bgfx/src/renderer_d3d11.cpp
Branimir Karadžić 1011696535 Fixed issue #1483.
2018-09-08 22:25:32 -07:00

6312 lines
190 KiB
C++

/*
* Copyright 2011-2018 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
#include "bgfx_p.h"
#if BGFX_CONFIG_RENDERER_DIRECT3D11
# include "renderer_d3d11.h"
namespace bgfx { namespace d3d11
{
static wchar_t s_viewNameW[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME];
static char s_viewName[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME];
struct PrimInfo
{
D3D11_PRIMITIVE_TOPOLOGY m_type;
uint32_t m_min;
uint32_t m_div;
uint32_t m_sub;
};
static const PrimInfo s_primInfo[] =
{
{ D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST, 3, 3, 0 },
{ D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP, 3, 1, 2 },
{ D3D11_PRIMITIVE_TOPOLOGY_LINELIST, 2, 2, 0 },
{ D3D11_PRIMITIVE_TOPOLOGY_LINESTRIP, 2, 1, 1 },
{ D3D11_PRIMITIVE_TOPOLOGY_POINTLIST, 1, 1, 0 },
{ D3D11_PRIMITIVE_TOPOLOGY_UNDEFINED, 0, 0, 0 },
};
BX_STATIC_ASSERT(Topology::Count == BX_COUNTOF(s_primInfo)-1);
union Zero
{
Zero()
{
bx::memSet(this, 0, sizeof(Zero) );
}
ID3D11Buffer* m_buffer[D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT];
ID3D11UnorderedAccessView* m_uav[D3D11_1_UAV_SLOT_COUNT];
ID3D11ShaderResourceView* m_srv[D3D11_COMMONSHADER_INPUT_RESOURCE_SLOT_COUNT];
ID3D11SamplerState* m_sampler[D3D11_COMMONSHADER_SAMPLER_SLOT_COUNT];
ID3D11RenderTargetView* m_rtv[BGFX_CONFIG_MAX_FRAME_BUFFERS];
uint32_t m_zero[D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT];
float m_zerof[D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT];
};
BX_PRAGMA_DIAGNOSTIC_PUSH();
BX_PRAGMA_DIAGNOSTIC_IGNORED_MSVC(4268) // warning C4268: '' : 'const' static/global data initialized with compiler generated default constructor fills the object with zeros
static const Zero s_zero;
BX_PRAGMA_DIAGNOSTIC_POP();
static const uint32_t s_checkMsaa[] =
{
0,
2,
4,
8,
16,
};
static DXGI_SAMPLE_DESC s_msaa[] =
{
{ 1, 0 },
{ 2, 0 },
{ 4, 0 },
{ 8, 0 },
{ 16, 0 },
};
static const D3D11_BLEND s_blendFactor[][2] =
{
{ D3D11_BLEND(0), D3D11_BLEND(0) }, // ignored
{ D3D11_BLEND_ZERO, D3D11_BLEND_ZERO }, // ZERO
{ D3D11_BLEND_ONE, D3D11_BLEND_ONE }, // ONE
{ D3D11_BLEND_SRC_COLOR, D3D11_BLEND_SRC_ALPHA }, // SRC_COLOR
{ D3D11_BLEND_INV_SRC_COLOR, D3D11_BLEND_INV_SRC_ALPHA }, // INV_SRC_COLOR
{ D3D11_BLEND_SRC_ALPHA, D3D11_BLEND_SRC_ALPHA }, // SRC_ALPHA
{ D3D11_BLEND_INV_SRC_ALPHA, D3D11_BLEND_INV_SRC_ALPHA }, // INV_SRC_ALPHA
{ D3D11_BLEND_DEST_ALPHA, D3D11_BLEND_DEST_ALPHA }, // DST_ALPHA
{ D3D11_BLEND_INV_DEST_ALPHA, D3D11_BLEND_INV_DEST_ALPHA }, // INV_DST_ALPHA
{ D3D11_BLEND_DEST_COLOR, D3D11_BLEND_DEST_ALPHA }, // DST_COLOR
{ D3D11_BLEND_INV_DEST_COLOR, D3D11_BLEND_INV_DEST_ALPHA }, // INV_DST_COLOR
{ D3D11_BLEND_SRC_ALPHA_SAT, D3D11_BLEND_ONE }, // SRC_ALPHA_SAT
{ D3D11_BLEND_BLEND_FACTOR, D3D11_BLEND_BLEND_FACTOR }, // FACTOR
{ D3D11_BLEND_INV_BLEND_FACTOR, D3D11_BLEND_INV_BLEND_FACTOR }, // INV_FACTOR
};
static const D3D11_BLEND_OP s_blendEquation[] =
{
D3D11_BLEND_OP_ADD,
D3D11_BLEND_OP_SUBTRACT,
D3D11_BLEND_OP_REV_SUBTRACT,
D3D11_BLEND_OP_MIN,
D3D11_BLEND_OP_MAX,
};
static const D3D11_COMPARISON_FUNC s_cmpFunc[] =
{
D3D11_COMPARISON_FUNC(0), // ignored
D3D11_COMPARISON_LESS,
D3D11_COMPARISON_LESS_EQUAL,
D3D11_COMPARISON_EQUAL,
D3D11_COMPARISON_GREATER_EQUAL,
D3D11_COMPARISON_GREATER,
D3D11_COMPARISON_NOT_EQUAL,
D3D11_COMPARISON_NEVER,
D3D11_COMPARISON_ALWAYS,
};
static const D3D11_STENCIL_OP s_stencilOp[] =
{
D3D11_STENCIL_OP_ZERO,
D3D11_STENCIL_OP_KEEP,
D3D11_STENCIL_OP_REPLACE,
D3D11_STENCIL_OP_INCR,
D3D11_STENCIL_OP_INCR_SAT,
D3D11_STENCIL_OP_DECR,
D3D11_STENCIL_OP_DECR_SAT,
D3D11_STENCIL_OP_INVERT,
};
static const D3D11_CULL_MODE s_cullMode[] =
{
D3D11_CULL_NONE,
D3D11_CULL_FRONT,
D3D11_CULL_BACK,
};
static const D3D11_TEXTURE_ADDRESS_MODE s_textureAddress[] =
{
D3D11_TEXTURE_ADDRESS_WRAP,
D3D11_TEXTURE_ADDRESS_MIRROR,
D3D11_TEXTURE_ADDRESS_CLAMP,
D3D11_TEXTURE_ADDRESS_BORDER,
};
/*
* D3D11_FILTER_MIN_MAG_MIP_POINT = 0x00,
* D3D11_FILTER_MIN_MAG_POINT_MIP_LINEAR = 0x01,
* D3D11_FILTER_MIN_POINT_MAG_LINEAR_MIP_POINT = 0x04,
* D3D11_FILTER_MIN_POINT_MAG_MIP_LINEAR = 0x05,
* D3D11_FILTER_MIN_LINEAR_MAG_MIP_POINT = 0x10,
* D3D11_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR = 0x11,
* D3D11_FILTER_MIN_MAG_LINEAR_MIP_POINT = 0x14,
* D3D11_FILTER_MIN_MAG_MIP_LINEAR = 0x15,
* D3D11_FILTER_ANISOTROPIC = 0x55,
*
* D3D11_COMPARISON_FILTERING_BIT = 0x80,
* D3D11_ANISOTROPIC_FILTERING_BIT = 0x40,
*
* According to D3D11_FILTER enum bits for mip, mag and mip are:
* 0x10 // MIN_LINEAR
* 0x04 // MAG_LINEAR
* 0x01 // MIP_LINEAR
*/
static const uint8_t s_textureFilter[3][3] =
{
{
0x10, // min linear
0x00, // min point
0x55, // anisotropic
},
{
0x04, // mag linear
0x00, // mag point
0x55, // anisotropic
},
{
0x01, // mip linear
0x00, // mip point
0x55, // anisotropic
},
};
struct TextureFormatInfo
{
DXGI_FORMAT m_fmt;
DXGI_FORMAT m_fmtSrv;
DXGI_FORMAT m_fmtDsv;
DXGI_FORMAT m_fmtSrgb;
};
static const TextureFormatInfo s_textureFormat[] =
{
{ DXGI_FORMAT_BC1_UNORM, DXGI_FORMAT_BC1_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_BC1_UNORM_SRGB }, // BC1
{ DXGI_FORMAT_BC2_UNORM, DXGI_FORMAT_BC2_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_BC2_UNORM_SRGB }, // BC2
{ DXGI_FORMAT_BC3_UNORM, DXGI_FORMAT_BC3_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_BC3_UNORM_SRGB }, // BC3
{ DXGI_FORMAT_BC4_UNORM, DXGI_FORMAT_BC4_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // BC4
{ DXGI_FORMAT_BC5_UNORM, DXGI_FORMAT_BC5_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // BC5
{ DXGI_FORMAT_BC6H_SF16, DXGI_FORMAT_BC6H_SF16, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // BC6H
{ DXGI_FORMAT_BC7_UNORM, DXGI_FORMAT_BC7_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_BC7_UNORM_SRGB }, // BC7
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC1
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC2
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC2A
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC2A1
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC12
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC14
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC12A
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC14A
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC22
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC24
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ATC
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ATCE
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ATCI
{ DXGI_FORMAT_ASTC_4X4_UNORM, DXGI_FORMAT_ASTC_4X4_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_ASTC_4X4_UNORM_SRGB }, // ASTC4x4
{ DXGI_FORMAT_ASTC_5X5_UNORM, DXGI_FORMAT_ASTC_5X5_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_ASTC_5X5_UNORM_SRGB }, // ASTC5x5
{ DXGI_FORMAT_ASTC_6X6_UNORM, DXGI_FORMAT_ASTC_6X6_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_ASTC_6X6_UNORM_SRGB }, // ASTC6x6
{ DXGI_FORMAT_ASTC_8X5_UNORM, DXGI_FORMAT_ASTC_8X5_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_ASTC_8X5_UNORM_SRGB }, // ASTC8x5
{ DXGI_FORMAT_ASTC_8X6_UNORM, DXGI_FORMAT_ASTC_8X6_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_ASTC_8X6_UNORM_SRGB }, // ASTC8x6
{ DXGI_FORMAT_ASTC_10X5_UNORM, DXGI_FORMAT_ASTC_10X5_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_ASTC_10X5_UNORM_SRGB }, // ASTC10x5
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // Unknown
{ DXGI_FORMAT_R1_UNORM, DXGI_FORMAT_R1_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R1
{ DXGI_FORMAT_A8_UNORM, DXGI_FORMAT_A8_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // A8
{ DXGI_FORMAT_R8_UNORM, DXGI_FORMAT_R8_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R8
{ DXGI_FORMAT_R8_SINT, DXGI_FORMAT_R8_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R8I
{ DXGI_FORMAT_R8_UINT, DXGI_FORMAT_R8_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R8U
{ DXGI_FORMAT_R8_SNORM, DXGI_FORMAT_R8_SNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R8S
{ DXGI_FORMAT_R16_UNORM, DXGI_FORMAT_R16_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R16
{ DXGI_FORMAT_R16_SINT, DXGI_FORMAT_R16_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R16I
{ DXGI_FORMAT_R16_UINT, DXGI_FORMAT_R16_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R16U
{ DXGI_FORMAT_R16_FLOAT, DXGI_FORMAT_R16_FLOAT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R16F
{ DXGI_FORMAT_R16_SNORM, DXGI_FORMAT_R16_SNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R16S
{ DXGI_FORMAT_R32_SINT, DXGI_FORMAT_R32_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R32I
{ DXGI_FORMAT_R32_UINT, DXGI_FORMAT_R32_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R32U
{ DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R32F
{ DXGI_FORMAT_R8G8_UNORM, DXGI_FORMAT_R8G8_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG8
{ DXGI_FORMAT_R8G8_SINT, DXGI_FORMAT_R8G8_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG8I
{ DXGI_FORMAT_R8G8_UINT, DXGI_FORMAT_R8G8_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG8U
{ DXGI_FORMAT_R8G8_SNORM, DXGI_FORMAT_R8G8_SNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG8S
{ DXGI_FORMAT_R16G16_UNORM, DXGI_FORMAT_R16G16_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG16
{ DXGI_FORMAT_R16G16_SINT, DXGI_FORMAT_R16G16_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG16I
{ DXGI_FORMAT_R16G16_UINT, DXGI_FORMAT_R16G16_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG16U
{ DXGI_FORMAT_R16G16_FLOAT, DXGI_FORMAT_R16G16_FLOAT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG16F
{ DXGI_FORMAT_R16G16_SNORM, DXGI_FORMAT_R16G16_SNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG16S
{ DXGI_FORMAT_R32G32_SINT, DXGI_FORMAT_R32G32_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG32I
{ DXGI_FORMAT_R32G32_UINT, DXGI_FORMAT_R32G32_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG32U
{ DXGI_FORMAT_R32G32_FLOAT, DXGI_FORMAT_R32G32_FLOAT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG32F
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGB8
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGB8I
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGB8U
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGB8S
{ DXGI_FORMAT_R9G9B9E5_SHAREDEXP, DXGI_FORMAT_R9G9B9E5_SHAREDEXP, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGB9E5F
{ DXGI_FORMAT_B8G8R8A8_UNORM, DXGI_FORMAT_B8G8R8A8_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_B8G8R8A8_UNORM_SRGB }, // BGRA8
{ DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_R8G8B8A8_UNORM_SRGB }, // RGBA8
{ DXGI_FORMAT_R8G8B8A8_SINT, DXGI_FORMAT_R8G8B8A8_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_R8G8B8A8_UNORM_SRGB }, // RGBA8I
{ DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_R8G8B8A8_UNORM_SRGB }, // RGBA8U
{ DXGI_FORMAT_R8G8B8A8_SNORM, DXGI_FORMAT_R8G8B8A8_SNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA8S
{ DXGI_FORMAT_R16G16B16A16_UNORM, DXGI_FORMAT_R16G16B16A16_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA16
{ DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA16I
{ DXGI_FORMAT_R16G16B16A16_UINT, DXGI_FORMAT_R16G16B16A16_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA16U
{ DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA16F
{ DXGI_FORMAT_R16G16B16A16_SNORM, DXGI_FORMAT_R16G16B16A16_SNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA16S
{ DXGI_FORMAT_R32G32B32A32_SINT, DXGI_FORMAT_R32G32B32A32_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA32I
{ DXGI_FORMAT_R32G32B32A32_UINT, DXGI_FORMAT_R32G32B32A32_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA32U
{ DXGI_FORMAT_R32G32B32A32_FLOAT, DXGI_FORMAT_R32G32B32A32_FLOAT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA32F
{ DXGI_FORMAT_B5G6R5_UNORM, DXGI_FORMAT_B5G6R5_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R5G6B5
{ DXGI_FORMAT_B4G4R4A4_UNORM, DXGI_FORMAT_B4G4R4A4_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA4
{ DXGI_FORMAT_B5G5R5A1_UNORM, DXGI_FORMAT_B5G5R5A1_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGB5A1
{ DXGI_FORMAT_R10G10B10A2_UNORM, DXGI_FORMAT_R10G10B10A2_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGB10A2
{ DXGI_FORMAT_R11G11B10_FLOAT, DXGI_FORMAT_R11G11B10_FLOAT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG11B10F
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // UnknownDepth
{ DXGI_FORMAT_R16_TYPELESS, DXGI_FORMAT_R16_UNORM, DXGI_FORMAT_D16_UNORM, DXGI_FORMAT_UNKNOWN }, // D16
{ DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT, DXGI_FORMAT_UNKNOWN }, // D24
{ DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT, DXGI_FORMAT_UNKNOWN }, // D24S8
{ DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT, DXGI_FORMAT_UNKNOWN }, // D32
{ DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_D32_FLOAT, DXGI_FORMAT_UNKNOWN }, // D16F
{ DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_D32_FLOAT, DXGI_FORMAT_UNKNOWN }, // D24F
{ DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_D32_FLOAT, DXGI_FORMAT_UNKNOWN }, // D32F
{ DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT, DXGI_FORMAT_UNKNOWN }, // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormat) );
