : 17,
"operands" : [
{ "kind" : "IdRef", "name" : "'Name'" },
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "LiteralInteger", "name" : "'Column'" },
{ "kind" : "IdRef", "name" : "'Template Parameters'", "quantifier" : "*" }
]
},
{
"opname" : "DebugGlobalVariable",
"opcode" : 18,
"operands" : [
{ "kind" : "IdRef", "name" : "'Name'" },
{ "kind" : "IdRef", "name" : "'Type'" },
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "LiteralInteger", "name" : "'Column'" },
{ "kind" : "IdRef", "name" : "'Parent'" },
{ "kind" : "IdRef", "name" : "'Linkage Name'" },
{ "kind" : "IdRef", "name" : "'Variable'" },
{ "kind" : "DebugInfoFlags", "name" : "'Flags'" },
{ "kind" : "IdRef", "name" : "'Static Member Declaration'", "quantifier" : "?" }
]
},
{
"opname" : "DebugFunctionDeclaration",
"opcode" : 19,
"operands" : [
{ "kind" : "IdRef", "name" : "'Name'" },
{ "kind" : "IdRef", "name" : "'Type'" },
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "LiteralInteger", "name" : "'Column'" },
{ "kind" : "IdRef", "name" : "'Parent'" },
{ "kind" : "IdRef", "name" : "'Linkage Name'" },
{ "kind" : "DebugInfoFlags", "name" : "'Flags'" }
]
},
{
"opname" : "DebugFunction",
"opcode" : 20,
"operands" : [
{ "kind" : "IdRef", "name" : "'Name'" },
{ "kind" : "IdRef", "name" : "'Type'" },
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "LiteralInteger", "name" : "'Column'" },
{ "kind" : "IdRef", "name" : "'Parent'" },
{ "kind" : "IdRef", "name" : "'Linkage Name'" },
{ "kind" : "DebugInfoFlags", "name" : "'Flags'" },
{ "kind" : "LiteralInteger", "name" : "'Scope Line'" },
{ "kind" : "IdRef", "name" : "'Function'" },
{ "kind" : "IdRef", "name" : "'Declaration'", "quantifier" : "?" }
]
},
{
"opname" : "DebugLexicalBlock",
"opcode" : 21,
"operands" : [
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "LiteralInteger", "name" : "'Column'" },
{ "kind" : "IdRef", "name" : "'Parent'" },
{ "kind" : "IdRef", "name" : "'Name'", "quantifier" : "?" }
]
},
{
"opname" : "DebugLexicalBlockDiscriminator",
"opcode" : 22,
"operands" : [
{ "kind" : "IdRef", "name" : "'Scope'" },
{ "kind" : "LiteralInteger", "name" : "'Discriminator'" },
{ "kind" : "IdRef", "name" : "'Parent'" }
]
},
{
"opname" : "DebugScope",
"opcode" : 23,
"operands" : [
{ "kind" : "IdRef", "name" : "'Scope'" },
{ "kind" : "IdRef", "name" : "'Inlined At'", "quantifier" : "?" }
]
},
{
"opname" : "DebugNoScope",
"opcode" : 24
},
{
"opname" : "DebugInlinedAt",
"opcode" : 25,
"operands" : [
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "IdRef", "name" : "'Scope'" },
{ "kind" : "IdRef", "name" : "'Inlined'", "quantifier" : "?" }
]
},
{
"opname" : "DebugLocalVariable",
"opcode" : 26,
"operands" : [
{ "kind" : "IdRef", "name" : "'Name'" },
{ "kind" : "IdRef", "name" : "'Type'" },
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "LiteralInteger", "name" : "'Column'" },
{ "kind" : "IdRef", "name" : "'Parent'" },
{ "kind" : "LiteralInteger", "name" : "'Arg Number'", "quantifier" : "?" }
]
},
{
"opname" : "DebugInlinedVariable",
"opcode" : 27,
"operands" : [
{ "kind" : "IdRef", "name" : "'Variable'" },
{ "kind" : "IdRef", "name" : "'Inlined'" }
]
},
{
"opname" : "DebugDeclare",
"opcode" : 28,
"operands" : [
{ "kind" : "IdRef", "name" : "'Local Variable'" },
{ "kind" : "IdRef", "name" : "'Variable'" },
{ "kind" : "IdRef", "name" : "'Expression'" }
]
},
{
"opname" : "DebugValue",
"opcode" : 29,
"operands" : [
{ "kind" : "IdRef", "name" : "'Value'" },
{ "kind" : "IdRef", "name" : "'Expression'" },
{ "kind" : "IdRef", "name" : "'Indexes'", "quantifier" : "*" }
]
},
{
"opname" : "DebugOperation",
"opcode" : 30,
"operands" : [
{ "kind" : "DebugOperation", "name" : "'OpCode'" },
{ "kind" : "LiteralInteger", "name" : "'Operands ...'", "quantifier" : "*" }
]
},
{
"opname" : "DebugExpression",
"opcode" : 31,
"operands" : [
{ "kind" : "IdRef", "name" : "'Operands ...'", "quantifier" : "*" }
]
},
{
"opname" : "DebugMacroDef",
"opcode" : 32,
"operands" : [
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "IdRef", "name" : "'Name'" },
{ "kind" : "IdRef", "name" : "'Value'", "quantifier" : "?" }
]
},
{
"opname" : "DebugMacroUndef",
"opcode" : 33,
"operands" : [
{ "kind" : "IdRef", "name" : "'Source'" },
{ "kind" : "LiteralInteger", "name" : "'Line'" },
{ "kind" : "IdRef", "name" : "'Macro'" }
]
}
],
"operand_kinds" : [
{
"category" : "BitEnum",
"kind" : "DebugInfoFlags",
"enumerants" : [
{
"enumerant" : "FlagIsProtected",
"value" : "0x01"
},
{
"enumerant" : "FlagIsPrivate",
"value" : "0x02"
},
{
"enumerant" : "FlagIsPublic",
"value" : "0x03"
},
{
"enumerant" : "FlagIsLocal",
"value" : "0x04"
},
{
"enumerant" : "FlagIsDefinition",
"value" : "0x08"
},
{
"enumerant" : "FlagFwdDecl",
"value" : "0x10"
},
{
"enumerant" : "FlagArtificial",
"value" : "0x20"
},
{
"enumerant" : "FlagExplicit",
"value" : "0x40"
},
{
"enumerant" : "FlagPrototyped",
"value" : "0x80"
},
{
"enumerant" : "FlagObjectPointer",
"value" : "0x100"
},
{
"enumerant" : "FlagStaticMember",
"value" : "0x200"
},
{
"enumerant" : "FlagIndirectVariable",
"value" : "0x400"
},
{
"enumerant" : "FlagLValueReference",
"value" : "0x800"
},
{
"enumerant" : "FlagRValueReference",
"value" : "0x1000"
},
{
"enumerant" : "FlagIsOptimized",
"value" : "0x2000"
}
]
},
{
"category" : "ValueEnum",
"kind" : "DebugBaseTypeAttributeEncoding",
"enumerants" : [
{
"enumerant" : "Unspecified",
"value" : "0"
},
{
"enumerant" : "Address",
"value" : "1"
},
{
"enumerant" : "Boolean",
"value" : "2"
},
{
"enumerant" : "Float",
"value" : "4"
},
{
"enumerant" : "Signed",
"value" : "5"
},
{
"enumerant" : "SignedChar",
"value" : "6"
},
{
"enumerant" : "Unsigned",
"value" : "7"
},
{
"enumerant" : "UnsignedChar",
"value" : "8"
}
]
},
{
"category" : "ValueEnum",
"kind" : "DebugCompositeType",
"enumerants" : [
{
"enumerant" : "Class",
"value" : "0"
},
{
"enumerant" : "Structure",
"value" : "1"
},
{
"enumerant" : "Union",
"value" : "2"
}
]
},
{
"category" : "ValueEnum",
"kind" : "DebugTypeQualifier",
"enumerants" : [
{
"enumerant" : "ConstType",
"value" : "0"
},
{
"enumerant" : "VolatileType",
"value" : "1"
},
{
"enumerant" : "RestrictType",
"value" : "2"
}
]
},
{
"category" : "ValueEnum",
"kind" : "DebugOperation",
"enumerants" : [
{
"enumerant" : "Deref",
"value" : "0"
},
{
"enumerant" : "Plus",
"value" : "1"
},
{
"enumerant" : "Minus",
"value" : "2"
},
{
"enumerant" : "PlusUconst",
"value" : "3",
"parameters" : [
{ "kind" : "LiteralInteger" }
]
},
{
"enumerant" : "BitPiece",
"value" : "4",
"parameters" : [
{ "kind" : "LiteralInteger" },
{ "kind" : "LiteralInteger" }
]
},
{
"enumerant" : "Swap",
"value" : "5"
},
{
"enumerant" : "Xderef",
"value" : "6"
},
{
"enumerant" : "StackValue",
"value" : "7"
},
{
"enumerant" : "Constu",
"value" : "8",
"parameters" : [
{ "kind" : "LiteralInteger" }
]
}
]
}
]
}

View File

@ -0,0 +1,26 @@
{
"revision" : 2,
"instructions" : [
{
"opname" : "CubeFaceIndexAMD",
"opcode" : 1,
"operands" : [
{ "kind" : "IdRef", "name" : "'P'" }
],
"extensions" : [ "SPV_AMD_gcn_shader" ]
},
{
"opname" : "CubeFaceCoordAMD",
"opcode" : 2,
"operands" : [
{ "kind" : "IdRef", "name" : "'P'" }
],
"extensions" : [ "SPV_AMD_gcn_shader" ]
},
{
"opname" : "TimeAMD",
"opcode" : 3,
"extensions" : [ "SPV_AMD_gcn_shader" ]
}
]
}

View File

@ -0,0 +1,41 @@
{
"revision" : 5,
"instructions" : [
{
"opname" : "SwizzleInvocationsAMD",
"opcode" : 1,
"operands" : [
{ "kind" : "IdRef", "name" : "'data'" },
{ "kind" : "IdRef", "name" : "'offset'" }
],
"extensions" : [ "SPV_AMD_shader_ballot" ]
},
{
"opname" : "SwizzleInvocationsMaskedAMD",
"opcode" : 2,
"operands" : [
{ "kind" : "IdRef", "name" : "'data'" },
{ "kind" : "IdRef", "name" : "'mask'" }
],
"extensions" : [ "SPV_AMD_shader_ballot" ]
},
{
"opname" : "WriteInvocationAMD",
"opcode" : 3,
"operands" : [
{ "kind" : "IdRef", "name" : "'inputValue'" },
{ "kind" : "IdRef", "name" : "'writeValue'" },
{ "kind" : "IdRef", "name" : "'invocationIndex'" }
],
"extensions" : [ "SPV_AMD_shader_ballot" ]
},
{
"opname" : "MbcntAMD",
"opcode" : 4,
"operands" : [
{ "kind" : "IdRef", "name" : "'mask'" }
],
"extensions" : [ "SPV_AMD_shader_ballot" ]
}
]
}

View File

@ -0,0 +1,14 @@
{
"revision" : 4,
"instructions" : [
{
"opname" : "InterpolateAtVertexAMD",
"opcode" : 1,
"operands" : [
{ "kind" : "IdRef", "name" : "'interpolant'" },
{ "kind" : "IdRef", "name" : "'vertexIdx'" }
],
"extensions" : [ "SPV_AMD_shader_explicit_vertex_parameter" ]
}
]
}

View File

@ -0,0 +1,95 @@
{
"revision" : 4,
"instructions" : [
{
"opname" : "FMin3AMD",
"opcode" : 1,
"operands" : [
{ "kind" : "IdRef", "name" : "'x'" },
{ "kind" : "IdRef", "name" : "'y'" },
{ "kind" : "IdRef", "name" : "'z'" }
],
"extensions" : [ "SPV_AMD_shader_trinary_minmax" ]
},
{
"opname" : "UMin3AMD",
"opcode" : 2,
"operands" : [
{ "kind" : "IdRef", "name" : "'x'" },
{ "kind" : "IdRef", "name" : "'y'" },
{ "kind" : "IdRef", "name" : "'z'" }
],
"extensions" : [ "SPV_AMD_shader_trinary_minmax" ]
},
{
"opname" : "SMin3AMD",
"opcode" : 3,
"operands" : [
{ "kind" : "IdRef", "name" : "'x'" },
{ "kind" : "IdRef", "name" : "'y'" },
{ "kind" : "IdRef", "name" : "'z'" }
],
"extensions" : [ "SPV_AMD_shader_trinary_minmax" ]
},
{
"opname" : "FMax3AMD",
"opcode" : 4,
"operands" : [
{ "kind" : "IdRef", "name" : "'x'" },
{ "kind" : "IdRef", "name" : "'y'" },
{ "kind" : "IdRef", "name" : "'z'" }
],
"extensions" : [ "SPV_AMD_shader_trinary_minmax" ]
},
{
"opname" : "UMax3AMD",
"opcode" : 5,
"operands" : [
{ "kind" : "IdRef", "name" : "'x'" },
{ "kind" : "IdRef", "name" : "'y'" },
{ "kind" : "IdRef", "name" : "'z'" }
],
"extensions" : [ "SPV_AMD_shader_trinary_minmax" ]
},
{
"opname" : "SMax3AMD",
"opcode" : 6,
"operands" : [
{ "kind" : "IdRef", "name" : "'x'" },
{ "kind" : "IdRef", "name" : "'y'" },
{ "kind" : "IdRef", "name" : "'z'" }
],
"extensions" : [ "SPV_AMD_shader_trinary_minmax" ]
},
{
"opname" : "FMid3AMD",
"opcode" : 7,
"operands" : [
{ "kind" : "IdRef", "name" : "'x'" },
{ "kind" : "IdRef", "name" : "'y'" },
{ "kind" : "IdRef", "name" : "'z'" }
],
"extensions" : [ "SPV_AMD_shader_trinary_minmax" ]
},
{
"opname" : "UMid3AMD",
"opcode" : 8,
"operands" : [
{ "kind" : "IdRef", "name" : "'x'" },
{ "kind" : "IdRef", "name" : "'y'" },
{ "kind" : "IdRef", "name" : "'z'" }
],
"extensions" : [ "SPV_AMD_shader_trinary_minmax" ]
},
{
"opname" : "SMid3AMD",
"opcode" : 9,
"operands" : [
{ "kind" : "IdRef", "name" : "'x'" },
{ "kind" : "IdRef", "name" : "'y'" },
{ "kind" : "IdRef", "name" : "'z'" }
],
"extensions" : [ "SPV_AMD_shader_trinary_minmax" ]
}
]
}

View File

@ -0,0 +1,79 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "id_descriptor.h"
#include <cassert>
#include <iostream>
#include "opcode.h"
#include "operand.h"
namespace libspirv {
namespace {
// Hashes an array of words. Order of words is important.
uint32_t HashU32Array(const std::vector<uint32_t>& words) {
// The hash function is a sum of hashes of each word seeded by word index.
// Knuth's multiplicative hash is used to hash the words.
const uint32_t kKnuthMulHash = 2654435761;
uint32_t val = 0;
for (uint32_t i = 0; i < words.size(); ++i) {
val += (words[i] + i + 123) * kKnuthMulHash;
}
return val;
}
} // namespace
uint32_t IdDescriptorCollection::ProcessInstruction(
const spv_parsed_instruction_t& inst) {
if (!inst.result_id) return 0;
assert(words_.empty());
words_.push_back(inst.words[0]);
for (size_t operand_index = 0; operand_index < inst.num_operands;
++operand_index) {
const auto& operand = inst.operands[operand_index];
if (spvIsIdType(operand.type)) {
const uint32_t id = inst.words[operand.offset];
const auto it = id_to_descriptor_.find(id);
// Forward declared ids are not hashed.
if (it != id_to_descriptor_.end()) {
words_.push_back(it->second);
}
} else {
for (size_t operand_word_index = 0;
operand_word_index < operand.num_words; ++operand_word_index) {
words_.push_back(inst.words[operand.offset + operand_word_index]);
}
}
}
uint32_t descriptor =
custom_hash_func_ ? custom_hash_func_(words_) : HashU32Array(words_);
if (descriptor == 0) descriptor = 1;
assert(descriptor);
words_.clear();
const auto result = id_to_descriptor_.emplace(inst.result_id, descriptor);
assert(result.second);
(void)result;
return descriptor;
}
} // namespace libspirv

View File

@ -0,0 +1,63 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_ID_DESCRIPTOR_H_
#define LIBSPIRV_ID_DESCRIPTOR_H_
#include <unordered_map>
#include <vector>
#include "spirv-tools/libspirv.hpp"
namespace libspirv {
using CustomHashFunc = std::function<uint32_t(const std::vector<uint32_t>&)>;
// Computes and stores id descriptors.
//
// Descriptors are computed as hash of all words in the instruction where ids
// were substituted with previously computed descriptors.
class IdDescriptorCollection {
public:
explicit IdDescriptorCollection(
CustomHashFunc custom_hash_func = CustomHashFunc())
: custom_hash_func_(custom_hash_func) {
words_.reserve(16);
}
// Computes descriptor for the result id of the given instruction and
// registers it in id_to_descriptor_. Returns the computed descriptor.
// This function needs to be sequentially called for every instruction in the
// module.
uint32_t ProcessInstruction(const spv_parsed_instruction_t& inst);
// Returns a previously computed descriptor id.
uint32_t GetDescriptor(uint32_t id) const {
const auto it = id_to_descriptor_.find(id);
if (it == id_to_descriptor_.end()) return 0;
return it->second;
}
private:
std::unordered_map<uint32_t, uint32_t> id_to_descriptor_;
std::function<uint32_t(const std::vector<uint32_t>&)> custom_hash_func_;
// Scratch buffer used for hashing. Class member to optimize on allocation.
std::vector<uint32_t> words_;
};
} // namespace libspirv
#endif // LIBSPIRV_ID_DESCRIPTOR_H_

View File

@ -0,0 +1,49 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_INSTRUCTION_H_
#define LIBSPIRV_INSTRUCTION_H_
#include <cstdint>
#include <vector>
#include "latest_version_spirv_header.h"
#include "spirv-tools/libspirv.h"
// Describes an instruction.
struct spv_instruction_t {
// Normally, both opcode and extInstType contain valid data.
// However, when the assembler parses !<number> as the first word in
// an instruction and opcode and extInstType are invalid.
SpvOp opcode;
spv_ext_inst_type_t extInstType;
// The Id of the result type, if this instruction has one. Zero otherwise.
uint32_t resultTypeId;
// The instruction, as a sequence of 32-bit words.
// For a regular instruction the opcode and word count are combined
// in words[0], as described in the SPIR-V spec.
// Otherwise, the first token was !<number>, and that number appears
// in words[0]. Subsequent elements are the result of parsing
// tokens in the alternate parsing mode as described in syntax.md.
std::vector<uint32_t> words;
};
// Appends a word to an instruction, without checking for overflow.
inline void spvInstructionAddWord(spv_instruction_t* inst, uint32_t value) {
inst->words.push_back(value);
}
#endif // LIBSPIRV_INSTRUCTION_H_

View File

@ -0,0 +1,20 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_LATEST_VERSION_GLSL_STD_450_HEADER_H_
#define LIBSPIRV_LATEST_VERSION_GLSL_STD_450_HEADER_H_
#include "spirv/unified1/GLSL.std.450.h"
#endif // LIBSPIRV_LATEST_VERSION_GLSL_STD_450_HEADER_H_

View File

@ -0,0 +1,20 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_LATEST_VERSION_OPENCL_STD_HEADER_H_
#define LIBSPIRV_LATEST_VERSION_OPENCL_STD_HEADER_H_
#include "spirv/unified1/OpenCL.std.h"
#endif // LIBSPIRV_LATEST_VERSION_OPENCL_STD_HEADER_H_

View File

@ -0,0 +1,20 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_LATEST_VERSION_SPIRV_HEADER_H_
#define LIBSPIRV_LATEST_VERSION_SPIRV_HEADER_H_
#include "spirv/unified1/spirv.h"
#endif // LIBSPIRV_LATEST_VERSION_SPIRV_HEADER_H_

118
3rdparty/spirv-tools/source/libspirv.cpp vendored Normal file
View File

@ -0,0 +1,118 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "spirv-tools/libspirv.hpp"
#include "table.h"
namespace spvtools {
Context::Context(spv_target_env env) : context_(spvContextCreate(env)) {}
Context::Context(Context&& other) : context_(other.context_) {
other.context_ = nullptr;
}
Context& Context::operator=(Context&& other) {
spvContextDestroy(context_);
context_ = other.context_;
other.context_ = nullptr;
return *this;
}
Context::~Context() { spvContextDestroy(context_); }
void Context::SetMessageConsumer(MessageConsumer consumer) {
libspirv::SetContextMessageConsumer(context_, std::move(consumer));
}
spv_context& Context::CContext() { return context_; }
const spv_context& Context::CContext() const { return context_; }
// Structs for holding the data members for SpvTools.
struct SpirvTools::Impl {
explicit Impl(spv_target_env env) : context(spvContextCreate(env)) {
// The default consumer in spv_context_t is a null consumer, which provides
// equivalent functionality (from the user's perspective) as a real consumer
// does nothing.
}
~Impl() { spvContextDestroy(context); }
spv_context context; // C interface context object.
};
SpirvTools::SpirvTools(spv_target_env env) : impl_(new Impl(env)) {}
SpirvTools::~SpirvTools() {}
void SpirvTools::SetMessageConsumer(MessageConsumer consumer) {
libspirv::SetContextMessageConsumer(impl_->context, std::move(consumer));
}
bool SpirvTools::Assemble(const std::string& text,
std::vector<uint32_t>* binary,
uint32_t options) const {
return Assemble(text.data(), text.size(), binary, options);
}
bool SpirvTools::Assemble(const char* text, const size_t text_size,
std::vector<uint32_t>* binary,
uint32_t options) const {
spv_binary spvbinary = nullptr;
spv_result_t status = spvTextToBinaryWithOptions(
impl_->context, text, text_size, options, &spvbinary, nullptr);
if (status == SPV_SUCCESS) {
binary->assign(spvbinary->code, spvbinary->code + spvbinary->wordCount);
}
spvBinaryDestroy(spvbinary);
return status == SPV_SUCCESS;
}
bool SpirvTools::Disassemble(const std::vector<uint32_t>& binary,
std::string* text, uint32_t options) const {
return Disassemble(binary.data(), binary.size(), text, options);
}
bool SpirvTools::Disassemble(const uint32_t* binary, const size_t binary_size,
std::string* text, uint32_t options) const {
spv_text spvtext = nullptr;
spv_result_t status = spvBinaryToText(impl_->context, binary, binary_size,
options, &spvtext, nullptr);
if (status == SPV_SUCCESS) {
text->assign(spvtext->str, spvtext->str + spvtext->length);
}
spvTextDestroy(spvtext);
return status == SPV_SUCCESS;
}
bool SpirvTools::Validate(const std::vector<uint32_t>& binary) const {
return Validate(binary.data(), binary.size());
}
bool SpirvTools::Validate(const uint32_t* binary,
const size_t binary_size) const {
return spvValidateBinary(impl_->context, binary, binary_size, nullptr) ==
SPV_SUCCESS;
}
bool SpirvTools::Validate(const uint32_t* binary, const size_t binary_size,
const spvtools::ValidatorOptions& options) const {
spv_const_binary_t the_binary{binary, binary_size};
return spvValidateWithOptions(impl_->context, options, &the_binary,
nullptr) == SPV_SUCCESS;
}
} // namespace spvtools

View File

@ -0,0 +1,36 @@
# Copyright (c) 2017 Pierre Moreau
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
add_library(SPIRV-Tools-link
linker.cpp
)
spvtools_default_compile_options(SPIRV-Tools-link)
target_include_directories(SPIRV-Tools-link
PUBLIC ${spirv-tools_SOURCE_DIR}/include
PUBLIC ${SPIRV_HEADER_INCLUDE_DIR}
PRIVATE ${spirv-tools_BINARY_DIR}
)
# We need the IR functionnalities from the optimizer
target_link_libraries(SPIRV-Tools-link
PUBLIC SPIRV-Tools-opt)
set_property(TARGET SPIRV-Tools-link PROPERTY FOLDER "SPIRV-Tools libraries")
spvtools_check_symbol_exports(SPIRV-Tools-link)
if(ENABLE_SPIRV_TOOLS_INSTALL)
install(TARGETS SPIRV-Tools-link
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR})
endif(ENABLE_SPIRV_TOOLS_INSTALL)