static const D3D11_INPUT_ELEMENT_DESC s_attrib[] =
{
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "BITANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "COLOR", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "COLOR", 1, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "COLOR", 2, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "COLOR", 3, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "BLENDINDICES", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "BLENDWEIGHT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 1, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 2, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 3, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 4, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 5, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 6, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 7, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
};
BX_STATIC_ASSERT(Attrib::Count == BX_COUNTOF(s_attrib) );
static const DXGI_FORMAT s_attribType[][4][2] =
{
{ // Uint8
{ DXGI_FORMAT_R8_UINT, DXGI_FORMAT_R8_UNORM },
{ DXGI_FORMAT_R8G8_UINT, DXGI_FORMAT_R8G8_UNORM },
{ DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_R8G8B8A8_UNORM },
{ DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_R8G8B8A8_UNORM },
},
{ // Uint10
{ DXGI_FORMAT_R10G10B10A2_UINT, DXGI_FORMAT_R10G10B10A2_UNORM },
{ DXGI_FORMAT_R10G10B10A2_UINT, DXGI_FORMAT_R10G10B10A2_UNORM },
{ DXGI_FORMAT_R10G10B10A2_UINT, DXGI_FORMAT_R10G10B10A2_UNORM },
{ DXGI_FORMAT_R10G10B10A2_UINT, DXGI_FORMAT_R10G10B10A2_UNORM },
},
{ // Int16
{ DXGI_FORMAT_R16_SINT, DXGI_FORMAT_R16_SNORM },
{ DXGI_FORMAT_R16G16_SINT, DXGI_FORMAT_R16G16_SNORM },
{ DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_SNORM },
{ DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_SNORM },
},
{ // Half
{ DXGI_FORMAT_R16_FLOAT, DXGI_FORMAT_R16_FLOAT },
{ DXGI_FORMAT_R16G16_FLOAT, DXGI_FORMAT_R16G16_FLOAT },
{ DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT },
{ DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT },
},
{ // Float
{ DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_R32_FLOAT },
{ DXGI_FORMAT_R32G32_FLOAT, DXGI_FORMAT_R32G32_FLOAT },
{ DXGI_FORMAT_R32G32B32_FLOAT, DXGI_FORMAT_R32G32B32_FLOAT },
{ DXGI_FORMAT_R32G32B32A32_FLOAT, DXGI_FORMAT_R32G32B32A32_FLOAT },
},
};
BX_STATIC_ASSERT(AttribType::Count == BX_COUNTOF(s_attribType) );
static D3D11_INPUT_ELEMENT_DESC* fillVertexDecl(uint8_t _stream, D3D11_INPUT_ELEMENT_DESC* _out, const VertexDecl& _decl)
{
D3D11_INPUT_ELEMENT_DESC* elem = _out;
for (uint32_t attr = 0; attr < Attrib::Count; ++attr)
{
if (UINT16_MAX != _decl.m_attributes[attr])
{
bx::memCopy(elem, &s_attrib[attr], sizeof(D3D11_INPUT_ELEMENT_DESC) );
elem->InputSlot = _stream;
if (0 == _decl.m_attributes[attr])
{
elem->AlignedByteOffset = 0;
}
else
{
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_decl.decode(Attrib::Enum(attr), num, type, normalized, asInt);
elem->Format = s_attribType[type][num-1][normalized];
elem->AlignedByteOffset = _decl.m_offset[attr];
}
++elem;
}
}
return elem;
}
struct TextureStage
{
TextureStage()
{
clear();
}
void clear()
{
bx::memSet(m_srv, 0, sizeof(m_srv) );
bx::memSet(m_sampler, 0, sizeof(m_sampler) );
}
ID3D11ShaderResourceView* m_srv[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS];
ID3D11SamplerState* m_sampler[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS];
};
BX_PRAGMA_DIAGNOSTIC_PUSH();
BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG("-Wunused-const-variable");
BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG("-Wunneeded-internal-declaration");
static const GUID WKPDID_D3DDebugObjectName = { 0x429b8c22, 0x9188, 0x4b0c, { 0x87, 0x42, 0xac, 0xb0, 0xbf, 0x85, 0xc2, 0x00 } };
static const GUID IID_ID3D11Texture2D = { 0x6f15aaf2, 0xd208, 0x4e89, { 0x9a, 0xb4, 0x48, 0x95, 0x35, 0xd3, 0x4f, 0x9c } };
static const GUID IID_ID3D11Device1 = { 0xa04bfb29, 0x08ef, 0x43d6, { 0xa4, 0x9c, 0xa9, 0xbd, 0xbd, 0xcb, 0xe6, 0x86 } };
static const GUID IID_ID3D11Device2 = { 0x9d06dffa, 0xd1e5, 0x4d07, { 0x83, 0xa8, 0x1b, 0xb1, 0x23, 0xf2, 0xf8, 0x41 } };
static const GUID IID_ID3D11Device3 = { 0xa05c8c37, 0xd2c6, 0x4732, { 0xb3, 0xa0, 0x9c, 0xe0, 0xb0, 0xdc, 0x9a, 0xe6 } };
static const GUID IID_ID3D11InfoQueue = { 0x6543dbb6, 0x1b48, 0x42f5, { 0xab, 0x82, 0xe9, 0x7e, 0xc7, 0x43, 0x26, 0xf6 } };
static const GUID IID_IDXGIDeviceRenderDoc = { 0xa7aa6116, 0x9c8d, 0x4bba, { 0x90, 0x83, 0xb4, 0xd8, 0x16, 0xb7, 0x1b, 0x78 } };
static const GUID IID_ID3DUserDefinedAnnotation = { 0xb2daad8b, 0x03d4, 0x4dbf, { 0x95, 0xeb, 0x32, 0xab, 0x4b, 0x63, 0xd0, 0xab } };
enum D3D11_FORMAT_SUPPORT2
{
D3D11_FORMAT_SUPPORT2_UAV_TYPED_LOAD = 0x40,
D3D11_FORMAT_SUPPORT2_UAV_TYPED_STORE = 0x80,
};
static const GUID s_d3dDeviceIIDs[] =
{
IID_ID3D11Device3,
IID_ID3D11Device2,
IID_ID3D11Device1,
};
inline bool isLost(HRESULT _hr)
{
return false
|| _hr == DXGI_ERROR_DEVICE_REMOVED
|| _hr == DXGI_ERROR_DEVICE_HUNG
|| _hr == DXGI_ERROR_DEVICE_RESET
|| _hr == DXGI_ERROR_DRIVER_INTERNAL_ERROR
|| _hr == DXGI_ERROR_NOT_CURRENTLY_AVAILABLE
;
}
static const char* getLostReason(HRESULT _hr)
{
switch (_hr)
{
// The GPU device instance has been suspended. Use GetDeviceRemovedReason to determine the appropriate action.
case DXGI_ERROR_DEVICE_REMOVED: return "DXGI_ERROR_DEVICE_REMOVED";
// The GPU will not respond to more commands, most likely because of an invalid command passed by the calling application.
case DXGI_ERROR_DEVICE_HUNG: return "DXGI_ERROR_DEVICE_HUNG";
// The GPU will not respond to more commands, most likely because some other application submitted invalid commands.
// The calling application should re-create the device and continue.
case DXGI_ERROR_DEVICE_RESET: return "DXGI_ERROR_DEVICE_RESET";
// An internal issue prevented the driver from carrying out the specified operation. The driver's state is probably
// suspect, and the application should not continue.
case DXGI_ERROR_DRIVER_INTERNAL_ERROR: return "DXGI_ERROR_DRIVER_INTERNAL_ERROR";
// A resource is not available at the time of the call, but may become available later.
case DXGI_ERROR_NOT_CURRENTLY_AVAILABLE: return "DXGI_ERROR_NOT_CURRENTLY_AVAILABLE";
case S_OK: return "S_OK";
default: break;
}
return "Unknown HRESULT?";
}
template <typename Ty>
static BX_NO_INLINE void setDebugObjectName(Ty* _interface, const char* _format, ...)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_OBJECT_NAME) )
{
char temp[2048];
va_list argList;
va_start(argList, _format);
int size = bx::uint32_min(sizeof(temp)-1, bx::vsnprintf(temp, sizeof(temp), _format, argList) );
va_end(argList);
temp[size] = '\0';
_interface->SetPrivateData(WKPDID_D3DDebugObjectName, size, temp);
}
}
BX_PRAGMA_DIAGNOSTIC_POP();
static HRESULT setIntelExtension(ID3D11Device* _device, const void* _data, uint32_t _size)
{
D3D11_BUFFER_DESC desc;
desc.ByteWidth = _size;
desc.Usage = D3D11_USAGE_STAGING;
desc.BindFlags = 0;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
desc.MiscFlags = 0;
desc.StructureByteStride = 0;
D3D11_SUBRESOURCE_DATA initData;
initData.pSysMem = _data;
initData.SysMemPitch = _size;
initData.SysMemSlicePitch = 0;
ID3D11Buffer* buffer;
HRESULT hr = _device->CreateBuffer(&desc, &initData, &buffer);
if (SUCCEEDED(hr) )
{
buffer->Release();
}
return hr;
};
static const uint32_t kIntelExtensionInterfaceVersion = UINT32_C(0x10000);
struct IntelExtension
{
char key[16];
uint32_t version;
uint32_t type;
uint32_t data[16];
};
static const IntelExtension s_intelDirectAccessResource =
{
{ 'I', 'N', 'T', 'C', 'E', 'X', 'T', 'N', 'R', 'E', 'S', 'O', 'U', 'R', 'C', 'E' },
kIntelExtensionInterfaceVersion,
1,
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
};
static HRESULT setIntelDirectAccessResource(ID3D11Device* _device)
{
return setIntelExtension(_device, &s_intelDirectAccessResource, sizeof(s_intelDirectAccessResource) );
}
static BX_NO_INLINE bool getIntelExtensions(ID3D11Device* _device)
{
if (windowsVersionIs(Condition::GreaterEqual, 0x0604) )
{
uint8_t temp[28];
bx::StaticMemoryBlockWriter writer(&temp, sizeof(temp) );
bx::write(&writer, "INTCEXTNCAPSFUNC", 16);
bx::write(&writer, kIntelExtensionInterfaceVersion);
bx::write(&writer, UINT32_C(0) );
bx::write(&writer, UINT32_C(0) );
if (SUCCEEDED(setIntelExtension(_device, temp, sizeof(temp) ) ) )
{
bx::MemoryReader reader(&temp, sizeof(temp) );
bx::skip(&reader, 16);
uint32_t version;
bx::read(&reader, version);
uint32_t driverVersion;
bx::read(&reader, driverVersion);
return version <= driverVersion;
}
}
return false;
}
void resume(ID3D11Device* _device)
{
BX_UNUSED(_device);
}
void suspend(ID3D11Device* _device)
{
BX_UNUSED(_device);
}
/*
* AMD GPU Services (AGS) library
*
* Reference:
* https://github.com/GPUOpen-LibrariesAndSDKs/AGS_SDK
*/
enum AGS_RETURN_CODE
{
AGS_SUCCESS,
AGS_INVALID_ARGS,
AGS_OUT_OF_MEMORY,
AGS_ERROR_MISSING_DLL,
AGS_ERROR_LEGACY_DRIVER,
AGS_EXTENSION_NOT_SUPPORTED,
AGS_ADL_FAILURE,
};
enum AGS_DRIVER_EXTENSION
{
AGS_EXTENSION_QUADLIST = 1 << 0,
AGS_EXTENSION_UAV_OVERLAP = 1 << 1,
AGS_EXTENSION_DEPTH_BOUNDS_TEST = 1 << 2,
AGS_EXTENSION_MULTIDRAWINDIRECT = 1 << 3,
};
struct AGSDriverVersionInfo
{
char strDriverVersion[256];
char strCatalystVersion[256];
char strCatalystWebLink[256];
};
struct AGSContext;
typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_INIT)(AGSContext**);
typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_DEINIT)(AGSContext*);
typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_GET_CROSSFIRE_GPU_COUNT)(AGSContext*, int32_t*);
typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_GET_TOTAL_GPU_COUNT)(AGSContext*, int32_t*);
typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_GET_GPU_MEMORY_SIZE)(AGSContext*, int32_t, int64_t*);
typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_GET_DRIVER_VERSION_INFO)(AGSContext*, AGSDriverVersionInfo*);
typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_DRIVER_EXTENSIONS_INIT)(AGSContext*, ID3D11Device*, uint32_t*);
typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_DRIVER_EXTENSIONS_DEINIT)(AGSContext*);
typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_DRIVER_EXTENSIONS_MULTIDRAW_INSTANCED_INDIRECT)(AGSContext*, uint32_t, ID3D11Buffer*, uint32_t, uint32_t);
typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_DRIVER_EXTENSIONS_MULTIDRAW_INDEXED_INSTANCED_INDIRECT)(AGSContext*, uint32_t, ID3D11Buffer*, uint32_t, uint32_t);
static PFN_AGS_INIT agsInit;
static PFN_AGS_DEINIT agsDeInit;
static PFN_AGS_GET_CROSSFIRE_GPU_COUNT agsGetCrossfireGPUCount;
static PFN_AGS_GET_TOTAL_GPU_COUNT agsGetTotalGPUCount;
static PFN_AGS_GET_GPU_MEMORY_SIZE agsGetGPUMemorySize;
static PFN_AGS_GET_DRIVER_VERSION_INFO agsGetDriverVersionInfo;
static PFN_AGS_DRIVER_EXTENSIONS_INIT agsDriverExtensions_Init;
static PFN_AGS_DRIVER_EXTENSIONS_DEINIT agsDriverExtensions_DeInit;
static PFN_AGS_DRIVER_EXTENSIONS_MULTIDRAW_INSTANCED_INDIRECT agsDriverExtensions_MultiDrawInstancedIndirect;
static PFN_AGS_DRIVER_EXTENSIONS_MULTIDRAW_INDEXED_INSTANCED_INDIRECT agsDriverExtensions_MultiDrawIndexedInstancedIndirect;
typedef void (* MultiDrawIndirectFn)(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride);
void stubMultiDrawInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride);
void stubMultiDrawIndexedInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride);
void amdAgsMultiDrawInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride);
void amdAgsMultiDrawIndexedInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride);
void nvapiMultiDrawInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride);
void nvapiMultiDrawIndexedInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride);
static MultiDrawIndirectFn multiDrawInstancedIndirect;
static MultiDrawIndirectFn multiDrawIndexedInstancedIndirect;
#if USE_D3D11_DYNAMIC_LIB
static PFN_D3D11_CREATE_DEVICE D3D11CreateDevice;
static PFN_D3DPERF_SET_MARKER D3DPERF_SetMarker;
static PFN_D3DPERF_BEGIN_EVENT D3DPERF_BeginEvent;
static PFN_D3DPERF_END_EVENT D3DPERF_EndEvent;
#endif // USE_D3D11_DYNAMIC_LIB
int WINAPI d3d11Annotation_BeginEvent(DWORD _color, LPCWSTR _name);
int WINAPI d3d11Annotation_EndEvent();
void WINAPI d3d11Annotation_SetMarker(DWORD _color, LPCWSTR _name);
struct RendererContextD3D11 : public RendererContextI
{
RendererContextD3D11()
: m_d3d9Dll(NULL)
, m_d3d11Dll(NULL)
, m_renderDocDll(NULL)
, m_agsDll(NULL)
, m_ags(NULL)
, m_featureLevel(D3D_FEATURE_LEVEL(0) )
, m_swapChain(NULL)
, m_lost(false)
, m_numWindows(0)
, m_device(NULL)
, m_deviceCtx(NULL)
, m_annotation(NULL)
, m_infoQueue(NULL)
, m_backBufferColor(NULL)
, m_backBufferDepthStencil(NULL)
, m_currentColor(NULL)
, m_currentDepthStencil(NULL)
, m_captureTexture(NULL)
, m_captureResolve(NULL)
, m_maxAnisotropy(1)
, m_depthClamp(false)
, m_wireframe(false)
, m_currentProgram(NULL)
, m_vsChanges(0)
, m_fsChanges(0)
, m_rtMsaa(false)
, m_timerQuerySupport(false)
, m_directAccessSupport(false)
{
m_fbh.idx = kInvalidHandle;
bx::memSet(&m_scd, 0, sizeof(m_scd) );
bx::memSet(&m_windows, 0xff, sizeof(m_windows) );
}
~RendererContextD3D11()
{
}
bool init(const Init& _init)
{
struct ErrorState
{
enum Enum
{
Default,
LoadedD3D11,
LoadedDXGI,
};
};
ErrorState::Enum errorState = ErrorState::Default;
if (_init.debug
|| _init.profile)
{
m_renderDocDll = loadRenderDoc();
}
m_fbh.idx = kInvalidHandle;
bx::memSet(m_uniforms, 0, sizeof(m_uniforms) );
bx::memSet(&m_resolution, 0, sizeof(m_resolution) );
m_ags = NULL;
m_agsDll = bx::dlopen(
#if BX_ARCH_32BIT
"amd_ags_x86.dll"
#else
"amd_ags_x64.dll"
#endif // BX_ARCH_32BIT
);
if (NULL != m_agsDll)
{
agsInit = (PFN_AGS_INIT )bx::dlsym(m_agsDll, "agsInit");
agsDeInit = (PFN_AGS_DEINIT)bx::dlsym(m_agsDll, "agsDeInit");
agsGetCrossfireGPUCount = (PFN_AGS_GET_CROSSFIRE_GPU_COUNT )bx::dlsym(m_agsDll, "agsGetCrossfireGPUCount");
agsGetTotalGPUCount = (PFN_AGS_GET_TOTAL_GPU_COUNT )bx::dlsym(m_agsDll, "agsGetTotalGPUCount");
agsGetGPUMemorySize = (PFN_AGS_GET_GPU_MEMORY_SIZE )bx::dlsym(m_agsDll, "agsGetGPUMemorySize");
agsGetDriverVersionInfo = (PFN_AGS_GET_DRIVER_VERSION_INFO )bx::dlsym(m_agsDll, "agsGetDriverVersionInfo");
agsDriverExtensions_Init = (PFN_AGS_DRIVER_EXTENSIONS_INIT )bx::dlsym(m_agsDll, "agsDriverExtensions_Init");
agsDriverExtensions_DeInit = (PFN_AGS_DRIVER_EXTENSIONS_DEINIT)bx::dlsym(m_agsDll, "agsDriverExtensions_DeInit");
agsDriverExtensions_MultiDrawInstancedIndirect = (PFN_AGS_DRIVER_EXTENSIONS_MULTIDRAW_INSTANCED_INDIRECT )bx::dlsym(m_agsDll, "agsDriverExtensions_MultiDrawInstancedIndirect");
agsDriverExtensions_MultiDrawIndexedInstancedIndirect = (PFN_AGS_DRIVER_EXTENSIONS_MULTIDRAW_INDEXED_INSTANCED_INDIRECT)bx::dlsym(m_agsDll, "agsDriverExtensions_MultiDrawIndexedInstancedIndirect");
bool agsSupported = true
&& NULL != agsInit
&& NULL != agsDeInit
&& NULL != agsGetCrossfireGPUCount
&& NULL != agsGetTotalGPUCount
&& NULL != agsGetGPUMemorySize
&& NULL != agsGetDriverVersionInfo
&& NULL != agsDriverExtensions_Init
&& NULL != agsDriverExtensions_DeInit
&& NULL != agsDriverExtensions_MultiDrawInstancedIndirect
&& NULL != agsDriverExtensions_MultiDrawIndexedInstancedIndirect
;
if (agsSupported)
{
AGS_RETURN_CODE result = agsInit(&m_ags);
agsSupported = AGS_SUCCESS == result;
if (agsSupported)
{
AGSDriverVersionInfo vi;
result = agsGetDriverVersionInfo(m_ags, &vi);
BX_TRACE(" Driver version: %s", vi.strDriverVersion);
BX_TRACE(" Catalyst version: %s", vi.strCatalystVersion);
int32_t numCrossfireGPUs = 0;
result = agsGetCrossfireGPUCount(m_ags, &numCrossfireGPUs);
BX_TRACE(" Num crossfire GPUs: %d", numCrossfireGPUs);
int32_t numGPUs = 0;
result = agsGetTotalGPUCount(m_ags, &numGPUs);
BX_TRACE(" Num GPUs: %d", numGPUs);
for (int32_t ii = 0; ii < numGPUs; ++ii)
{
long long memSize;
result = agsGetGPUMemorySize(m_ags, ii, &memSize);
if (AGS_SUCCESS == result)
{
char memSizeStr[16];
bx::prettify(memSizeStr, BX_COUNTOF(memSizeStr), memSize);
BX_TRACE(" GPU #%d mem size: %s", ii, memSizeStr);
}
}
}
}
BX_WARN(!agsSupported, "AMD/AGS supported.");
if (!agsSupported)
{
if (NULL != m_ags)
{
agsDeInit(m_ags);
m_ags = NULL;
}
bx::dlclose(m_agsDll);
m_agsDll = NULL;
}
}
m_nvapi.init();
#if USE_D3D11_DYNAMIC_LIB
m_d3d11Dll = bx::dlopen("d3d11.dll");
if (NULL == m_d3d11Dll)
{
BX_TRACE("Init error: Failed to load d3d11.dll.");
goto error;
}
errorState = ErrorState::LoadedD3D11;
m_d3d9Dll = NULL;
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
// D3D11_1.h has ID3DUserDefinedAnnotation
// http://msdn.microsoft.com/en-us/library/windows/desktop/hh446881%28v=vs.85%29.aspx
m_d3d9Dll = bx::dlopen("d3d9.dll");
if (NULL != m_d3d9Dll)
{
D3DPERF_SetMarker = (PFN_D3DPERF_SET_MARKER )bx::dlsym(m_d3d9Dll, "D3DPERF_SetMarker" );
D3DPERF_BeginEvent = (PFN_D3DPERF_BEGIN_EVENT)bx::dlsym(m_d3d9Dll, "D3DPERF_BeginEvent");
D3DPERF_EndEvent = (PFN_D3DPERF_END_EVENT )bx::dlsym(m_d3d9Dll, "D3DPERF_EndEvent" );
BX_CHECK(NULL != D3DPERF_SetMarker
&& NULL != D3DPERF_BeginEvent
&& NULL != D3DPERF_EndEvent
, "Failed to initialize PIX events."
);
}
}
D3D11CreateDevice = (PFN_D3D11_CREATE_DEVICE)bx::dlsym(m_d3d11Dll, "D3D11CreateDevice");
if (NULL == D3D11CreateDevice)
{
BX_TRACE("Init error: Function D3D11CreateDevice not found.");
goto error;
}
#endif // USE_D3D11_DYNAMIC_LIB
m_device = (ID3D11Device*)g_platformData.context;
if (!m_dxgi.init(g_caps) )
{
goto error;
}
errorState = ErrorState::LoadedDXGI;
if (NULL == m_device)
{
if (NULL != m_renderDocDll)
{
setGraphicsDebuggerPresent(true);
}
D3D_FEATURE_LEVEL featureLevel[] =
{
D3D_FEATURE_LEVEL_12_1,
D3D_FEATURE_LEVEL_12_0,
D3D_FEATURE_LEVEL_11_1,
D3D_FEATURE_LEVEL_11_0,
D3D_FEATURE_LEVEL_10_1,
D3D_FEATURE_LEVEL_10_0,
#if BX_PLATFORM_WINRT
D3D_FEATURE_LEVEL_9_3,
D3D_FEATURE_LEVEL_9_2,
#endif // BX_PLATFORM_WINRT
};
HRESULT hr = S_OK;
for (;;)
{
uint32_t flags = 0
| D3D11_CREATE_DEVICE_SINGLETHREADED
| D3D11_CREATE_DEVICE_BGRA_SUPPORT
// | D3D11_CREATE_DEVICE_PREVENT_INTERNAL_THREADING_OPTIMIZATIONS
| (_init.debug ? D3D11_CREATE_DEVICE_DEBUG : 0)
;
hr = E_FAIL;
for (uint32_t ii = 0; ii < BX_COUNTOF(featureLevel) && FAILED(hr);)
{
hr = D3D11CreateDevice(m_dxgi.m_adapter
, m_dxgi.m_driverType
, NULL
, flags
, &featureLevel[ii]
, BX_COUNTOF(featureLevel)-ii
, D3D11_SDK_VERSION
, &m_device
, &m_featureLevel
, &m_deviceCtx
);
BX_WARN(FAILED(hr), "Direct3D11 device feature level %d.%d."
, (m_featureLevel >> 12) & 0xf
, (m_featureLevel >> 8) & 0xf
);
if (FAILED(hr)
&& 0 != (flags & D3D11_CREATE_DEVICE_DEBUG) )
{
// Try without debug in case D3D11 SDK Layers
// is not present?
flags &= ~D3D11_CREATE_DEVICE_DEBUG;
continue;
}
// Enable debug flags.
flags |= (BX_ENABLED(BGFX_CONFIG_DEBUG) ? D3D11_CREATE_DEVICE_DEBUG : 0);
++ii;
}
if (FAILED(hr)
&& D3D_DRIVER_TYPE_WARP != m_dxgi.m_driverType)
{
// Try with WARP
m_dxgi.m_driverType = D3D_DRIVER_TYPE_WARP;
continue;
}
break;
}
if (FAILED(hr) )
{
BX_TRACE("Init error: Unable to create Direct3D11 device.");
goto error;
}
}
else
{
m_device->GetImmediateContext(&m_deviceCtx);
if (NULL == m_deviceCtx)
{
BX_TRACE("Init error: Unable to retrieve Direct3D11 ImmediateContext.");
goto error;
}
m_featureLevel = m_device->GetFeatureLevel();
}
m_dxgi.update(m_device);
{
m_deviceInterfaceVersion = 0;
for (uint32_t ii = 0; ii < BX_COUNTOF(s_d3dDeviceIIDs); ++ii)
{
ID3D11Device* device;
HRESULT hr = m_device->QueryInterface(s_d3dDeviceIIDs[ii], (void**)&device);
if (SUCCEEDED(hr) )
{
device->Release(); // BK - ignore ref count.
m_deviceInterfaceVersion = BX_COUNTOF(s_d3dDeviceIIDs)-ii;
break;
}
}
{ ///
IDXGIDevice* renderdoc;
HRESULT hr = m_device->QueryInterface(IID_IDXGIDeviceRenderDoc, (void**)&renderdoc);
if (SUCCEEDED(hr) )
{
setGraphicsDebuggerPresent(true);
DX_RELEASE(renderdoc, 2);
}
else
{
IUnknown* device = m_device;
setGraphicsDebuggerPresent(2 != getRefCount(device) );
}
}
if (BGFX_PCI_ID_NVIDIA != m_dxgi.m_adapterDesc.VendorId)
{
m_nvapi.shutdown();
}
if (NULL == g_platformData.backBuffer)
{
HRESULT hr = S_OK;
#if BX_PLATFORM_WINDOWS
m_swapEffect = DXGI_SWAP_EFFECT_FLIP_DISCARD;
m_swapBufferCount = 2;
#else
m_swapEffect = DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL;
m_swapBufferCount = 2;
#endif // !BX_PLATFORM_WINDOWS
bx::memSet(&m_scd, 0, sizeof(m_scd) );
m_scd.width = _init.resolution.width;
m_scd.height = _init.resolution.height;
m_scd.format = s_textureFormat[_init.resolution.format].m_fmt;
updateMsaa(m_scd.format);
m_scd.sampleDesc = s_msaa[(_init.resolution.reset&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT];
m_scd.bufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
m_scd.bufferCount = m_swapBufferCount;
m_scd.scaling = 0 == g_platformData.ndt
? DXGI_SCALING_NONE
: DXGI_SCALING_STRETCH
;
m_scd.swapEffect = m_swapEffect;
m_scd.alphaMode = DXGI_ALPHA_MODE_IGNORE;
m_scd.flags = DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH;
m_scd.nwh = g_platformData.nwh;
m_scd.ndt = g_platformData.ndt;
m_scd.windowed = true;
m_msaaRt = NULL;
if (NULL != m_scd.nwh)
{
hr = m_dxgi.createSwapChain(m_device
, m_scd
, &m_swapChain
);
if (FAILED(hr) )
{
// DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL is not available on win7
// Try again with DXGI_SWAP_EFFECT_DISCARD
m_swapEffect = DXGI_SWAP_EFFECT_DISCARD;
m_swapBufferCount = 1;
m_scd.bufferCount = m_swapBufferCount;
m_scd.swapEffect = m_swapEffect;
hr = m_dxgi.createSwapChain(m_device
, m_scd
, &m_swapChain
);
if (FAILED(hr) )
{
BX_TRACE("Init error: Failed to create swap chain.");
goto error;
}
}
m_resolution = _init.resolution;
m_resolution.reset = _init.resolution.reset & (~BGFX_RESET_INTERNAL_FORCE);
m_textVideoMem.resize(false, _init.resolution.width, _init.resolution.height);
m_textVideoMem.clear();
if (1 < m_scd.sampleDesc.Count)
{
D3D11_TEXTURE2D_DESC desc;
desc.Width = m_scd.width;
desc.Height = m_scd.height;
desc.MipLevels = 1;
desc.ArraySize = 1;
desc.Format = m_scd.format;
desc.SampleDesc = m_scd.sampleDesc;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_RENDER_TARGET;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
DX_CHECK(m_device->CreateTexture2D(&desc, NULL, &m_msaaRt) );
}
}
#if BX_PLATFORM_WINDOWS
DX_CHECK(m_dxgi.m_factory->MakeWindowAssociation( (HWND)g_platformData.nwh, 0
| DXGI_MWA_NO_WINDOW_CHANGES
| DXGI_MWA_NO_ALT_ENTER
) );
#endif // BX_PLATFORM_WINDOWS
if (FAILED(hr) )
{
BX_TRACE("Init error: Failed to create swap chain.");
goto error;
}
}
else
{
bx::memSet(&m_scd, 0, sizeof(m_scd) );
m_scd.sampleDesc.Count = 1;
m_scd.sampleDesc.Quality = 0;
m_scd.width = _init.resolution.width;
m_scd.height = _init.resolution.height;
m_backBufferColor = (ID3D11RenderTargetView*)g_platformData.backBuffer;
m_backBufferDepthStencil = (ID3D11DepthStencilView*)g_platformData.backBufferDS;
}
}
m_numWindows = 1;
#if USE_D3D11_DYNAMIC_LIB
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
HRESULT hr = m_deviceCtx->QueryInterface(IID_ID3DUserDefinedAnnotation, (void**)&m_annotation);
if (SUCCEEDED(hr) )
{
D3DPERF_BeginEvent = d3d11Annotation_BeginEvent;
D3DPERF_EndEvent = d3d11Annotation_EndEvent;
D3DPERF_SetMarker = d3d11Annotation_SetMarker;
}
}
#endif // USE_D3D11_DYNAMIC_LIB
if (_init.debug)
{
HRESULT hr = m_device->QueryInterface(IID_ID3D11InfoQueue, (void**)&m_infoQueue);
if (SUCCEEDED(hr) )
{
m_infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_CORRUPTION, true);
m_infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_ERROR, false);
m_infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_WARNING, false);
m_infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_INFO, false);
m_infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_MESSAGE, false);
D3D11_INFO_QUEUE_FILTER filter;
bx::memSet(&filter, 0, sizeof(filter) );
D3D11_MESSAGE_CATEGORY catlist[] =
{
D3D11_MESSAGE_CATEGORY_STATE_CREATION,
};
filter.DenyList.NumCategories = BX_COUNTOF(catlist);
filter.DenyList.pCategoryList = catlist;
D3D11_MESSAGE_ID idlist[] =
{
D3D11_MESSAGE_ID_DEVICE_DRAW_RENDERTARGETVIEW_NOT_SET,
D3D11_MESSAGE_ID_QUERY_BEGIN_ABANDONING_PREVIOUS_RESULTS,
};
filter.DenyList.NumIDs = BX_COUNTOF(idlist);
filter.DenyList.pIDList = idlist;
m_infoQueue->PushStorageFilter(&filter);
}
}
{
g_caps.supported |= (0
| BGFX_CAPS_TEXTURE_3D
| BGFX_CAPS_VERTEX_ATTRIB_HALF
| BGFX_CAPS_VERTEX_ATTRIB_UINT10
| BGFX_CAPS_VERTEX_ID
| BGFX_CAPS_FRAGMENT_DEPTH
| (getIntelExtensions(m_device)
? BGFX_CAPS_FRAGMENT_ORDERING
| BGFX_CAPS_TEXTURE_DIRECT_ACCESS
: 0)
| BGFX_CAPS_SWAP_CHAIN
| BGFX_CAPS_DRAW_INDIRECT
| BGFX_CAPS_TEXTURE_BLIT
| BGFX_CAPS_TEXTURE_READ_BACK
| ( (m_featureLevel >= D3D_FEATURE_LEVEL_9_2)
? BGFX_CAPS_OCCLUSION_QUERY
: 0)
| BGFX_CAPS_ALPHA_TO_COVERAGE
| ( (m_deviceInterfaceVersion >= 3)
? BGFX_CAPS_CONSERVATIVE_RASTER
: 0)
| BGFX_CAPS_TEXTURE_2D_ARRAY
| BGFX_CAPS_TEXTURE_CUBE_ARRAY
);
m_timerQuerySupport = m_featureLevel >= D3D_FEATURE_LEVEL_10_0;
m_directAccessSupport = 0 != (g_caps.supported & BGFX_CAPS_TEXTURE_DIRECT_ACCESS);
if (m_featureLevel <= D3D_FEATURE_LEVEL_9_2)
{
g_caps.limits.maxTextureSize = D3D_FL9_1_REQ_TEXTURE2D_U_OR_V_DIMENSION;
g_caps.limits.maxFBAttachments = uint8_t(bx::uint32_min(
D3D_FL9_1_SIMULTANEOUS_RENDER_TARGET_COUNT
, BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS
) );
g_caps.limits.maxVertexStreams = uint8_t(bx::uint32_min(
16
, BGFX_CONFIG_MAX_VERTEX_STREAMS
) );
}
else if (m_featureLevel == D3D_FEATURE_LEVEL_9_3)
{
g_caps.limits.maxTextureSize = D3D_FL9_3_REQ_TEXTURE2D_U_OR_V_DIMENSION;
g_caps.limits.maxFBAttachments = uint8_t(bx::uint32_min(
D3D_FL9_3_SIMULTANEOUS_RENDER_TARGET_COUNT
, BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS
) );
g_caps.limits.maxVertexStreams = uint8_t(bx::uint32_min(
16
, BGFX_CONFIG_MAX_VERTEX_STREAMS
) );
}
else
{
g_caps.limits.maxComputeBindings = bx::min(BGFX_MAX_COMPUTE_BINDINGS
, 1 <= m_deviceInterfaceVersion
? D3D11_1_UAV_SLOT_COUNT
: D3D11_PS_CS_UAV_REGISTER_COUNT
);
g_caps.supported |= BGFX_CAPS_TEXTURE_COMPARE_ALL;
g_caps.limits.maxTextureSize = D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION;
g_caps.limits.maxTextureLayers = D3D11_REQ_TEXTURE2D_ARRAY_AXIS_DIMENSION;
g_caps.limits.maxFBAttachments = uint8_t(bx::uint32_min(
D3D11_SIMULTANEOUS_RENDER_TARGET_COUNT
, BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS
) );
g_caps.limits.maxVertexStreams = uint8_t(bx::uint32_min(
D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT
, BGFX_CONFIG_MAX_VERTEX_STREAMS
) );
}
// 32-bit indices only supported on 9_2+.