View File

@ -0,0 +1,786 @@
// Copyright (c) 2017 Pierre Moreau
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "spirv-tools/linker.hpp"
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "assembly_grammar.h"
#include "diagnostic.h"
#include "opt/build_module.h"
#include "opt/compact_ids_pass.h"
#include "opt/decoration_manager.h"
#include "opt/ir_loader.h"
#include "opt/make_unique.h"
#include "opt/pass_manager.h"
#include "opt/remove_duplicates_pass.h"
#include "spirv-tools/libspirv.hpp"
#include "spirv_target_env.h"
namespace spvtools {
using ir::Instruction;
using ir::IRContext;
using ir::Module;
using ir::Operand;
using opt::PassManager;
using opt::RemoveDuplicatesPass;
using opt::analysis::DecorationManager;
using opt::analysis::DefUseManager;
// Stores various information about an imported or exported symbol.
struct LinkageSymbolInfo {
SpvId id; // ID of the symbol
SpvId type_id; // ID of the type of the symbol
std::string name; // unique name defining the symbol and used for matching
// imports and exports together
std::vector<SpvId> parameter_ids; // ID of the parameters of the symbol, if
// it is a function
};
struct LinkageEntry {
LinkageSymbolInfo imported_symbol;
LinkageSymbolInfo exported_symbol;
LinkageEntry(const LinkageSymbolInfo& import_info,
const LinkageSymbolInfo& export_info)
: imported_symbol(import_info), exported_symbol(export_info) {}
};
using LinkageTable = std::vector<LinkageEntry>;
// Shifts the IDs used in each binary of |modules| so that they occupy a
// disjoint range from the other binaries, and compute the new ID bound which
// is returned in |max_id_bound|.
//
// Both |modules| and |max_id_bound| should not be null, and |modules| should
// not be empty either. Furthermore |modules| should not contain any null
// pointers.
static spv_result_t ShiftIdsInModules(const MessageConsumer& consumer,
std::vector<ir::Module*>* modules,
uint32_t* max_id_bound);
// Generates the header for the linked module and returns it in |header|.
//
// |header| should not be null, |modules| should not be empty and pointers
// should be non-null. |max_id_bound| should be strictly greater than 0.
//
// TODO(pierremoreau): What to do when binaries use different versions of
// SPIR-V? For now, use the max of all versions found in
// the input modules.
static spv_result_t GenerateHeader(const MessageConsumer& consumer,
const std::vector<ir::Module*>& modules,
uint32_t max_id_bound,
ir::ModuleHeader* header);
// Merge all the modules from |in_modules| into a single module owned by
// |linked_context|.
//
// |linked_context| should not be null.
static spv_result_t MergeModules(const MessageConsumer& consumer,
const std::vector<Module*>& in_modules,
const libspirv::AssemblyGrammar& grammar,
IRContext* linked_context);
// Compute all pairs of import and export and return it in |linkings_to_do|.
//
// |linkings_to_do should not be null. Built-in symbols will be ignored.
//
// TODO(pierremoreau): Linkage attributes applied by a group decoration are
// currently not handled. (You could have a group being
// applied to a single ID.)
// TODO(pierremoreau): What should be the proper behaviour with built-in
// symbols?
static spv_result_t GetImportExportPairs(
const MessageConsumer& consumer, const ir::IRContext& linked_context,
const DefUseManager& def_use_manager,
const DecorationManager& decoration_manager, bool allow_partial_linkage,
LinkageTable* linkings_to_do);
// Checks that for each pair of import and export, the import and export have
// the same type as well as the same decorations.
//
// TODO(pierremoreau): Decorations on functions parameters are currently not
// checked.
static spv_result_t CheckImportExportCompatibility(
const MessageConsumer& consumer, const LinkageTable& linkings_to_do,
ir::IRContext* context);
// Remove linkage specific instructions, such as prototypes of imported
// functions, declarations of imported variables, import (and export if
// necessary) linkage attribtes.
//
// |linked_context| and |decoration_manager| should not be null, and the
// 'RemoveDuplicatePass' should be run first.
//
// TODO(pierremoreau): Linkage attributes applied by a group decoration are
// currently not handled. (You could have a group being
// applied to a single ID.)
// TODO(pierremoreau): Run a pass for removing dead instructions, for example
// OpName for prototypes of imported funcions.
static spv_result_t RemoveLinkageSpecificInstructions(
const MessageConsumer& consumer, const LinkerOptions& options,
const LinkageTable& linkings_to_do, DecorationManager* decoration_manager,
ir::IRContext* linked_context);
// Verify that the unique ids of each instruction in |linked_context| (i.e. the
// merged module) are truly unique. Does not check the validity of other ids
static spv_result_t VerifyIds(const MessageConsumer& consumer,
ir::IRContext* linked_context);
spv_result_t Link(const Context& context,
const std::vector<std::vector<uint32_t>>& binaries,
std::vector<uint32_t>* linked_binary,
const LinkerOptions& options) {
std::vector<const uint32_t*> binary_ptrs;
binary_ptrs.reserve(binaries.size());
std::vector<size_t> binary_sizes;
binary_sizes.reserve(binaries.size());
for (const auto& binary : binaries) {
binary_ptrs.push_back(binary.data());
binary_sizes.push_back(binary.size());
}
return Link(context, binary_ptrs.data(), binary_sizes.data(), binaries.size(),
linked_binary, options);
}
spv_result_t Link(const Context& context, const uint32_t* const* binaries,
const size_t* binary_sizes, size_t num_binaries,
std::vector<uint32_t>* linked_binary,
const LinkerOptions& options) {
spv_position_t position = {};
const spv_context& c_context = context.CContext();
const MessageConsumer& consumer = c_context->consumer;
linked_binary->clear();
if (num_binaries == 0u)
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_BINARY)
<< "No modules were given.";
std::vector<std::unique_ptr<IRContext>> ir_contexts;
std::vector<Module*> modules;
modules.reserve(num_binaries);
for (size_t i = 0u; i < num_binaries; ++i) {
const uint32_t schema = binaries[i][4u];
if (schema != 0u) {
position.index = 4u;
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_BINARY)
<< "Schema is non-zero for module " << i << ".";
}
std::unique_ptr<IRContext> ir_context = BuildModule(
c_context->target_env, consumer, binaries[i], binary_sizes[i]);
if (ir_context == nullptr)
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_BINARY)
<< "Failed to build a module out of " << ir_contexts.size() << ".";
modules.push_back(ir_context->module());
ir_contexts.push_back(std::move(ir_context));
}
// Phase 1: Shift the IDs used in each binary so that they occupy a disjoint
// range from the other binaries, and compute the new ID bound.
uint32_t max_id_bound = 0u;
spv_result_t res = ShiftIdsInModules(consumer, &modules, &max_id_bound);
if (res != SPV_SUCCESS) return res;
// Phase 2: Generate the header
ir::ModuleHeader header;
res = GenerateHeader(consumer, modules, max_id_bound, &header);
if (res != SPV_SUCCESS) return res;
IRContext linked_context(c_context->target_env, consumer);
linked_context.module()->SetHeader(header);
// Phase 3: Merge all the binaries into a single one.
libspirv::AssemblyGrammar grammar(c_context);
res = MergeModules(consumer, modules, grammar, &linked_context);
if (res != SPV_SUCCESS) return res;
if (options.GetVerifyIds()) {
res = VerifyIds(consumer, &linked_context);
if (res != SPV_SUCCESS) return res;
}
// Phase 4: Find the import/export pairs
LinkageTable linkings_to_do;
res = GetImportExportPairs(consumer, linked_context,
*linked_context.get_def_use_mgr(),
*linked_context.get_decoration_mgr(),
options.GetAllowPartialLinkage(), &linkings_to_do);
if (res != SPV_SUCCESS) return res;
// Phase 5: Ensure the import and export have the same types and decorations.
res =
CheckImportExportCompatibility(consumer, linkings_to_do, &linked_context);
if (res != SPV_SUCCESS) return res;
// Phase 6: Remove duplicates
PassManager manager;
manager.SetMessageConsumer(consumer);
manager.AddPass<RemoveDuplicatesPass>();
opt::Pass::Status pass_res = manager.Run(&linked_context);
if (pass_res == opt::Pass::Status::Failure) return SPV_ERROR_INVALID_DATA;
// Phase 7: Rematch import variables/functions to export variables/functions
for (const auto& linking_entry : linkings_to_do)
linked_context.ReplaceAllUsesWith(linking_entry.imported_symbol.id,
linking_entry.exported_symbol.id);
// Phase 8: Remove linkage specific instructions, such as import/export
// attributes, linkage capability, etc. if applicable
res = RemoveLinkageSpecificInstructions(consumer, options, linkings_to_do,
linked_context.get_decoration_mgr(),
&linked_context);
if (res != SPV_SUCCESS) return res;
// Phase 9: Compact the IDs used in the module
manager.AddPass<opt::CompactIdsPass>();
pass_res = manager.Run(&linked_context);
if (pass_res == opt::Pass::Status::Failure) return SPV_ERROR_INVALID_DATA;
// Phase 10: Output the module
linked_context.module()->ToBinary(linked_binary, true);
return SPV_SUCCESS;
}
static spv_result_t ShiftIdsInModules(const MessageConsumer& consumer,
std::vector<ir::Module*>* modules,
uint32_t* max_id_bound) {
spv_position_t position = {};
if (modules == nullptr)
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_DATA)
<< "|modules| of ShiftIdsInModules should not be null.";
if (modules->empty())
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_DATA)
<< "|modules| of ShiftIdsInModules should not be empty.";
if (max_id_bound == nullptr)
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_DATA)
<< "|max_id_bound| of ShiftIdsInModules should not be null.";
uint32_t id_bound = modules->front()->IdBound() - 1u;
for (auto module_iter = modules->begin() + 1; module_iter != modules->end();
++module_iter) {
Module* module = *module_iter;
module->ForEachInst([&id_bound](Instruction* insn) {
insn->ForEachId([&id_bound](uint32_t* id) { *id += id_bound; });
});
id_bound += module->IdBound() - 1u;
if (id_bound > 0x3FFFFF)
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_ID)
<< "The limit of IDs, 4194303, was exceeded:"
<< " " << id_bound << " is the current ID bound.";
// Invalidate the DefUseManager
module->context()->InvalidateAnalyses(ir::IRContext::kAnalysisDefUse);
}
++id_bound;
if (id_bound > 0x3FFFFF)
return libspirv::DiagnosticStream(position, consumer, SPV_ERROR_INVALID_ID)
<< "The limit of IDs, 4194303, was exceeded:"
<< " " << id_bound << " is the current ID bound.";
*max_id_bound = id_bound;
return SPV_SUCCESS;
}
static spv_result_t GenerateHeader(const MessageConsumer& consumer,
const std::vector<ir::Module*>& modules,
uint32_t max_id_bound,
ir::ModuleHeader* header) {
spv_position_t position = {};
if (modules.empty())
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_DATA)
<< "|modules| of GenerateHeader should not be empty.";
if (max_id_bound == 0u)
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_DATA)
<< "|max_id_bound| of GenerateHeader should not be null.";
uint32_t version = 0u;
for (const auto& module : modules)
version = std::max(version, module->version());
header->magic_number = SpvMagicNumber;
header->version = version;
header->generator = 17u;
header->bound = max_id_bound;
header->reserved = 0u;
return SPV_SUCCESS;
}
static spv_result_t MergeModules(const MessageConsumer& consumer,
const std::vector<Module*>& input_modules,
const libspirv::AssemblyGrammar& grammar,
IRContext* linked_context) {
spv_position_t position = {};
if (linked_context == nullptr)
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_DATA)
<< "|linked_module| of MergeModules should not be null.";
Module* linked_module = linked_context->module();
if (input_modules.empty()) return SPV_SUCCESS;
for (const auto& module : input_modules)
for (const auto& inst : module->capabilities())
linked_module->AddCapability(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->extensions())
linked_module->AddExtension(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->ext_inst_imports())
linked_module->AddExtInstImport(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
do {
const Instruction* memory_model_inst = input_modules[0]->GetMemoryModel();
if (memory_model_inst == nullptr) break;
uint32_t addressing_model = memory_model_inst->GetSingleWordOperand(0u);
uint32_t memory_model = memory_model_inst->GetSingleWordOperand(1u);
for (const auto& module : input_modules) {
memory_model_inst = module->GetMemoryModel();
if (memory_model_inst == nullptr) continue;
if (addressing_model != memory_model_inst->GetSingleWordOperand(0u)) {
spv_operand_desc initial_desc = nullptr, current_desc = nullptr;
grammar.lookupOperand(SPV_OPERAND_TYPE_ADDRESSING_MODEL,
addressing_model, &initial_desc);
grammar.lookupOperand(SPV_OPERAND_TYPE_ADDRESSING_MODEL,
memory_model_inst->GetSingleWordOperand(0u),
&current_desc);
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INTERNAL)
<< "Conflicting addressing models: " << initial_desc->name
<< " vs " << current_desc->name << ".";
}
if (memory_model != memory_model_inst->GetSingleWordOperand(1u)) {
spv_operand_desc initial_desc = nullptr, current_desc = nullptr;
grammar.lookupOperand(SPV_OPERAND_TYPE_MEMORY_MODEL, memory_model,
&initial_desc);
grammar.lookupOperand(SPV_OPERAND_TYPE_MEMORY_MODEL,
memory_model_inst->GetSingleWordOperand(1u),
&current_desc);
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INTERNAL)
<< "Conflicting memory models: " << initial_desc->name << " vs "
<< current_desc->name << ".";
}
}
if (memory_model_inst != nullptr)
linked_module->SetMemoryModel(std::unique_ptr<Instruction>(
memory_model_inst->Clone(linked_context)));
} while (false);
std::vector<std::pair<uint32_t, const char*>> entry_points;
for (const auto& module : input_modules)
for (const auto& inst : module->entry_points()) {
const uint32_t model = inst.GetSingleWordInOperand(0);
const char* const name =
reinterpret_cast<const char*>(inst.GetInOperand(2).words.data());
const auto i = std::find_if(
entry_points.begin(), entry_points.end(),
[model, name](const std::pair<uint32_t, const char*>& v) {
return v.first == model && strcmp(name, v.second) == 0;
});
if (i != entry_points.end()) {
spv_operand_desc desc = nullptr;
grammar.lookupOperand(SPV_OPERAND_TYPE_EXECUTION_MODEL, model, &desc);
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INTERNAL)
<< "The entry point \"" << name << "\", with execution model "
<< desc->name << ", was already defined.";
}
linked_module->AddEntryPoint(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
entry_points.emplace_back(model, name);
}
for (const auto& module : input_modules)
for (const auto& inst : module->execution_modes())
linked_module->AddExecutionMode(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->debugs1())
linked_module->AddDebug1Inst(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->debugs2())
linked_module->AddDebug2Inst(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->debugs3())
linked_module->AddDebug3Inst(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
// If the generated module uses SPIR-V 1.1 or higher, add an
// OpModuleProcessed instruction about the linking step.
if (linked_module->version() >= 0x10100) {
const std::string processed_string("Linked by SPIR-V Tools Linker");
const size_t words_nb =
processed_string.size() / 4u + (processed_string.size() % 4u != 0u);
std::vector<uint32_t> processed_words(words_nb, 0u);
std::memcpy(processed_words.data(), processed_string.data(), words_nb * 4u);
linked_module->AddDebug3Inst(std::unique_ptr<Instruction>(
new Instruction(linked_context, SpvOpModuleProcessed, 0u, 0u,
{{SPV_OPERAND_TYPE_LITERAL_STRING, processed_words}})));
}
for (const auto& module : input_modules)
for (const auto& inst : module->annotations())
linked_module->AddAnnotationInst(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
// TODO(pierremoreau): Since the modules have not been validate, should we
// expect SpvStorageClassFunction variables outside
// functions?
uint32_t num_global_values = 0u;
for (const auto& module : input_modules) {
for (const auto& inst : module->types_values()) {
linked_module->AddType(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
num_global_values += inst.opcode() == SpvOpVariable;
}
}
if (num_global_values > 0xFFFF)
return libspirv::DiagnosticStream(position, consumer, SPV_ERROR_INTERNAL)
<< "The limit of global values, 65535, was exceeded;"
<< " " << num_global_values << " global values were found.";
// Process functions and their basic blocks
for (const auto& module : input_modules) {
for (const auto& func : *module) {
std::unique_ptr<ir::Function> cloned_func(func.Clone(linked_context));
cloned_func->SetParent(linked_module);
linked_module->AddFunction(std::move(cloned_func));
}
}
return SPV_SUCCESS;
}
static spv_result_t GetImportExportPairs(
const MessageConsumer& consumer, const ir::IRContext& linked_context,
const DefUseManager& def_use_manager,
const DecorationManager& decoration_manager, bool allow_partial_linkage,
LinkageTable* linkings_to_do) {
spv_position_t position = {};
if (linkings_to_do == nullptr)
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_DATA)
<< "|linkings_to_do| of GetImportExportPairs should not be empty.";
std::vector<LinkageSymbolInfo> imports;
std::unordered_map<std::string, std::vector<LinkageSymbolInfo>> exports;
// Figure out the imports and exports
for (const auto& decoration : linked_context.annotations()) {
if (decoration.opcode() != SpvOpDecorate ||
decoration.GetSingleWordInOperand(1u) != SpvDecorationLinkageAttributes)
continue;
const SpvId id = decoration.GetSingleWordInOperand(0u);
// Ignore if the targeted symbol is a built-in
bool is_built_in = false;
for (const auto& id_decoration :
decoration_manager.GetDecorationsFor(id, false)) {
if (id_decoration->GetSingleWordInOperand(1u) == SpvDecorationBuiltIn) {
is_built_in = true;
break;
}
}
if (is_built_in) {
continue;
}
const uint32_t type = decoration.GetSingleWordInOperand(3u);
LinkageSymbolInfo symbol_info;
symbol_info.name =
reinterpret_cast<const char*>(decoration.GetInOperand(2u).words.data());
symbol_info.id = id;
symbol_info.type_id = 0u;
// Retrieve the type of the current symbol. This information will be used
// when checking that the imported and exported symbols have the same
// types.
const Instruction* def_inst = def_use_manager.GetDef(id);
if (def_inst == nullptr)
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_BINARY)
<< "ID " << id << " is never defined:\n";
if (def_inst->opcode() == SpvOpVariable) {
symbol_info.type_id = def_inst->type_id();
} else if (def_inst->opcode() == SpvOpFunction) {
symbol_info.type_id = def_inst->GetSingleWordInOperand(1u);
// range-based for loop calls begin()/end(), but never cbegin()/cend(),
// which will not work here.
for (auto func_iter = linked_context.module()->cbegin();
func_iter != linked_context.module()->cend(); ++func_iter) {
if (func_iter->result_id() != id) continue;
func_iter->ForEachParam([&symbol_info](const Instruction* inst) {
symbol_info.parameter_ids.push_back(inst->result_id());
});
}
} else {
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_BINARY)
<< "Only global variables and functions can be decorated using"
<< " LinkageAttributes; " << id << " is neither of them.\n";
}
if (type == SpvLinkageTypeImport)
imports.push_back(symbol_info);
else if (type == SpvLinkageTypeExport)
exports[symbol_info.name].push_back(symbol_info);
}
// Find the import/export pairs
for (const auto& import : imports) {
std::vector<LinkageSymbolInfo> possible_exports;
const auto& exp = exports.find(import.name);
if (exp != exports.end()) possible_exports = exp->second;
if (possible_exports.empty() && !allow_partial_linkage)
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_BINARY)
<< "Unresolved external reference to \"" << import.name << "\".";
else if (possible_exports.size() > 1u)
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_BINARY)
<< "Too many external references, " << possible_exports.size()
<< ", were found for \"" << import.name << "\".";
if (!possible_exports.empty())
linkings_to_do->emplace_back(import, possible_exports.front());
}
return SPV_SUCCESS;
}
static spv_result_t CheckImportExportCompatibility(
const MessageConsumer& consumer, const LinkageTable& linkings_to_do,
ir::IRContext* context) {
spv_position_t position = {};
// Ensure th import and export types are the same.
const DefUseManager& def_use_manager = *context->get_def_use_mgr();
const DecorationManager& decoration_manager = *context->get_decoration_mgr();
for (const auto& linking_entry : linkings_to_do) {
if (!RemoveDuplicatesPass::AreTypesEqual(
*def_use_manager.GetDef(linking_entry.imported_symbol.type_id),
*def_use_manager.GetDef(linking_entry.exported_symbol.type_id),
context))
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_BINARY)
<< "Type mismatch on symbol \""
<< linking_entry.imported_symbol.name
<< "\" between imported variable/function %"
<< linking_entry.imported_symbol.id
<< " and exported variable/function %"
<< linking_entry.exported_symbol.id << ".";
}
// Ensure the import and export decorations are similar
for (const auto& linking_entry : linkings_to_do) {
if (!decoration_manager.HaveTheSameDecorations(
linking_entry.imported_symbol.id, linking_entry.exported_symbol.id))
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_BINARY)
<< "Decorations mismatch on symbol \""
<< linking_entry.imported_symbol.name
<< "\" between imported variable/function %"
<< linking_entry.imported_symbol.id
<< " and exported variable/function %"
<< linking_entry.exported_symbol.id << ".";
// TODO(pierremoreau): Decorations on function parameters should probably
// match, except for FuncParamAttr if I understand the
// spec correctly.
// TODO(pierremoreau): Decorations on the function return type should
// match, except for FuncParamAttr.
}
return SPV_SUCCESS;
}
static spv_result_t RemoveLinkageSpecificInstructions(
const MessageConsumer& consumer, const LinkerOptions& options,
const LinkageTable& linkings_to_do, DecorationManager* decoration_manager,
ir::IRContext* linked_context) {
spv_position_t position = {};
if (decoration_manager == nullptr)
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_DATA)
<< "|decoration_manager| of RemoveLinkageSpecificInstructions "
"should not be empty.";
if (linked_context == nullptr)
return libspirv::DiagnosticStream(position, consumer,
SPV_ERROR_INVALID_DATA)
<< "|linked_module| of RemoveLinkageSpecificInstructions should not "
"be empty.";
// TODO(pierremoreau): Remove FuncParamAttr decorations of imported
// functions' return type.
// Remove FuncParamAttr decorations of imported functions' parameters.
// From the SPIR-V specification, Sec. 2.13:
// When resolving imported functions, the Function Control and all Function
// Parameter Attributes are taken from the function definition, and not
// from the function declaration.
for (const auto& linking_entry : linkings_to_do) {
for (const auto parameter_id :
linking_entry.imported_symbol.parameter_ids) {
decoration_manager->RemoveDecorationsFrom(
parameter_id, [](const Instruction& inst) {
return (inst.opcode() == SpvOpDecorate ||
inst.opcode() == SpvOpMemberDecorate) &&
inst.GetSingleWordInOperand(1u) ==
SpvDecorationFuncParamAttr;
});
}
}
// Remove prototypes of imported functions
for (const auto& linking_entry : linkings_to_do) {
for (auto func_iter = linked_context->module()->begin();
func_iter != linked_context->module()->end();) {
if (func_iter->result_id() == linking_entry.imported_symbol.id)
func_iter = func_iter.Erase();
else
++func_iter;
}
}
// Remove declarations of imported variables
for (const auto& linking_entry : linkings_to_do) {
auto next = linked_context->types_values_begin();
for (auto inst = next; inst != linked_context->types_values_end();
inst = next) {
++next;
if (inst->result_id() == linking_entry.imported_symbol.id) {
linked_context->KillInst(&*inst);
}
}
}
// If partial linkage is allowed, we need an efficient way to check whether
// an imported ID had a corresponding export symbol. As uses of the imported
// symbol have already been replaced by the exported symbol, use the exported
// symbol ID.
// TODO(pierremoreau): This will not work if the decoration is applied
// through a group, but the linker does not support that
// either.
std::unordered_set<SpvId> imports;
if (options.GetAllowPartialLinkage()) {
imports.reserve(linkings_to_do.size());
for (const auto& linking_entry : linkings_to_do)
imports.emplace(linking_entry.exported_symbol.id);
}
// Remove import linkage attributes
auto next = linked_context->annotation_begin();
for (auto inst = next; inst != linked_context->annotation_end();
inst = next) {
++next;
// If this is an import annotation:
// * if we do not allow partial linkage, remove all import annotations;
// * otherwise, remove the annotation only if there was a corresponding
// export.
if (inst->opcode() == SpvOpDecorate &&
inst->GetSingleWordOperand(1u) == SpvDecorationLinkageAttributes &&
inst->GetSingleWordOperand(3u) == SpvLinkageTypeImport &&
(!options.GetAllowPartialLinkage() ||
imports.find(inst->GetSingleWordOperand(0u)) != imports.end())) {
linked_context->KillInst(&*inst);
}
}
// Remove export linkage attributes if making an executable
if (!options.GetCreateLibrary()) {
next = linked_context->annotation_begin();
for (auto inst = next; inst != linked_context->annotation_end();
inst = next) {
++next;
if (inst->opcode() == SpvOpDecorate &&
inst->GetSingleWordOperand(1u) == SpvDecorationLinkageAttributes &&
inst->GetSingleWordOperand(3u) == SpvLinkageTypeExport) {
linked_context->KillInst(&*inst);
}
}
}
// Remove Linkage capability if making an executable and partial linkage is
// not allowed
if (!options.GetCreateLibrary() && !options.GetAllowPartialLinkage()) {
for (auto& inst : linked_context->capabilities())
if (inst.GetSingleWordInOperand(0u) == SpvCapabilityLinkage) {
linked_context->KillInst(&inst);
// The RemoveDuplicatesPass did remove duplicated capabilities, so we
// now there arent more SpvCapabilityLinkage further down.
break;
}
}
return SPV_SUCCESS;
}
spv_result_t VerifyIds(const MessageConsumer& consumer,
ir::IRContext* linked_context) {
std::unordered_set<uint32_t> ids;
bool ok = true;
linked_context->module()->ForEachInst(
[&ids, &ok](const ir::Instruction* inst) {
ok &= ids.insert(inst->unique_id()).second;
});
if (!ok) {
consumer(SPV_MSG_INTERNAL_ERROR, "", {}, "Non-unique id in merged module");
return SPV_ERROR_INVALID_ID;
}
return SPV_SUCCESS;
}
} // namespace spvtools

25
3rdparty/spirv-tools/source/macro.h vendored Normal file
View File

@ -0,0 +1,25 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_MACRO_H_
#define LIBSPIRV_MACRO_H_
// Evaluates to the number of elements of array A.
//
// If we could use constexpr, then we could make this a template function.
// If the source arrays were std::array, then we could have used
// std::array::size.
#define ARRAY_SIZE(A) (static_cast<uint32_t>(sizeof(A) / sizeof(A[0])))
#endif // LIBSPIRV_MACRO_H_

54
3rdparty/spirv-tools/source/message.cpp vendored Normal file
View File

@ -0,0 +1,54 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "message.h"
#include <sstream>
namespace spvtools {
std::string StringifyMessage(spv_message_level_t level, const char* source,
const spv_position_t& position,
const char* message) {
const char* level_string = nullptr;
switch (level) {
case SPV_MSG_FATAL:
level_string = "fatal";
break;
case SPV_MSG_INTERNAL_ERROR:
level_string = "internal error";
break;
case SPV_MSG_ERROR:
level_string = "error";
break;
case SPV_MSG_WARNING:
level_string = "warning";
break;
case SPV_MSG_INFO:
level_string = "info";
break;
case SPV_MSG_DEBUG:
level_string = "debug";
break;
}
std::ostringstream oss;
oss << level_string << ": ";
if (source) oss << source << ":";
oss << position.line << ":" << position.column << ":";
oss << position.index << ": ";
if (message) oss << message;
return oss.str();
}
} // namespace spvtools

33
3rdparty/spirv-tools/source/message.h vendored Normal file
View File

@ -0,0 +1,33 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPIRV_TOOLS_MESSAGE_H_
#define SPIRV_TOOLS_MESSAGE_H_
#include <string>
#include "spirv-tools/libspirv.h"
namespace spvtools {
// A helper function to compose and return a string from the message in the
// following format:
// "<level>: <source>:<line>:<column>:<index>: <message>"
std::string StringifyMessage(spv_message_level_t level, const char* source,
const spv_position_t& position,
const char* message);
} // namespace spvtools
#endif // SPIRV_TOOLS_MESSAGE_H_