if (m_featureLevel >= D3D_FEATURE_LEVEL_9_2)
{
g_caps.supported |= BGFX_CAPS_INDEX32;
}
// Independent blend only supported on 10_1+.
if (m_featureLevel >= D3D_FEATURE_LEVEL_10_1)
{
g_caps.supported |= BGFX_CAPS_BLEND_INDEPENDENT;
}
// Compute support is optional on 10_0 and 10_1 targets.
if (m_featureLevel == D3D_FEATURE_LEVEL_10_0
|| m_featureLevel == D3D_FEATURE_LEVEL_10_1)
{
struct D3D11_FEATURE_DATA_D3D10_X_HARDWARE_OPTIONS
{
BOOL ComputeShaders_Plus_RawAndStructuredBuffers_Via_Shader_4_x;
};
D3D11_FEATURE_DATA_D3D10_X_HARDWARE_OPTIONS data;
HRESULT hr = m_device->CheckFeatureSupport(D3D11_FEATURE_D3D10_X_HARDWARE_OPTIONS, &data, sizeof(data) );
if (SUCCEEDED(hr)
&& data.ComputeShaders_Plus_RawAndStructuredBuffers_Via_Shader_4_x)
{
g_caps.supported |= BGFX_CAPS_COMPUTE;
}
}
else if (m_featureLevel >= D3D_FEATURE_LEVEL_11_0)
{
g_caps.supported |= BGFX_CAPS_COMPUTE;
}
// Instancing fully supported on 9_3+, optionally partially supported at lower levels.
if (m_featureLevel >= D3D_FEATURE_LEVEL_9_3)
{
g_caps.supported |= BGFX_CAPS_INSTANCING;
}
else
{
struct D3D11_FEATURE_DATA_D3D9_SIMPLE_INSTANCING_SUPPORT
{
BOOL SimpleInstancingSupported;
};
D3D11_FEATURE_DATA_D3D9_SIMPLE_INSTANCING_SUPPORT data;
HRESULT hr = m_device->CheckFeatureSupport(D3D11_FEATURE(11) /*D3D11_FEATURE_D3D9_SIMPLE_INSTANCING_SUPPORT*/, &data, sizeof(data) );
if (SUCCEEDED(hr)
&& data.SimpleInstancingSupported)
{
g_caps.supported |= BGFX_CAPS_INSTANCING;
}
}
// shadow compare is optional on 9_1 through 9_3 targets
if (m_featureLevel <= D3D_FEATURE_LEVEL_9_3)
{
struct D3D11_FEATURE_DATA_D3D9_SHADOW_SUPPORT
{
BOOL SupportsDepthAsTextureWithLessEqualComparisonFilter;
};
D3D11_FEATURE_DATA_D3D9_SHADOW_SUPPORT data;
HRESULT hr = m_device->CheckFeatureSupport(D3D11_FEATURE(9) /*D3D11_FEATURE_D3D9_SHADOW_SUPPORT*/, &data, sizeof(data) );
if (SUCCEEDED(hr)
&& data.SupportsDepthAsTextureWithLessEqualComparisonFilter)
{
g_caps.supported |= BGFX_CAPS_TEXTURE_COMPARE_LEQUAL;
}
}
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
uint16_t support = BGFX_CAPS_FORMAT_TEXTURE_NONE;
const DXGI_FORMAT fmt = bimg::isDepth(bimg::TextureFormat::Enum(ii) )
? s_textureFormat[ii].m_fmtDsv
: s_textureFormat[ii].m_fmt
;
const DXGI_FORMAT fmtSrgb = s_textureFormat[ii].m_fmtSrgb;
if (DXGI_FORMAT_UNKNOWN != fmt)
{
if (BX_ENABLED(BX_PLATFORM_WINDOWS || BX_PLATFORM_WINRT) )
{
struct D3D11_FEATURE_DATA_FORMAT_SUPPORT
{
DXGI_FORMAT InFormat;
UINT OutFormatSupport;
};
D3D11_FEATURE_DATA_FORMAT_SUPPORT data; // D3D11_FEATURE_DATA_FORMAT_SUPPORT2
data.InFormat = fmt;
HRESULT hr = m_device->CheckFeatureSupport(D3D11_FEATURE_FORMAT_SUPPORT, &data, sizeof(data) );
if (SUCCEEDED(hr) )
{
support |= 0 != (data.OutFormatSupport & (0
| D3D11_FORMAT_SUPPORT_TEXTURE2D
| D3D11_FORMAT_SUPPORT_TEXTURE3D
| D3D11_FORMAT_SUPPORT_TEXTURECUBE
) )
? BGFX_CAPS_FORMAT_TEXTURE_2D
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
support |= 0 != (data.OutFormatSupport & (0
| D3D11_FORMAT_SUPPORT_TEXTURE3D
) )
? BGFX_CAPS_FORMAT_TEXTURE_3D
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
support |= 0 != (data.OutFormatSupport & (0
| D3D11_FORMAT_SUPPORT_TEXTURECUBE
) )
? BGFX_CAPS_FORMAT_TEXTURE_CUBE
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
support |= 0 != (data.OutFormatSupport & (0
| D3D11_FORMAT_SUPPORT_BUFFER
| D3D11_FORMAT_SUPPORT_IA_VERTEX_BUFFER
| D3D11_FORMAT_SUPPORT_IA_INDEX_BUFFER
) )
? BGFX_CAPS_FORMAT_TEXTURE_VERTEX
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
support |= 0 != (data.OutFormatSupport & (0
| D3D11_FORMAT_SUPPORT_SHADER_LOAD
) )
? BGFX_CAPS_FORMAT_TEXTURE_IMAGE
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
support |= 0 != (data.OutFormatSupport & (0
| D3D11_FORMAT_SUPPORT_RENDER_TARGET
| D3D11_FORMAT_SUPPORT_DEPTH_STENCIL
) )
? BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
support |= 0 != (data.OutFormatSupport & (0
| D3D11_FORMAT_SUPPORT_MULTISAMPLE_RENDERTARGET
) )
? BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
support |= 0 != (data.OutFormatSupport & (0
| D3D11_FORMAT_SUPPORT_MULTISAMPLE_LOAD
) )
? BGFX_CAPS_FORMAT_TEXTURE_MSAA
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
support |= 0 != (data.OutFormatSupport & (0
| D3D11_FORMAT_SUPPORT_MIP_AUTOGEN
) )
? BGFX_CAPS_FORMAT_TEXTURE_MIP_AUTOGEN
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
}
else
{
BX_TRACE("CheckFeatureSupport failed with %x for format %s.", hr, getName(TextureFormat::Enum(ii) ) );
}
if (0 != (support & BGFX_CAPS_FORMAT_TEXTURE_IMAGE) )
{
// clear image flag for additional testing
support &= ~BGFX_CAPS_FORMAT_TEXTURE_IMAGE;
data.InFormat = s_textureFormat[ii].m_fmt;
hr = m_device->CheckFeatureSupport(D3D11_FEATURE_FORMAT_SUPPORT2, &data, sizeof(data) );
if (SUCCEEDED(hr) )
{
support |= 0 != (data.OutFormatSupport & (0
| D3D11_FORMAT_SUPPORT2_UAV_TYPED_LOAD
| D3D11_FORMAT_SUPPORT2_UAV_TYPED_STORE
) )
? BGFX_CAPS_FORMAT_TEXTURE_IMAGE
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
}
}
}
else
{
support |= 0
| BGFX_CAPS_FORMAT_TEXTURE_2D
| BGFX_CAPS_FORMAT_TEXTURE_3D
| BGFX_CAPS_FORMAT_TEXTURE_CUBE
| BGFX_CAPS_FORMAT_TEXTURE_IMAGE
| BGFX_CAPS_FORMAT_TEXTURE_VERTEX
| BGFX_CAPS_FORMAT_TEXTURE_IMAGE
| BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER
| BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA
| BGFX_CAPS_FORMAT_TEXTURE_MSAA
;
}
}
if (DXGI_FORMAT_UNKNOWN != fmtSrgb)
{
if (BX_ENABLED(BX_PLATFORM_WINDOWS || BX_PLATFORM_WINRT) )
{
struct D3D11_FEATURE_DATA_FORMAT_SUPPORT
{
DXGI_FORMAT InFormat;
UINT OutFormatSupport;
};
D3D11_FEATURE_DATA_FORMAT_SUPPORT data; // D3D11_FEATURE_DATA_FORMAT_SUPPORT2
data.InFormat = fmtSrgb;
HRESULT hr = m_device->CheckFeatureSupport(D3D11_FEATURE_FORMAT_SUPPORT, &data, sizeof(data) );
if (SUCCEEDED(hr) )
{
support |= 0 != (data.OutFormatSupport & (0
| D3D11_FORMAT_SUPPORT_TEXTURE2D
) )
? BGFX_CAPS_FORMAT_TEXTURE_2D_SRGB
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
support |= 0 != (data.OutFormatSupport & (0
| D3D11_FORMAT_SUPPORT_TEXTURE3D
) )
? BGFX_CAPS_FORMAT_TEXTURE_3D_SRGB
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
support |= 0 != (data.OutFormatSupport & (0
| D3D11_FORMAT_SUPPORT_TEXTURECUBE
) )
? BGFX_CAPS_FORMAT_TEXTURE_CUBE_SRGB
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
}
else
{
BX_TRACE("CheckFeatureSupport failed with %x for sRGB format %s.", hr, getName(TextureFormat::Enum(ii) ) );
}
}
else
{
support |= 0
| BGFX_CAPS_FORMAT_TEXTURE_2D_SRGB
| BGFX_CAPS_FORMAT_TEXTURE_3D_SRGB
| BGFX_CAPS_FORMAT_TEXTURE_CUBE_SRGB
;
}
}
g_caps.formats[ii] = support;
}
// Init reserved part of view name.