View File

@ -0,0 +1,332 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "name_mapper.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include "spirv-tools/libspirv.h"
#include "latest_version_spirv_header.h"
#include "parsed_operand.h"
namespace {
// Converts a uint32_t to its string decimal representation.
std::string to_string(uint32_t id) {
// Use stringstream, since some versions of Android compilers lack
// std::to_string.
std::stringstream os;
os << id;
return os.str();
}
} // anonymous namespace
namespace libspirv {
NameMapper GetTrivialNameMapper() { return to_string; }
FriendlyNameMapper::FriendlyNameMapper(const spv_const_context context,
const uint32_t* code,
const size_t wordCount)
: grammar_(libspirv::AssemblyGrammar(context)) {
spv_diagnostic diag = nullptr;
// We don't care if the parse fails.
spvBinaryParse(context, this, code, wordCount, nullptr,
ParseInstructionForwarder, &diag);
spvDiagnosticDestroy(diag);
}
std::string FriendlyNameMapper::NameForId(uint32_t id) {
auto iter = name_for_id_.find(id);
if (iter == name_for_id_.end()) {
// It must have been an invalid module, so just return a trivial mapping.
// We don't care about uniqueness.
return to_string(id);
} else {
return iter->second;
}
}
std::string FriendlyNameMapper::Sanitize(const std::string& suggested_name) {
if (suggested_name.empty()) return "_";
// Otherwise, replace invalid characters by '_'.
std::string result;
std::string valid =
"abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"_0123456789";
std::transform(suggested_name.begin(), suggested_name.end(),
std::back_inserter(result), [&valid](const char c) {
return (std::string::npos == valid.find(c)) ? '_' : c;
});
return result;
}
void FriendlyNameMapper::SaveName(uint32_t id,
const std::string& suggested_name) {
if (name_for_id_.find(id) != name_for_id_.end()) return;
const std::string sanitized_suggested_name = Sanitize(suggested_name);
std::string name = sanitized_suggested_name;
auto inserted = used_names_.insert(name);
if (!inserted.second) {
const std::string base_name = sanitized_suggested_name + "_";
for (uint32_t index = 0; !inserted.second; ++index) {
name = base_name + to_string(index);
inserted = used_names_.insert(name);
}
}
name_for_id_[id] = name;
}
void FriendlyNameMapper::SaveBuiltInName(uint32_t target_id,
uint32_t built_in) {
#define GLCASE(name) \
case SpvBuiltIn##name: \
SaveName(target_id, "gl_" #name); \
return;
#define GLCASE2(name, suggested) \
case SpvBuiltIn##name: \
SaveName(target_id, "gl_" #suggested); \
return;
#define CASE(name) \
case SpvBuiltIn##name: \
SaveName(target_id, #name); \
return;
switch (built_in) {
GLCASE(Position)
GLCASE(PointSize)
GLCASE(ClipDistance)
GLCASE(CullDistance)
GLCASE2(VertexId, VertexID)
GLCASE2(InstanceId, InstanceID)
GLCASE2(PrimitiveId, PrimitiveID)
GLCASE2(InvocationId, InvocationID)
GLCASE(Layer)
GLCASE(ViewportIndex)
GLCASE(TessLevelOuter)
GLCASE(TessLevelInner)
GLCASE(TessCoord)
GLCASE(PatchVertices)
GLCASE(FragCoord)
GLCASE(PointCoord)
GLCASE(FrontFacing)
GLCASE2(SampleId, SampleID)
GLCASE(SamplePosition)
GLCASE(SampleMask)
GLCASE(FragDepth)
GLCASE(HelperInvocation)
GLCASE2(NumWorkgroups, NumWorkGroups)
GLCASE2(WorkgroupSize, WorkGroupSize)
GLCASE2(WorkgroupId, WorkGroupID)
GLCASE2(LocalInvocationId, LocalInvocationID)
GLCASE2(GlobalInvocationId, GlobalInvocationID)
GLCASE(LocalInvocationIndex)
CASE(WorkDim)
CASE(GlobalSize)
CASE(EnqueuedWorkgroupSize)
CASE(GlobalOffset)
CASE(GlobalLinearId)
CASE(SubgroupSize)
CASE(SubgroupMaxSize)
CASE(NumSubgroups)
CASE(NumEnqueuedSubgroups)
CASE(SubgroupId)
CASE(SubgroupLocalInvocationId)
GLCASE(VertexIndex)
GLCASE(InstanceIndex)
CASE(SubgroupEqMaskKHR)
CASE(SubgroupGeMaskKHR)
CASE(SubgroupGtMaskKHR)
CASE(SubgroupLeMaskKHR)
CASE(SubgroupLtMaskKHR)
default:
break;
}
#undef GLCASE
#undef GLCASE2
#undef CASE
}
spv_result_t FriendlyNameMapper::ParseInstruction(
const spv_parsed_instruction_t& inst) {
const auto result_id = inst.result_id;
switch (inst.opcode) {
case SpvOpName:
SaveName(inst.words[1], reinterpret_cast<const char*>(inst.words + 2));
break;
case SpvOpDecorate:
// Decorations come after OpName. So OpName will take precedence over
// decorations.
//
// In theory, we should also handle OpGroupDecorate. But that's unlikely
// to occur.
if (inst.words[2] == SpvDecorationBuiltIn) {
assert(inst.num_words > 3);
SaveBuiltInName(inst.words[1], inst.words[3]);
}
break;
case SpvOpTypeVoid:
SaveName(result_id, "void");
break;
case SpvOpTypeBool:
SaveName(result_id, "bool");
break;
case SpvOpTypeInt: {
std::string signedness;
std::string root;
const auto bit_width = inst.words[2];
switch (bit_width) {
case 8:
root = "char";
break;
case 16:
root = "short";
break;
case 32:
root = "int";
break;
case 64:
root = "long";
break;
default:
root = to_string(bit_width);
signedness = "i";
break;
}
if (0 == inst.words[3]) signedness = "u";
SaveName(result_id, signedness + root);
} break;
case SpvOpTypeFloat: {
const auto bit_width = inst.words[2];
switch (bit_width) {
case 16:
SaveName(result_id, "half");
break;
case 32:
SaveName(result_id, "float");
break;
case 64:
SaveName(result_id, "double");
break;
default:
SaveName(result_id, std::string("fp") + to_string(bit_width));
break;
}
} break;
case SpvOpTypeVector:
SaveName(result_id, std::string("v") + to_string(inst.words[3]) +
NameForId(inst.words[2]));
break;
case SpvOpTypeMatrix:
SaveName(result_id, std::string("mat") + to_string(inst.words[3]) +
NameForId(inst.words[2]));
break;
case SpvOpTypeArray:
SaveName(result_id, std::string("_arr_") + NameForId(inst.words[2]) +
"_" + NameForId(inst.words[3]));
break;
case SpvOpTypeRuntimeArray:
SaveName(result_id,
std::string("_runtimearr_") + NameForId(inst.words[2]));
break;
case SpvOpTypePointer:
SaveName(result_id, std::string("_ptr_") +
NameForEnumOperand(SPV_OPERAND_TYPE_STORAGE_CLASS,
inst.words[2]) +
"_" + NameForId(inst.words[3]));
break;
case SpvOpTypePipe:
SaveName(result_id,
std::string("Pipe") +
NameForEnumOperand(SPV_OPERAND_TYPE_ACCESS_QUALIFIER,
inst.words[2]));
break;
case SpvOpTypeEvent:
SaveName(result_id, "Event");
break;
case SpvOpTypeDeviceEvent:
SaveName(result_id, "DeviceEvent");
break;
case SpvOpTypeReserveId:
SaveName(result_id, "ReserveId");
break;
case SpvOpTypeQueue:
SaveName(result_id, "Queue");
break;
case SpvOpTypeOpaque:
SaveName(result_id,
std::string("Opaque_") +
Sanitize(reinterpret_cast<const char*>(inst.words + 2)));
break;
case SpvOpTypePipeStorage:
SaveName(result_id, "PipeStorage");
break;
case SpvOpTypeNamedBarrier:
SaveName(result_id, "NamedBarrier");
break;
case SpvOpTypeStruct:
// Structs are mapped rather simplisitically. Just indicate that they
// are a struct and then give the raw Id number.
SaveName(result_id, std::string("_struct_") + to_string(result_id));
break;
case SpvOpConstantTrue:
SaveName(result_id, "true");
break;
case SpvOpConstantFalse:
SaveName(result_id, "false");
break;
case SpvOpConstant: {
std::ostringstream value;
EmitNumericLiteral(&value, inst, inst.operands[2]);
auto value_str = value.str();
// Use 'n' to signify negative. Other invalid characters will be mapped
// to underscore.
for (auto& c : value_str)
if (c == '-') c = 'n';
SaveName(result_id, NameForId(inst.type_id) + "_" + value_str);
} break;
default:
// If this instruction otherwise defines an Id, then save a mapping for
// it. This is needed to ensure uniqueness in there is an OpName with
// string something like "1" that might collide with this result_id.
// We should only do this if a name hasn't already been registered by some
// previous forward reference.
if (result_id && name_for_id_.find(result_id) == name_for_id_.end())
SaveName(result_id, to_string(result_id));
break;
}
return SPV_SUCCESS;
}
std::string FriendlyNameMapper::NameForEnumOperand(spv_operand_type_t type,
uint32_t word) {
spv_operand_desc desc = nullptr;
if (SPV_SUCCESS == grammar_.lookupOperand(type, word, &desc)) {
return desc->name;
} else {
// Invalid input. Just give something sane.
return std::string("StorageClass") + to_string(word);
}
}
} // namespace libspirv

View File

@ -0,0 +1,122 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_NAME_MAPPER_H_
#define LIBSPIRV_NAME_MAPPER_H_
#include <functional>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include "assembly_grammar.h"
#include "spirv-tools/libspirv.h"
namespace libspirv {
// A NameMapper maps SPIR-V Id values to names. Each name is valid to use in
// SPIR-V assembly. The mapping is one-to-one, i.e. no two Ids map to the same
// name.
using NameMapper = std::function<std::string(uint32_t)>;
// Returns a NameMapper which always maps an Id to its decimal representation.
NameMapper GetTrivialNameMapper();
// A FriendlyNameMapper parses a module upon construction. If the parse is
// successful, then the NameForId method maps an Id to a friendly name
// while also satisfying the constraints on a NameMapper.
//
// The mapping is friendly in the following sense:
// - If an Id has a debug name (via OpName), then that will be used when
// possible.
// - Well known scalar types map to friendly names. For example,
// OpTypeVoid should be %void. Scalar types map to their names in OpenCL
// when
// there is a correspondence, and otherwise as follows:
// - unsigned integer type of n bits map to "u" followed by n
// - signed integer type of n bits map to "i" followed by n
// - floating point type of n bits map to "fp" followed by n
// - Vector type names map to "v" followed by the number of components,
// followed by the friendly name for the base type.
// - Matrix type names map to "mat" followed by the number of columns,
// followed by the friendly name for the base vector type.
// - Pointer types map to "_ptr_", then the name of the storage class, then the
// name for the pointee type.
// - Exotic types like event, pipe, opaque, queue, reserve-id map to their own
// human readable names.
// - A struct type maps to "_struct_" followed by the raw Id number. That's
// pretty simplistic, but workable.
// - A built-in variable maps to its GLSL variable name.
// - Numeric literals in OpConstant map to a human-friendly name.
class FriendlyNameMapper {
public:
// Construct a friendly name mapper, and determine friendly names for each
// defined Id in the specified module. The module is specified by the code
// wordCount, and should be parseable in the specified context.
FriendlyNameMapper(const spv_const_context context, const uint32_t* code,
const size_t wordCount);
// Returns a NameMapper which maps ids to the friendly names parsed from the
// module provided to the constructor.
NameMapper GetNameMapper() {
return [this](uint32_t id) { return this->NameForId(id); };
}
// Returns the friendly name for the given id. If the module parsed during
// construction is valid, then the mapping satisfies the rules for a
// NameMapper.
std::string NameForId(uint32_t id);
private:
// Transforms the given string so that it is acceptable as an Id name in
// assembly language. Two distinct inputs can map to the same output.
std::string Sanitize(const std::string& suggested_name);
// Records a name for the given id. If this id already has a name, then
// this is a no-op. If the id doesn't have a name, use the given
// suggested_name if it hasn't already been taken, and otherwise generate
// a new (unused) name based on the suggested name.
void SaveName(uint32_t id, const std::string& suggested_name);
// Records a built-in variable name for target_id. If target_id already
// has a name then this is a no-op.
void SaveBuiltInName(uint32_t target_id, uint32_t built_in);
// Collects information from the given parsed instruction to populate
// name_for_id_. Returns SPV_SUCCESS;
spv_result_t ParseInstruction(const spv_parsed_instruction_t& inst);
// Forwards a parsed-instruction callback from the binary parser into the
// FriendlyNameMapper hidden inside the user_data parameter.
static spv_result_t ParseInstructionForwarder(
void* user_data, const spv_parsed_instruction_t* parsed_instruction) {
return reinterpret_cast<FriendlyNameMapper*>(user_data)->ParseInstruction(
*parsed_instruction);
}
// Returns the friendly name for an enumerant.
std::string NameForEnumOperand(spv_operand_type_t type, uint32_t word);
// Maps an id to its friendly name. This will have an entry for each Id
// defined in the module.
std::unordered_map<uint32_t, std::string> name_for_id_;
// The set of names that have a mapping in name_for_id_;
std::unordered_set<std::string> used_names_;
// The assembly grammar for the current context.
const libspirv::AssemblyGrammar grammar_;
};
} // namespace libspirv
#endif // _LIBSPIRV_NAME_MAPPER_H_

456
3rdparty/spirv-tools/source/opcode.cpp vendored Normal file
View File

@ -0,0 +1,456 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "opcode.h"
#include <assert.h>
#include <string.h>
#include <algorithm>
#include <cstdlib>
#include "instruction.h"
#include "macro.h"
#include "spirv-tools/libspirv.h"
#include "spirv_constant.h"
#include "spirv_endian.h"
#include "spirv_target_env.h"
namespace {
struct OpcodeDescPtrLen {
const spv_opcode_desc_t* ptr;
uint32_t len;
};
#include "core.insts-unified1.inc" // defines kOpcodeTableEntries_1_3
static const spv_opcode_table_t kOpcodeTable = {ARRAY_SIZE(kOpcodeTableEntries),
kOpcodeTableEntries};
// Represents a vendor tool entry in the SPIR-V XML Regsitry.
struct VendorTool {
uint32_t value;
const char* vendor;
const char* tool; // Might be empty string.
const char* vendor_tool; // Combiantion of vendor and tool.
};
const VendorTool vendor_tools[] = {
#include "generators.inc"
};
} // anonymous namespace
// TODO(dneto): Move this to another file. It doesn't belong with opcode
// processing.
const char* spvGeneratorStr(uint32_t generator) {
auto where = std::find_if(
std::begin(vendor_tools), std::end(vendor_tools),
[generator](const VendorTool& vt) { return generator == vt.value; });
if (where != std::end(vendor_tools)) return where->vendor_tool;
return "Unknown";
}
uint32_t spvOpcodeMake(uint16_t wordCount, SpvOp opcode) {
return ((uint32_t)opcode) | (((uint32_t)wordCount) << 16);
}
void spvOpcodeSplit(const uint32_t word, uint16_t* pWordCount,
uint16_t* pOpcode) {
if (pWordCount) {
*pWordCount = (uint16_t)((0xffff0000 & word) >> 16);
}
if (pOpcode) {
*pOpcode = 0x0000ffff & word;
}
}
spv_result_t spvOpcodeTableGet(spv_opcode_table* pInstTable, spv_target_env) {
if (!pInstTable) return SPV_ERROR_INVALID_POINTER;
// Descriptions of each opcode. Each entry describes the format of the
// instruction that follows a particular opcode.
*pInstTable = &kOpcodeTable;
return SPV_SUCCESS;
}
spv_result_t spvOpcodeTableNameLookup(spv_target_env env,
const spv_opcode_table table,
const char* name,
spv_opcode_desc* pEntry) {
if (!name || !pEntry) return SPV_ERROR_INVALID_POINTER;
if (!table) return SPV_ERROR_INVALID_TABLE;
// TODO: This lookup of the Opcode table is suboptimal! Binary sort would be
// preferable but the table requires sorting on the Opcode name, but it's
// static const initialized and matches the order of the spec.
const size_t nameLength = strlen(name);
for (uint64_t opcodeIndex = 0; opcodeIndex < table->count; ++opcodeIndex) {
const spv_opcode_desc_t& entry = table->entries[opcodeIndex];
// We considers the current opcode as available as long as
// 1. The target environment satisfies the minimal requirement of the
// opcode; or
// 2. There is at least one extension enabling this opcode.
//
// Note that the second rule assumes the extension enabling this instruction
// is indeed requested in the SPIR-V code; checking that should be
// validator's work.
if ((spvVersionForTargetEnv(env) >= entry.minVersion ||
entry.numExtensions > 0u) &&
nameLength == strlen(entry.name) &&
!strncmp(name, entry.name, nameLength)) {
// NOTE: Found out Opcode!
*pEntry = &entry;
return SPV_SUCCESS;
}
}
return SPV_ERROR_INVALID_LOOKUP;
}
spv_result_t spvOpcodeTableValueLookup(spv_target_env env,
const spv_opcode_table table,
const SpvOp opcode,
spv_opcode_desc* pEntry) {
if (!table) return SPV_ERROR_INVALID_TABLE;
if (!pEntry) return SPV_ERROR_INVALID_POINTER;
const auto beg = table->entries;
const auto end = table->entries + table->count;
spv_opcode_desc_t needle = {"", opcode, 0, nullptr, 0, {},
false, false, 0, nullptr, ~0u};
auto comp = [](const spv_opcode_desc_t& lhs, const spv_opcode_desc_t& rhs) {
return lhs.opcode < rhs.opcode;
};
// We need to loop here because there can exist multiple symbols for the same
// opcode value, and they can be introduced in different target environments,
// which means they can have different minimal version requirements.
// Assumes the underlying table is already sorted ascendingly according to
// opcode value.
for (auto it = std::lower_bound(beg, end, needle, comp);
it != end && it->opcode == opcode; ++it) {
// We considers the current opcode as available as long as
// 1. The target environment satisfies the minimal requirement of the
// opcode; or
// 2. There is at least one extension enabling this opcode.
//
// Note that the second rule assumes the extension enabling this instruction
// is indeed requested in the SPIR-V code; checking that should be
// validator's work.
if (spvVersionForTargetEnv(env) >= it->minVersion ||
it->numExtensions > 0u) {
*pEntry = it;
return SPV_SUCCESS;
}
}
return SPV_ERROR_INVALID_LOOKUP;
}
void spvInstructionCopy(const uint32_t* words, const SpvOp opcode,
const uint16_t wordCount, const spv_endianness_t endian,
spv_instruction_t* pInst) {
pInst->opcode = opcode;
pInst->words.resize(wordCount);
for (uint16_t wordIndex = 0; wordIndex < wordCount; ++wordIndex) {
pInst->words[wordIndex] = spvFixWord(words[wordIndex], endian);
if (!wordIndex) {
uint16_t thisWordCount;
uint16_t thisOpcode;
spvOpcodeSplit(pInst->words[wordIndex], &thisWordCount, &thisOpcode);
assert(opcode == static_cast<SpvOp>(thisOpcode) &&
wordCount == thisWordCount && "Endianness failed!");
}
}
}
const char* spvOpcodeString(const SpvOp opcode) {
const auto beg = kOpcodeTableEntries;
const auto end = kOpcodeTableEntries + ARRAY_SIZE(kOpcodeTableEntries);
spv_opcode_desc_t needle = {"", opcode, 0, nullptr, 0, {},
false, false, 0, nullptr, ~0u};
auto comp = [](const spv_opcode_desc_t& lhs, const spv_opcode_desc_t& rhs) {
return lhs.opcode < rhs.opcode;
};
auto it = std::lower_bound(beg, end, needle, comp);
if (it != end && it->opcode == opcode) {
return it->name;
}
assert(0 && "Unreachable!");
return "unknown";
}
int32_t spvOpcodeIsScalarType(const SpvOp opcode) {
switch (opcode) {
case SpvOpTypeInt:
case SpvOpTypeFloat:
case SpvOpTypeBool:
return true;
default:
return false;
}
}
int32_t spvOpcodeIsSpecConstant(const SpvOp opcode) {
switch (opcode) {
case SpvOpSpecConstantTrue:
case SpvOpSpecConstantFalse:
case SpvOpSpecConstant:
case SpvOpSpecConstantComposite:
case SpvOpSpecConstantOp:
return true;
default:
return false;
}
}
int32_t spvOpcodeIsConstant(const SpvOp opcode) {
switch (opcode) {
case SpvOpConstantTrue:
case SpvOpConstantFalse:
case SpvOpConstant:
case SpvOpConstantComposite:
case SpvOpConstantSampler:
case SpvOpConstantNull:
case SpvOpSpecConstantTrue:
case SpvOpSpecConstantFalse:
case SpvOpSpecConstant:
case SpvOpSpecConstantComposite:
case SpvOpSpecConstantOp:
return true;
default:
return false;
}
}
bool spvOpcodeIsConstantOrUndef(const SpvOp opcode) {
return opcode == SpvOpUndef || spvOpcodeIsConstant(opcode);
}
bool spvOpcodeIsScalarSpecConstant(const SpvOp opcode) {
switch (opcode) {
case SpvOpSpecConstantTrue:
case SpvOpSpecConstantFalse:
case SpvOpSpecConstant:
return true;
default:
return false;
}
}
int32_t spvOpcodeIsComposite(const SpvOp opcode) {
switch (opcode) {
case SpvOpTypeVector:
case SpvOpTypeMatrix:
case SpvOpTypeArray:
case SpvOpTypeStruct:
return true;
default:
return false;
}
}
bool spvOpcodeReturnsLogicalVariablePointer(const SpvOp opcode) {
switch (opcode) {
case SpvOpVariable:
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
case SpvOpFunctionParameter:
case SpvOpImageTexelPointer:
case SpvOpCopyObject:
case SpvOpSelect:
case SpvOpPhi:
case SpvOpFunctionCall:
case SpvOpPtrAccessChain:
case SpvOpLoad:
case SpvOpConstantNull:
return true;
default:
return false;
}
}
int32_t spvOpcodeReturnsLogicalPointer(const SpvOp opcode) {
switch (opcode) {
case SpvOpVariable:
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
case SpvOpFunctionParameter:
case SpvOpImageTexelPointer:
case SpvOpCopyObject:
return true;
default:
return false;
}
}
int32_t spvOpcodeGeneratesType(SpvOp op) {
switch (op) {
case SpvOpTypeVoid:
case SpvOpTypeBool:
case SpvOpTypeInt:
case SpvOpTypeFloat:
case SpvOpTypeVector:
case SpvOpTypeMatrix:
case SpvOpTypeImage:
case SpvOpTypeSampler:
case SpvOpTypeSampledImage:
case SpvOpTypeArray:
case SpvOpTypeRuntimeArray:
case SpvOpTypeStruct:
case SpvOpTypeOpaque:
case SpvOpTypePointer:
case SpvOpTypeFunction:
case SpvOpTypeEvent:
case SpvOpTypeDeviceEvent:
case SpvOpTypeReserveId:
case SpvOpTypeQueue:
case SpvOpTypePipe:
case SpvOpTypePipeStorage:
case SpvOpTypeNamedBarrier:
return true;
default:
// In particular, OpTypeForwardPointer does not generate a type,
// but declares a storage class for a pointer type generated
// by a different instruction.
break;
}
return 0;
}
bool spvOpcodeIsDecoration(const SpvOp opcode) {
switch (opcode) {
case SpvOpDecorate:
case SpvOpDecorateId:
case SpvOpMemberDecorate:
case SpvOpGroupDecorate:
case SpvOpGroupMemberDecorate:
case SpvOpDecorateStringGOOGLE:
case SpvOpMemberDecorateStringGOOGLE:
return true;
default:
break;
}
return false;
}
bool spvOpcodeIsLoad(const SpvOp opcode) {
switch (opcode) {
case SpvOpLoad:
case SpvOpImageSampleExplicitLod:
case SpvOpImageSampleImplicitLod:
case SpvOpImageSampleDrefImplicitLod:
case SpvOpImageSampleDrefExplicitLod:
case SpvOpImageSampleProjImplicitLod:
case SpvOpImageSampleProjExplicitLod:
case SpvOpImageSampleProjDrefImplicitLod:
case SpvOpImageSampleProjDrefExplicitLod:
case SpvOpImageFetch:
case SpvOpImageGather:
case SpvOpImageDrefGather:
case SpvOpImageRead:
case SpvOpImageSparseSampleImplicitLod:
case SpvOpImageSparseSampleExplicitLod:
case SpvOpImageSparseSampleDrefExplicitLod:
case SpvOpImageSparseSampleDrefImplicitLod:
case SpvOpImageSparseFetch:
case SpvOpImageSparseGather:
case SpvOpImageSparseDrefGather:
case SpvOpImageSparseRead:
return true;
default:
return false;
}
}
bool spvOpcodeIsBranch(SpvOp opcode) {
switch (opcode) {
case SpvOpBranch:
case SpvOpBranchConditional:
case SpvOpSwitch:
return true;
default:
return false;
}
}
bool spvOpcodeIsAtomicOp(const SpvOp opcode) {
switch (opcode) {
case SpvOpAtomicLoad:
case SpvOpAtomicStore:
case SpvOpAtomicExchange:
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
case SpvOpAtomicFlagTestAndSet:
case SpvOpAtomicFlagClear:
return true;
default:
return false;
}
}
bool spvOpcodeIsReturn(SpvOp opcode) {
switch (opcode) {
case SpvOpReturn:
case SpvOpReturnValue:
return true;
default:
return false;
}
}
bool spvOpcodeIsReturnOrAbort(SpvOp opcode) {
return spvOpcodeIsReturn(opcode) || opcode == SpvOpKill ||
opcode == SpvOpUnreachable;
}
bool spvOpcodeIsBlockTerminator(SpvOp opcode) {
return spvOpcodeIsBranch(opcode) || spvOpcodeIsReturnOrAbort(opcode);
}
bool spvOpcodeIsBaseOpaqueType(SpvOp opcode) {
switch (opcode) {
case SpvOpTypeImage:
case SpvOpTypeSampler:
case SpvOpTypeSampledImage:
case SpvOpTypeOpaque:
case SpvOpTypeEvent:
case SpvOpTypeDeviceEvent:
case SpvOpTypeReserveId:
case SpvOpTypeQueue:
case SpvOpTypePipe:
case SpvOpTypeForwardPointer:
case SpvOpTypePipeStorage:
case SpvOpTypeNamedBarrier:
return true;
default:
return false;
}
}

121
3rdparty/spirv-tools/source/opcode.h vendored Normal file
View File

@ -0,0 +1,121 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_OPCODE_H_
#define LIBSPIRV_OPCODE_H_
#include "instruction.h"
#include "latest_version_spirv_header.h"
#include "spirv-tools/libspirv.h"
#include "table.h"
// Returns the name of a registered SPIR-V generator as a null-terminated
// string. If the generator is not known, then returns the string "Unknown".
// The generator parameter should be most significant 16-bits of the generator
// word in the SPIR-V module header.
//
// See the registry at https://www.khronos.org/registry/spir-v/api/spir-v.xml.
const char* spvGeneratorStr(uint32_t generator);
// Combines word_count and opcode enumerant in single word.
uint32_t spvOpcodeMake(uint16_t word_count, SpvOp opcode);
// Splits word into into two constituent parts: word_count and opcode.
void spvOpcodeSplit(const uint32_t word, uint16_t* word_count,
uint16_t* opcode);
// Finds the named opcode in the given opcode table. On success, returns
// SPV_SUCCESS and writes a handle of the table entry into *entry.
spv_result_t spvOpcodeTableNameLookup(spv_target_env,
const spv_opcode_table table,
const char* name, spv_opcode_desc* entry);
// Finds the opcode by enumerant in the given opcode table. On success, returns
// SPV_SUCCESS and writes a handle of the table entry into *entry.
spv_result_t spvOpcodeTableValueLookup(spv_target_env,
const spv_opcode_table table,
const SpvOp opcode,
spv_opcode_desc* entry);
// Copies an instruction's word and fixes the endianness to host native. The
// source instruction's stream/opcode/endianness is in the words/opcode/endian
// parameter. The word_count parameter specifies the number of words to copy.
// Writes copied instruction into *inst.
void spvInstructionCopy(const uint32_t* words, const SpvOp opcode,
const uint16_t word_count,
const spv_endianness_t endian, spv_instruction_t* inst);
// Gets the name of an instruction, without the "Op" prefix.
const char* spvOpcodeString(const SpvOp opcode);
// Determine if the given opcode is a scalar type. Returns zero if false,
// non-zero otherwise.
int32_t spvOpcodeIsScalarType(const SpvOp opcode);
// Determines if the given opcode is a specialization constant. Returns zero if
// false, non-zero otherwise.
int32_t spvOpcodeIsSpecConstant(const SpvOp opcode);
// Determines if the given opcode is a constant. Returns zero if false, non-zero
// otherwise.
int32_t spvOpcodeIsConstant(const SpvOp opcode);
// Returns true if the given opcode is a constant or undef.
bool spvOpcodeIsConstantOrUndef(const SpvOp opcode);
// Returns true if the given opcode is a scalar specialization constant.
bool spvOpcodeIsScalarSpecConstant(const SpvOp opcode);
// Determines if the given opcode is a composite type. Returns zero if false,
// non-zero otherwise.
int32_t spvOpcodeIsComposite(const SpvOp opcode);
// Determines if the given opcode results in a pointer when using the logical
// addressing model. Returns zero if false, non-zero otherwise.
int32_t spvOpcodeReturnsLogicalPointer(const SpvOp opcode);
// Returns whether the given opcode could result in a pointer or a variable
// pointer when using the logical addressing model.
bool spvOpcodeReturnsLogicalVariablePointer(const SpvOp opcode);
// Determines if the given opcode generates a type. Returns zero if false,
// non-zero otherwise.
int32_t spvOpcodeGeneratesType(SpvOp opcode);
// Returns true if the opcode adds a decoration to an id.
bool spvOpcodeIsDecoration(const SpvOp opcode);
// Returns true if the opcode is a load from memory into a result id. This
// function only considers core instructions.
bool spvOpcodeIsLoad(const SpvOp opcode);
// Returns true if the opcode is an atomic operation.
bool spvOpcodeIsAtomicOp(const SpvOp opcode);
// Returns true if the given opcode is a branch instruction.
bool spvOpcodeIsBranch(SpvOp opcode);
// Returns true if the given opcode is a return instruction.
bool spvOpcodeIsReturn(SpvOp opcode);
// Returns true if the given opcode is a return instruction or it aborts
// execution.
bool spvOpcodeIsReturnOrAbort(SpvOp opcode);
// Returns true if the given opcode is a basic block terminator.
bool spvOpcodeIsBlockTerminator(SpvOp opcode);
// Returns true if the given opcode always defines an opaque type.
bool spvOpcodeIsBaseOpaqueType(SpvOp opcode);
#endif // LIBSPIRV_OPCODE_H_

470
3rdparty/spirv-tools/source/operand.cpp vendored Normal file
View File

@ -0,0 +1,470 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "operand.h"
#include <assert.h>
#include <string.h>
#include <algorithm>
#include "macro.h"
#include "spirv_constant.h"
#include "spirv_target_env.h"
// For now, assume unified1 contains up to SPIR-V 1.3 and no later
// SPIR-V version.
// TODO(dneto): Make one set of tables, but with version tags on a
// per-item basis. https://github.com/KhronosGroup/SPIRV-Tools/issues/1195
#include "operand.kinds-unified1.inc"
static const spv_operand_table_t kOperandTable = {
ARRAY_SIZE(pygen_variable_OperandInfoTable),
pygen_variable_OperandInfoTable};
spv_result_t spvOperandTableGet(spv_operand_table* pOperandTable,
spv_target_env) {
if (!pOperandTable) return SPV_ERROR_INVALID_POINTER;
*pOperandTable = &kOperandTable;
return SPV_SUCCESS;
}
spv_result_t spvOperandTableNameLookup(spv_target_env env,
const spv_operand_table table,
const spv_operand_type_t type,
const char* name,
const size_t nameLength,
spv_operand_desc* pEntry) {
if (!table) return SPV_ERROR_INVALID_TABLE;
if (!name || !pEntry) return SPV_ERROR_INVALID_POINTER;
for (uint64_t typeIndex = 0; typeIndex < table->count; ++typeIndex) {
const auto& group = table->types[typeIndex];
if (type != group.type) continue;
for (uint64_t index = 0; index < group.count; ++index) {
const auto& entry = group.entries[index];
// We considers the current operand as available as long as
// 1. The target environment satisfies the minimal requirement of the
// operand; or
// 2. There is at least one extension enabling this operand.
//
// Note that the second rule assumes the extension enabling this operand
// is indeed requested in the SPIR-V code; checking that should be
// validator's work.
if ((spvVersionForTargetEnv(env) >= entry.minVersion ||
entry.numExtensions > 0u) &&
nameLength == strlen(entry.name) &&
!strncmp(entry.name, name, nameLength)) {
*pEntry = &entry;
return SPV_SUCCESS;
}
}
}
return SPV_ERROR_INVALID_LOOKUP;
}
spv_result_t spvOperandTableValueLookup(spv_target_env env,
const spv_operand_table table,
const spv_operand_type_t type,
const uint32_t value,
spv_operand_desc* pEntry) {
if (!table) return SPV_ERROR_INVALID_TABLE;
if (!pEntry) return SPV_ERROR_INVALID_POINTER;
spv_operand_desc_t needle = {"", value, 0, nullptr, 0, nullptr, {}, ~0u};
auto comp = [](const spv_operand_desc_t& lhs, const spv_operand_desc_t& rhs) {
return lhs.value < rhs.value;
};
for (uint64_t typeIndex = 0; typeIndex < table->count; ++typeIndex) {
const auto& group = table->types[typeIndex];
if (type != group.type) continue;
const auto beg = group.entries;
const auto end = group.entries + group.count;
// We need to loop here because there can exist multiple symbols for the
// same operand value, and they can be introduced in different target
// environments, which means they can have different minimal version
// requirements. For example, SubgroupEqMaskKHR can exist in any SPIR-V
// version as long as the SPV_KHR_shader_ballot extension is there; but
// starting from SPIR-V 1.3, SubgroupEqMask, which has the same numeric
// value as SubgroupEqMaskKHR, is available in core SPIR-V without extension
// requirements.
// Assumes the underlying table is already sorted ascendingly according to
// opcode value.
for (auto it = std::lower_bound(beg, end, needle, comp);
it != end && it->value == value; ++it) {
// We considers the current operand as available as long as
// 1. The target environment satisfies the minimal requirement of the
// operand; or
// 2. There is at least one extension enabling this operand.
//
// Note that the second rule assumes the extension enabling this operand
// is indeed requested in the SPIR-V code; checking that should be
// validator's work.
if (spvVersionForTargetEnv(env) >= it->minVersion ||
it->numExtensions > 0u) {
*pEntry = it;
return SPV_SUCCESS;
}
}
}
return SPV_ERROR_INVALID_LOOKUP;
}
const char* spvOperandTypeStr(spv_operand_type_t type) {
switch (type) {
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_OPTIONAL_ID:
return "ID";
case SPV_OPERAND_TYPE_TYPE_ID:
return "type ID";
case SPV_OPERAND_TYPE_RESULT_ID:
return "result ID";
case SPV_OPERAND_TYPE_LITERAL_INTEGER:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_NUMBER:
return "literal number";
case SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER:
return "possibly multi-word literal integer";
case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER:
return "possibly multi-word literal number";
case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER:
return "extension instruction number";
case SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER:
return "OpSpecConstantOp opcode";
case SPV_OPERAND_TYPE_LITERAL_STRING:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING:
return "literal string";
case SPV_OPERAND_TYPE_SOURCE_LANGUAGE:
return "source language";
case SPV_OPERAND_TYPE_EXECUTION_MODEL:
return "execution model";
case SPV_OPERAND_TYPE_ADDRESSING_MODEL:
return "addressing model";
case SPV_OPERAND_TYPE_MEMORY_MODEL:
return "memory model";
case SPV_OPERAND_TYPE_EXECUTION_MODE:
return "execution mode";
case SPV_OPERAND_TYPE_STORAGE_CLASS:
return "storage class";
case SPV_OPERAND_TYPE_DIMENSIONALITY:
return "dimensionality";
case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE:
return "sampler addressing mode";
case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE:
return "sampler filter mode";
case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT:
return "image format";
case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE:
return "floating-point fast math mode";
case SPV_OPERAND_TYPE_FP_ROUNDING_MODE:
return "floating-point rounding mode";
case SPV_OPERAND_TYPE_LINKAGE_TYPE:
return "linkage type";
case SPV_OPERAND_TYPE_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER:
return "access qualifier";
case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE:
return "function parameter attribute";
case SPV_OPERAND_TYPE_DECORATION:
return "decoration";
case SPV_OPERAND_TYPE_BUILT_IN:
return "built-in";
case SPV_OPERAND_TYPE_SELECTION_CONTROL:
return "selection control";
case SPV_OPERAND_TYPE_LOOP_CONTROL:
return "loop control";
case SPV_OPERAND_TYPE_FUNCTION_CONTROL:
return "function control";
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID:
return "memory semantics ID";
case SPV_OPERAND_TYPE_MEMORY_ACCESS:
case SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS:
return "memory access";
case SPV_OPERAND_TYPE_SCOPE_ID:
return "scope ID";
case SPV_OPERAND_TYPE_GROUP_OPERATION:
return "group operation";
case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS:
return "kernel enqeue flags";
case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO:
return "kernel profiling info";
case SPV_OPERAND_TYPE_CAPABILITY:
return "capability";
case SPV_OPERAND_TYPE_IMAGE:
case SPV_OPERAND_TYPE_OPTIONAL_IMAGE:
return "image";
case SPV_OPERAND_TYPE_OPTIONAL_CIV:
return "context-insensitive value";
case SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS:
return "debug info flags";
case SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING:
return "debug base type encoding";
case SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE:
return "debug composite type";
case SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER:
return "debug type qualifier";
case SPV_OPERAND_TYPE_DEBUG_OPERATION:
return "debug operation";
// The next values are for values returned from an instruction, not actually
// an operand. So the specific strings don't matter. But let's add them
// for completeness and ease of testing.
case SPV_OPERAND_TYPE_IMAGE_CHANNEL_ORDER:
return "image channel order";
case SPV_OPERAND_TYPE_IMAGE_CHANNEL_DATA_TYPE:
return "image channel data type";
case SPV_OPERAND_TYPE_NONE:
return "NONE";
default:
assert(0 && "Unhandled operand type!");
break;
}
return "unknown";
}
void spvPushOperandTypes(const spv_operand_type_t* types,
spv_operand_pattern_t* pattern) {
const spv_operand_type_t* endTypes;
for (endTypes = types; *endTypes != SPV_OPERAND_TYPE_NONE; ++endTypes)
;
while (endTypes-- != types) {
pattern->push_back(*endTypes);
}
}
void spvPushOperandTypesForMask(spv_target_env env,
const spv_operand_table operandTable,
const spv_operand_type_t type,
const uint32_t mask,
spv_operand_pattern_t* pattern) {
// Scan from highest bits to lowest bits because we will append in LIFO
// fashion, and we need the operands for lower order bits to be consumed first
for (uint32_t candidate_bit = (1u << 31u); candidate_bit;
candidate_bit >>= 1) {
if (candidate_bit & mask) {
spv_operand_desc entry = nullptr;
if (SPV_SUCCESS == spvOperandTableValueLookup(env, operandTable, type,
candidate_bit, &entry)) {
spvPushOperandTypes(entry->operandTypes, pattern);
}
}
}
}
bool spvOperandIsConcrete(spv_operand_type_t type) {
if (spvIsIdType(type) || spvOperandIsConcreteMask(type)) {
return true;
}
switch (type) {
case SPV_OPERAND_TYPE_LITERAL_INTEGER:
case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER:
case SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER:
case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER:
case SPV_OPERAND_TYPE_LITERAL_STRING:
case SPV_OPERAND_TYPE_SOURCE_LANGUAGE:
case SPV_OPERAND_TYPE_EXECUTION_MODEL:
case SPV_OPERAND_TYPE_ADDRESSING_MODEL:
case SPV_OPERAND_TYPE_MEMORY_MODEL:
case SPV_OPERAND_TYPE_EXECUTION_MODE:
case SPV_OPERAND_TYPE_STORAGE_CLASS:
case SPV_OPERAND_TYPE_DIMENSIONALITY:
case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE:
case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE:
case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT:
case SPV_OPERAND_TYPE_IMAGE_CHANNEL_ORDER:
case SPV_OPERAND_TYPE_IMAGE_CHANNEL_DATA_TYPE:
case SPV_OPERAND_TYPE_FP_ROUNDING_MODE:
case SPV_OPERAND_TYPE_LINKAGE_TYPE:
case SPV_OPERAND_TYPE_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE:
case SPV_OPERAND_TYPE_DECORATION:
case SPV_OPERAND_TYPE_BUILT_IN:
case SPV_OPERAND_TYPE_GROUP_OPERATION:
case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS:
case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO:
case SPV_OPERAND_TYPE_CAPABILITY:
case SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING:
case SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE:
case SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER:
case SPV_OPERAND_TYPE_DEBUG_OPERATION:
return true;
default:
break;
}
return false;
}
bool spvOperandIsConcreteMask(spv_operand_type_t type) {
switch (type) {
case SPV_OPERAND_TYPE_IMAGE:
case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE:
case SPV_OPERAND_TYPE_SELECTION_CONTROL:
case SPV_OPERAND_TYPE_LOOP_CONTROL:
case SPV_OPERAND_TYPE_FUNCTION_CONTROL:
case SPV_OPERAND_TYPE_MEMORY_ACCESS:
case SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS:
return true;
default:
break;
}
return false;
}
bool spvOperandIsOptional(spv_operand_type_t type) {
return SPV_OPERAND_TYPE_FIRST_OPTIONAL_TYPE <= type &&
type <= SPV_OPERAND_TYPE_LAST_OPTIONAL_TYPE;
}
bool spvOperandIsVariable(spv_operand_type_t type) {
return SPV_OPERAND_TYPE_FIRST_VARIABLE_TYPE <= type &&
type <= SPV_OPERAND_TYPE_LAST_VARIABLE_TYPE;
}
bool spvExpandOperandSequenceOnce(spv_operand_type_t type,
spv_operand_pattern_t* pattern) {
switch (type) {
case SPV_OPERAND_TYPE_VARIABLE_ID:
pattern->push_back(type);
pattern->push_back(SPV_OPERAND_TYPE_OPTIONAL_ID);
return true;
case SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER:
pattern->push_back(type);
pattern->push_back(SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER);
return true;
case SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER_ID:
// Represents Zero or more (Literal number, Id) pairs,
// where the literal number must be a scalar integer.
pattern->push_back(type);
pattern->push_back(SPV_OPERAND_TYPE_ID);
pattern->push_back(SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER);
return true;
case SPV_OPERAND_TYPE_VARIABLE_ID_LITERAL_INTEGER:
// Represents Zero or more (Id, Literal number) pairs.
pattern->push_back(type);
pattern->push_back(SPV_OPERAND_TYPE_LITERAL_INTEGER);
pattern->push_back(SPV_OPERAND_TYPE_OPTIONAL_ID);
return true;
default:
break;
}
return false;
}
spv_operand_type_t spvTakeFirstMatchableOperand(
spv_operand_pattern_t* pattern) {
assert(!pattern->empty());
spv_operand_type_t result;
do {
result = pattern->back();
pattern->pop_back();
} while (spvExpandOperandSequenceOnce(result, pattern));
return result;
}
spv_operand_pattern_t spvAlternatePatternFollowingImmediate(
const spv_operand_pattern_t& pattern) {
auto it =
std::find(pattern.crbegin(), pattern.crend(), SPV_OPERAND_TYPE_RESULT_ID);
if (it != pattern.crend()) {
spv_operand_pattern_t alternatePattern(it - pattern.crbegin() + 2,
SPV_OPERAND_TYPE_OPTIONAL_CIV);
alternatePattern[1] = SPV_OPERAND_TYPE_RESULT_ID;
return alternatePattern;
}
// No result-id found, so just expect CIVs.
return {SPV_OPERAND_TYPE_OPTIONAL_CIV};
}
bool spvIsIdType(spv_operand_type_t type) {
switch (type) {
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_TYPE_ID:
case SPV_OPERAND_TYPE_RESULT_ID:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID:
case SPV_OPERAND_TYPE_SCOPE_ID:
return true;
default:
return false;
}
}
std::function<bool(unsigned)> spvOperandCanBeForwardDeclaredFunction(
SpvOp opcode) {
std::function<bool(unsigned index)> out;
switch (opcode) {
case SpvOpExecutionMode:
case SpvOpEntryPoint:
case SpvOpName:
case SpvOpMemberName:
case SpvOpSelectionMerge:
case SpvOpDecorate:
case SpvOpMemberDecorate:
case SpvOpDecorateId:
case SpvOpDecorateStringGOOGLE:
case SpvOpMemberDecorateStringGOOGLE:
case SpvOpTypeStruct:
case SpvOpBranch:
case SpvOpLoopMerge:
out = [](unsigned) { return true; };
break;
case SpvOpGroupDecorate:
case SpvOpGroupMemberDecorate:
case SpvOpBranchConditional:
case SpvOpSwitch:
out = [](unsigned index) { return index != 0; };
break;
case SpvOpFunctionCall:
// The Function parameter.
out = [](unsigned index) { return index == 2; };
break;
case SpvOpPhi:
out = [](unsigned index) { return index > 1; };
break;
case SpvOpEnqueueKernel:
// The Invoke parameter.
out = [](unsigned index) { return index == 8; };
break;
case SpvOpGetKernelNDrangeSubGroupCount:
case SpvOpGetKernelNDrangeMaxSubGroupSize:
// The Invoke parameter.
out = [](unsigned index) { return index == 3; };
break;
case SpvOpGetKernelWorkGroupSize:
case SpvOpGetKernelPreferredWorkGroupSizeMultiple:
// The Invoke parameter.
out = [](unsigned index) { return index == 2; };
break;
case SpvOpTypeForwardPointer:
out = [](unsigned index) { return index == 0; };
break;
default:
out = [](unsigned) { return false; };
break;
}
return out;
}

141
3rdparty/spirv-tools/source/operand.h vendored Normal file
View File

@ -0,0 +1,141 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_OPERAND_H_
#define LIBSPIRV_OPERAND_H_
#include <deque>
#include <functional>
#include "spirv-tools/libspirv.h"
#include "table.h"
// A sequence of operand types.
//
// A SPIR-V parser uses an operand pattern to describe what is expected
// next on the input.
//
// As we parse an instruction in text or binary form from left to right,
// we pop and push at the end of the pattern vector. Symbols later in the
// pattern vector are matched against the input before symbols earlier in the
// pattern vector are matched.
// Using a vector in this way reduces memory traffic, which is good for
// performance.
using spv_operand_pattern_t = std::vector<spv_operand_type_t>;
// Finds the named operand in the table. The type parameter specifies the
// operand's group. A handle of the operand table entry for this operand will
// be written into *entry.
spv_result_t spvOperandTableNameLookup(spv_target_env,
const spv_operand_table table,
const spv_operand_type_t type,
const char* name,
const size_t name_length,
spv_operand_desc* entry);
// Finds the operand with value in the table. The type parameter specifies the
// operand's group. A handle of the operand table entry for this operand will
// be written into *entry.
spv_result_t spvOperandTableValueLookup(spv_target_env,
const spv_operand_table table,
const spv_operand_type_t type,
const uint32_t value,
spv_operand_desc* entry);
// Gets the name string of the non-variable operand type.
const char* spvOperandTypeStr(spv_operand_type_t type);
// Returns true if the given type is concrete.
bool spvOperandIsConcrete(spv_operand_type_t type);
// Returns true if the given type is concrete and also a mask.
bool spvOperandIsConcreteMask(spv_operand_type_t type);
// Returns true if an operand of the given type is optional.
bool spvOperandIsOptional(spv_operand_type_t type);
// Returns true if an operand type represents zero or more logical operands.
//
// Note that a single logical operand may still be a variable number of words.
// For example, a literal string may be many words, but is just one logical
// operand.
bool spvOperandIsVariable(spv_operand_type_t type);
// Append a list of operand types to the end of the pattern vector.
// The types parameter specifies the source array of types, ending with
// SPV_OPERAND_TYPE_NONE.
void spvPushOperandTypes(const spv_operand_type_t* types,
spv_operand_pattern_t* pattern);
// Appends the operands expected after the given typed mask onto the
// end of the given pattern.
//
// Each set bit in the mask represents zero or more operand types that should
// be appended onto the pattern. Operands for a less significant bit always
// appear after operands for a more significant bit.
//
// If a set bit is unknown, then we assume it has no operands.
void spvPushOperandTypesForMask(spv_target_env,
const spv_operand_table operand_table,
const spv_operand_type_t mask_type,
const uint32_t mask,
spv_operand_pattern_t* pattern);
// Expands an operand type representing zero or more logical operands,
// exactly once.
//
// If the given type represents potentially several logical operands,
// then prepend the given pattern with the first expansion of the logical
// operands, followed by original type. Otherwise, don't modify the pattern.
//
// For example, the SPV_OPERAND_TYPE_VARIABLE_ID represents zero or more
// IDs. In that case we would prepend the pattern with SPV_OPERAND_TYPE_ID
// followed by SPV_OPERAND_TYPE_VARIABLE_ID again.
//
// This also applies to zero or more tuples of logical operands. In that case
// we prepend pattern with for the members of the tuple, followed by the
// original type argument. The pattern must encode the fact that if any part
// of the tuple is present, then all tuple members should be. So the first
// member of the tuple must be optional, and the remaining members
// non-optional.
//
// Returns true if we modified the pattern.
bool spvExpandOperandSequenceOnce(spv_operand_type_t type,
spv_operand_pattern_t* pattern);
// Expands the first element in the pattern until it is a matchable operand
// type, then pops it off the front and returns it. The pattern must not be
// empty.
//
// A matchable operand type is anything other than a zero-or-more-items
// operand type.
spv_operand_type_t spvTakeFirstMatchableOperand(spv_operand_pattern_t* pattern);
// Calculates the corresponding post-immediate alternate pattern, which allows
// a limited set of operand types.
spv_operand_pattern_t spvAlternatePatternFollowingImmediate(
const spv_operand_pattern_t& pattern);
// Is the operand an ID?
bool spvIsIdType(spv_operand_type_t type);
// Takes the opcode of an instruction and returns
// a function object that will return true if the index
// of the operand can be forward declared. This function will
// used in the SSA validation stage of the pipeline
std::function<bool(unsigned)> spvOperandCanBeForwardDeclaredFunction(
SpvOp opcode);
#endif // LIBSPIRV_OPERAND_H_

View File

@ -0,0 +1,191 @@
# Copyright (c) 2016 Google Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
add_library(SPIRV-Tools-opt
aggressive_dead_code_elim_pass.h
basic_block.h
block_merge_pass.h
build_module.h
ccp_pass.h
cfg_cleanup_pass.h
cfg.h
common_uniform_elim_pass.h
compact_ids_pass.h
composite.h
const_folding_rules.h
constants.h
copy_prop_arrays.h
dead_branch_elim_pass.h
dead_insert_elim_pass.h
dead_variable_elimination.h
decoration_manager.h
def_use_manager.h
dominator_analysis.h
dominator_tree.h
eliminate_dead_constant_pass.h
eliminate_dead_functions_pass.h
feature_manager.h
flatten_decoration_pass.h
fold.h
folding_rules.h
fold_spec_constant_op_and_composite_pass.h
freeze_spec_constant_value_pass.h
function.h
if_conversion.h
inline_exhaustive_pass.h
inline_opaque_pass.h
inline_pass.h
insert_extract_elim.h
instruction.h
instruction_list.h
ir_builder.h
ir_context.h
ir_loader.h
licm_pass.h
local_access_chain_convert_pass.h
local_redundancy_elimination.h
local_single_block_elim_pass.h
local_single_store_elim_pass.h
local_ssa_elim_pass.h
log.h
loop_descriptor.h
loop_peeling.h
loop_unroller.h
loop_utils.h
loop_unswitch_pass.h
make_unique.h
mem_pass.h
merge_return_pass.h
module.h
null_pass.h
passes.h
pass.h
pass_manager.h
private_to_local_pass.h
propagator.h
redundancy_elimination.h
reflect.h
remove_duplicates_pass.h
replace_invalid_opc.h
scalar_analysis.h
scalar_analysis_nodes.h
scalar_replacement_pass.h
set_spec_constant_default_value_pass.h
simplification_pass.h
ssa_rewrite_pass.h
strength_reduction_pass.h
strip_debug_info_pass.h
strip_reflect_info_pass.h
tree_iterator.h
type_manager.h
types.h
unify_const_pass.h
value_number_table.h
workaround1209.h
aggressive_dead_code_elim_pass.cpp
basic_block.cpp
block_merge_pass.cpp
build_module.cpp
ccp_pass.cpp
cfg_cleanup_pass.cpp
cfg.cpp
common_uniform_elim_pass.cpp
compact_ids_pass.cpp
composite.cpp
const_folding_rules.cpp
constants.cpp
copy_prop_arrays.cpp
dead_branch_elim_pass.cpp
dead_insert_elim_pass.cpp
dead_variable_elimination.cpp
decoration_manager.cpp
def_use_manager.cpp
dominator_analysis.cpp
dominator_tree.cpp
eliminate_dead_constant_pass.cpp
eliminate_dead_functions_pass.cpp
feature_manager.cpp
flatten_decoration_pass.cpp
fold.cpp
folding_rules.cpp
fold_spec_constant_op_and_composite_pass.cpp
freeze_spec_constant_value_pass.cpp
function.cpp
if_conversion.cpp
inline_exhaustive_pass.cpp
inline_opaque_pass.cpp
inline_pass.cpp
insert_extract_elim.cpp
instruction.cpp
instruction_list.cpp
ir_context.cpp
ir_loader.cpp
licm_pass.cpp
local_access_chain_convert_pass.cpp
local_redundancy_elimination.cpp
local_single_block_elim_pass.cpp
local_single_store_elim_pass.cpp
local_ssa_elim_pass.cpp
loop_descriptor.cpp
loop_peeling.cpp
loop_utils.cpp
loop_unroller.cpp
loop_unswitch_pass.cpp
mem_pass.cpp
merge_return_pass.cpp
module.cpp
optimizer.cpp
pass.cpp
pass_manager.cpp
private_to_local_pass.cpp
propagator.cpp
redundancy_elimination.cpp
remove_duplicates_pass.cpp
replace_invalid_opc.cpp
scalar_analysis.cpp
scalar_analysis_simplification.cpp
scalar_replacement_pass.cpp
set_spec_constant_default_value_pass.cpp
simplification_pass.cpp
ssa_rewrite_pass.cpp
strength_reduction_pass.cpp
strip_debug_info_pass.cpp
strip_reflect_info_pass.cpp
type_manager.cpp
types.cpp
unify_const_pass.cpp
value_number_table.cpp
workaround1209.cpp
)
spvtools_default_compile_options(SPIRV-Tools-opt)
target_include_directories(SPIRV-Tools-opt
PUBLIC ${spirv-tools_SOURCE_DIR}/include
PUBLIC ${SPIRV_HEADER_INCLUDE_DIR}
PRIVATE ${spirv-tools_BINARY_DIR}
)
# We need the assembling and disassembling functionalities in the main library.
target_link_libraries(SPIRV-Tools-opt
PUBLIC ${SPIRV_TOOLS})
set_property(TARGET SPIRV-Tools-opt PROPERTY FOLDER "SPIRV-Tools libraries")
spvtools_check_symbol_exports(SPIRV-Tools-opt)
if(ENABLE_SPIRV_TOOLS_INSTALL)
install(TARGETS SPIRV-Tools-opt
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR})
endif(ENABLE_SPIRV_TOOLS_INSTALL)