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii)
{
bx::snprintf(s_viewName[ii], BGFX_CONFIG_MAX_VIEW_NAME_RESERVED + 1, "%3d ", ii);
mbstowcs(s_viewNameW[ii], s_viewName[ii], BGFX_CONFIG_MAX_VIEW_NAME_RESERVED);
}
if (_init.debug
&& NULL != m_infoQueue)
{
m_infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_ERROR, true);
}
{ //
multiDrawInstancedIndirect = stubMultiDrawInstancedIndirect;
multiDrawIndexedInstancedIndirect = stubMultiDrawIndexedInstancedIndirect;
if (NULL != m_ags)
{
uint32_t flags;
AGS_RETURN_CODE result = agsDriverExtensions_Init(m_ags, m_device, &flags);
bool hasExtensions = AGS_SUCCESS == result;
if (hasExtensions
&& 0 != (flags & AGS_EXTENSION_MULTIDRAWINDIRECT) )
{
multiDrawInstancedIndirect = amdAgsMultiDrawInstancedIndirect;
multiDrawIndexedInstancedIndirect = amdAgsMultiDrawIndexedInstancedIndirect;
}
else
{
if (hasExtensions)
{
agsDriverExtensions_DeInit(m_ags);
}
agsDeInit(m_ags);
m_ags = NULL;
}
}
else if (m_nvapi.isInitialized()
&& NULL != m_nvapi.nvApiD3D11MultiDrawInstancedIndirect
&& NULL != m_nvapi.nvApiD3D11MultiDrawIndexedInstancedIndirect)
{
multiDrawInstancedIndirect = nvapiMultiDrawInstancedIndirect;
multiDrawIndexedInstancedIndirect = nvapiMultiDrawIndexedInstancedIndirect;
}
}
//
updateMsaa(m_scd.format);
postReset();
}
g_internalData.context = m_device;
return true;
error:
switch (errorState)
{
case ErrorState::LoadedDXGI:
DX_RELEASE(m_annotation, 1);
DX_RELEASE_WARNONLY(m_infoQueue, 0);
DX_RELEASE(m_msaaRt, 0);
DX_RELEASE(m_swapChain, 0);
DX_RELEASE(m_deviceCtx, 0);
DX_RELEASE(m_device, 0);
#if USE_D3D11_DYNAMIC_LIB
if (NULL != m_d3d9Dll)
{
bx::dlclose(m_d3d9Dll);
m_d3d9Dll = NULL;
}
#endif // USE_D3D11_DYNAMIC_LIB
m_dxgi.shutdown();
BX_FALLTHROUGH;
#if USE_D3D11_DYNAMIC_LIB
case ErrorState::LoadedD3D11:
bx::dlclose(m_d3d11Dll);
m_d3d11Dll = NULL;
BX_FALLTHROUGH;
#endif // USE_D3D11_DYNAMIC_LIB
case ErrorState::Default:
default:
m_nvapi.shutdown();
if (NULL != m_ags)
{
agsDeInit(m_ags);
m_ags = NULL;
}
bx::dlclose(m_agsDll);
m_agsDll = NULL;
unloadRenderDoc(m_renderDocDll);
break;
}
return false;
}
void shutdown()
{
preReset();
if (NULL != m_ags)
{
agsDeInit(m_ags);
m_ags = NULL;
}
bx::dlclose(m_agsDll);
m_agsDll = NULL;
m_deviceCtx->ClearState();
invalidateCache();
for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii)
{
m_frameBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_indexBuffers); ++ii)
{
m_indexBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_vertexBuffers); ++ii)
{
m_vertexBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_shaders); ++ii)
{
m_shaders[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii)
{
m_textures[ii].destroy();
}
DX_RELEASE(m_annotation, 1);
DX_RELEASE_WARNONLY(m_infoQueue, 0);
DX_RELEASE(m_msaaRt, 0);
DX_RELEASE(m_swapChain, 0);
DX_RELEASE(m_deviceCtx, 0);
DX_RELEASE(m_device, 0);
m_nvapi.shutdown();
m_dxgi.shutdown();
unloadRenderDoc(m_renderDocDll);
#if USE_D3D11_DYNAMIC_LIB
if (NULL != m_d3d9Dll)
{
bx::dlclose(m_d3d9Dll);
m_d3d9Dll = NULL;
}
bx::dlclose(m_d3d11Dll);
m_d3d11Dll = NULL;
#endif // USE_D3D11_DYNAMIC_LIB
}
RendererType::Enum getRendererType() const override
{
return RendererType::Direct3D11;
}
const char* getRendererName() const override
{
return BGFX_RENDERER_DIRECT3D11_NAME;
}
void createIndexBuffer(IndexBufferHandle _handle, const Memory* _mem, uint16_t _flags) override
{
m_indexBuffers[_handle.idx].create(_mem->size, _mem->data, _flags);
}
void destroyIndexBuffer(IndexBufferHandle _handle) override
{
m_indexBuffers[_handle.idx].destroy();
}
void createVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl) override
{
VertexDecl& decl = m_vertexDecls[_handle.idx];
bx::memCopy(&decl, &_decl, sizeof(VertexDecl) );
dump(decl);
}
void destroyVertexDecl(VertexDeclHandle /*_handle*/) override
{
}
void createVertexBuffer(VertexBufferHandle _handle, const Memory* _mem, VertexDeclHandle _declHandle, uint16_t _flags) override
{
m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle, _flags);
}
void destroyVertexBuffer(VertexBufferHandle _handle) override
{
m_vertexBuffers[_handle.idx].destroy();
}
void createDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size, uint16_t _flags) override
{
m_indexBuffers[_handle.idx].create(_size, NULL, _flags);
}
void updateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) override
{
m_indexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicIndexBuffer(IndexBufferHandle _handle) override
{
m_indexBuffers[_handle.idx].destroy();
}
void createDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size, uint16_t _flags) override
{
VertexDeclHandle decl = BGFX_INVALID_HANDLE;
m_vertexBuffers[_handle.idx].create(_size, NULL, decl, _flags);
}
void updateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) override
{
m_vertexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicVertexBuffer(VertexBufferHandle _handle) override
{
m_vertexBuffers[_handle.idx].destroy();
}
void createShader(ShaderHandle _handle, const Memory* _mem) override
{
m_shaders[_handle.idx].create(_mem);
}
void destroyShader(ShaderHandle _handle) override
{
m_shaders[_handle.idx].destroy();
}
void createProgram(ProgramHandle _handle, ShaderHandle _vsh, ShaderHandle _fsh) override
{
m_program[_handle.idx].create(&m_shaders[_vsh.idx], isValid(_fsh) ? &m_shaders[_fsh.idx] : NULL);
}
void destroyProgram(ProgramHandle _handle) override
{
m_program[_handle.idx].destroy();
}
void* createTexture(TextureHandle _handle, const Memory* _mem, uint64_t _flags, uint8_t _skip) override
{
return m_textures[_handle.idx].create(_mem, _flags, _skip);
}
void updateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/) override
{
}
void updateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) override
{
m_textures[_handle.idx].update(_side, _mip, _rect, _z, _depth, _pitch, _mem);
}
void updateTextureEnd() override
{
}
void readTexture(TextureHandle _handle, void* _data, uint8_t _mip) override
{
const TextureD3D11& texture = m_textures[_handle.idx];
D3D11_MAPPED_SUBRESOURCE mapped;
DX_CHECK(m_deviceCtx->Map(texture.m_ptr, _mip, D3D11_MAP_READ, 0, &mapped) );
uint32_t srcWidth = bx::uint32_max(1, texture.m_width >>_mip);
uint32_t srcHeight = bx::uint32_max(1, texture.m_height>>_mip);
uint8_t* src = (uint8_t*)mapped.pData;
uint32_t srcPitch = mapped.RowPitch;
const uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(texture.m_textureFormat) );
uint8_t* dst = (uint8_t*)_data;
uint32_t dstPitch = srcWidth*bpp/8;
uint32_t pitch = bx::uint32_min(srcPitch, dstPitch);
for (uint32_t yy = 0, height = srcHeight; yy < height; ++yy)
{
bx::memCopy(dst, src, pitch);
src += srcPitch;
dst += dstPitch;
}
m_deviceCtx->Unmap(texture.m_ptr, _mip);
}
void resizeTexture(TextureHandle _handle, uint16_t _width, uint16_t _height, uint8_t _numMips) override
{
TextureD3D11& texture = m_textures[_handle.idx];
uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate);
const Memory* mem = alloc(size);
bx::StaticMemoryBlockWriter writer(mem->data, mem->size);
uint32_t magic = BGFX_CHUNK_MAGIC_TEX;
bx::write(&writer, magic);
TextureCreate tc;
tc.m_width = _width;
tc.m_height = _height;
tc.m_depth = 0;
tc.m_numLayers = 1;
tc.m_numMips = _numMips;
tc.m_format = TextureFormat::Enum(texture.m_requestedFormat);
tc.m_cubeMap = false;
tc.m_mem = NULL;
bx::write(&writer, tc);
texture.destroy();
texture.create(mem, texture.m_flags, 0);
release(mem);
}
void overrideInternal(TextureHandle _handle, uintptr_t _ptr) override
{
// Resource ref. counts might be messed up outside of bgfx.
// Disabling ref. count check once texture is overridden.
setGraphicsDebuggerPresent(true);
m_textures[_handle.idx].overrideInternal(_ptr);
}
uintptr_t getInternal(TextureHandle _handle) override
{
// Resource ref. counts might be messed up outside of bgfx.
// Disabling ref. count check once texture is overridden.
setGraphicsDebuggerPresent(true);
return uintptr_t(m_textures[_handle.idx].m_ptr);
}
void destroyTexture(TextureHandle _handle) override
{
m_textures[_handle.idx].destroy();
}
void createFrameBuffer(FrameBufferHandle _handle, uint8_t _num, const Attachment* _attachment) override
{
m_frameBuffers[_handle.idx].create(_num, _attachment);
}
void createFrameBuffer(FrameBufferHandle _handle, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _format, TextureFormat::Enum _depthFormat) override
{
for (uint32_t ii = 0, num = m_numWindows; ii < num; ++ii)
{
FrameBufferHandle handle = m_windows[ii];
if (isValid(handle)
&& m_frameBuffers[handle.idx].m_nwh == _nwh)
{
destroyFrameBuffer(handle);
}
}
uint16_t denseIdx = m_numWindows++;
m_windows[denseIdx] = _handle;
m_frameBuffers[_handle.idx].create(denseIdx, _nwh, _width, _height, _format, _depthFormat);
}
void destroyFrameBuffer(FrameBufferHandle _handle) override
{
uint16_t denseIdx = m_frameBuffers[_handle.idx].destroy();
if (UINT16_MAX != denseIdx)
{
--m_numWindows;
if (m_numWindows > 1)
{
FrameBufferHandle handle = m_windows[m_numWindows];
m_windows[m_numWindows] = {kInvalidHandle};
if (m_numWindows != denseIdx)
{
m_windows[denseIdx] = handle;
m_frameBuffers[handle.idx].m_denseIdx = denseIdx;
}
}
}
}
void createUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) override
{
if (NULL != m_uniforms[_handle.idx])
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
}
uint32_t size = BX_ALIGN_16(g_uniformTypeSize[_type]*_num);
void* data = BX_ALLOC(g_allocator, size);
bx::memSet(data, 0, size);
m_uniforms[_handle.idx] = data;
m_uniformReg.add(_handle, _name);
}
void destroyUniform(UniformHandle _handle) override
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
m_uniforms[_handle.idx] = NULL;
m_uniformReg.remove(_handle);
}
void requestScreenShot(FrameBufferHandle _handle, const char* _filePath) override
{
IDXGISwapChain* swapChain = isValid(_handle)
? m_frameBuffers[_handle.idx].m_swapChain
: m_swapChain
;
if (NULL == swapChain)
{
BX_TRACE("Unable to capture screenshot %s.", _filePath);
return;
}
ID3D11Texture2D* backBuffer;
DX_CHECK(swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBuffer) );
D3D11_TEXTURE2D_DESC backBufferDesc;
backBuffer->GetDesc(&backBufferDesc);
D3D11_TEXTURE2D_DESC desc;
bx::memCopy(&desc, &backBufferDesc, sizeof(desc) );
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_STAGING;
desc.BindFlags = 0;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
ID3D11Texture2D* texture;
HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &texture);
if (SUCCEEDED(hr) )
{
if (backBufferDesc.SampleDesc.Count == 1)
{
m_deviceCtx->CopyResource(texture, backBuffer);
}
else
{
desc.Usage = D3D11_USAGE_DEFAULT;
desc.CPUAccessFlags = 0;
ID3D11Texture2D* resolve;
hr = m_device->CreateTexture2D(&desc, NULL, &resolve);
if (SUCCEEDED(hr) )
{
m_deviceCtx->ResolveSubresource(resolve, 0, backBuffer, 0, desc.Format);
m_deviceCtx->CopyResource(texture, resolve);
DX_RELEASE(resolve, 0);
}
}
D3D11_MAPPED_SUBRESOURCE mapped;
DX_CHECK(m_deviceCtx->Map(texture, 0, D3D11_MAP_READ, 0, &mapped) );
bimg::imageSwizzleBgra8(
mapped.pData
, mapped.RowPitch
, backBufferDesc.Width
, backBufferDesc.Height
, mapped.pData
, mapped.RowPitch
);
g_callback->screenShot(_filePath
, backBufferDesc.Width
, backBufferDesc.Height
, mapped.RowPitch
, mapped.pData
, backBufferDesc.Height*mapped.RowPitch
, false
);
m_deviceCtx->Unmap(texture, 0);
DX_RELEASE(texture, 0);
}
DX_RELEASE(backBuffer, 0);
}
void updateViewName(ViewId _id, const char* _name) override
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
mbstowcs(&s_viewNameW[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED]
, _name
, BX_COUNTOF(s_viewNameW[0])-BGFX_CONFIG_MAX_VIEW_NAME_RESERVED
);
}
bx::strCopy(&s_viewName[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED]
, BX_COUNTOF(s_viewName[0]) - BGFX_CONFIG_MAX_VIEW_NAME_RESERVED
, _name
);
}
void updateUniform(uint16_t _loc, const void* _data, uint32_t _size) override
{
bx::memCopy(m_uniforms[_loc], _data, _size);
}
void setMarker(const char* _marker, uint32_t _size) override
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
uint32_t size = _size*sizeof(wchar_t);
wchar_t* name = (wchar_t*)alloca(size);
mbstowcs(name, _marker, size-2);
PIX_SETMARKER(D3DCOLOR_MARKER, name);
}
}
void invalidateOcclusionQuery(OcclusionQueryHandle _handle) override
{
m_occlusionQuery.invalidate(_handle);
}
virtual void setName(Handle _handle, const char* _name) override
{
switch (_handle.type)
{
case Handle::Shader:
setDebugObjectName(m_shaders[_handle.idx].m_ptr, "%s", _name);
break;
case Handle::Texture:
setDebugObjectName(m_textures[_handle.idx].m_ptr, "%s", _name);
break;
default:
BX_CHECK(false, "Invalid handle type?! %d", _handle.type);
break;
}
}
void submitBlit(BlitState& _bs, uint16_t _view);
void submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) override;
void blitSetup(TextVideoMemBlitter& _blitter) override
{
ID3D11DeviceContext* deviceCtx = m_deviceCtx;
const uint32_t width = m_scd.width;
const uint32_t height = m_scd.height;
setFrameBuffer(BGFX_INVALID_HANDLE, false, false);
D3D11_VIEWPORT vp;
vp.TopLeftX = 0;
vp.TopLeftY = 0;
vp.Width = (float)width;