View File

@ -0,0 +1,721 @@
// Copyright (c) 2017 The Khronos Group Inc.
// Copyright (c) 2017 Valve Corporation
// Copyright (c) 2017 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "aggressive_dead_code_elim_pass.h"
#include "cfa.h"
#include "iterator.h"
#include "latest_version_glsl_std_450_header.h"
#include "reflect.h"
#include <stack>
namespace spvtools {
namespace opt {
namespace {
const uint32_t kTypePointerStorageClassInIdx = 0;
const uint32_t kEntryPointFunctionIdInIdx = 1;
const uint32_t kSelectionMergeMergeBlockIdInIdx = 0;
const uint32_t kLoopMergeMergeBlockIdInIdx = 0;
const uint32_t kLoopMergeContinueBlockIdInIdx = 1;
// Sorting functor to present annotation instructions in an easy-to-process
// order. The functor orders by opcode first and falls back on unique id
// ordering if both instructions have the same opcode.
//
// Desired priority:
// SpvOpGroupDecorate
// SpvOpGroupMemberDecorate
// SpvOpDecorate
// SpvOpMemberDecorate
// SpvOpDecorateId
// SpvOpDecorationGroup
struct DecorationLess {
bool operator()(const ir::Instruction* lhs,
const ir::Instruction* rhs) const {
assert(lhs && rhs);
SpvOp lhsOp = lhs->opcode();
SpvOp rhsOp = rhs->opcode();
if (lhsOp != rhsOp) {
// OpGroupDecorate and OpGroupMember decorate are highest priority to
// eliminate dead targets early and simplify subsequent checks.
if (lhsOp == SpvOpGroupDecorate && rhsOp != SpvOpGroupDecorate)
return true;
if (rhsOp == SpvOpGroupDecorate && lhsOp != SpvOpGroupDecorate)
return false;
if (lhsOp == SpvOpGroupMemberDecorate &&
rhsOp != SpvOpGroupMemberDecorate)
return true;
if (rhsOp == SpvOpGroupMemberDecorate &&
lhsOp != SpvOpGroupMemberDecorate)
return false;
if (lhsOp == SpvOpDecorate && rhsOp != SpvOpDecorate) return true;
if (rhsOp == SpvOpDecorate && lhsOp != SpvOpDecorate) return false;
if (lhsOp == SpvOpMemberDecorate && rhsOp != SpvOpMemberDecorate)
return true;
if (rhsOp == SpvOpMemberDecorate && lhsOp != SpvOpMemberDecorate)
return false;
if (lhsOp == SpvOpDecorateId && rhsOp != SpvOpDecorateId) return true;
if (rhsOp == SpvOpDecorateId && lhsOp != SpvOpDecorateId) return false;
// OpDecorationGroup is lowest priority to ensure use/def chains remain
// usable for instructions that target this group.
if (lhsOp == SpvOpDecorationGroup && rhsOp != SpvOpDecorationGroup)
return true;
if (rhsOp == SpvOpDecorationGroup && lhsOp != SpvOpDecorationGroup)
return false;
}
// Fall back to maintain total ordering (compare unique ids).
return *lhs < *rhs;
}
};
} // namespace
bool AggressiveDCEPass::IsVarOfStorage(uint32_t varId, uint32_t storageClass) {
if (varId == 0) return false;
const ir::Instruction* varInst = get_def_use_mgr()->GetDef(varId);
const SpvOp op = varInst->opcode();
if (op != SpvOpVariable) return false;
const uint32_t varTypeId = varInst->type_id();
const ir::Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
if (varTypeInst->opcode() != SpvOpTypePointer) return false;
return varTypeInst->GetSingleWordInOperand(kTypePointerStorageClassInIdx) ==
storageClass;
}
bool AggressiveDCEPass::IsLocalVar(uint32_t varId) {
return IsVarOfStorage(varId, SpvStorageClassFunction) ||
(IsVarOfStorage(varId, SpvStorageClassPrivate) && private_like_local_);
}
void AggressiveDCEPass::AddStores(uint32_t ptrId) {
get_def_use_mgr()->ForEachUser(ptrId, [this](ir::Instruction* user) {
switch (user->opcode()) {
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
case SpvOpCopyObject:
this->AddStores(user->result_id());
break;
case SpvOpLoad:
break;
// If default, assume it stores e.g. frexp, modf, function call
case SpvOpStore:
default:
AddToWorklist(user);
break;
}
});
}
bool AggressiveDCEPass::AllExtensionsSupported() const {
// If any extension not in whitelist, return false
for (auto& ei : get_module()->extensions()) {
const char* extName =
reinterpret_cast<const char*>(&ei.GetInOperand(0).words[0]);
if (extensions_whitelist_.find(extName) == extensions_whitelist_.end())
return false;
}
return true;
}
bool AggressiveDCEPass::IsDead(ir::Instruction* inst) {
if (IsLive(inst)) return false;
if (inst->IsBranch() && !IsStructuredHeader(context()->get_instr_block(inst),
nullptr, nullptr, nullptr))
return false;
return true;
}
bool AggressiveDCEPass::IsTargetDead(ir::Instruction* inst) {
const uint32_t tId = inst->GetSingleWordInOperand(0);
ir::Instruction* tInst = get_def_use_mgr()->GetDef(tId);
if (ir::IsAnnotationInst(tInst->opcode())) {
// This must be a decoration group. We go through annotations in a specific
// order. So if this is not used by any group or group member decorates, it
// is dead.
assert(tInst->opcode() == SpvOpDecorationGroup);
bool dead = true;
get_def_use_mgr()->ForEachUser(tInst, [&dead](ir::Instruction* user) {
if (user->opcode() == SpvOpGroupDecorate ||
user->opcode() == SpvOpGroupMemberDecorate)
dead = false;
});
return dead;
}
return IsDead(tInst);
}
void AggressiveDCEPass::ProcessLoad(uint32_t varId) {
// Only process locals
if (!IsLocalVar(varId)) return;
// Return if already processed
if (live_local_vars_.find(varId) != live_local_vars_.end()) return;
// Mark all stores to varId as live
AddStores(varId);
// Cache varId as processed
live_local_vars_.insert(varId);
}
bool AggressiveDCEPass::IsStructuredHeader(ir::BasicBlock* bp,
ir::Instruction** mergeInst,
ir::Instruction** branchInst,
uint32_t* mergeBlockId) {
if (!bp) return false;
ir::Instruction* mi = bp->GetMergeInst();
if (mi == nullptr) return false;
ir::Instruction* bri = &*bp->tail();
if (branchInst != nullptr) *branchInst = bri;
if (mergeInst != nullptr) *mergeInst = mi;
if (mergeBlockId != nullptr) *mergeBlockId = mi->GetSingleWordInOperand(0);
return true;
}
void AggressiveDCEPass::ComputeBlock2HeaderMaps(
std::list<ir::BasicBlock*>& structuredOrder) {
block2headerBranch_.clear();
branch2merge_.clear();
structured_order_index_.clear();
std::stack<ir::Instruction*> currentHeaderBranch;
currentHeaderBranch.push(nullptr);
uint32_t currentMergeBlockId = 0;
uint32_t index = 0;
for (auto bi = structuredOrder.begin(); bi != structuredOrder.end();
++bi, ++index) {
structured_order_index_[*bi] = index;
// If this block is the merge block of the current control construct,
// we are leaving the current construct so we must update state
if ((*bi)->id() == currentMergeBlockId) {
currentHeaderBranch.pop();
ir::Instruction* chb = currentHeaderBranch.top();
if (chb != nullptr)
currentMergeBlockId = branch2merge_[chb]->GetSingleWordInOperand(0);
}
ir::Instruction* mergeInst;
ir::Instruction* branchInst;
uint32_t mergeBlockId;
bool is_header =
IsStructuredHeader(*bi, &mergeInst, &branchInst, &mergeBlockId);
// If this is a loop header, update state first so the block will map to
// the loop.
if (is_header && mergeInst->opcode() == SpvOpLoopMerge) {
currentHeaderBranch.push(branchInst);
branch2merge_[branchInst] = mergeInst;
currentMergeBlockId = mergeBlockId;
}
// Map the block to the current construct.
block2headerBranch_[*bi] = currentHeaderBranch.top();
// If this is an if header, update state so following blocks map to the if.
if (is_header && mergeInst->opcode() == SpvOpSelectionMerge) {
currentHeaderBranch.push(branchInst);
branch2merge_[branchInst] = mergeInst;
currentMergeBlockId = mergeBlockId;
}
}
}
void AggressiveDCEPass::AddBranch(uint32_t labelId, ir::BasicBlock* bp) {
std::unique_ptr<ir::Instruction> newBranch(new ir::Instruction(
context(), SpvOpBranch, 0, 0,
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {labelId}}}));
get_def_use_mgr()->AnalyzeInstDefUse(&*newBranch);
bp->AddInstruction(std::move(newBranch));
}
void AggressiveDCEPass::AddBreaksAndContinuesToWorklist(
ir::Instruction* loopMerge) {
ir::BasicBlock* header = context()->get_instr_block(loopMerge);
uint32_t headerIndex = structured_order_index_[header];
const uint32_t mergeId =
loopMerge->GetSingleWordInOperand(kLoopMergeMergeBlockIdInIdx);
ir::BasicBlock* merge = context()->get_instr_block(mergeId);
uint32_t mergeIndex = structured_order_index_[merge];
get_def_use_mgr()->ForEachUser(
mergeId, [headerIndex, mergeIndex, this](ir::Instruction* user) {
if (!user->IsBranch()) return;
ir::BasicBlock* block = context()->get_instr_block(user);
uint32_t index = structured_order_index_[block];
if (headerIndex < index && index < mergeIndex) {
// This is a break from the loop.
AddToWorklist(user);
// Add branch's merge if there is one.
ir::Instruction* userMerge = branch2merge_[user];
if (userMerge != nullptr) AddToWorklist(userMerge);
}
});
const uint32_t contId =
loopMerge->GetSingleWordInOperand(kLoopMergeContinueBlockIdInIdx);
get_def_use_mgr()->ForEachUser(contId, [&contId,
this](ir::Instruction* user) {
SpvOp op = user->opcode();
if (op == SpvOpBranchConditional || op == SpvOpSwitch) {
// A conditional branch or switch can only be a continue if it does not
// have a merge instruction or its merge block is not the continue block.
ir::Instruction* hdrMerge = branch2merge_[user];
if (hdrMerge != nullptr && hdrMerge->opcode() == SpvOpSelectionMerge) {
uint32_t hdrMergeId =
hdrMerge->GetSingleWordInOperand(kSelectionMergeMergeBlockIdInIdx);
if (hdrMergeId == contId) return;
// Need to mark merge instruction too
AddToWorklist(hdrMerge);
}
} else if (op == SpvOpBranch) {
// An unconditional branch can only be a continue if it is not
// branching to its own merge block.
ir::BasicBlock* blk = context()->get_instr_block(user);
ir::Instruction* hdrBranch = block2headerBranch_[blk];
if (hdrBranch == nullptr) return;
ir::Instruction* hdrMerge = branch2merge_[hdrBranch];
if (hdrMerge->opcode() == SpvOpLoopMerge) return;
uint32_t hdrMergeId =
hdrMerge->GetSingleWordInOperand(kSelectionMergeMergeBlockIdInIdx);
if (contId == hdrMergeId) return;
} else {
return;
}
AddToWorklist(user);
});
}
bool AggressiveDCEPass::AggressiveDCE(ir::Function* func) {
// Mark function parameters as live.
AddToWorklist(&func->DefInst());
func->ForEachParam(
[this](const ir::Instruction* param) {
AddToWorklist(const_cast<ir::Instruction*>(param));
},
false);
// Compute map from block to controlling conditional branch
std::list<ir::BasicBlock*> structuredOrder;
cfg()->ComputeStructuredOrder(func, &*func->begin(), &structuredOrder);
ComputeBlock2HeaderMaps(structuredOrder);
bool modified = false;
// Add instructions with external side effects to worklist. Also add branches
// EXCEPT those immediately contained in an "if" selection construct or a loop
// or continue construct.
// TODO(greg-lunarg): Handle Frexp, Modf more optimally
call_in_func_ = false;
func_is_entry_point_ = false;
private_stores_.clear();
// Stacks to keep track of when we are inside an if- or loop-construct.
// When immediately inside an if- or loop-construct, we do not initially
// mark branches live. All other branches must be marked live.
std::stack<bool> assume_branches_live;
std::stack<uint32_t> currentMergeBlockId;
// Push sentinel values on stack for when outside of any control flow.
assume_branches_live.push(true);
currentMergeBlockId.push(0);
for (auto bi = structuredOrder.begin(); bi != structuredOrder.end(); ++bi) {
// If exiting if or loop, update stacks
if ((*bi)->id() == currentMergeBlockId.top()) {
assume_branches_live.pop();
currentMergeBlockId.pop();
}
for (auto ii = (*bi)->begin(); ii != (*bi)->end(); ++ii) {
SpvOp op = ii->opcode();
switch (op) {
case SpvOpStore: {
uint32_t varId;
(void)GetPtr(&*ii, &varId);
// Mark stores as live if their variable is not function scope
// and is not private scope. Remember private stores for possible
// later inclusion
if (IsVarOfStorage(varId, SpvStorageClassPrivate))
private_stores_.push_back(&*ii);
else if (!IsVarOfStorage(varId, SpvStorageClassFunction))
AddToWorklist(&*ii);
} break;
case SpvOpLoopMerge: {
assume_branches_live.push(false);
currentMergeBlockId.push(
ii->GetSingleWordInOperand(kLoopMergeMergeBlockIdInIdx));
} break;
case SpvOpSelectionMerge: {
assume_branches_live.push(false);
currentMergeBlockId.push(
ii->GetSingleWordInOperand(kSelectionMergeMergeBlockIdInIdx));
} break;
case SpvOpSwitch:
case SpvOpBranch:
case SpvOpBranchConditional: {
if (assume_branches_live.top()) AddToWorklist(&*ii);
} break;
default: {
// Function calls, atomics, function params, function returns, etc.
// TODO(greg-lunarg): function calls live only if write to non-local
if (!context()->IsCombinatorInstruction(&*ii)) {
AddToWorklist(&*ii);
}
// Remember function calls
if (op == SpvOpFunctionCall) call_in_func_ = true;
} break;
}
}
}
// See if current function is an entry point
for (auto& ei : get_module()->entry_points()) {
if (ei.GetSingleWordInOperand(kEntryPointFunctionIdInIdx) ==
func->result_id()) {
func_is_entry_point_ = true;
break;
}
}
// If the current function is an entry point and has no function calls,
// we can optimize private variables as locals
private_like_local_ = func_is_entry_point_ && !call_in_func_;
// If privates are not like local, add their stores to worklist
if (!private_like_local_)
for (auto& ps : private_stores_) AddToWorklist(ps);
// Perform closure on live instruction set.
while (!worklist_.empty()) {
ir::Instruction* liveInst = worklist_.front();
// Add all operand instructions if not already live
liveInst->ForEachInId([&liveInst, this](const uint32_t* iid) {
ir::Instruction* inInst = get_def_use_mgr()->GetDef(*iid);
// Do not add label if an operand of a branch. This is not needed
// as part of live code discovery and can create false live code,
// for example, the branch to a header of a loop.
if (inInst->opcode() == SpvOpLabel && liveInst->IsBranch()) return;
AddToWorklist(inInst);
});
if (liveInst->type_id() != 0) {
AddToWorklist(get_def_use_mgr()->GetDef(liveInst->type_id()));
}
// If in a structured if or loop construct, add the controlling
// conditional branch and its merge. Any containing control construct
// is marked live when the merge and branch are processed out of the
// worklist.
ir::BasicBlock* blk = context()->get_instr_block(liveInst);
ir::Instruction* branchInst = block2headerBranch_[blk];
if (branchInst != nullptr) {
AddToWorklist(branchInst);
ir::Instruction* mergeInst = branch2merge_[branchInst];
AddToWorklist(mergeInst);
// If in a loop, mark all its break and continue instructions live
if (mergeInst->opcode() == SpvOpLoopMerge)
AddBreaksAndContinuesToWorklist(mergeInst);
}
// If local load, add all variable's stores if variable not already live
if (liveInst->opcode() == SpvOpLoad) {
uint32_t varId;
(void)GetPtr(liveInst, &varId);
if (varId != 0) {
ProcessLoad(varId);
}
}
// If function call, treat as if it loads from all pointer arguments
else if (liveInst->opcode() == SpvOpFunctionCall) {
liveInst->ForEachInId([this](const uint32_t* iid) {
// Skip non-ptr args
if (!IsPtr(*iid)) return;
uint32_t varId;
(void)GetPtr(*iid, &varId);
ProcessLoad(varId);
});
}
// If function parameter, treat as if it's result id is loaded from
else if (liveInst->opcode() == SpvOpFunctionParameter) {
ProcessLoad(liveInst->result_id());
}
// We treat an OpImageTexelPointer as a load of the pointer, and
// that value is manipulated to get the result.
else if (liveInst->opcode() == SpvOpImageTexelPointer) {
uint32_t varId;
(void)GetPtr(liveInst, &varId);
if (varId != 0) {
ProcessLoad(varId);
}
}
worklist_.pop();
}
// Kill dead instructions and remember dead blocks
for (auto bi = structuredOrder.begin(); bi != structuredOrder.end();) {
uint32_t mergeBlockId = 0;
(*bi)->ForEachInst([this, &modified, &mergeBlockId](ir::Instruction* inst) {
if (!IsDead(inst)) return;
if (inst->opcode() == SpvOpLabel) return;
// If dead instruction is selection merge, remember merge block
// for new branch at end of block
if (inst->opcode() == SpvOpSelectionMerge ||
inst->opcode() == SpvOpLoopMerge)
mergeBlockId = inst->GetSingleWordInOperand(0);
to_kill_.push_back(inst);
modified = true;
});
// If a structured if or loop was deleted, add a branch to its merge
// block, and traverse to the merge block and continue processing there.
// We know the block still exists because the label is not deleted.
if (mergeBlockId != 0) {
AddBranch(mergeBlockId, *bi);
for (++bi; (*bi)->id() != mergeBlockId; ++bi) {
}
} else {
++bi;
}
}
return modified;
}
void AggressiveDCEPass::Initialize(ir::IRContext* c) {
InitializeProcessing(c);
// Clear collections
worklist_ = std::queue<ir::Instruction*>{};
live_insts_.clear();
live_local_vars_.clear();
// Initialize extensions whitelist
InitExtensions();
}
void AggressiveDCEPass::InitializeModuleScopeLiveInstructions() {
// Keep all execution modes.
for (auto& exec : get_module()->execution_modes()) {
AddToWorklist(&exec);
}
// Keep all entry points.
for (auto& entry : get_module()->entry_points()) {
AddToWorklist(&entry);
}
// Keep workgroup size.
for (auto& anno : get_module()->annotations()) {
if (anno.opcode() == SpvOpDecorate) {
if (anno.GetSingleWordInOperand(1u) == SpvDecorationBuiltIn &&
anno.GetSingleWordInOperand(2u) == SpvBuiltInWorkgroupSize) {
AddToWorklist(&anno);
}
}
}
}
Pass::Status AggressiveDCEPass::ProcessImpl() {
// Current functionality assumes shader capability
// TODO(greg-lunarg): Handle additional capabilities
if (!context()->get_feature_mgr()->HasCapability(SpvCapabilityShader))
return Status::SuccessWithoutChange;
// Current functionality assumes relaxed logical addressing (see
// instruction.h)
// TODO(greg-lunarg): Handle non-logical addressing
if (context()->get_feature_mgr()->HasCapability(SpvCapabilityAddresses))
return Status::SuccessWithoutChange;
// If any extensions in the module are not explicitly supported,
// return unmodified.
if (!AllExtensionsSupported()) return Status::SuccessWithoutChange;
// Eliminate Dead functions.
bool modified = EliminateDeadFunctions();
InitializeModuleScopeLiveInstructions();
// Process all entry point functions.
ProcessFunction pfn = [this](ir::Function* fp) { return AggressiveDCE(fp); };
modified |= ProcessEntryPointCallTree(pfn, get_module());
// Process module-level instructions. Now that all live instructions have
// been marked, it is safe to remove dead global values.
modified |= ProcessGlobalValues();
// Kill all dead instructions.
for (auto inst : to_kill_) {
context()->KillInst(inst);
}
// Cleanup all CFG including all unreachable blocks.
ProcessFunction cleanup = [this](ir::Function* f) { return CFGCleanup(f); };
modified |= ProcessEntryPointCallTree(cleanup, get_module());
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
bool AggressiveDCEPass::EliminateDeadFunctions() {
// Identify live functions first. Those that are not live
// are dead. ADCE is disabled for non-shaders so we do not check for exported
// functions here.
std::unordered_set<const ir::Function*> live_function_set;
ProcessFunction mark_live = [&live_function_set](ir::Function* fp) {
live_function_set.insert(fp);
return false;
};
ProcessEntryPointCallTree(mark_live, get_module());
bool modified = false;
for (auto funcIter = get_module()->begin();
funcIter != get_module()->end();) {
if (live_function_set.count(&*funcIter) == 0) {
modified = true;
EliminateFunction(&*funcIter);
funcIter = funcIter.Erase();
} else {
++funcIter;
}
}
return modified;
}
void AggressiveDCEPass::EliminateFunction(ir::Function* func) {
// Remove all of the instruction in the function body
func->ForEachInst(
[this](ir::Instruction* inst) { context()->KillInst(inst); }, true);
}
bool AggressiveDCEPass::ProcessGlobalValues() {
// Remove debug and annotation statements referencing dead instructions.
// This must be done before killing the instructions, otherwise there are
// dead objects in the def/use database.
bool modified = false;
ir::Instruction* instruction = &*get_module()->debug2_begin();
while (instruction) {
if (instruction->opcode() != SpvOpName) {
instruction = instruction->NextNode();
continue;
}
if (IsTargetDead(instruction)) {
instruction = context()->KillInst(instruction);
modified = true;
} else {
instruction = instruction->NextNode();
}
}
// This code removes all unnecessary decorations safely (see #1174). It also
// does so in a more efficient manner than deleting them only as the targets
// are deleted.
std::vector<ir::Instruction*> annotations;
for (auto& inst : get_module()->annotations()) annotations.push_back(&inst);
std::sort(annotations.begin(), annotations.end(), DecorationLess());
for (auto annotation : annotations) {
switch (annotation->opcode()) {
case SpvOpDecorate:
case SpvOpMemberDecorate:
case SpvOpDecorateId:
if (IsTargetDead(annotation)) context()->KillInst(annotation);
break;
case SpvOpGroupDecorate: {
// Go through the targets of this group decorate. Remove each dead
// target. If all targets are dead, remove this decoration.
bool dead = true;
for (uint32_t i = 1; i < annotation->NumOperands();) {
ir::Instruction* opInst =
get_def_use_mgr()->GetDef(annotation->GetSingleWordOperand(i));
if (IsDead(opInst)) {
// Don't increment |i|.
annotation->RemoveOperand(i);
} else {
i++;
dead = false;
}
}
if (dead) context()->KillInst(annotation);
break;
}
case SpvOpGroupMemberDecorate: {
// Go through the targets of this group member decorate. Remove each
// dead target (and member index). If all targets are dead, remove this
// decoration.
bool dead = true;
for (uint32_t i = 1; i < annotation->NumOperands();) {
ir::Instruction* opInst =
get_def_use_mgr()->GetDef(annotation->GetSingleWordOperand(i));
if (IsDead(opInst)) {
// Don't increment |i|.
annotation->RemoveOperand(i + 1);
annotation->RemoveOperand(i);
} else {
i += 2;
dead = false;
}
}
if (dead) context()->KillInst(annotation);
break;
}
case SpvOpDecorationGroup:
// By the time we hit decoration groups we've checked everything that
// can target them. So if they have no uses they must be dead.
if (get_def_use_mgr()->NumUsers(annotation) == 0)
context()->KillInst(annotation);
break;
default:
assert(false);
break;
}
}
// Since ADCE is disabled for non-shaders, we don't check for export linkage
// attributes here.
for (auto& val : get_module()->types_values()) {
if (IsDead(&val)) {
to_kill_.push_back(&val);
}
}
return modified;
}
AggressiveDCEPass::AggressiveDCEPass() {}
Pass::Status AggressiveDCEPass::Process(ir::IRContext* c) {
Initialize(c);
return ProcessImpl();
}
void AggressiveDCEPass::InitExtensions() {
extensions_whitelist_.clear();
extensions_whitelist_.insert({
"SPV_AMD_shader_explicit_vertex_parameter",
"SPV_AMD_shader_trinary_minmax",
"SPV_AMD_gcn_shader",
"SPV_KHR_shader_ballot",
"SPV_AMD_shader_ballot",
"SPV_AMD_gpu_shader_half_float",
"SPV_KHR_shader_draw_parameters",
"SPV_KHR_subgroup_vote",
"SPV_KHR_16bit_storage",
"SPV_KHR_device_group",
"SPV_KHR_multiview",
"SPV_NVX_multiview_per_view_attributes",
"SPV_NV_viewport_array2",
"SPV_NV_stereo_view_rendering",
"SPV_NV_sample_mask_override_coverage",
"SPV_NV_geometry_shader_passthrough",
"SPV_AMD_texture_gather_bias_lod",
"SPV_KHR_storage_buffer_storage_class",
// SPV_KHR_variable_pointers
// Currently do not support extended pointer expressions
"SPV_AMD_gpu_shader_int16",
"SPV_KHR_post_depth_coverage",
"SPV_KHR_shader_atomic_counter_ops",
"SPV_EXT_shader_stencil_export",
"SPV_EXT_shader_viewport_index_layer",
"SPV_AMD_shader_image_load_store_lod",
"SPV_AMD_shader_fragment_mask",
"SPV_EXT_fragment_fully_covered",
"SPV_AMD_gpu_shader_half_float_fetch",
"SPV_GOOGLE_decorate_string",
"SPV_GOOGLE_hlsl_functionality1",
"SPV_NV_shader_subgroup_partitioned",
"SPV_EXT_descriptor_indexing",
});
}
} // namespace opt
} // namespace spvtools

View File

@ -0,0 +1,187 @@
// Copyright (c) 2017 The Khronos Group Inc.
// Copyright (c) 2017 Valve Corporation
// Copyright (c) 2017 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_OPT_AGGRESSIVE_DCE_PASS_H_
#define LIBSPIRV_OPT_AGGRESSIVE_DCE_PASS_H_
#include <algorithm>
#include <map>
#include <queue>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "basic_block.h"
#include "def_use_manager.h"
#include "mem_pass.h"
#include "module.h"
namespace spvtools {
namespace opt {
// See optimizer.hpp for documentation.
class AggressiveDCEPass : public MemPass {
using cbb_ptr = const ir::BasicBlock*;
public:
using GetBlocksFunction =
std::function<std::vector<ir::BasicBlock*>*(const ir::BasicBlock*)>;
AggressiveDCEPass();
const char* name() const override { return "eliminate-dead-code-aggressive"; }
Status Process(ir::IRContext* c) override;
ir::IRContext::Analysis GetPreservedAnalyses() override {
return ir::IRContext::kAnalysisDefUse;
}
private:
// Return true if |varId| is a variable of |storageClass|. |varId| must either
// be 0 or the result of an instruction.
bool IsVarOfStorage(uint32_t varId, uint32_t storageClass);
// Return true if |varId| is variable of function storage class or is
// private variable and privates can be optimized like locals (see
// privates_like_local_).
bool IsLocalVar(uint32_t varId);
// Return true if |inst| is marked live.
bool IsLive(const ir::Instruction* inst) const {
return live_insts_.find(inst) != live_insts_.end();
}
// Returns true if |inst| is dead.
bool IsDead(ir::Instruction* inst);
// Adds entry points, execution modes and workgroup size decorations to the
// worklist for processing with the first function.
void InitializeModuleScopeLiveInstructions();
// Add |inst| to worklist_ and live_insts_.
void AddToWorklist(ir::Instruction* inst) {
if (live_insts_.insert(inst).second) worklist_.push(inst);
}
// Add all store instruction which use |ptrId|, directly or indirectly,
// to the live instruction worklist.
void AddStores(uint32_t ptrId);
// Initialize extensions whitelist
void InitExtensions();
// Return true if all extensions in this module are supported by this pass.
bool AllExtensionsSupported() const;
// Returns true if the target of |inst| is dead. An instruction is dead if
// its result id is used in decoration or debug instructions only. |inst| is
// assumed to be OpName, OpMemberName or an annotation instruction.
bool IsTargetDead(ir::Instruction* inst);
// If |varId| is local, mark all stores of varId as live.
void ProcessLoad(uint32_t varId);
// If |bp| is structured header block, returns true and sets |mergeInst| to
// the merge instruction, |branchInst| to the branch and |mergeBlockId| to the
// merge block if they are not nullptr. Any of |mergeInst|, |branchInst| or
// |mergeBlockId| may be a null pointer. Returns false if |bp| is a null
// pointer.
bool IsStructuredHeader(ir::BasicBlock* bp, ir::Instruction** mergeInst,
ir::Instruction** branchInst, uint32_t* mergeBlockId);
// Initialize block2headerBranch_ and branch2merge_ using |structuredOrder|
// to order blocks.
void ComputeBlock2HeaderMaps(std::list<ir::BasicBlock*>& structuredOrder);
// Add branch to |labelId| to end of block |bp|.
void AddBranch(uint32_t labelId, ir::BasicBlock* bp);
// Add all break and continue branches in the loop associated with
// |mergeInst| to worklist if not already live
void AddBreaksAndContinuesToWorklist(ir::Instruction* mergeInst);
// Eliminates dead debug2 and annotation instructions. Marks dead globals for
// removal (e.g. types, constants and variables).
bool ProcessGlobalValues();
// Erases functions that are unreachable from the entry points of the module.
bool EliminateDeadFunctions();
// Removes |func| from the module and deletes all its instructions.
void EliminateFunction(ir::Function* func);
// For function |func|, mark all Stores to non-function-scope variables
// and block terminating instructions as live. Recursively mark the values
// they use. When complete, mark any non-live instructions to be deleted.
// Returns true if the function has been modified.
//
// Note: This function does not delete useless control structures. All
// existing control structures will remain. This can leave not-insignificant
// sequences of ultimately useless code.
// TODO(): Remove useless control constructs.
bool AggressiveDCE(ir::Function* func);
void Initialize(ir::IRContext* c);
Pass::Status ProcessImpl();
// True if current function has a call instruction contained in it
bool call_in_func_;
// True if current function is an entry point
bool func_is_entry_point_;
// True if current function is entry point and has no function calls.
bool private_like_local_;
// Live Instruction Worklist. An instruction is added to this list
// if it might have a side effect, either directly or indirectly.
// If we don't know, then add it to this list. Instructions are
// removed from this list as the algorithm traces side effects,
// building up the live instructions set |live_insts_|.
std::queue<ir::Instruction*> worklist_;
// Map from block to the branch instruction in the header of the most
// immediate controlling structured if or loop. A loop header block points
// to its own branch instruction. An if-selection block points to the branch
// of an enclosing construct's header, if one exists.
std::unordered_map<ir::BasicBlock*, ir::Instruction*> block2headerBranch_;
// Maps basic block to their index in the structured order traversal.
std::unordered_map<ir::BasicBlock*, uint32_t> structured_order_index_;
// Map from branch to its associated merge instruction, if any
std::unordered_map<ir::Instruction*, ir::Instruction*> branch2merge_;
// Store instructions to variables of private storage
std::vector<ir::Instruction*> private_stores_;
// Live Instructions
std::unordered_set<const ir::Instruction*> live_insts_;
// Live Local Variables
std::unordered_set<uint32_t> live_local_vars_;
// List of instructions to delete. Deletion is delayed until debug and
// annotation instructions are processed.
std::vector<ir::Instruction*> to_kill_;
// Extensions supported by this pass.
std::unordered_set<std::string> extensions_whitelist_;
};
} // namespace opt
} // namespace spvtools
#endif // LIBSPIRV_OPT_AGGRESSIVE_DCE_PASS_H_

View File

@ -0,0 +1,228 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "basic_block.h"
#include "function.h"
#include "ir_context.h"
#include "module.h"
#include "reflect.h"
#include "make_unique.h"
#include <ostream>
namespace spvtools {
namespace ir {
namespace {
const uint32_t kLoopMergeContinueBlockIdInIdx = 1;
const uint32_t kLoopMergeMergeBlockIdInIdx = 0;
const uint32_t kSelectionMergeMergeBlockIdInIdx = 0;
} // namespace
BasicBlock* BasicBlock::Clone(IRContext* context) const {
BasicBlock* clone = new BasicBlock(
std::unique_ptr<Instruction>(GetLabelInst()->Clone(context)));
for (const auto& inst : insts_)
// Use the incoming context
clone->AddInstruction(std::unique_ptr<Instruction>(inst.Clone(context)));
return clone;
}
const Instruction* BasicBlock::GetMergeInst() const {
const Instruction* result = nullptr;
// If it exists, the merge instruction immediately precedes the
// terminator.
auto iter = ctail();
if (iter != cbegin()) {
--iter;
const auto opcode = iter->opcode();
if (opcode == SpvOpLoopMerge || opcode == SpvOpSelectionMerge) {
result = &*iter;
}
}
return result;
}
Instruction* BasicBlock::GetMergeInst() {
Instruction* result = nullptr;
// If it exists, the merge instruction immediately precedes the
// terminator.
auto iter = tail();
if (iter != begin()) {
--iter;
const auto opcode = iter->opcode();
if (opcode == SpvOpLoopMerge || opcode == SpvOpSelectionMerge) {
result = &*iter;
}
}
return result;
}
const Instruction* BasicBlock::GetLoopMergeInst() const {
if (auto* merge = GetMergeInst()) {
if (merge->opcode() == SpvOpLoopMerge) {
return merge;
}
}
return nullptr;
}
Instruction* BasicBlock::GetLoopMergeInst() {
if (auto* merge = GetMergeInst()) {
if (merge->opcode() == SpvOpLoopMerge) {
return merge;
}
}
return nullptr;
}
void BasicBlock::KillAllInsts(bool killLabel) {
ForEachInst([killLabel](ir::Instruction* ip) {
if (killLabel || ip->opcode() != SpvOpLabel) {
ip->context()->KillInst(ip);
}
});
}
void BasicBlock::ForEachSuccessorLabel(
const std::function<void(const uint32_t)>& f) const {
const auto br = &insts_.back();
switch (br->opcode()) {
case SpvOpBranch: {
f(br->GetOperand(0).words[0]);
} break;
case SpvOpBranchConditional:
case SpvOpSwitch: {
bool is_first = true;
br->ForEachInId([&is_first, &f](const uint32_t* idp) {
if (!is_first) f(*idp);
is_first = false;
});
} break;
default:
break;
}
}
void BasicBlock::ForEachSuccessorLabel(
const std::function<void(uint32_t*)>& f) {
auto br = &insts_.back();
switch (br->opcode()) {
case SpvOpBranch: {
uint32_t tmp_id = br->GetOperand(0).words[0];
f(&tmp_id);
if (tmp_id != br->GetOperand(0).words[0]) br->SetOperand(0, {tmp_id});
} break;
case SpvOpBranchConditional:
case SpvOpSwitch: {
bool is_first = true;
br->ForEachInId([&is_first, &f](uint32_t* idp) {
if (!is_first) f(idp);
is_first = false;
});
} break;
default:
break;
}
}
bool BasicBlock::IsSuccessor(const ir::BasicBlock* block) const {
uint32_t succId = block->id();
bool isSuccessor = false;
ForEachSuccessorLabel([&isSuccessor, succId](const uint32_t label) {
if (label == succId) isSuccessor = true;
});
return isSuccessor;
}
void BasicBlock::ForMergeAndContinueLabel(
const std::function<void(const uint32_t)>& f) {
auto ii = insts_.end();
--ii;
if (ii == insts_.begin()) return;
--ii;
if (ii->opcode() == SpvOpSelectionMerge || ii->opcode() == SpvOpLoopMerge) {
ii->ForEachInId([&f](const uint32_t* idp) { f(*idp); });
}
}
uint32_t BasicBlock::MergeBlockIdIfAny() const {
auto merge_ii = cend();
--merge_ii;
uint32_t mbid = 0;
if (merge_ii != cbegin()) {
--merge_ii;
if (merge_ii->opcode() == SpvOpLoopMerge) {
mbid = merge_ii->GetSingleWordInOperand(kLoopMergeMergeBlockIdInIdx);
} else if (merge_ii->opcode() == SpvOpSelectionMerge) {
mbid = merge_ii->GetSingleWordInOperand(kSelectionMergeMergeBlockIdInIdx);
}
}
return mbid;
}
uint32_t BasicBlock::ContinueBlockIdIfAny() const {
auto merge_ii = cend();
--merge_ii;
uint32_t cbid = 0;
if (merge_ii != cbegin()) {
--merge_ii;
if (merge_ii->opcode() == SpvOpLoopMerge) {
cbid = merge_ii->GetSingleWordInOperand(kLoopMergeContinueBlockIdInIdx);
}
}
return cbid;
}
std::ostream& operator<<(std::ostream& str, const BasicBlock& block) {
str << block.PrettyPrint();
return str;
}
std::string BasicBlock::PrettyPrint(uint32_t options) const {
std::ostringstream str;
ForEachInst([&str, options](const ir::Instruction* inst) {
str << inst->PrettyPrint(options);
if (!IsTerminatorInst(inst->opcode())) {
str << std::endl;
}
});
return str.str();
}
BasicBlock* BasicBlock::SplitBasicBlock(IRContext* context, uint32_t label_id,
iterator iter) {
assert(!insts_.empty());
BasicBlock* new_block = new BasicBlock(MakeUnique<Instruction>(
context, SpvOpLabel, 0, label_id, std::initializer_list<ir::Operand>{}));
new_block->insts_.Splice(new_block->end(), &insts_, iter, end());
new_block->SetParent(GetParent());
if (context->AreAnalysesValid(ir::IRContext::kAnalysisInstrToBlockMapping)) {
new_block->ForEachInst([new_block, context](ir::Instruction* inst) {
context->set_instr_block(inst, new_block);
});
}
return new_block;
}
} // namespace ir
} // namespace spvtools

View File

@ -0,0 +1,300 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file defines the language constructs for representing a SPIR-V
// module in memory.
#ifndef LIBSPIRV_OPT_BASIC_BLOCK_H_
#define LIBSPIRV_OPT_BASIC_BLOCK_H_
#include <functional>
#include <memory>
#include <ostream>
#include <utility>
#include <vector>
#include "instruction.h"
#include "instruction_list.h"
#include "iterator.h"
namespace spvtools {
namespace ir {
class Function;
class IRContext;
// A SPIR-V basic block.
class BasicBlock {
public:
using iterator = InstructionList::iterator;
using const_iterator = InstructionList::const_iterator;
// Creates a basic block with the given starting |label|.
inline explicit BasicBlock(std::unique_ptr<Instruction> label);
explicit BasicBlock(const BasicBlock& bb) = delete;
// Creates a clone of the basic block in the given |context|
//
// The parent function will default to null and needs to be explicitly set by
// the user.
BasicBlock* Clone(IRContext*) const;
// Sets the enclosing function for this basic block.
void SetParent(Function* function) { function_ = function; }
// Return the enclosing function
inline Function* GetParent() const { return function_; }
// Appends an instruction to this basic block.
inline void AddInstruction(std::unique_ptr<Instruction> i);
// Appends all of block's instructions (except label) to this block
inline void AddInstructions(BasicBlock* bp);
// The label starting this basic block.
Instruction* GetLabelInst() { return label_.get(); }
const Instruction* GetLabelInst() const { return label_.get(); }
// Returns the merge instruction in this basic block, if it exists.
// Otherwise return null. May be used whenever tail() can be used.
const Instruction* GetMergeInst() const;
Instruction* GetMergeInst();
// Returns the OpLoopMerge instruciton in this basic block, if it exists.
// Otherwise return null. May be used whenever tail() can be used.
const Instruction* GetLoopMergeInst() const;
Instruction* GetLoopMergeInst();
// Returns the id of the label at the top of this block
inline uint32_t id() const { return label_->result_id(); }
iterator begin() { return insts_.begin(); }
iterator end() { return insts_.end(); }
const_iterator begin() const { return insts_.cbegin(); }
const_iterator end() const { return insts_.cend(); }
const_iterator cbegin() const { return insts_.cbegin(); }
const_iterator cend() const { return insts_.cend(); }
// Returns an iterator pointing to the last instruction. This may only
// be used if this block has an instruction other than the OpLabel
// that defines it.
iterator tail() {
assert(!insts_.empty());
return --end();
}
// Returns a const iterator, but othewrise similar to tail().
const_iterator ctail() const {
assert(!insts_.empty());
return --insts_.cend();
}
// Returns true if the basic block has at least one successor.
inline bool hasSuccessor() const { return ctail()->IsBranch(); }
// Runs the given function |f| on each instruction in this basic block, and
// optionally on the debug line instructions that might precede them.
inline void ForEachInst(const std::function<void(Instruction*)>& f,
bool run_on_debug_line_insts = false);
inline void ForEachInst(const std::function<void(const Instruction*)>& f,
bool run_on_debug_line_insts = false) const;
// Runs the given function |f| on each instruction in this basic block, and
// optionally on the debug line instructions that might precede them. If |f|
// returns false, iteration is terminated and this function returns false.
inline bool WhileEachInst(const std::function<bool(Instruction*)>& f,
bool run_on_debug_line_insts = false);
inline bool WhileEachInst(const std::function<bool(const Instruction*)>& f,
bool run_on_debug_line_insts = false) const;
// Runs the given function |f| on each Phi instruction in this basic block,
// and optionally on the debug line instructions that might precede them.
inline void ForEachPhiInst(const std::function<void(Instruction*)>& f,
bool run_on_debug_line_insts = false);
// Runs the given function |f| on each Phi instruction in this basic block,
// and optionally on the debug line instructions that might precede them. If
// |f| returns false, iteration is terminated and this function return false.
inline bool WhileEachPhiInst(const std::function<bool(Instruction*)>& f,
bool run_on_debug_line_insts = false);
// Runs the given function |f| on each label id of each successor block
void ForEachSuccessorLabel(
const std::function<void(const uint32_t)>& f) const;
// Runs the given function |f| on each label id of each successor block.
// Modifying the pointed value will change the branch taken by the basic
// block. It is the caller responsibility to update or invalidate the CFG.
void ForEachSuccessorLabel(const std::function<void(uint32_t*)>& f);
// Returns true if |block| is a direct successor of |this|.
bool IsSuccessor(const ir::BasicBlock* block) const;
// Runs the given function |f| on the merge and continue label, if any
void ForMergeAndContinueLabel(const std::function<void(const uint32_t)>& f);
// Returns true if this basic block has any Phi instructions.
bool HasPhiInstructions() {
return !WhileEachPhiInst([](ir::Instruction*) { return false; });
}
// Return true if this block is a loop header block.
bool IsLoopHeader() const { return GetLoopMergeInst() != nullptr; }
// Returns the ID of the merge block declared by a merge instruction in this
// block, if any. If none, returns zero.
uint32_t MergeBlockIdIfAny() const;
// Returns the ID of the continue block declared by a merge instruction in
// this block, if any. If none, returns zero.
uint32_t ContinueBlockIdIfAny() const;
// Returns the terminator instruction. Assumes the terminator exists.
Instruction* terminator() { return &*tail(); }
const Instruction* terminator() const { return &*ctail(); }
// Returns true if this basic block exits this function and returns to its
// caller.
bool IsReturn() const { return ctail()->IsReturn(); }
// Returns true if this basic block exits this function or aborts execution.
bool IsReturnOrAbort() const { return ctail()->IsReturnOrAbort(); }
// Kill all instructions in this block. Whether or not to kill the label is
// indicated by |killLabel|.
void KillAllInsts(bool killLabel);
// Splits this basic block into two. Returns a new basic block with label
// |labelId| containing the instructions from |iter| onwards. Instructions
// prior to |iter| remain in this basic block.
BasicBlock* SplitBasicBlock(IRContext* context, uint32_t label_id,
iterator iter);
// Pretty-prints this basic block into a std::string by printing every
// instruction in it.
//
// |options| are the disassembly options. SPV_BINARY_TO_TEXT_OPTION_NO_HEADER
// is always added to |options|.
std::string PrettyPrint(uint32_t options = 0u) const;
private:
// The enclosing function.
Function* function_;
// The label starting this basic block.
std::unique_ptr<Instruction> label_;
// Instructions inside this basic block, but not the OpLabel.
InstructionList insts_;
};
// Pretty-prints |block| to |str|. Returns |str|.
std::ostream& operator<<(std::ostream& str, const BasicBlock& block);
inline BasicBlock::BasicBlock(std::unique_ptr<Instruction> label)
: function_(nullptr), label_(std::move(label)) {}
inline void BasicBlock::AddInstruction(std::unique_ptr<Instruction> i) {
insts_.push_back(std::move(i));
}
inline void BasicBlock::AddInstructions(BasicBlock* bp) {
auto bEnd = end();
(void)bEnd.MoveBefore(&bp->insts_);
}
inline bool BasicBlock::WhileEachInst(
const std::function<bool(Instruction*)>& f, bool run_on_debug_line_insts) {
if (label_) {
if (!label_->WhileEachInst(f, run_on_debug_line_insts)) return false;
}
if (insts_.empty()) {
return true;
}
Instruction* inst = &insts_.front();
while (inst != nullptr) {
Instruction* next_instruction = inst->NextNode();
if (!inst->WhileEachInst(f, run_on_debug_line_insts)) return false;
inst = next_instruction;
}
return true;
}
inline bool BasicBlock::WhileEachInst(
const std::function<bool(const Instruction*)>& f,
bool run_on_debug_line_insts) const {
if (label_) {
if (!static_cast<const Instruction*>(label_.get())
->WhileEachInst(f, run_on_debug_line_insts))
return false;
}
for (const auto& inst : insts_) {
if (!static_cast<const Instruction*>(&inst)->WhileEachInst(
f, run_on_debug_line_insts))
return false;
}
return true;
}
inline void BasicBlock::ForEachInst(const std::function<void(Instruction*)>& f,
bool run_on_debug_line_insts) {
WhileEachInst(
[&f](Instruction* inst) {
f(inst);
return true;
},
run_on_debug_line_insts);
}
inline void BasicBlock::ForEachInst(
const std::function<void(const Instruction*)>& f,
bool run_on_debug_line_insts) const {
WhileEachInst(
[&f](const Instruction* inst) {
f(inst);
return true;
},
run_on_debug_line_insts);
}
inline bool BasicBlock::WhileEachPhiInst(
const std::function<bool(Instruction*)>& f, bool run_on_debug_line_insts) {
if (insts_.empty()) {
return true;
}
Instruction* inst = &insts_.front();
while (inst != nullptr) {
Instruction* next_instruction = inst->NextNode();
if (inst->opcode() != SpvOpPhi) break;
if (!inst->WhileEachInst(f, run_on_debug_line_insts)) return false;
inst = next_instruction;
}
return true;
}
inline void BasicBlock::ForEachPhiInst(
const std::function<void(Instruction*)>& f, bool run_on_debug_line_insts) {
WhileEachPhiInst(
[&f](Instruction* inst) {
f(inst);
return true;
},
run_on_debug_line_insts);
}
} // namespace ir
} // namespace spvtools
#endif // LIBSPIRV_OPT_BASIC_BLOCK_H_

View File

@ -0,0 +1,157 @@
// Copyright (c) 2017 The Khronos Group Inc.
// Copyright (c) 2017 Valve Corporation
// Copyright (c) 2017 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "block_merge_pass.h"
#include "ir_context.h"
#include "iterator.h"
namespace spvtools {
namespace opt {
void BlockMergePass::KillInstAndName(ir::Instruction* inst) {
std::vector<ir::Instruction*> to_kill;
get_def_use_mgr()->ForEachUser(inst, [&to_kill](ir::Instruction* user) {
if (user->opcode() == SpvOpName) {
to_kill.push_back(user);
}
});
for (auto i : to_kill) {
context()->KillInst(i);
}
context()->KillInst(inst);
}
bool BlockMergePass::MergeBlocks(ir::Function* func) {
bool modified = false;
for (auto bi = func->begin(); bi != func->end();) {
// Find block with single successor which has no other predecessors.
auto ii = bi->end();
--ii;
ir::Instruction* br = &*ii;
if (br->opcode() != SpvOpBranch) {
++bi;
continue;
}
const uint32_t lab_id = br->GetSingleWordInOperand(0);
if (cfg()->preds(lab_id).size() != 1) {
++bi;
continue;
}
bool pred_is_header = IsHeader(&*bi);
bool succ_is_header = IsHeader(lab_id);
if (pred_is_header && succ_is_header) {
// Cannot merge two headers together.
++bi;
continue;
}
bool pred_is_merge = IsMerge(&*bi);
bool succ_is_merge = IsMerge(lab_id);
if (pred_is_merge && succ_is_merge) {
// Cannot merge two merges together.
++bi;
continue;
}
ir::Instruction* merge_inst = bi->GetMergeInst();
if (pred_is_header && lab_id != merge_inst->GetSingleWordInOperand(0u)) {
// If this is a header block and the successor is not its merge, we must
// be careful about which blocks we are willing to merge together.
// OpLoopMerge must be followed by a conditional or unconditional branch.
// The merge must be a loop merge because a selection merge cannot be
// followed by an unconditional branch.
ir::BasicBlock* succ_block = context()->get_instr_block(lab_id);
SpvOp succ_term_op = succ_block->terminator()->opcode();
assert(merge_inst->opcode() == SpvOpLoopMerge);
if (succ_term_op != SpvOpBranch &&
succ_term_op != SpvOpBranchConditional) {
++bi;
continue;
}
}
// Merge blocks.
context()->KillInst(br);
auto sbi = bi;
for (; sbi != func->end(); ++sbi)
if (sbi->id() == lab_id) break;
// If bi is sbi's only predecessor, it dominates sbi and thus
// sbi must follow bi in func's ordering.
assert(sbi != func->end());
bi->AddInstructions(&*sbi);
if (merge_inst) {
if (pred_is_header && lab_id == merge_inst->GetSingleWordInOperand(0u)) {
// Merging the header and merge blocks, so remove the structured control
// flow declaration.
context()->KillInst(merge_inst);
} else {
// Move the merge instruction to just before the terminator.
merge_inst->InsertBefore(bi->terminator());
}
}
context()->ReplaceAllUsesWith(lab_id, bi->id());
KillInstAndName(sbi->GetLabelInst());
(void)sbi.Erase();
// Reprocess block.
modified = true;
}
return modified;
}
bool BlockMergePass::IsHeader(ir::BasicBlock* block) {
return block->GetMergeInst() != nullptr;
}
bool BlockMergePass::IsHeader(uint32_t id) {
return IsHeader(context()->get_instr_block(get_def_use_mgr()->GetDef(id)));
}
bool BlockMergePass::IsMerge(uint32_t id) {
return !get_def_use_mgr()->WhileEachUse(id, [](ir::Instruction* user,
uint32_t index) {
SpvOp op = user->opcode();
if ((op == SpvOpLoopMerge || op == SpvOpSelectionMerge) && index == 0u) {
return false;
}
return true;
});
}
bool BlockMergePass::IsMerge(ir::BasicBlock* block) {
return IsMerge(block->id());
}
void BlockMergePass::Initialize(ir::IRContext* c) { InitializeProcessing(c); }
Pass::Status BlockMergePass::ProcessImpl() {
// Process all entry point functions.
ProcessFunction pfn = [this](ir::Function* fp) { return MergeBlocks(fp); };
bool modified = ProcessEntryPointCallTree(pfn, get_module());
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
BlockMergePass::BlockMergePass() {}
Pass::Status BlockMergePass::Process(ir::IRContext* c) {
Initialize(c);
return ProcessImpl();
}
} // namespace opt
} // namespace spvtools

View File

@ -0,0 +1,67 @@
// Copyright (c) 2017 The Khronos Group Inc.
// Copyright (c) 2017 Valve Corporation
// Copyright (c) 2017 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_OPT_BLOCK_MERGE_PASS_H_
#define LIBSPIRV_OPT_BLOCK_MERGE_PASS_H_
#include <algorithm>
#include <map>
#include <queue>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "basic_block.h"
#include "def_use_manager.h"
#include "ir_context.h"
#include "module.h"
#include "pass.h"
namespace spvtools {
namespace opt {
// See optimizer.hpp for documentation.
class BlockMergePass : public Pass {
public:
BlockMergePass();
const char* name() const override { return "merge-blocks"; }
Status Process(ir::IRContext*) override;
private:
// Kill any OpName instruction referencing |inst|, then kill |inst|.
void KillInstAndName(ir::Instruction* inst);
// Search |func| for blocks which have a single Branch to a block
// with no other predecessors. Merge these blocks into a single block.
bool MergeBlocks(ir::Function* func);
// Returns true if |block| (or |id|) contains a merge instruction.
bool IsHeader(ir::BasicBlock* block);
bool IsHeader(uint32_t id);
// Returns true if |block| (or |id|) is the merge target of a merge
// instruction.
bool IsMerge(ir::BasicBlock* block);
bool IsMerge(uint32_t id);
void Initialize(ir::IRContext* c);
Pass::Status ProcessImpl();
};
} // namespace opt
} // namespace spvtools
#endif // LIBSPIRV_OPT_BLOCK_MERGE_PASS_H_

View File

@ -0,0 +1,77 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "build_module.h"
#include "ir_context.h"
#include "ir_loader.h"
#include "make_unique.h"
#include "table.h"
namespace spvtools {
namespace {
// Sets the module header for IrLoader. Meets the interface requirement of
// spvBinaryParse().
spv_result_t SetSpvHeader(void* builder, spv_endianness_t, uint32_t magic,
uint32_t version, uint32_t generator,
uint32_t id_bound, uint32_t reserved) {
reinterpret_cast<ir::IrLoader*>(builder)->SetModuleHeader(
magic, version, generator, id_bound, reserved);
return SPV_SUCCESS;
}
// Processes a parsed instruction for IrLoader. Meets the interface requirement
// of spvBinaryParse().
spv_result_t SetSpvInst(void* builder, const spv_parsed_instruction_t* inst) {
if (reinterpret_cast<ir::IrLoader*>(builder)->AddInstruction(inst)) {
return SPV_SUCCESS;
}
return SPV_ERROR_INVALID_BINARY;
}
} // namespace
std::unique_ptr<ir::IRContext> BuildModule(spv_target_env env,
MessageConsumer consumer,
const uint32_t* binary,
const size_t size) {
auto context = spvContextCreate(env);
libspirv::SetContextMessageConsumer(context, consumer);
auto irContext = MakeUnique<ir::IRContext>(env, consumer);
ir::IrLoader loader(consumer, irContext->module());
spv_result_t status = spvBinaryParse(context, &loader, binary, size,
SetSpvHeader, SetSpvInst, nullptr);
loader.EndModule();
spvContextDestroy(context);
return status == SPV_SUCCESS ? std::move(irContext) : nullptr;
}
std::unique_ptr<ir::IRContext> BuildModule(spv_target_env env,
MessageConsumer consumer,
const std::string& text,
uint32_t assemble_options) {
SpirvTools t(env);
t.SetMessageConsumer(consumer);
std::vector<uint32_t> binary;
if (!t.Assemble(text, &binary, assemble_options)) return nullptr;
return BuildModule(env, consumer, binary.data(), binary.size());
}
} // namespace spvtools

View File

@ -0,0 +1,45 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPIRV_TOOLS_OPT_BUILD_MODULE_H_
#define SPIRV_TOOLS_OPT_BUILD_MODULE_H_
#include <memory>
#include <string>
#include "ir_context.h"
#include "module.h"
#include "spirv-tools/libspirv.hpp"
namespace spvtools {
// Builds an ir::Module returns the owning ir::IRContext from the given SPIR-V
// |binary|. |size| specifies number of words in |binary|. The |binary| will be
// decoded according to the given target |env|. Returns nullptr if errors occur
// and sends the errors to |consumer|.
std::unique_ptr<ir::IRContext> BuildModule(spv_target_env env,
MessageConsumer consumer,
const uint32_t* binary, size_t size);
// Builds an ir::Module and returns the owning ir::IRContext from the given
// SPIR-V assembly |text|. The |text| will be encoded according to the given
// target |env|. Returns nullptr if errors occur and sends the errors to
// |consumer|.
std::unique_ptr<ir::IRContext> BuildModule(
spv_target_env env, MessageConsumer consumer, const std::string& text,
uint32_t assemble_options = SpirvTools::kDefaultAssembleOption);
} // namespace spvtools
#endif // SPIRV_TOOLS_OPT_BUILD_MODULE_H_