vp.Height = (float)height;
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;
deviceCtx->RSSetViewports(1, &vp);
uint64_t state = BGFX_STATE_WRITE_RGB
| BGFX_STATE_WRITE_A
| BGFX_STATE_DEPTH_TEST_ALWAYS
;
setBlendState(state);
setDepthStencilState(state);
setRasterizerState(state);
ProgramD3D11& program = m_program[_blitter.m_program.idx];
m_currentProgram = &program;
deviceCtx->VSSetShader(program.m_vsh->m_vertexShader, NULL, 0);
deviceCtx->VSSetConstantBuffers(0, 1, &program.m_vsh->m_buffer);
deviceCtx->PSSetShader(program.m_fsh->m_pixelShader, NULL, 0);
deviceCtx->PSSetConstantBuffers(0, 1, &program.m_fsh->m_buffer);
VertexBufferD3D11& vb = m_vertexBuffers[_blitter.m_vb->handle.idx];
VertexDecl& vertexDecl = m_vertexDecls[_blitter.m_vb->decl.idx];
uint32_t stride = vertexDecl.m_stride;
uint32_t offset = 0;
deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset);
setInputLayout(vertexDecl, program, 0);
IndexBufferD3D11& ib = m_indexBuffers[_blitter.m_ib->handle.idx];
deviceCtx->IASetIndexBuffer(ib.m_ptr, DXGI_FORMAT_R16_UINT, 0);
float proj[16];
bx::mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f, 0.0f, false);
PredefinedUniform& predefined = program.m_predefined[0];
uint8_t flags = predefined.m_type;
setShaderUniform(flags, predefined.m_loc, proj, 4);
commitShaderConstants();
m_textures[_blitter.m_texture.idx].commit(0, BGFX_SAMPLER_INTERNAL_DEFAULT, NULL);
commitTextureStage();
}
void blitRender(TextVideoMemBlitter& _blitter, uint32_t _numIndices) override
{
const uint32_t numVertices = _numIndices*4/6;
if (0 < numVertices)
{
ID3D11DeviceContext* deviceCtx = m_deviceCtx;
m_indexBuffers [_blitter.m_ib->handle.idx].update(0, _numIndices*2, _blitter.m_ib->data, true);
m_vertexBuffers[_blitter.m_vb->handle.idx].update(0, numVertices*_blitter.m_decl.m_stride, _blitter.m_vb->data, true);
deviceCtx->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
deviceCtx->DrawIndexed(_numIndices, 0, 0);
}
}
void preReset()
{
m_needPresent = false;
if (m_timerQuerySupport)
{
m_gpuTimer.preReset();
}
m_occlusionQuery.preReset();
if (NULL == g_platformData.backBufferDS)
{
DX_RELEASE(m_backBufferDepthStencil, 0);
}
if (NULL != m_swapChain)
{
DX_RELEASE(m_backBufferColor, 0);
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii)
{
m_frameBuffers[ii].preReset();
}
// invalidateCache();
capturePreReset();
}
void postReset()
{
if (NULL != m_swapChain)
{
ID3D11Texture2D* backBufferColor = NULL;
if (NULL == m_msaaRt)
{
DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBufferColor) );
}
D3D11_RENDER_TARGET_VIEW_DESC desc;
desc.ViewDimension = (m_resolution.reset & BGFX_RESET_MSAA_MASK)
? D3D11_RTV_DIMENSION_TEXTURE2DMS
: D3D11_RTV_DIMENSION_TEXTURE2D
;
desc.Texture2D.MipSlice = 0;
desc.Format = (m_resolution.reset & BGFX_RESET_SRGB_BACKBUFFER)
? m_scd.format == DXGI_FORMAT_R8G8B8A8_UNORM ? DXGI_FORMAT_R8G8B8A8_UNORM_SRGB : m_scd.format
: m_scd.format
;
DX_CHECK(m_device->CreateRenderTargetView(NULL == m_msaaRt ? backBufferColor : m_msaaRt, &desc, &m_backBufferColor) );
DX_RELEASE(backBufferColor, 0);
}
if (m_timerQuerySupport)
{
m_gpuTimer.postReset();
}
m_occlusionQuery.postReset();
if (NULL == m_backBufferDepthStencil)
{
D3D11_TEXTURE2D_DESC dsd;
dsd.Width = m_scd.width;
dsd.Height = m_scd.height;
dsd.MipLevels = 1;
dsd.ArraySize = 1;
dsd.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
dsd.SampleDesc = m_scd.sampleDesc;
dsd.Usage = D3D11_USAGE_DEFAULT;
dsd.BindFlags = D3D11_BIND_DEPTH_STENCIL;
dsd.CPUAccessFlags = 0;
dsd.MiscFlags = 0;
ID3D11Texture2D* depthStencil;
DX_CHECK(m_device->CreateTexture2D(&dsd, NULL, &depthStencil) );
DX_CHECK(m_device->CreateDepthStencilView(depthStencil, NULL, &m_backBufferDepthStencil) );
DX_RELEASE(depthStencil, 0);
}
m_deviceCtx->OMSetRenderTargets(1, &m_backBufferColor, m_backBufferDepthStencil);
m_currentColor = m_backBufferColor;
m_currentDepthStencil = m_backBufferDepthStencil;
for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii)
{
m_frameBuffers[ii].postReset();
}
capturePostReset();
}
bool isDeviceRemoved() override
{
return m_lost;
}
void flip() override
{
if (!m_lost)
{
HRESULT hr = S_OK;
uint32_t syncInterval = BX_ENABLED(!BX_PLATFORM_WINDOWS)
? 1 // sync interval of 0 is not supported on WinRT
: !!(m_resolution.reset & BGFX_RESET_VSYNC)
;
for (uint32_t ii = 1, num = m_numWindows; ii < num && SUCCEEDED(hr); ++ii)
{
hr = m_frameBuffers[m_windows[ii].idx].present(syncInterval);
}
if (SUCCEEDED(hr) )
{
if (NULL != m_swapChain
&& m_needPresent)
{
hr = m_swapChain->Present(syncInterval, 0);
m_needPresent = false;
}
else
{
m_deviceCtx->Flush();
}
}
m_lost = isLost(hr);
BGFX_FATAL(!m_lost
, bgfx::Fatal::DeviceLost
, "Device is lost. FAILED 0x%08x %s (%s)"
, hr
, getLostReason(hr)
, DXGI_ERROR_DEVICE_REMOVED == hr ? getLostReason(m_device->GetDeviceRemovedReason() ) : "no info"
);
}
}
void invalidateCache()
{
m_inputLayoutCache.invalidate();
m_blendStateCache.invalidate();
m_depthStencilStateCache.invalidate();
m_rasterizerStateCache.invalidate();
m_samplerStateCache.invalidate();
m_srvUavLru.invalidate();
}
void invalidateCompute()
{
const uint32_t maxComputeBindings = g_caps.limits.maxComputeBindings;
m_deviceCtx->CSSetShader(NULL, NULL, 0);
m_deviceCtx->CSSetUnorderedAccessViews(0, maxComputeBindings, s_zero.m_uav, NULL);
m_deviceCtx->CSSetShaderResources(0, maxComputeBindings, s_zero.m_srv);
m_deviceCtx->CSSetSamplers(0, maxComputeBindings, s_zero.m_sampler);
}
void updateMsaa(DXGI_FORMAT _format) const
{
for (uint32_t ii = 1, last = 0; ii < BX_COUNTOF(s_msaa); ++ii)
{
uint32_t msaa = s_checkMsaa[ii];
uint32_t quality = 0;
HRESULT hr = m_device->CheckMultisampleQualityLevels(_format, msaa, &quality);
if (SUCCEEDED(hr)
&& 0 < quality)
{
s_msaa[ii].Count = msaa;
s_msaa[ii].Quality = quality - 1;
last = ii;
}
else
{
s_msaa[ii] = s_msaa[last];
}
}
}
bool updateResolution(const Resolution& _resolution)
{
const bool suspended = !!( _resolution.reset & BGFX_RESET_SUSPEND);
const bool wasSuspended = !!(m_resolution.reset & BGFX_RESET_SUSPEND);
if (suspended && wasSuspended)
{
return true;
}
else if (suspended)
{
m_deviceCtx->Flush();
m_deviceCtx->ClearState();
m_dxgi.trim();
suspend(m_device);
m_resolution.reset |= BGFX_RESET_SUSPEND;
return true;
}
else if (wasSuspended)
{
resume(m_device);
m_resolution.reset &= ~BGFX_RESET_SUSPEND;
}
uint32_t maxAnisotropy = 1;
if (!!(_resolution.reset & BGFX_RESET_MAXANISOTROPY) )
{
maxAnisotropy = (m_featureLevel == D3D_FEATURE_LEVEL_9_1)
? D3D_FL9_1_DEFAULT_MAX_ANISOTROPY
: D3D11_REQ_MAXANISOTROPY
;
}
if (m_maxAnisotropy != maxAnisotropy)
{
m_maxAnisotropy = maxAnisotropy;
m_samplerStateCache.invalidate();
}
bool depthClamp = true
&& !!(_resolution.reset & BGFX_RESET_DEPTH_CLAMP)
&& m_featureLevel > D3D_FEATURE_LEVEL_9_3 // disabling depth clamp is only supported on 10_0+
;
if (m_depthClamp != depthClamp)
{
m_depthClamp = depthClamp;
m_rasterizerStateCache.invalidate();
}
const uint32_t maskFlags = ~(0
| BGFX_RESET_MAXANISOTROPY
| BGFX_RESET_DEPTH_CLAMP
| BGFX_RESET_SUSPEND
);
if (m_resolution.width != _resolution.width
|| m_resolution.height != _resolution.height
|| m_resolution.format != _resolution.format
|| (m_resolution.reset&maskFlags) != (_resolution.reset&maskFlags) )
{
uint32_t flags = _resolution.reset & (~BGFX_RESET_INTERNAL_FORCE);
bool resize = true
&& !BX_ENABLED(BX_PLATFORM_XBOXONE || BX_PLATFORM_WINRT) // can't use ResizeBuffers on Windows Phone
&& (m_resolution.reset&BGFX_RESET_MSAA_MASK) == (flags&BGFX_RESET_MSAA_MASK)
;
m_resolution = _resolution;
m_resolution.reset = flags;
m_textVideoMem.resize(false, _resolution.width, _resolution.height);
m_textVideoMem.clear();
m_scd.width = _resolution.width;
m_scd.height = _resolution.height;
m_scd.format = s_textureFormat[_resolution.format].m_fmt;
preReset();
m_deviceCtx->Flush();
m_deviceCtx->ClearState();
if (NULL == m_swapChain)
{
// Updated backbuffer if it changed in PlatformData.
m_backBufferColor = (ID3D11RenderTargetView*)g_platformData.backBuffer;
m_backBufferDepthStencil = (ID3D11DepthStencilView*)g_platformData.backBufferDS;
}
else
{
DX_RELEASE(m_msaaRt, 0);
if (resize)
{
m_deviceCtx->OMSetRenderTargets(1, s_zero.m_rtv, NULL);
DX_CHECK(m_dxgi.resizeBuffers(m_swapChain, m_scd) );
}
else
{
updateMsaa(m_scd.format);
m_scd.sampleDesc = s_msaa[(m_resolution.reset&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT];
DX_RELEASE(m_swapChain, 0);
HRESULT hr = m_dxgi.createSwapChain(m_device
, m_scd
, &m_swapChain
);
BGFX_FATAL(SUCCEEDED(hr), bgfx::Fatal::UnableToInitialize, "Failed to create swap chain.");
}
if (1 < m_scd.sampleDesc.Count)
{
D3D11_TEXTURE2D_DESC desc;
desc.Width = m_scd.width;
desc.Height = m_scd.height;
desc.MipLevels = 1;
desc.ArraySize = 1;
desc.Format = m_scd.format;
desc.SampleDesc = m_scd.sampleDesc;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_RENDER_TARGET;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
DX_CHECK(m_device->CreateTexture2D(&desc, NULL, &m_msaaRt) );
}
}
postReset();
}
return false;
}
void setShaderUniform(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
if (_flags&BGFX_UNIFORM_FRAGMENTBIT)
{
bx::memCopy(&m_fsScratch[_regIndex], _val, _numRegs*16);
m_fsChanges += _numRegs;
}
else
{
bx::memCopy(&m_vsScratch[_regIndex], _val, _numRegs*16);
m_vsChanges += _numRegs;
}
}
void setShaderUniform4f(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
setShaderUniform(_flags, _regIndex, _val, _numRegs);
}
void setShaderUniform4x4f(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
setShaderUniform(_flags, _regIndex, _val, _numRegs);
}
void commitShaderConstants()
{
if (0 < m_vsChanges)
{
if (NULL != m_currentProgram->m_vsh->m_buffer)
{
m_deviceCtx->UpdateSubresource(m_currentProgram->m_vsh->m_buffer, 0, 0, m_vsScratch, 0, 0);
}
m_vsChanges = 0;
}
if (0 < m_fsChanges)
{
if (NULL != m_currentProgram->m_fsh->m_buffer)
{
m_deviceCtx->UpdateSubresource(m_currentProgram->m_fsh->m_buffer, 0, 0, m_fsScratch, 0, 0);
}
m_fsChanges = 0;
}
}
void setFrameBuffer(FrameBufferHandle _fbh, bool _msaa = true, bool _needPresent = true)
{
if (isValid(m_fbh)
&& m_fbh.idx != _fbh.idx
&& m_rtMsaa)
{
FrameBufferD3D11& frameBuffer = m_frameBuffers[m_fbh.idx];
frameBuffer.resolve();
}
if (!isValid(_fbh) )
{
m_currentColor = m_backBufferColor;
m_currentDepthStencil = m_backBufferDepthStencil;
m_deviceCtx->OMSetRenderTargets(1, &m_currentColor, m_currentDepthStencil);
m_needPresent |= _needPresent;
}
else
{
invalidateTextureStage();
FrameBufferD3D11& frameBuffer = m_frameBuffers[_fbh.idx];
frameBuffer.set();
}
m_fbh = _fbh;
m_rtMsaa = _msaa;
}
void clear(const Clear& _clear, const float _palette[][4])
{
if (isValid(m_fbh) )
{
FrameBufferD3D11& frameBuffer = m_frameBuffers[m_fbh.idx];
frameBuffer.clear(_clear, _palette);
}
else
{
if (NULL != m_currentColor
&& BGFX_CLEAR_COLOR & _clear.m_flags)
{
if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags)
{
uint8_t index = _clear.m_index[0];
if (UINT8_MAX != index)
{
m_deviceCtx->ClearRenderTargetView(m_currentColor, _palette[index]);
}
}
else
{
float frgba[4] =
{
_clear.m_index[0]*1.0f/255.0f,
_clear.m_index[1]*1.0f/255.0f,
_clear.m_index[2]*1.0f/255.0f,
_clear.m_index[3]*1.0f/255.0f,
};
m_deviceCtx->ClearRenderTargetView(m_currentColor, frgba);
}
}
if (NULL != m_currentDepthStencil
&& (BGFX_CLEAR_DEPTH|BGFX_CLEAR_STENCIL) & _clear.m_flags)
{
DWORD flags = 0;
flags |= (_clear.m_flags & BGFX_CLEAR_DEPTH) ? D3D11_CLEAR_DEPTH : 0;
flags |= (_clear.m_flags & BGFX_CLEAR_STENCIL) ? D3D11_CLEAR_STENCIL : 0;
m_deviceCtx->ClearDepthStencilView(m_currentDepthStencil, flags, _clear.m_depth, _clear.m_stencil);
}
}
}
void setInputLayout(uint8_t _numStreams, const VertexDecl** _vertexDecls, const ProgramD3D11& _program, uint16_t _numInstanceData)
{
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_numInstanceData);
for (uint8_t stream = 0; stream < _numStreams; ++stream)
{
murmur.add(_vertexDecls[stream]->m_hash);
}
uint64_t layoutHash = (uint64_t(_program.m_vsh->m_hash)<<32) | murmur.end();
ID3D11InputLayout* layout = m_inputLayoutCache.find(layoutHash);
if (NULL == layout)
{
D3D11_INPUT_ELEMENT_DESC vertexElements[Attrib::Count+1+BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT];
D3D11_INPUT_ELEMENT_DESC* elem = vertexElements;
uint16_t attrMask[Attrib::Count];
bx::memCopy(attrMask, _program.m_vsh->m_attrMask, sizeof(attrMask) );
for (uint8_t stream = 0; stream < _numStreams; ++stream)
{
VertexDecl decl;
bx::memCopy(&decl, _vertexDecls[stream], sizeof(VertexDecl) );
const bool last = stream == _numStreams-1;
for (uint32_t ii = 0; ii < Attrib::Count; ++ii)
{
uint16_t mask = attrMask[ii];
uint16_t attr = (decl.m_attributes[ii] & mask);
if (0 == attr
|| UINT16_MAX == attr)
{
decl.m_attributes[ii] = last ? ~attr : UINT16_MAX;
}
else
{
attrMask[ii] = 0;
}
}
elem = fillVertexDecl(stream, elem, decl);
}
uint32_t num = uint32_t(elem-vertexElements);
const D3D11_INPUT_ELEMENT_DESC inst = { "TEXCOORD", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 };
for (uint32_t ii = 0; ii < _numInstanceData; ++ii)
{
uint32_t index = 7-ii; // TEXCOORD7 = i_data0, TEXCOORD6 = i_data1, etc.