View File

@ -0,0 +1,330 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file implements conditional constant propagation as described in
//
// Constant propagation with conditional branches,
// Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
#include "ccp_pass.h"
#include "fold.h"
#include "function.h"
#include "module.h"
#include "propagator.h"
#include <algorithm>
namespace spvtools {
namespace opt {
namespace {
// This SSA id is never defined nor referenced in the IR. It is a special ID
// which represents varying values. When an ID is found to have a varying
// value, its entry in the |values_| table maps to kVaryingSSAId.
const uint32_t kVaryingSSAId = std::numeric_limits<uint32_t>::max();
} // namespace
bool CCPPass::IsVaryingValue(uint32_t id) const { return id == kVaryingSSAId; }
SSAPropagator::PropStatus CCPPass::MarkInstructionVarying(
ir::Instruction* instr) {
assert(instr->result_id() != 0 &&
"Instructions with no result cannot be marked varying.");
values_[instr->result_id()] = kVaryingSSAId;
return SSAPropagator::kVarying;
}
SSAPropagator::PropStatus CCPPass::VisitPhi(ir::Instruction* phi) {
uint32_t meet_val_id = 0;
// Implement the lattice meet operation. The result of this Phi instruction is
// interesting only if the meet operation over arguments coming through
// executable edges yields the same constant value.
for (uint32_t i = 2; i < phi->NumOperands(); i += 2) {
if (!propagator_->IsPhiArgExecutable(phi, i)) {
// Ignore arguments coming through non-executable edges.
continue;
}
uint32_t phi_arg_id = phi->GetSingleWordOperand(i);
auto it = values_.find(phi_arg_id);
if (it != values_.end()) {
// We found an argument with a constant value. Apply the meet operation
// with the previous arguments.
if (it->second == kVaryingSSAId) {
// The "constant" value is actually a placeholder for varying. Return
// varying for this phi.
return MarkInstructionVarying(phi);
} else if (meet_val_id == 0) {
// This is the first argument we find. Initialize the result to its
// constant value id.
meet_val_id = it->second;
} else if (it->second == meet_val_id) {
// The argument is the same constant value already computed. Continue
// looking.
continue;
} else {
// We either found a varying value, or another constant value different
// from the previous computed meet value. This Phi will never be
// constant.
return MarkInstructionVarying(phi);
}
} else {
// The incoming value has no recorded value and is therefore not
// interesting. A not interesting value joined with any other value is the
// other value.
continue;
}
}
// If there are no incoming executable edges, the meet ID will still be 0. In
// that case, return not interesting to evaluate the Phi node again.
if (meet_val_id == 0) {
return SSAPropagator::kNotInteresting;
}
// All the operands have the same constant value represented by |meet_val_id|.
// Set the Phi's result to that value and declare it interesting.
values_[phi->result_id()] = meet_val_id;
return SSAPropagator::kInteresting;
}
SSAPropagator::PropStatus CCPPass::VisitAssignment(ir::Instruction* instr) {
assert(instr->result_id() != 0 &&
"Expecting an instruction that produces a result");
// If this is a copy operation, and the RHS is a known constant, assign its
// value to the LHS.
if (instr->opcode() == SpvOpCopyObject) {
uint32_t rhs_id = instr->GetSingleWordInOperand(0);
auto it = values_.find(rhs_id);
if (it != values_.end()) {
if (IsVaryingValue(it->second)) {
return MarkInstructionVarying(instr);
} else {
values_[instr->result_id()] = it->second;
return SSAPropagator::kInteresting;
}
}
return SSAPropagator::kNotInteresting;
}
// Instructions with a RHS that cannot produce a constant are always varying.
if (!instr->IsFoldable()) {
return MarkInstructionVarying(instr);
}
// See if the RHS of the assignment folds into a constant value.
auto map_func = [this](uint32_t id) {
auto it = values_.find(id);
if (it == values_.end() || IsVaryingValue(it->second)) {
return id;
}
return it->second;
};
ir::Instruction* folded_inst =
opt::FoldInstructionToConstant(instr, map_func);
if (folded_inst != nullptr) {
// We do not want to change the body of the function by adding new
// instructions. When folding we can only generate new constants.
assert(folded_inst->IsConstant() && "CCP is only interested in constant.");
values_[instr->result_id()] = folded_inst->result_id();
return SSAPropagator::kInteresting;
}
// Conservatively mark this instruction as varying if any input id is varying.
if (!instr->WhileEachInId([this](uint32_t* op_id) {
auto iter = values_.find(*op_id);
if (iter != values_.end() && IsVaryingValue(iter->second)) return false;
return true;
})) {
return MarkInstructionVarying(instr);
}
// If not, see if there is a least one unknown operand to the instruction. If
// so, we might be able to fold it later.
if (!instr->WhileEachInId([this](uint32_t* op_id) {
auto it = values_.find(*op_id);
if (it == values_.end()) return false;
return true;
})) {
return SSAPropagator::kNotInteresting;
}
// Otherwise, we will never be able to fold this instruction, so mark it
// varying.
return MarkInstructionVarying(instr);
}
SSAPropagator::PropStatus CCPPass::VisitBranch(ir::Instruction* instr,
ir::BasicBlock** dest_bb) const {
assert(instr->IsBranch() && "Expected a branch instruction.");
*dest_bb = nullptr;
uint32_t dest_label = 0;
if (instr->opcode() == SpvOpBranch) {
// An unconditional jump always goes to its unique destination.
dest_label = instr->GetSingleWordInOperand(0);
} else if (instr->opcode() == SpvOpBranchConditional) {
// For a conditional branch, determine whether the predicate selector has a
// known value in |values_|. If it does, set the destination block
// according to the selector's boolean value.
uint32_t pred_id = instr->GetSingleWordOperand(0);
auto it = values_.find(pred_id);
if (it == values_.end() || IsVaryingValue(it->second)) {
// The predicate has an unknown value, either branch could be taken.
return SSAPropagator::kVarying;
}
// Get the constant value for the predicate selector from the value table.
// Use it to decide which branch will be taken.
uint32_t pred_val_id = it->second;
const analysis::Constant* c = const_mgr_->FindDeclaredConstant(pred_val_id);
assert(c && "Expected to find a constant declaration for a known value.");
// Undef values should have returned as varying above.
assert(c->AsBoolConstant() || c->AsNullConstant());
if (c->AsNullConstant()) {
dest_label = instr->GetSingleWordOperand(2u);
} else {
const analysis::BoolConstant* val = c->AsBoolConstant();
dest_label = val->value() ? instr->GetSingleWordOperand(1)
: instr->GetSingleWordOperand(2);
}
} else {
// For an OpSwitch, extract the value taken by the switch selector and check
// which of the target literals it matches. The branch associated with that
// literal is the taken branch.
assert(instr->opcode() == SpvOpSwitch);
if (instr->GetOperand(0).words.size() != 1) {
// If the selector is wider than 32-bits, return varying. TODO(dnovillo):
// Add support for wider constants.
return SSAPropagator::kVarying;
}
uint32_t select_id = instr->GetSingleWordOperand(0);
auto it = values_.find(select_id);
if (it == values_.end() || IsVaryingValue(it->second)) {
// The selector has an unknown value, any of the branches could be taken.
return SSAPropagator::kVarying;
}
// Get the constant value for the selector from the value table. Use it to
// decide which branch will be taken.
uint32_t select_val_id = it->second;
const analysis::Constant* c =
const_mgr_->FindDeclaredConstant(select_val_id);
assert(c && "Expected to find a constant declaration for a known value.");
// TODO: support 64-bit integer switches.
uint32_t constant_cond = 0;
if (const analysis::IntConstant* val = c->AsIntConstant()) {
constant_cond = val->words()[0];
} else {
// Undef values should have returned varying above.
assert(c->AsNullConstant());
constant_cond = 0;
}
// Start assuming that the selector will take the default value;
dest_label = instr->GetSingleWordOperand(1);
for (uint32_t i = 2; i < instr->NumOperands(); i += 2) {
if (constant_cond == instr->GetSingleWordOperand(i)) {
dest_label = instr->GetSingleWordOperand(i + 1);
break;
}
}
}
assert(dest_label && "Destination label should be set at this point.");
*dest_bb = context()->cfg()->block(dest_label);
return SSAPropagator::kInteresting;
}
SSAPropagator::PropStatus CCPPass::VisitInstruction(ir::Instruction* instr,
ir::BasicBlock** dest_bb) {
*dest_bb = nullptr;
if (instr->opcode() == SpvOpPhi) {
return VisitPhi(instr);
} else if (instr->IsBranch()) {
return VisitBranch(instr, dest_bb);
} else if (instr->result_id()) {
return VisitAssignment(instr);
}
return SSAPropagator::kVarying;
}
bool CCPPass::ReplaceValues() {
bool retval = false;
for (const auto& it : values_) {
uint32_t id = it.first;
uint32_t cst_id = it.second;
if (!IsVaryingValue(cst_id) && id != cst_id) {
retval |= context()->ReplaceAllUsesWith(id, cst_id);
}
}
return retval;
}
bool CCPPass::PropagateConstants(ir::Function* fp) {
// Mark function parameters as varying.
fp->ForEachParam([this](const ir::Instruction* inst) {
values_[inst->result_id()] = kVaryingSSAId;
});
const auto visit_fn = [this](ir::Instruction* instr,
ir::BasicBlock** dest_bb) {
return VisitInstruction(instr, dest_bb);
};
propagator_ =
std::unique_ptr<SSAPropagator>(new SSAPropagator(context(), visit_fn));
if (propagator_->Run(fp)) {
return ReplaceValues();
}
return false;
}
void CCPPass::Initialize(ir::IRContext* c) {
InitializeProcessing(c);
const_mgr_ = context()->get_constant_mgr();
// Populate the constant table with values from constant declarations in the
// module. The values of each OpConstant declaration is the identity
// assignment (i.e., each constant is its own value).
for (const auto& inst : get_module()->types_values()) {
// Record compile time constant ids. Treat all other global values as
// varying.
if (inst.IsConstant()) {
values_[inst.result_id()] = inst.result_id();
} else {
values_[inst.result_id()] = kVaryingSSAId;
}
}
}
Pass::Status CCPPass::Process(ir::IRContext* c) {
Initialize(c);
// Process all entry point functions.
ProcessFunction pfn = [this](ir::Function* fp) {
return PropagateConstants(fp);
};
bool modified = ProcessReachableCallTree(pfn, context());
return modified ? Pass::Status::SuccessWithChange
: Pass::Status::SuccessWithoutChange;
}
} // namespace opt
} // namespace spvtools

View File

@ -0,0 +1,100 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_OPT_CCP_PASS_H_
#define LIBSPIRV_OPT_CCP_PASS_H_
#include "constants.h"
#include "function.h"
#include "ir_context.h"
#include "mem_pass.h"
#include "module.h"
#include "propagator.h"
namespace spvtools {
namespace opt {
class CCPPass : public MemPass {
public:
CCPPass() = default;
const char* name() const override { return "ccp"; }
Status Process(ir::IRContext* c) override;
private:
// Initializes the pass.
void Initialize(ir::IRContext* c);
// Runs constant propagation on the given function |fp|. Returns true if any
// constants were propagated and the IR modified.
bool PropagateConstants(ir::Function* fp);
// Visits a single instruction |instr|. If the instruction is a conditional
// branch that always jumps to the same basic block, it sets the destination
// block in |dest_bb|.
SSAPropagator::PropStatus VisitInstruction(ir::Instruction* instr,
ir::BasicBlock** dest_bb);
// Visits an OpPhi instruction |phi|. This applies the meet operator for the
// CCP lattice. Essentially, if all the operands in |phi| have the same
// constant value C, the result for |phi| gets assigned the value C.
SSAPropagator::PropStatus VisitPhi(ir::Instruction* phi);
// Visits an SSA assignment instruction |instr|. If the RHS of |instr| folds
// into a constant value C, then the LHS of |instr| is assigned the value C in
// |values_|.
SSAPropagator::PropStatus VisitAssignment(ir::Instruction* instr);
// Visits a branch instruction |instr|. If the branch is conditional
// (OpBranchConditional or OpSwitch), and the value of its selector is known,
// |dest_bb| will be set to the corresponding destination block. Unconditional
// branches always set |dest_bb| to the single destination block.
SSAPropagator::PropStatus VisitBranch(ir::Instruction* instr,
ir::BasicBlock** dest_bb) const;
// Replaces all operands used in |fp| with the corresponding constant values
// in |values_|. Returns true if any operands were replaced, and false
// otherwise.
bool ReplaceValues();
// Marks |instr| as varying by registering a varying value for its result
// into the |values_| table. Returns SSAPropagator::kVarying.
SSAPropagator::PropStatus MarkInstructionVarying(ir::Instruction* instr);
// Returns true if |id| is the special SSA id that corresponds to a varying
// value.
bool IsVaryingValue(uint32_t id) const;
// Constant manager for the parent IR context. Used to record new constants
// generated during propagation.
analysis::ConstantManager* const_mgr_;
// Constant value table. Each entry <id, const_decl_id> in this map
// represents the compile-time constant value for |id| as declared by
// |const_decl_id|. Each |const_decl_id| in this table is an OpConstant
// declaration for the current module.
//
// Additionally, this table keeps track of SSA IDs with varying values. If an
// SSA ID is found to have a varying value, it will have an entry in this
// table that maps to the special SSA id kVaryingSSAId. These values are
// never replaced in the IR, they are used by CCP during propagation.
std::unordered_map<uint32_t, uint32_t> values_;
// Propagator engine used.
std::unique_ptr<SSAPropagator> propagator_;
};
} // namespace opt
} // namespace spvtools
#endif

310
3rdparty/spirv-tools/source/opt/cfg.cpp vendored Normal file
View File

@ -0,0 +1,310 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "cfg.h"
#include "cfa.h"
#include "ir_builder.h"
#include "ir_context.h"
#include "module.h"
namespace spvtools {
namespace ir {
namespace {
// Universal Limit of ResultID + 1
const int kInvalidId = 0x400000;
} // namespace
CFG::CFG(ir::Module* module)
: module_(module),
pseudo_entry_block_(std::unique_ptr<ir::Instruction>(
new ir::Instruction(module->context(), SpvOpLabel, 0, 0, {}))),
pseudo_exit_block_(std::unique_ptr<ir::Instruction>(new ir::Instruction(
module->context(), SpvOpLabel, 0, kInvalidId, {}))) {
for (auto& fn : *module) {
for (auto& blk : fn) {
RegisterBlock(&blk);
}
}
}
void CFG::AddEdges(ir::BasicBlock* blk) {
uint32_t blk_id = blk->id();
// Force the creation of an entry, not all basic block have predecessors
// (such as the entry blocks and some unreachables).
label2preds_[blk_id];
const auto* const_blk = blk;
const_blk->ForEachSuccessorLabel(
[blk_id, this](const uint32_t succ_id) { AddEdge(blk_id, succ_id); });
}
void CFG::RemoveNonExistingEdges(uint32_t blk_id) {
std::vector<uint32_t> updated_pred_list;
for (uint32_t id : preds(blk_id)) {
const ir::BasicBlock* pred_blk = block(id);
bool has_branch = false;
pred_blk->ForEachSuccessorLabel([&has_branch, blk_id](uint32_t succ) {
if (succ == blk_id) {
has_branch = true;
}
});
if (has_branch) updated_pred_list.push_back(id);
}
label2preds_.at(blk_id) = std::move(updated_pred_list);
}
void CFG::ComputeStructuredOrder(ir::Function* func, ir::BasicBlock* root,
std::list<ir::BasicBlock*>* order) {
assert(module_->context()->get_feature_mgr()->HasCapability(
SpvCapabilityShader) &&
"This only works on structured control flow");
// Compute structured successors and do DFS.
ComputeStructuredSuccessors(func);
auto ignore_block = [](cbb_ptr) {};
auto ignore_edge = [](cbb_ptr, cbb_ptr) {};
auto get_structured_successors = [this](const ir::BasicBlock* b) {
return &(block2structured_succs_[b]);
};
// TODO(greg-lunarg): Get rid of const_cast by making moving const
// out of the cfa.h prototypes and into the invoking code.
auto post_order = [&](cbb_ptr b) {
order->push_front(const_cast<ir::BasicBlock*>(b));
};
spvtools::CFA<ir::BasicBlock>::DepthFirstTraversal(
root, get_structured_successors, ignore_block, post_order, ignore_edge);
}
void CFG::ForEachBlockInReversePostOrder(
BasicBlock* bb, const std::function<void(BasicBlock*)>& f) {
std::vector<BasicBlock*> po;
std::unordered_set<BasicBlock*> seen;
ComputePostOrderTraversal(bb, &po, &seen);
for (auto current_bb = po.rbegin(); current_bb != po.rend(); ++current_bb) {
if (!IsPseudoExitBlock(*current_bb) && !IsPseudoEntryBlock(*current_bb)) {
f(*current_bb);
}
}
}
void CFG::ComputeStructuredSuccessors(ir::Function* func) {
block2structured_succs_.clear();
for (auto& blk : *func) {
// If no predecessors in function, make successor to pseudo entry.
if (label2preds_[blk.id()].size() == 0)
block2structured_succs_[&pseudo_entry_block_].push_back(&blk);
// If header, make merge block first successor and continue block second
// successor if there is one.
uint32_t mbid = blk.MergeBlockIdIfAny();
if (mbid != 0) {
block2structured_succs_[&blk].push_back(block(mbid));
uint32_t cbid = blk.ContinueBlockIdIfAny();
if (cbid != 0) {
block2structured_succs_[&blk].push_back(block(cbid));
}
}
// Add true successors.
const auto& const_blk = blk;
const_blk.ForEachSuccessorLabel([&blk, this](const uint32_t sbid) {
block2structured_succs_[&blk].push_back(block(sbid));
});
}
}
void CFG::ComputePostOrderTraversal(BasicBlock* bb, vector<BasicBlock*>* order,
unordered_set<BasicBlock*>* seen) {
seen->insert(bb);
static_cast<const BasicBlock*>(bb)->ForEachSuccessorLabel(
[&order, &seen, this](const uint32_t sbid) {
BasicBlock* succ_bb = id2block_[sbid];
if (!seen->count(succ_bb)) {
ComputePostOrderTraversal(succ_bb, order, seen);
}
});
order->push_back(bb);
}
BasicBlock* CFG::SplitLoopHeader(ir::BasicBlock* bb) {
assert(bb->GetLoopMergeInst() && "Expecting bb to be the header of a loop.");
Function* fn = bb->GetParent();
IRContext* context = fn->context();
// Find the insertion point for the new bb.
Function::iterator header_it = std::find_if(
fn->begin(), fn->end(),
[bb](BasicBlock& block_in_func) { return &block_in_func == bb; });
assert(header_it != fn->end());
const std::vector<uint32_t>& pred = preds(bb->id());
// Find the back edge
ir::BasicBlock* latch_block = nullptr;
Function::iterator latch_block_iter = header_it;
while (++latch_block_iter != fn->end()) {
// If blocks are in the proper order, then the only branch that appears
// after the header is the latch.
if (std::find(pred.begin(), pred.end(), latch_block_iter->id()) !=
pred.end()) {
break;
}
}
assert(latch_block_iter != fn->end() && "Could not find the latch.");
latch_block = &*latch_block_iter;
RemoveSuccessorEdges(bb);
// Create the new header bb basic bb.
// Leave the phi instructions behind.
auto iter = bb->begin();
while (iter->opcode() == SpvOpPhi) {
++iter;
}
std::unique_ptr<ir::BasicBlock> newBlock(
bb->SplitBasicBlock(context, context->TakeNextId(), iter));
// Insert the new bb in the correct position
auto insert_pos = header_it;
++insert_pos;
ir::BasicBlock* new_header = &*insert_pos.InsertBefore(std::move(newBlock));
new_header->SetParent(fn);
uint32_t new_header_id = new_header->id();
context->AnalyzeDefUse(new_header->GetLabelInst());
// Update cfg
RegisterBlock(new_header);
// Update bb mappings.
context->set_instr_block(new_header->GetLabelInst(), new_header);
new_header->ForEachInst([new_header, context](ir::Instruction* inst) {
context->set_instr_block(inst, new_header);
});
// Adjust the OpPhi instructions as needed.
bb->ForEachPhiInst([latch_block, bb, new_header, context](Instruction* phi) {
std::vector<uint32_t> preheader_phi_ops;
std::vector<Operand> header_phi_ops;
// Identify where the original inputs to original OpPhi belong: header or
// preheader.
for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) {
uint32_t def_id = phi->GetSingleWordInOperand(i);
uint32_t branch_id = phi->GetSingleWordInOperand(i + 1);
if (branch_id == latch_block->id()) {
header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {def_id}});
header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {branch_id}});
} else {
preheader_phi_ops.push_back(def_id);
preheader_phi_ops.push_back(branch_id);
}
}
// Create a phi instruction if and only if the preheader_phi_ops has more
// than one pair.
if (preheader_phi_ops.size() > 2) {
opt::InstructionBuilder builder(
context, &*bb->begin(),
ir::IRContext::kAnalysisDefUse |
ir::IRContext::kAnalysisInstrToBlockMapping);
ir::Instruction* new_phi =
builder.AddPhi(phi->type_id(), preheader_phi_ops);
// Add the OpPhi to the header bb.
header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {new_phi->result_id()}});
header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {bb->id()}});
} else {
// An OpPhi with a single entry is just a copy. In this case use the same
// instruction in the new header.
header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {preheader_phi_ops[0]}});
header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {bb->id()}});
}
phi->RemoveFromList();
std::unique_ptr<ir::Instruction> phi_owner(phi);
phi->SetInOperands(std::move(header_phi_ops));
new_header->begin()->InsertBefore(std::move(phi_owner));
context->set_instr_block(phi, new_header);
context->AnalyzeUses(phi);
});
// Add a branch to the new header.
opt::InstructionBuilder branch_builder(
context, bb,
ir::IRContext::kAnalysisDefUse |
ir::IRContext::kAnalysisInstrToBlockMapping);
bb->AddInstruction(MakeUnique<ir::Instruction>(
context, SpvOpBranch, 0, 0,
std::initializer_list<ir::Operand>{
{SPV_OPERAND_TYPE_ID, {new_header->id()}}}));
context->AnalyzeUses(bb->terminator());
context->set_instr_block(bb->terminator(), bb);
label2preds_[new_header->id()].push_back(bb->id());
// Update the latch to branch to the new header.
latch_block->ForEachSuccessorLabel([bb, new_header_id](uint32_t* id) {
if (*id == bb->id()) {
*id = new_header_id;
}
});
ir::Instruction* latch_branch = latch_block->terminator();
context->AnalyzeUses(latch_branch);
label2preds_[new_header->id()].push_back(latch_block->id());
auto& block_preds = label2preds_[bb->id()];
auto latch_pos =
std::find(block_preds.begin(), block_preds.end(), latch_block->id());
assert(latch_pos != block_preds.end() && "The cfg was invalid.");
block_preds.erase(latch_pos);
// Update the loop descriptors
if (context->AreAnalysesValid(ir::IRContext::kAnalysisLoopAnalysis)) {
LoopDescriptor* loop_desc = context->GetLoopDescriptor(bb->GetParent());
Loop* loop = (*loop_desc)[bb->id()];
loop->AddBasicBlock(new_header_id);
loop->SetHeaderBlock(new_header);
loop_desc->SetBasicBlockToLoop(new_header_id, loop);
loop->RemoveBasicBlock(bb->id());
loop->SetPreHeaderBlock(bb);
Loop* parent_loop = loop->GetParent();
if (parent_loop != nullptr) {
parent_loop->AddBasicBlock(bb->id());
loop_desc->SetBasicBlockToLoop(bb->id(), parent_loop);
} else {
loop_desc->SetBasicBlockToLoop(bb->id(), nullptr);
}
}
return new_header;
}
unordered_set<BasicBlock*> CFG::FindReachableBlocks(BasicBlock* start) {
std::unordered_set<BasicBlock*> reachable_blocks;
ForEachBlockInReversePostOrder(start, [&reachable_blocks](BasicBlock* bb) {
reachable_blocks.insert(bb);
});
return reachable_blocks;
}
} // namespace ir
} // namespace spvtools

175
3rdparty/spirv-tools/source/opt/cfg.h vendored Normal file
View File

@ -0,0 +1,175 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_OPT_CFG_H_
#define LIBSPIRV_OPT_CFG_H_
#include "basic_block.h"
#include <algorithm>
#include <list>
#include <unordered_map>
#include <unordered_set>
namespace spvtools {
namespace ir {
class CFG {
public:
CFG(ir::Module* module);
// Return the module described by this CFG.
ir::Module* get_module() const { return module_; }
// Return the list of predecesors for basic block with label |blkid|.
// TODO(dnovillo): Move this to ir::BasicBlock.
const std::vector<uint32_t>& preds(uint32_t blk_id) const {
assert(label2preds_.count(blk_id));
return label2preds_.at(blk_id);
}
// Return a pointer to the basic block instance corresponding to the label
// |blk_id|.
ir::BasicBlock* block(uint32_t blk_id) const { return id2block_.at(blk_id); }
// Return the pseudo entry and exit blocks.
const ir::BasicBlock* pseudo_entry_block() const {
return &pseudo_entry_block_;
}
ir::BasicBlock* pseudo_entry_block() { return &pseudo_entry_block_; }
const ir::BasicBlock* pseudo_exit_block() const {
return &pseudo_exit_block_;
}
ir::BasicBlock* pseudo_exit_block() { return &pseudo_exit_block_; }
// Return true if |block_ptr| is the pseudo-entry block.
bool IsPseudoEntryBlock(ir::BasicBlock* block_ptr) const {
return block_ptr == &pseudo_entry_block_;
}
// Return true if |block_ptr| is the pseudo-exit block.
bool IsPseudoExitBlock(ir::BasicBlock* block_ptr) const {
return block_ptr == &pseudo_exit_block_;
}
// Compute structured block order into |order| for |func| starting at |root|.
// This order has the property that dominators come before all blocks they
// dominate and merge blocks come after all blocks that are in the control
// constructs of their header.
void ComputeStructuredOrder(ir::Function* func, ir::BasicBlock* root,
std::list<ir::BasicBlock*>* order);
// Applies |f| to the basic block in reverse post order starting with |bb|.
// Note that basic blocks that cannot be reached from |bb| node will not be
// processed.
void ForEachBlockInReversePostOrder(
BasicBlock* bb, const std::function<void(BasicBlock*)>& f);
// Registers |blk| as a basic block in the cfg, this also updates the
// predecessor lists of each successor of |blk|.
void RegisterBlock(ir::BasicBlock* blk) {
uint32_t blk_id = blk->id();
id2block_[blk_id] = blk;
AddEdges(blk);
}
// Removes from the CFG any mapping for the basic block id |blk_id|.
void ForgetBlock(const ir::BasicBlock* blk) {
id2block_.erase(blk->id());
label2preds_.erase(blk->id());
RemoveSuccessorEdges(blk);
}
void RemoveEdge(uint32_t pred_blk_id, uint32_t succ_blk_id) {
auto pred_it = label2preds_.find(succ_blk_id);
if (pred_it == label2preds_.end()) return;
auto& preds_list = pred_it->second;
auto it = std::find(preds_list.begin(), preds_list.end(), pred_blk_id);
if (it != preds_list.end()) preds_list.erase(it);
}
// Registers |blk| to all of its successors.
void AddEdges(ir::BasicBlock* blk);
// Registers the basic block id |pred_blk_id| as being a predecessor of the
// basic block id |succ_blk_id|.
void AddEdge(uint32_t pred_blk_id, uint32_t succ_blk_id) {
label2preds_[succ_blk_id].push_back(pred_blk_id);
}
// Removes any edges that no longer exist from the predecessor mapping for
// the basic block id |blk_id|.
void RemoveNonExistingEdges(uint32_t blk_id);
// Remove all edges that leave |bb|.
void RemoveSuccessorEdges(const ir::BasicBlock* bb) {
bb->ForEachSuccessorLabel(
[bb, this](uint32_t succ_id) { RemoveEdge(bb->id(), succ_id); });
}
// Divides |block| into two basic blocks. The first block will have the same
// id as |block| and will become a preheader for the loop. The other block
// is a new block that will be the new loop header.
//
// Returns a pointer to the new loop header.
BasicBlock* SplitLoopHeader(ir::BasicBlock* bb);
std::unordered_set<BasicBlock*> FindReachableBlocks(BasicBlock* start);
private:
using cbb_ptr = const ir::BasicBlock*;
// Compute structured successors for function |func|. A block's structured
// successors are the blocks it branches to together with its declared merge
// block and continue block if it has them. When order matters, the merge
// block and continue block always appear first. This assures correct depth
// first search in the presence of early returns and kills. If the successor
// vector contain duplicates of the merge or continue blocks, they are safely
// ignored by DFS.
void ComputeStructuredSuccessors(ir::Function* func);
// Computes the post-order traversal of the cfg starting at |bb| skipping
// nodes in |seen|. The order of the traversal is appended to |order|, and
// all nodes in the traversal are added to |seen|.
void ComputePostOrderTraversal(BasicBlock* bb,
std::vector<BasicBlock*>* order,
std::unordered_set<BasicBlock*>* seen);
// Module for this CFG.
ir::Module* module_;
// Map from block to its structured successor blocks. See
// ComputeStructuredSuccessors() for definition.
std::unordered_map<const ir::BasicBlock*, std::vector<ir::BasicBlock*>>
block2structured_succs_;
// Extra block whose successors are all blocks with no predecessors
// in function.
ir::BasicBlock pseudo_entry_block_;
// Augmented CFG Exit Block.
ir::BasicBlock pseudo_exit_block_;
// Map from block's label id to its predecessor blocks ids
std::unordered_map<uint32_t, std::vector<uint32_t>> label2preds_;
// Map from block's label id to block.
std::unordered_map<uint32_t, ir::BasicBlock*> id2block_;
};
} // namespace ir
} // namespace spvtools
#endif // LIBSPIRV_OPT_CFG_H_