uint32_t jj;
D3D11_INPUT_ELEMENT_DESC* curr = vertexElements;
for (jj = 0; jj < num; ++jj)
{
curr = &vertexElements[jj];
if (0 == bx::strCmp(curr->SemanticName, "TEXCOORD")
&& curr->SemanticIndex == index)
{
break;
}
}
if (jj == num)
{
curr = elem;
++elem;
}
bx::memCopy(curr, &inst, sizeof(D3D11_INPUT_ELEMENT_DESC) );
curr->InputSlot = _numStreams;
curr->SemanticIndex = index;
curr->AlignedByteOffset = ii*16;
}
num = uint32_t(elem-vertexElements);
DX_CHECK(m_device->CreateInputLayout(vertexElements
, num
, _program.m_vsh->m_code->data
, _program.m_vsh->m_code->size
, &layout
) );
m_inputLayoutCache.add(layoutHash, layout);
}
m_deviceCtx->IASetInputLayout(layout);
}
void setInputLayout(const VertexDecl& _vertexDecl, const ProgramD3D11& _program, uint16_t _numInstanceData)
{
const VertexDecl* decls[1] = { &_vertexDecl };
setInputLayout(BX_COUNTOF(decls), decls, _program, _numInstanceData);
}
void setBlendState(uint64_t _state, uint32_t _rgba = 0)
{
_state &= BGFX_D3D11_BLEND_STATE_MASK;
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_state);
murmur.add(!!(BGFX_STATE_BLEND_INDEPENDENT & _state)
? _rgba
: -1
);
const uint32_t hash = murmur.end();
ID3D11BlendState* bs = m_blendStateCache.find(hash);
if (NULL == bs)
{
D3D11_BLEND_DESC desc;
desc.AlphaToCoverageEnable = !!(BGFX_STATE_BLEND_ALPHA_TO_COVERAGE & _state);
desc.IndependentBlendEnable = !!(BGFX_STATE_BLEND_INDEPENDENT & _state);
D3D11_RENDER_TARGET_BLEND_DESC* drt = &desc.RenderTarget[0];
drt->BlendEnable = !!(BGFX_STATE_BLEND_MASK & _state);
const uint32_t blend = uint32_t( (_state&BGFX_STATE_BLEND_MASK )>>BGFX_STATE_BLEND_SHIFT);
const uint32_t equation = uint32_t( (_state&BGFX_STATE_BLEND_EQUATION_MASK)>>BGFX_STATE_BLEND_EQUATION_SHIFT);
const uint32_t srcRGB = (blend ) & 0xf;
const uint32_t dstRGB = (blend >> 4) & 0xf;
const uint32_t srcA = (blend >> 8) & 0xf;
const uint32_t dstA = (blend >> 12) & 0xf;
const uint32_t equRGB = (equation ) & 0x7;
const uint32_t equA = (equation >> 3) & 0x7;
drt->SrcBlend = s_blendFactor[srcRGB][0];
drt->DestBlend = s_blendFactor[dstRGB][0];
drt->BlendOp = s_blendEquation[equRGB];
drt->SrcBlendAlpha = s_blendFactor[srcA][1];
drt->DestBlendAlpha = s_blendFactor[dstA][1];
drt->BlendOpAlpha = s_blendEquation[equA];
uint8_t writeMask = 0;
writeMask |= (_state&BGFX_STATE_WRITE_R) ? D3D11_COLOR_WRITE_ENABLE_RED : 0;
writeMask |= (_state&BGFX_STATE_WRITE_G) ? D3D11_COLOR_WRITE_ENABLE_GREEN : 0;
writeMask |= (_state&BGFX_STATE_WRITE_B) ? D3D11_COLOR_WRITE_ENABLE_BLUE : 0;
writeMask |= (_state&BGFX_STATE_WRITE_A) ? D3D11_COLOR_WRITE_ENABLE_ALPHA : 0;
drt->RenderTargetWriteMask = writeMask;
if (desc.IndependentBlendEnable)
{
for (uint32_t ii = 1, rgba = _rgba; ii < BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS; ++ii, rgba >>= 11)
{
drt = &desc.RenderTarget[ii];
drt->BlendEnable = 0 != (rgba & 0x7ff);
const uint32_t src = (rgba ) & 0xf;
const uint32_t dst = (rgba >> 4) & 0xf;
const uint32_t equ = (rgba >> 8) & 0x7;
drt->SrcBlend = s_blendFactor[src][0];
drt->DestBlend = s_blendFactor[dst][0];
drt->BlendOp = s_blendEquation[equ];
drt->SrcBlendAlpha = s_blendFactor[src][1];
drt->DestBlendAlpha = s_blendFactor[dst][1];
drt->BlendOpAlpha = s_blendEquation[equ];
drt->RenderTargetWriteMask = writeMask;
}
}
else
{
for (uint32_t ii = 1; ii < BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS; ++ii)
{
bx::memCopy(&desc.RenderTarget[ii], drt, sizeof(D3D11_RENDER_TARGET_BLEND_DESC) );
}
}
DX_CHECK(m_device->CreateBlendState(&desc, &bs) );
m_blendStateCache.add(hash, bs);
}
const uint64_t f0 = BGFX_STATE_BLEND_FACTOR;
const uint64_t f1 = BGFX_STATE_BLEND_INV_FACTOR;
const uint64_t f2 = BGFX_STATE_BLEND_FACTOR<<4;
const uint64_t f3 = BGFX_STATE_BLEND_INV_FACTOR<<4;
bool hasFactor = 0
|| f0 == (_state & f0)
|| f1 == (_state & f1)
|| f2 == (_state & f2)
|| f3 == (_state & f3)
;
float blendFactor[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
if (hasFactor)
{
blendFactor[0] = ( (_rgba>>24) )/255.0f;
blendFactor[1] = ( (_rgba>>16)&0xff)/255.0f;
blendFactor[2] = ( (_rgba>> 8)&0xff)/255.0f;
blendFactor[3] = ( (_rgba )&0xff)/255.0f;
}
m_deviceCtx->OMSetBlendState(bs, blendFactor, 0xffffffff);
}
void setDepthStencilState(uint64_t _state, uint64_t _stencil = 0)
{
uint32_t func = (_state&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT;
_state &= 0 == func ? 0 : BGFX_D3D11_DEPTH_STENCIL_MASK;
uint32_t fstencil = unpackStencil(0, _stencil);
uint32_t ref = (fstencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT;
_stencil &= packStencil(~BGFX_STENCIL_FUNC_REF_MASK, ~BGFX_STENCIL_FUNC_REF_MASK);
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_state);
murmur.add(_stencil);
uint32_t hash = murmur.end();
ID3D11DepthStencilState* dss = m_depthStencilStateCache.find(hash);
if (NULL == dss)
{
D3D11_DEPTH_STENCIL_DESC desc;
bx::memSet(&desc, 0, sizeof(desc) );
desc.DepthEnable = 0 != func;
desc.DepthWriteMask = !!(BGFX_STATE_WRITE_Z & _state) ? D3D11_DEPTH_WRITE_MASK_ALL : D3D11_DEPTH_WRITE_MASK_ZERO;
desc.DepthFunc = s_cmpFunc[func];
uint32_t bstencil = unpackStencil(1, _stencil);
uint32_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != fstencil;
bstencil = frontAndBack ? bstencil : fstencil;
desc.StencilEnable = 0 != _stencil;
desc.StencilReadMask = (fstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT;
desc.StencilWriteMask = 0xff;
desc.FrontFace.StencilFailOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT];
desc.FrontFace.StencilDepthFailOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT];
desc.FrontFace.StencilPassOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT];
desc.FrontFace.StencilFunc = s_cmpFunc[(fstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT];
desc.BackFace.StencilFailOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT];
desc.BackFace.StencilDepthFailOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT];
desc.BackFace.StencilPassOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT];
desc.BackFace.StencilFunc = s_cmpFunc[(bstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT];
DX_CHECK(m_device->CreateDepthStencilState(&desc, &dss) );
m_depthStencilStateCache.add(hash, dss);
}
m_deviceCtx->OMSetDepthStencilState(dss, ref);
}
void setDebugWireframe(bool _wireframe)
{
if (m_wireframe != _wireframe)
{
m_wireframe = _wireframe;
m_rasterizerStateCache.invalidate();
}
}
void setRasterizerState(uint64_t _state, bool _wireframe = false, bool _scissor = false)
{
_state &= 0
| BGFX_STATE_CULL_MASK
| BGFX_STATE_MSAA
| BGFX_STATE_LINEAA
| BGFX_STATE_CONSERVATIVE_RASTER
;
_state |= _wireframe ? BGFX_STATE_PT_LINES : BGFX_STATE_NONE;
_state |= _scissor ? BGFX_STATE_RESERVED_MASK : 0;
_state &= ~(m_deviceInterfaceVersion >= 3 ? 0 : BGFX_STATE_CONSERVATIVE_RASTER);
ID3D11RasterizerState* rs = m_rasterizerStateCache.find(_state);
if (NULL == rs)
{
uint32_t cull = (_state&BGFX_STATE_CULL_MASK)>>BGFX_STATE_CULL_SHIFT;
#if BX_PLATFORM_WINDOWS
if (m_deviceInterfaceVersion >= 3)
{
D3D11_RASTERIZER_DESC2 desc;
desc.FillMode = _wireframe ? D3D11_FILL_WIREFRAME : D3D11_FILL_SOLID;
desc.CullMode = s_cullMode[cull];
desc.FrontCounterClockwise = false;
desc.DepthBias = 0;
desc.DepthBiasClamp = 0.0f;
desc.SlopeScaledDepthBias = 0.0f;
desc.DepthClipEnable = !m_depthClamp;
desc.ScissorEnable = _scissor;
desc.MultisampleEnable = !!(_state&BGFX_STATE_MSAA);
desc.AntialiasedLineEnable = !!(_state&BGFX_STATE_LINEAA);
desc.ForcedSampleCount = 0;
desc.ConservativeRaster = !!(_state&BGFX_STATE_CONSERVATIVE_RASTER)
? D3D11_CONSERVATIVE_RASTERIZATION_MODE_ON
: D3D11_CONSERVATIVE_RASTERIZATION_MODE_OFF
;
ID3D11Device3* device3 = reinterpret_cast<ID3D11Device3*>(m_device);
DX_CHECK(device3->CreateRasterizerState2(&desc, reinterpret_cast<ID3D11RasterizerState2**>(&rs) ) );
}
else
#endif // BX_PLATFORM_WINDOWS
{
D3D11_RASTERIZER_DESC desc;
desc.FillMode = _wireframe ? D3D11_FILL_WIREFRAME : D3D11_FILL_SOLID;
desc.CullMode = s_cullMode[cull];
desc.FrontCounterClockwise = false;
desc.DepthBias = 0;
desc.DepthBiasClamp = 0.0f;
desc.SlopeScaledDepthBias = 0.0f;
desc.DepthClipEnable = !m_depthClamp;
desc.ScissorEnable = _scissor;
desc.MultisampleEnable = !!(_state&BGFX_STATE_MSAA);
desc.AntialiasedLineEnable = !!(_state&BGFX_STATE_LINEAA);
DX_CHECK(m_device->CreateRasterizerState(&desc, &rs) );
}
m_rasterizerStateCache.add(_state, rs);
}
m_deviceCtx->RSSetState(rs);
}
ID3D11SamplerState* getSamplerState(uint32_t _flags, const float _rgba[4])
{
const uint32_t index = (_flags & BGFX_SAMPLER_BORDER_COLOR_MASK) >> BGFX_SAMPLER_BORDER_COLOR_SHIFT;
_flags &= BGFX_SAMPLER_BITS_MASK;
// Force both min+max anisotropic, can't be set individually.
_flags |= 0 != (_flags & (BGFX_SAMPLER_MIN_ANISOTROPIC|BGFX_SAMPLER_MAG_ANISOTROPIC) )
? BGFX_SAMPLER_MIN_ANISOTROPIC|BGFX_SAMPLER_MAG_ANISOTROPIC
: 0
;
uint32_t hash;
ID3D11SamplerState* sampler;
if (!needBorderColor(_flags) )
{
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_flags);
murmur.add(-1);
hash = murmur.end();
_rgba = s_zero.m_zerof;
sampler = m_samplerStateCache.find(hash);
}
else
{
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_flags);
murmur.add(index);
hash = murmur.end();
_rgba = NULL == _rgba ? s_zero.m_zerof : _rgba;
sampler = m_samplerStateCache.find(hash);
if (NULL != sampler)
{
D3D11_SAMPLER_DESC sd;
sampler->GetDesc(&sd);
if (0 != bx::memCmp(_rgba, sd.BorderColor, 16) )
{
// Sampler will be released when updated sampler
// is added to cache.
sampler = NULL;
}
}
}
if (NULL == sampler)
{
const uint32_t cmpFunc = (_flags&BGFX_SAMPLER_COMPARE_MASK)>>BGFX_SAMPLER_COMPARE_SHIFT;
const uint8_t minFilter = s_textureFilter[0][(_flags&BGFX_SAMPLER_MIN_MASK)>>BGFX_SAMPLER_MIN_SHIFT];
const uint8_t magFilter = s_textureFilter[1][(_flags&BGFX_SAMPLER_MAG_MASK)>>BGFX_SAMPLER_MAG_SHIFT];
const uint8_t mipFilter = s_textureFilter[2][(_flags&BGFX_SAMPLER_MIP_MASK)>>BGFX_SAMPLER_MIP_SHIFT];
const uint8_t filter = 0 == cmpFunc ? 0 : D3D11_COMPARISON_FILTERING_BIT;
D3D11_SAMPLER_DESC sd;
sd.Filter = (D3D11_FILTER)(filter|minFilter|magFilter|mipFilter);
sd.AddressU = s_textureAddress[(_flags&BGFX_SAMPLER_U_MASK)>>BGFX_SAMPLER_U_SHIFT];
sd.AddressV = s_textureAddress[(_flags&BGFX_SAMPLER_V_MASK)>>BGFX_SAMPLER_V_SHIFT];
sd.AddressW = s_textureAddress[(_flags&BGFX_SAMPLER_W_MASK)>>BGFX_SAMPLER_W_SHIFT];
sd.MipLODBias = float(BGFX_CONFIG_MIP_LOD_BIAS);
sd.MaxAnisotropy = m_maxAnisotropy;
sd.ComparisonFunc = 0 == cmpFunc ? D3D11_COMPARISON_NEVER : s_cmpFunc[cmpFunc];
sd.BorderColor[0] = _rgba[0];
sd.BorderColor[1] = _rgba[1];
sd.BorderColor[2] = _rgba[2];
sd.BorderColor[3] = _rgba[3];
sd.MinLOD = 0;
sd.MaxLOD = D3D11_FLOAT32_MAX;
m_device->CreateSamplerState(&sd, &sampler);
DX_CHECK_REFCOUNT(sampler, 1);
m_samplerStateCache.add(hash, sampler);
}
return sampler;
}
bool isVisible(Frame* _render, OcclusionQueryHandle _handle, bool _visible)
{
m_occlusionQuery.resolve(_render);
return _visible == (0 != _render->m_occlusion[_handle.idx]);
}
void commitTextureStage()
{
// vertex texture fetch not supported on 9_1 through 9_3
if (m_featureLevel > D3D_FEATURE_LEVEL_9_3)
{
m_deviceCtx->VSSetShaderResources(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, m_textureStage.m_srv);
m_deviceCtx->VSSetSamplers(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, m_textureStage.m_sampler);
}
m_deviceCtx->PSSetShaderResources(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, m_textureStage.m_srv);
m_deviceCtx->PSSetSamplers(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, m_textureStage.m_sampler);
}
void invalidateTextureStage()
{
m_textureStage.clear();
commitTextureStage();
}
ID3D11UnorderedAccessView* getCachedUav(TextureHandle _handle, uint8_t _mip)
{
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_handle);
murmur.add(_mip);
murmur.add(1);
uint32_t hash = murmur.end();
IUnknown** ptr = m_srvUavLru.find(hash);
ID3D11UnorderedAccessView* uav;
if (NULL == ptr)
{
TextureD3D11& texture = m_textures[_handle.idx];
D3D11_UNORDERED_ACCESS_VIEW_DESC desc;
desc.Format = texture.getSrvFormat();
switch (texture.m_type)
{
case TextureD3D11::Texture2D:
desc.ViewDimension = D3D11_UAV_DIMENSION_TEXTURE2D;
desc.Texture2D.MipSlice = _mip;
break;
case TextureD3D11::TextureCube:
desc.ViewDimension = D3D11_UAV_DIMENSION_TEXTURE2DARRAY;
desc.Texture2DArray.ArraySize = 6;
desc.Texture2DArray.FirstArraySlice = 0;
desc.Texture2DArray.MipSlice = _mip;
break;
case TextureD3D11::Texture3D:
desc.ViewDimension = D3D11_UAV_DIMENSION_TEXTURE3D;
desc.Texture3D.MipSlice = _mip;
desc.Texture3D.FirstWSlice = 0;