View File

@ -0,0 +1,43 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file implements a pass to cleanup the CFG to remove superfluous
// constructs (e.g., unreachable basic blocks, empty control flow structures,
// etc)
#include <queue>
#include <unordered_set>
#include "cfg_cleanup_pass.h"
#include "function.h"
#include "module.h"
namespace spvtools {
namespace opt {
void CFGCleanupPass::Initialize(ir::IRContext* c) { InitializeProcessing(c); }
Pass::Status CFGCleanupPass::Process(ir::IRContext* c) {
Initialize(c);
// Process all entry point functions.
ProcessFunction pfn = [this](ir::Function* fp) { return CFGCleanup(fp); };
bool modified = ProcessReachableCallTree(pfn, context());
return modified ? Pass::Status::SuccessWithChange
: Pass::Status::SuccessWithoutChange;
}
} // namespace opt
} // namespace spvtools

View File

@ -0,0 +1,43 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_OPT_CFG_CLEANUP_PASS_H_
#define LIBSPIRV_OPT_CFG_CLEANUP_PASS_H_
#include "function.h"
#include "mem_pass.h"
#include "module.h"
namespace spvtools {
namespace opt {
class CFGCleanupPass : public MemPass {
public:
CFGCleanupPass() = default;
const char* name() const override { return "cfg-cleanup"; }
Status Process(ir::IRContext* c) override;
ir::IRContext::Analysis GetPreservedAnalyses() override {
return ir::IRContext::kAnalysisDefUse;
}
private:
// Initialize the pass.
void Initialize(ir::IRContext* c);
};
} // namespace opt
} // namespace spvtools
#endif

View File

@ -0,0 +1,581 @@
// Copyright (c) 2017 The Khronos Group Inc.
// Copyright (c) 2017 Valve Corporation
// Copyright (c) 2017 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "common_uniform_elim_pass.h"
#include "cfa.h"
#include "ir_context.h"
namespace spvtools {
namespace opt {
namespace {
const uint32_t kAccessChainPtrIdInIdx = 0;
const uint32_t kTypePointerStorageClassInIdx = 0;
const uint32_t kTypePointerTypeIdInIdx = 1;
const uint32_t kConstantValueInIdx = 0;
const uint32_t kExtractCompositeIdInIdx = 0;
const uint32_t kExtractIdx0InIdx = 1;
const uint32_t kStorePtrIdInIdx = 0;
const uint32_t kLoadPtrIdInIdx = 0;
const uint32_t kCopyObjectOperandInIdx = 0;
const uint32_t kTypeIntWidthInIdx = 0;
} // anonymous namespace
bool CommonUniformElimPass::IsNonPtrAccessChain(const SpvOp opcode) const {
return opcode == SpvOpAccessChain || opcode == SpvOpInBoundsAccessChain;
}
bool CommonUniformElimPass::IsSamplerOrImageType(
const ir::Instruction* typeInst) const {
switch (typeInst->opcode()) {
case SpvOpTypeSampler:
case SpvOpTypeImage:
case SpvOpTypeSampledImage:
return true;
default:
break;
}
if (typeInst->opcode() != SpvOpTypeStruct) return false;
// Return true if any member is a sampler or image
return !typeInst->WhileEachInId([this](const uint32_t* tid) {
const ir::Instruction* compTypeInst = get_def_use_mgr()->GetDef(*tid);
if (IsSamplerOrImageType(compTypeInst)) {
return false;
}
return true;
});
}
bool CommonUniformElimPass::IsSamplerOrImageVar(uint32_t varId) const {
const ir::Instruction* varInst = get_def_use_mgr()->GetDef(varId);
assert(varInst->opcode() == SpvOpVariable);
const uint32_t varTypeId = varInst->type_id();
const ir::Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
const uint32_t varPteTypeId =
varTypeInst->GetSingleWordInOperand(kTypePointerTypeIdInIdx);
ir::Instruction* varPteTypeInst = get_def_use_mgr()->GetDef(varPteTypeId);
return IsSamplerOrImageType(varPteTypeInst);
}
ir::Instruction* CommonUniformElimPass::GetPtr(ir::Instruction* ip,
uint32_t* objId) {
const SpvOp op = ip->opcode();
assert(op == SpvOpStore || op == SpvOpLoad);
*objId = ip->GetSingleWordInOperand(op == SpvOpStore ? kStorePtrIdInIdx
: kLoadPtrIdInIdx);
ir::Instruction* ptrInst = get_def_use_mgr()->GetDef(*objId);
while (ptrInst->opcode() == SpvOpCopyObject) {
*objId = ptrInst->GetSingleWordInOperand(kCopyObjectOperandInIdx);
ptrInst = get_def_use_mgr()->GetDef(*objId);
}
ir::Instruction* objInst = ptrInst;
while (objInst->opcode() != SpvOpVariable &&
objInst->opcode() != SpvOpFunctionParameter) {
if (IsNonPtrAccessChain(objInst->opcode())) {
*objId = objInst->GetSingleWordInOperand(kAccessChainPtrIdInIdx);
} else {
assert(objInst->opcode() == SpvOpCopyObject);
*objId = objInst->GetSingleWordInOperand(kCopyObjectOperandInIdx);
}
objInst = get_def_use_mgr()->GetDef(*objId);
}
return ptrInst;
}
bool CommonUniformElimPass::IsVolatileStruct(uint32_t type_id) {
assert(get_def_use_mgr()->GetDef(type_id)->opcode() == SpvOpTypeStruct);
return !get_decoration_mgr()->WhileEachDecoration(
type_id, SpvDecorationVolatile,
[](const ir::Instruction&) { return false; });
}
bool CommonUniformElimPass::IsAccessChainToVolatileStructType(
const ir::Instruction& AccessChainInst) {
assert(AccessChainInst.opcode() == SpvOpAccessChain);
uint32_t ptr_id = AccessChainInst.GetSingleWordInOperand(0);
const ir::Instruction* ptr_inst = get_def_use_mgr()->GetDef(ptr_id);
uint32_t pointee_type_id = GetPointeeTypeId(ptr_inst);
const uint32_t num_operands = AccessChainInst.NumOperands();
// walk the type tree:
for (uint32_t idx = 3; idx < num_operands; ++idx) {
ir::Instruction* pointee_type = get_def_use_mgr()->GetDef(pointee_type_id);
switch (pointee_type->opcode()) {
case SpvOpTypeMatrix:
case SpvOpTypeVector:
case SpvOpTypeArray:
case SpvOpTypeRuntimeArray:
pointee_type_id = pointee_type->GetSingleWordOperand(1);
break;
case SpvOpTypeStruct:
// check for volatile decorations:
if (IsVolatileStruct(pointee_type_id)) return true;
if (idx < num_operands - 1) {
const uint32_t index_id = AccessChainInst.GetSingleWordOperand(idx);
const ir::Instruction* index_inst =
get_def_use_mgr()->GetDef(index_id);
uint32_t index_value = index_inst->GetSingleWordOperand(
2); // TODO: replace with GetUintValueFromConstant()
pointee_type_id = pointee_type->GetSingleWordInOperand(index_value);
}
break;
default:
assert(false && "Unhandled pointee type.");
}
}
return false;
}
bool CommonUniformElimPass::IsVolatileLoad(const ir::Instruction& loadInst) {
assert(loadInst.opcode() == SpvOpLoad);
// Check if this Load instruction has Volatile Memory Access flag
if (loadInst.NumOperands() == 4) {
uint32_t memory_access_mask = loadInst.GetSingleWordOperand(3);
if (memory_access_mask & SpvMemoryAccessVolatileMask) return true;
}
// If we load a struct directly (result type is struct),
// check if the struct is decorated volatile
uint32_t type_id = loadInst.type_id();
if (get_def_use_mgr()->GetDef(type_id)->opcode() == SpvOpTypeStruct)
return IsVolatileStruct(type_id);
else
return false;
}
bool CommonUniformElimPass::IsUniformVar(uint32_t varId) {
const ir::Instruction* varInst =
get_def_use_mgr()->id_to_defs().find(varId)->second;
if (varInst->opcode() != SpvOpVariable) return false;
const uint32_t varTypeId = varInst->type_id();
const ir::Instruction* varTypeInst =
get_def_use_mgr()->id_to_defs().find(varTypeId)->second;
return varTypeInst->GetSingleWordInOperand(kTypePointerStorageClassInIdx) ==
SpvStorageClassUniform ||
varTypeInst->GetSingleWordInOperand(kTypePointerStorageClassInIdx) ==
SpvStorageClassUniformConstant;
}
bool CommonUniformElimPass::HasUnsupportedDecorates(uint32_t id) const {
return !get_def_use_mgr()->WhileEachUser(id, [this](ir::Instruction* user) {
if (IsNonTypeDecorate(user->opcode())) return false;
return true;
});
}
bool CommonUniformElimPass::HasOnlyNamesAndDecorates(uint32_t id) const {
return get_def_use_mgr()->WhileEachUser(id, [this](ir::Instruction* user) {
SpvOp op = user->opcode();
if (op != SpvOpName && !IsNonTypeDecorate(op)) return false;
return true;
});
}
void CommonUniformElimPass::DeleteIfUseless(ir::Instruction* inst) {
const uint32_t resId = inst->result_id();
assert(resId != 0);
if (HasOnlyNamesAndDecorates(resId)) {
context()->KillInst(inst);
}
}
ir::Instruction* CommonUniformElimPass::ReplaceAndDeleteLoad(
ir::Instruction* loadInst, uint32_t replId, ir::Instruction* ptrInst) {
const uint32_t loadId = loadInst->result_id();
context()->KillNamesAndDecorates(loadId);
(void)context()->ReplaceAllUsesWith(loadId, replId);
// remove load instruction
ir::Instruction* next_instruction = context()->KillInst(loadInst);
// if access chain, see if it can be removed as well
if (IsNonPtrAccessChain(ptrInst->opcode())) DeleteIfUseless(ptrInst);
return next_instruction;
}
void CommonUniformElimPass::GenACLoadRepl(
const ir::Instruction* ptrInst,
std::vector<std::unique_ptr<ir::Instruction>>* newInsts,
uint32_t* resultId) {
// Build and append Load
const uint32_t ldResultId = TakeNextId();
const uint32_t varId =
ptrInst->GetSingleWordInOperand(kAccessChainPtrIdInIdx);
const ir::Instruction* varInst = get_def_use_mgr()->GetDef(varId);
assert(varInst->opcode() == SpvOpVariable);
const uint32_t varPteTypeId = GetPointeeTypeId(varInst);
std::vector<ir::Operand> load_in_operands;
load_in_operands.push_back(
ir::Operand(spv_operand_type_t::SPV_OPERAND_TYPE_ID,
std::initializer_list<uint32_t>{varId}));
std::unique_ptr<ir::Instruction> newLoad(new ir::Instruction(
context(), SpvOpLoad, varPteTypeId, ldResultId, load_in_operands));
get_def_use_mgr()->AnalyzeInstDefUse(&*newLoad);
newInsts->emplace_back(std::move(newLoad));
// Build and append Extract
const uint32_t extResultId = TakeNextId();
const uint32_t ptrPteTypeId = GetPointeeTypeId(ptrInst);
std::vector<ir::Operand> ext_in_opnds;
ext_in_opnds.push_back(
ir::Operand(spv_operand_type_t::SPV_OPERAND_TYPE_ID,
std::initializer_list<uint32_t>{ldResultId}));
uint32_t iidIdx = 0;
ptrInst->ForEachInId([&iidIdx, &ext_in_opnds, this](const uint32_t* iid) {
if (iidIdx > 0) {
const ir::Instruction* cInst = get_def_use_mgr()->GetDef(*iid);
uint32_t val = cInst->GetSingleWordInOperand(kConstantValueInIdx);
ext_in_opnds.push_back(
ir::Operand(spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
std::initializer_list<uint32_t>{val}));
}
++iidIdx;
});
std::unique_ptr<ir::Instruction> newExt(
new ir::Instruction(context(), SpvOpCompositeExtract, ptrPteTypeId,
extResultId, ext_in_opnds));
get_def_use_mgr()->AnalyzeInstDefUse(&*newExt);
newInsts->emplace_back(std::move(newExt));
*resultId = extResultId;
}
bool CommonUniformElimPass::IsConstantIndexAccessChain(ir::Instruction* acp) {
uint32_t inIdx = 0;
return acp->WhileEachInId([&inIdx, this](uint32_t* tid) {
if (inIdx > 0) {
ir::Instruction* opInst = get_def_use_mgr()->GetDef(*tid);
if (opInst->opcode() != SpvOpConstant) return false;
}
++inIdx;
return true;
});
}
bool CommonUniformElimPass::UniformAccessChainConvert(ir::Function* func) {
bool modified = false;
for (auto bi = func->begin(); bi != func->end(); ++bi) {
for (ir::Instruction* inst = &*bi->begin(); inst; inst = inst->NextNode()) {
if (inst->opcode() != SpvOpLoad) continue;
uint32_t varId;
ir::Instruction* ptrInst = GetPtr(inst, &varId);
if (!IsNonPtrAccessChain(ptrInst->opcode())) continue;
// Do not convert nested access chains
if (ptrInst->GetSingleWordInOperand(kAccessChainPtrIdInIdx) != varId)
continue;
if (!IsUniformVar(varId)) continue;
if (!IsConstantIndexAccessChain(ptrInst)) continue;
if (HasUnsupportedDecorates(inst->result_id())) continue;
if (HasUnsupportedDecorates(ptrInst->result_id())) continue;
if (IsVolatileLoad(*inst)) continue;
if (IsAccessChainToVolatileStructType(*ptrInst)) continue;
std::vector<std::unique_ptr<ir::Instruction>> newInsts;
uint32_t replId;
GenACLoadRepl(ptrInst, &newInsts, &replId);
inst = ReplaceAndDeleteLoad(inst, replId, ptrInst);
inst = inst->InsertBefore(std::move(newInsts));
modified = true;
};
}
return modified;
}
void CommonUniformElimPass::ComputeStructuredSuccessors(ir::Function* func) {
block2structured_succs_.clear();
for (auto& blk : *func) {
// If header, make merge block first successor.
uint32_t mbid = blk.MergeBlockIdIfAny();
if (mbid != 0) {
block2structured_succs_[&blk].push_back(cfg()->block(mbid));
uint32_t cbid = blk.ContinueBlockIdIfAny();
if (cbid != 0) {
block2structured_succs_[&blk].push_back(cfg()->block(mbid));
}
}
// add true successors
const auto& const_blk = blk;
const_blk.ForEachSuccessorLabel([&blk, this](const uint32_t sbid) {
block2structured_succs_[&blk].push_back(cfg()->block(sbid));
});
}
}
void CommonUniformElimPass::ComputeStructuredOrder(
ir::Function* func, std::list<ir::BasicBlock*>* order) {
// Compute structured successors and do DFS
ComputeStructuredSuccessors(func);
auto ignore_block = [](cbb_ptr) {};
auto ignore_edge = [](cbb_ptr, cbb_ptr) {};
auto get_structured_successors = [this](const ir::BasicBlock* block) {
return &(block2structured_succs_[block]);
};
// TODO(greg-lunarg): Get rid of const_cast by making moving const
// out of the cfa.h prototypes and into the invoking code.
auto post_order = [&](cbb_ptr b) {
order->push_front(const_cast<ir::BasicBlock*>(b));
};
order->clear();
spvtools::CFA<ir::BasicBlock>::DepthFirstTraversal(
&*func->begin(), get_structured_successors, ignore_block, post_order,
ignore_edge);
}
bool CommonUniformElimPass::CommonUniformLoadElimination(ir::Function* func) {
// Process all blocks in structured order. This is just one way (the
// simplest?) to keep track of the most recent block outside of control
// flow, used to copy common instructions, guaranteed to dominate all
// following load sites.
std::list<ir::BasicBlock*> structuredOrder;
ComputeStructuredOrder(func, &structuredOrder);
uniform2load_id_.clear();
bool modified = false;
// Find insertion point in first block to copy non-dominating loads.
auto insertItr = func->begin()->begin();
while (insertItr->opcode() == SpvOpVariable ||
insertItr->opcode() == SpvOpNop)
++insertItr;
uint32_t mergeBlockId = 0;
for (auto bi = structuredOrder.begin(); bi != structuredOrder.end(); ++bi) {
ir::BasicBlock* bp = *bi;
// Check if we are exiting outermost control construct. If so, remember
// new load insertion point. Trying to keep register pressure down.
if (mergeBlockId == bp->id()) {
mergeBlockId = 0;
insertItr = bp->begin();
}
for (ir::Instruction* inst = &*bp->begin(); inst; inst = inst->NextNode()) {
if (inst->opcode() != SpvOpLoad) continue;
uint32_t varId;
ir::Instruction* ptrInst = GetPtr(inst, &varId);
if (ptrInst->opcode() != SpvOpVariable) continue;
if (!IsUniformVar(varId)) continue;
if (IsSamplerOrImageVar(varId)) continue;
if (HasUnsupportedDecorates(inst->result_id())) continue;
if (IsVolatileLoad(*inst)) continue;
uint32_t replId;
const auto uItr = uniform2load_id_.find(varId);
if (uItr != uniform2load_id_.end()) {
replId = uItr->second;
} else {
if (mergeBlockId == 0) {
// Load is in dominating block; just remember it
uniform2load_id_[varId] = inst->result_id();
continue;
} else {
// Copy load into most recent dominating block and remember it
replId = TakeNextId();
std::unique_ptr<ir::Instruction> newLoad(new ir::Instruction(
context(), SpvOpLoad, inst->type_id(), replId,
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {varId}}}));
get_def_use_mgr()->AnalyzeInstDefUse(&*newLoad);
insertItr = insertItr.InsertBefore(std::move(newLoad));
++insertItr;
uniform2load_id_[varId] = replId;
}
}
inst = ReplaceAndDeleteLoad(inst, replId, ptrInst);
modified = true;
}
// If we are outside of any control construct and entering one, remember
// the id of the merge block
if (mergeBlockId == 0) {
mergeBlockId = bp->MergeBlockIdIfAny();
}
}
return modified;
}
bool CommonUniformElimPass::CommonUniformLoadElimBlock(ir::Function* func) {
bool modified = false;
for (auto& blk : *func) {
uniform2load_id_.clear();
for (ir::Instruction* inst = &*blk.begin(); inst; inst = inst->NextNode()) {
if (inst->opcode() != SpvOpLoad) continue;
uint32_t varId;
ir::Instruction* ptrInst = GetPtr(inst, &varId);
if (ptrInst->opcode() != SpvOpVariable) continue;
if (!IsUniformVar(varId)) continue;
if (!IsSamplerOrImageVar(varId)) continue;
if (HasUnsupportedDecorates(inst->result_id())) continue;
if (IsVolatileLoad(*inst)) continue;
uint32_t replId;
const auto uItr = uniform2load_id_.find(varId);
if (uItr != uniform2load_id_.end()) {
replId = uItr->second;
} else {
uniform2load_id_[varId] = inst->result_id();
continue;
}
inst = ReplaceAndDeleteLoad(inst, replId, ptrInst);
modified = true;
}
}
return modified;
}
bool CommonUniformElimPass::CommonExtractElimination(ir::Function* func) {
// Find all composite ids with duplicate extracts.
for (auto bi = func->begin(); bi != func->end(); ++bi) {
for (auto ii = bi->begin(); ii != bi->end(); ++ii) {
if (ii->opcode() != SpvOpCompositeExtract) continue;
// TODO(greg-lunarg): Support multiple indices
if (ii->NumInOperands() > 2) continue;
if (HasUnsupportedDecorates(ii->result_id())) continue;
uint32_t compId = ii->GetSingleWordInOperand(kExtractCompositeIdInIdx);
uint32_t idx = ii->GetSingleWordInOperand(kExtractIdx0InIdx);
comp2idx2inst_[compId][idx].push_back(&*ii);
}
}
// For all defs of ids with duplicate extracts, insert new extracts
// after def, and replace and delete old extracts
bool modified = false;
for (auto bi = func->begin(); bi != func->end(); ++bi) {
for (auto ii = bi->begin(); ii != bi->end(); ++ii) {
const auto cItr = comp2idx2inst_.find(ii->result_id());
if (cItr == comp2idx2inst_.end()) continue;
for (auto idxItr : cItr->second) {
if (idxItr.second.size() < 2) continue;
uint32_t replId = TakeNextId();
std::unique_ptr<ir::Instruction> newExtract(
idxItr.second.front()->Clone(context()));
newExtract->SetResultId(replId);
get_def_use_mgr()->AnalyzeInstDefUse(&*newExtract);
++ii;
ii = ii.InsertBefore(std::move(newExtract));
for (auto instItr : idxItr.second) {
uint32_t resId = instItr->result_id();
context()->KillNamesAndDecorates(resId);
(void)context()->ReplaceAllUsesWith(resId, replId);
context()->KillInst(instItr);
}
modified = true;
}
}
}
return modified;
}
bool CommonUniformElimPass::EliminateCommonUniform(ir::Function* func) {
bool modified = false;
modified |= UniformAccessChainConvert(func);
modified |= CommonUniformLoadElimination(func);
modified |= CommonExtractElimination(func);
modified |= CommonUniformLoadElimBlock(func);
return modified;
}
void CommonUniformElimPass::Initialize(ir::IRContext* c) {
InitializeProcessing(c);
// Clear collections.
comp2idx2inst_.clear();
// Initialize extension whitelist
InitExtensions();
}
bool CommonUniformElimPass::AllExtensionsSupported() const {
// If any extension not in whitelist, return false
for (auto& ei : get_module()->extensions()) {
const char* extName =
reinterpret_cast<const char*>(&ei.GetInOperand(0).words[0]);
if (extensions_whitelist_.find(extName) == extensions_whitelist_.end())
return false;
}
return true;
}
Pass::Status CommonUniformElimPass::ProcessImpl() {
// Assumes all control flow structured.
// TODO(greg-lunarg): Do SSA rewrite for non-structured control flow
if (!context()->get_feature_mgr()->HasCapability(SpvCapabilityShader))
return Status::SuccessWithoutChange;
// Assumes logical addressing only
// TODO(greg-lunarg): Add support for physical addressing
if (context()->get_feature_mgr()->HasCapability(SpvCapabilityAddresses))
return Status::SuccessWithoutChange;
// Do not process if any disallowed extensions are enabled
if (!AllExtensionsSupported()) return Status::SuccessWithoutChange;
// Do not process if module contains OpGroupDecorate. Additional
// support required in KillNamesAndDecorates().
// TODO(greg-lunarg): Add support for OpGroupDecorate
for (auto& ai : get_module()->annotations())
if (ai.opcode() == SpvOpGroupDecorate) return Status::SuccessWithoutChange;
// If non-32-bit integer type in module, terminate processing
// TODO(): Handle non-32-bit integer constants in access chains
for (const ir::Instruction& inst : get_module()->types_values())
if (inst.opcode() == SpvOpTypeInt &&
inst.GetSingleWordInOperand(kTypeIntWidthInIdx) != 32)
return Status::SuccessWithoutChange;
// Process entry point functions
ProcessFunction pfn = [this](ir::Function* fp) {
return EliminateCommonUniform(fp);
};
bool modified = ProcessEntryPointCallTree(pfn, get_module());
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
CommonUniformElimPass::CommonUniformElimPass() {}
Pass::Status CommonUniformElimPass::Process(ir::IRContext* c) {
Initialize(c);
return ProcessImpl();
}
void CommonUniformElimPass::InitExtensions() {
extensions_whitelist_.clear();
extensions_whitelist_.insert({
"SPV_AMD_shader_explicit_vertex_parameter",
"SPV_AMD_shader_trinary_minmax",
"SPV_AMD_gcn_shader",
"SPV_KHR_shader_ballot",
"SPV_AMD_shader_ballot",
"SPV_AMD_gpu_shader_half_float",
"SPV_KHR_shader_draw_parameters",
"SPV_KHR_subgroup_vote",
"SPV_KHR_16bit_storage",
"SPV_KHR_device_group",
"SPV_KHR_multiview",
"SPV_NVX_multiview_per_view_attributes",
"SPV_NV_viewport_array2",
"SPV_NV_stereo_view_rendering",
"SPV_NV_sample_mask_override_coverage",
"SPV_NV_geometry_shader_passthrough",
"SPV_AMD_texture_gather_bias_lod",
"SPV_KHR_storage_buffer_storage_class",
// SPV_KHR_variable_pointers
// Currently do not support extended pointer expressions
"SPV_AMD_gpu_shader_int16",
"SPV_KHR_post_depth_coverage",
"SPV_KHR_shader_atomic_counter_ops",
"SPV_EXT_shader_stencil_export",
"SPV_EXT_shader_viewport_index_layer",
"SPV_AMD_shader_image_load_store_lod",
"SPV_AMD_shader_fragment_mask",
"SPV_EXT_fragment_fully_covered",
"SPV_AMD_gpu_shader_half_float_fetch",
"SPV_GOOGLE_decorate_string",
"SPV_GOOGLE_hlsl_functionality1",
"SPV_NV_shader_subgroup_partitioned",
"SPV_EXT_descriptor_indexing",
});
}
} // namespace opt
} // namespace spvtools

Some files were not shown because too many files have changed in this diff Show More