desc.Texture3D.WSize = UINT32_MAX;
break;
}
DX_CHECK(m_device->CreateUnorderedAccessView(texture.m_ptr, &desc, &uav) );
m_srvUavLru.add(hash, uav, _handle.idx);
}
else
{
uav = static_cast<ID3D11UnorderedAccessView*>(*ptr);
}
return uav;
}
ID3D11ShaderResourceView* getCachedSrv(TextureHandle _handle, uint8_t _mip, bool _compute = false, bool _stencil = false)
{
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_handle);
murmur.add(_mip);
murmur.add(0);
murmur.add(_compute);
murmur.add(_stencil);
uint32_t hash = murmur.end();
IUnknown** ptr = m_srvUavLru.find(hash);
ID3D11ShaderResourceView* srv;
if (NULL == ptr)
{
const TextureD3D11& texture = m_textures[_handle.idx];
const uint32_t msaaQuality = bx::uint32_satsub( (texture.m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT, 1);
const DXGI_SAMPLE_DESC& msaa = s_msaa[msaaQuality];
const bool msaaSample = 1 < msaa.Count && 0 != (texture.m_flags&BGFX_TEXTURE_MSAA_SAMPLE);
D3D11_SHADER_RESOURCE_VIEW_DESC desc;
desc.Format = _stencil ? DXGI_FORMAT_X24_TYPELESS_G8_UINT : texture.getSrvFormat();
switch (texture.m_type)
{
case TextureD3D11::Texture2D:
desc.ViewDimension = msaaSample
? D3D11_SRV_DIMENSION_TEXTURE2DMS
: D3D11_SRV_DIMENSION_TEXTURE2D
;
desc.Texture2D.MostDetailedMip = _mip;
desc.Texture2D.MipLevels = 1;
break;
case TextureD3D11::TextureCube:
if (_compute)
{
desc.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2DARRAY;
desc.Texture2DArray.MostDetailedMip = _mip;
desc.Texture2DArray.MipLevels = 1;
desc.Texture2DArray.FirstArraySlice = 0;
desc.Texture2DArray.ArraySize = 6;
}
else
{
desc.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBE;
desc.TextureCube.MostDetailedMip = _mip;
desc.TextureCube.MipLevels = 1;
}
break;
case TextureD3D11::Texture3D:
desc.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE3D;
desc.Texture3D.MostDetailedMip = _mip;
desc.Texture3D.MipLevels = 1;
break;
}
DX_CHECK(m_device->CreateShaderResourceView(texture.m_ptr, &desc, &srv) );
m_srvUavLru.add(hash, srv, _handle.idx);
}
else
{
srv = static_cast<ID3D11ShaderResourceView*>(*ptr);
}
return srv;
}
void capturePostReset()
{
if (m_resolution.reset&BGFX_RESET_CAPTURE)
{
ID3D11Texture2D* backBuffer;
DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBuffer) );
D3D11_TEXTURE2D_DESC backBufferDesc;
backBuffer->GetDesc(&backBufferDesc);
D3D11_TEXTURE2D_DESC desc;
bx::memCopy(&desc, &backBufferDesc, sizeof(desc) );
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_STAGING;
desc.BindFlags = 0;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &m_captureTexture);
if (SUCCEEDED(hr) )
{
if (backBufferDesc.SampleDesc.Count != 1)
{
desc.Usage = D3D11_USAGE_DEFAULT;
desc.CPUAccessFlags = 0;
m_device->CreateTexture2D(&desc, NULL, &m_captureResolve);
}
g_callback->captureBegin(backBufferDesc.Width, backBufferDesc.Height, backBufferDesc.Width*4, TextureFormat::BGRA8, false);
}
DX_RELEASE(backBuffer, 0);
}
}
void capturePreReset()
{
if (NULL != m_captureTexture)
{
g_callback->captureEnd();
}
DX_RELEASE(m_captureResolve, 0);
DX_RELEASE(m_captureTexture, 0);
}
void capture()
{
if (NULL != m_captureTexture)
{
ID3D11Texture2D* backBuffer;
DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBuffer) );
if (NULL == m_captureResolve)
{
m_deviceCtx->CopyResource(m_captureTexture, backBuffer);
}
else
{
m_deviceCtx->ResolveSubresource(m_captureResolve, 0, backBuffer, 0, m_scd.format);
m_deviceCtx->CopyResource(m_captureTexture, m_captureResolve);
}
D3D11_MAPPED_SUBRESOURCE mapped;
DX_CHECK(m_deviceCtx->Map(m_captureTexture, 0, D3D11_MAP_READ, 0, &mapped) );
bimg::imageSwizzleBgra8(
mapped.pData
, mapped.RowPitch
, m_scd.width
, m_scd.height
, mapped.pData
, mapped.RowPitch
);
g_callback->captureFrame(mapped.pData, m_scd.height*mapped.RowPitch);
m_deviceCtx->Unmap(m_captureTexture, 0);
DX_RELEASE(backBuffer, 0);
}
}
void commit(UniformBuffer& _uniformBuffer)
{
_uniformBuffer.reset();
for (;;)
{
uint32_t opcode = _uniformBuffer.read();
if (UniformType::End == opcode)
{
break;
}
UniformType::Enum type;
uint16_t loc;
uint16_t num;
uint16_t copy;
UniformBuffer::decodeOpcode(opcode, type, loc, num, copy);
const char* data;
if (copy)
{
data = _uniformBuffer.read(g_uniformTypeSize[type]*num);
}
else
{
UniformHandle handle;
bx::memCopy(&handle, _uniformBuffer.read(sizeof(UniformHandle) ), sizeof(UniformHandle) );
data = (const char*)m_uniforms[handle.idx];
}
#define CASE_IMPLEMENT_UNIFORM(_uniform, _dxsuffix, _type) \
case UniformType::_uniform: \
case UniformType::_uniform|BGFX_UNIFORM_FRAGMENTBIT: \
{ \
setShaderUniform(uint8_t(type), loc, data, num); \
} \
break;
switch ( (uint32_t)type)
{
case UniformType::Mat3:
case UniformType::Mat3|BGFX_UNIFORM_FRAGMENTBIT: \
{
float* value = (float*)data;
for (uint32_t ii = 0, count = num/3; ii < count; ++ii, loc += 3*16, value += 9)
{
Matrix4 mtx;
mtx.un.val[ 0] = value[0];
mtx.un.val[ 1] = value[1];
mtx.un.val[ 2] = value[2];
mtx.un.val[ 3] = 0.0f;
mtx.un.val[ 4] = value[3];
mtx.un.val[ 5] = value[4];
mtx.un.val[ 6] = value[5];
mtx.un.val[ 7] = 0.0f;
mtx.un.val[ 8] = value[6];
mtx.un.val[ 9] = value[7];
mtx.un.val[10] = value[8];
mtx.un.val[11] = 0.0f;
setShaderUniform(uint8_t(type), loc, &mtx.un.val[0], 3);
}
}
break;
CASE_IMPLEMENT_UNIFORM(Int1, I, int);
CASE_IMPLEMENT_UNIFORM(Vec4, F, float);
CASE_IMPLEMENT_UNIFORM(Mat4, F, float);
case UniformType::End:
break;
default:
BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", _uniformBuffer.getPos(), opcode, type, loc, num, copy);
break;
}
#undef CASE_IMPLEMENT_UNIFORM
}
}
void clearQuad(ClearQuad& _clearQuad, const Rect& _rect, const Clear& _clear, const float _palette[][4])
{
uint32_t width;
uint32_t height;
if (isValid(m_fbh) )
{
const FrameBufferD3D11& fb = m_frameBuffers[m_fbh.idx];
width = fb.m_width;
height = fb.m_height;
}
else
{
width = m_scd.width;
height = m_scd.height;
}
if (0 == _rect.m_x
&& 0 == _rect.m_y
&& width == _rect.m_width
&& height == _rect.m_height)
{
clear(_clear, _palette);
}
else
{
ID3D11DeviceContext* deviceCtx = m_deviceCtx;
uint64_t state = 0;
state |= _clear.m_flags & BGFX_CLEAR_COLOR ? BGFX_STATE_WRITE_RGB|BGFX_STATE_WRITE_A : 0;
state |= _clear.m_flags & BGFX_CLEAR_DEPTH ? BGFX_STATE_DEPTH_TEST_ALWAYS|BGFX_STATE_WRITE_Z : 0;
uint64_t stencil = 0;
stencil |= _clear.m_flags & BGFX_CLEAR_STENCIL ? 0
| BGFX_STENCIL_TEST_ALWAYS
| BGFX_STENCIL_FUNC_REF(_clear.m_stencil)
| BGFX_STENCIL_FUNC_RMASK(0xff)
| BGFX_STENCIL_OP_FAIL_S_REPLACE
| BGFX_STENCIL_OP_FAIL_Z_REPLACE
| BGFX_STENCIL_OP_PASS_Z_REPLACE
: 0
;
setBlendState(state);
setDepthStencilState(state, stencil);
setRasterizerState(state);
uint32_t numMrt = 1;
FrameBufferHandle fbh = m_fbh;
if (isValid(fbh) )
{
const FrameBufferD3D11& fb = m_frameBuffers[fbh.idx];
numMrt = bx::uint32_max(1, fb.m_num);
}
ProgramD3D11& program = m_program[_clearQuad.m_program[numMrt-1].idx];
m_currentProgram = &program;
deviceCtx->VSSetShader(program.m_vsh->m_vertexShader, NULL, 0);
deviceCtx->VSSetConstantBuffers(0, 1, s_zero.m_buffer);
if (NULL != m_currentColor)
{
const ShaderD3D11* fsh = program.m_fsh;
deviceCtx->PSSetShader(fsh->m_pixelShader, NULL, 0);
deviceCtx->PSSetConstantBuffers(0, 1, &fsh->m_buffer);
if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags)
{
float mrtClear[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS][4];
for (uint32_t ii = 0; ii < numMrt; ++ii)
{
uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_COLOR_PALETTE-1, _clear.m_index[ii]);
bx::memCopy(mrtClear[ii], _palette[index], 16);
}
deviceCtx->UpdateSubresource(fsh->m_buffer, 0, 0, mrtClear, 0, 0);
}
else
{
float rgba[4] =
{
_clear.m_index[0]*1.0f/255.0f,
_clear.m_index[1]*1.0f/255.0f,
_clear.m_index[2]*1.0f/255.0f,
_clear.m_index[3]*1.0f/255.0f,
};
deviceCtx->UpdateSubresource(fsh->m_buffer, 0, 0, rgba, 0, 0);
}
}
else
{
deviceCtx->PSSetShader(NULL, NULL, 0);
}
VertexBufferD3D11& vb = m_vertexBuffers[_clearQuad.m_vb->handle.idx];
const VertexDecl& vertexDecl = m_vertexDecls[_clearQuad.m_vb->decl.idx];
const uint32_t stride = vertexDecl.m_stride;
const uint32_t offset = 0;
{
struct Vertex
{
float m_x;
float m_y;
float m_z;
};
Vertex* vertex = (Vertex*)_clearQuad.m_vb->data;
BX_CHECK(stride == sizeof(Vertex), "Stride/Vertex mismatch (stride %d, sizeof(Vertex) %d)", stride, sizeof(Vertex) );
const float depth = _clear.m_depth;
vertex->m_x = -1.0f;
vertex->m_y = -1.0f;
vertex->m_z = depth;
vertex++;
vertex->m_x = 1.0f;
vertex->m_y = -1.0f;
vertex->m_z = depth;
vertex++;
vertex->m_x = -1.0f;
vertex->m_y = 1.0f;
vertex->m_z = depth;
vertex++;
vertex->m_x = 1.0f;
vertex->m_y = 1.0f;
vertex->m_z = depth;
}
m_vertexBuffers[_clearQuad.m_vb->handle.idx].update(0, 4*_clearQuad.m_decl.m_stride, _clearQuad.m_vb->data);
deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset);
setInputLayout(vertexDecl, program, 0);
deviceCtx->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP);
deviceCtx->Draw(4, 0);
}
}
void* m_d3d9Dll;
void* m_d3d11Dll;
void* m_renderDocDll;
void* m_agsDll;
Dxgi m_dxgi;
AGSContext* m_ags;
NvApi m_nvapi;
D3D_FEATURE_LEVEL m_featureLevel;
Dxgi::SwapChainI* m_swapChain;
ID3D11Texture2D* m_msaaRt;
bool m_needPresent;
bool m_lost;
uint16_t m_numWindows;
FrameBufferHandle m_windows[BGFX_CONFIG_MAX_FRAME_BUFFERS];
ID3D11Device* m_device;
ID3D11DeviceContext* m_deviceCtx;
ID3DUserDefinedAnnotation* m_annotation;
ID3D11InfoQueue* m_infoQueue;
TimerQueryD3D11 m_gpuTimer;
OcclusionQueryD3D11 m_occlusionQuery;
uint32_t m_deviceInterfaceVersion;
ID3D11RenderTargetView* m_backBufferColor;
ID3D11DepthStencilView* m_backBufferDepthStencil;
ID3D11RenderTargetView* m_currentColor;
ID3D11DepthStencilView* m_currentDepthStencil;
ID3D11Texture2D* m_captureTexture;
ID3D11Texture2D* m_captureResolve;
Resolution m_resolution;
SwapChainDesc m_scd;
DXGI_SWAP_EFFECT m_swapEffect;
uint32_t m_swapBufferCount;
uint32_t m_maxAnisotropy;
bool m_depthClamp;
bool m_wireframe;
IndexBufferD3D11 m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS];
VertexBufferD3D11 m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
ShaderD3D11 m_shaders[BGFX_CONFIG_MAX_SHADERS];
ProgramD3D11 m_program[BGFX_CONFIG_MAX_PROGRAMS];
TextureD3D11 m_textures[BGFX_CONFIG_MAX_TEXTURES];
VertexDecl m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS];
FrameBufferD3D11 m_frameBuffers[BGFX_CONFIG_MAX_FRAME_BUFFERS];
void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS];
Matrix4 m_predefinedUniforms[PredefinedUniform::Count];
UniformRegistry m_uniformReg;
StateCacheT<ID3D11BlendState> m_blendStateCache;
StateCacheT<ID3D11DepthStencilState> m_depthStencilStateCache;
StateCacheT<ID3D11InputLayout> m_inputLayoutCache;
StateCacheT<ID3D11RasterizerState> m_rasterizerStateCache;
StateCacheT<ID3D11SamplerState> m_samplerStateCache;
StateCacheLru<IUnknown*, 1024> m_srvUavLru;
TextVideoMem m_textVideoMem;
TextureStage m_textureStage;
ProgramD3D11* m_currentProgram;
uint8_t m_vsScratch[64<<10];
uint8_t m_fsScratch[64<<10];
uint32_t m_vsChanges;
uint32_t m_fsChanges;
FrameBufferHandle m_fbh;
bool m_rtMsaa;
bool m_timerQuerySupport;
bool m_directAccessSupport;
};
static RendererContextD3D11* s_renderD3D11;
RendererContextI* rendererCreate(const Init& _init)
{
s_renderD3D11 = BX_NEW(g_allocator, RendererContextD3D11);
if (!s_renderD3D11->init(_init) )
{
BX_DELETE(g_allocator, s_renderD3D11);
s_renderD3D11 = NULL;
}
return s_renderD3D11;
}
void rendererDestroy()
{
s_renderD3D11->shutdown();
BX_DELETE(g_allocator, s_renderD3D11);
s_renderD3D11 = NULL;
}
void stubMultiDrawInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride)
{
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
for (uint32_t ii = 0; ii < _numDrawIndirect; ++ii)
{
deviceCtx->DrawInstancedIndirect(_ptr, _offset);
_offset += _stride;
}
}
void stubMultiDrawIndexedInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride)
{
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
for (uint32_t ii = 0; ii < _numDrawIndirect; ++ii)
{
deviceCtx->DrawIndexedInstancedIndirect(_ptr, _offset);
_offset += _stride;
}
}
void amdAgsMultiDrawInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride)
{
agsDriverExtensions_MultiDrawInstancedIndirect(s_renderD3D11->m_ags, _numDrawIndirect, _ptr, _offset, _stride);
}
void amdAgsMultiDrawIndexedInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride)
{
agsDriverExtensions_MultiDrawIndexedInstancedIndirect(s_renderD3D11->m_ags, _numDrawIndirect, _ptr, _offset, _stride);
}
void nvapiMultiDrawInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride)
{
s_renderD3D11->m_nvapi.nvApiD3D11MultiDrawInstancedIndirect(s_renderD3D11->m_deviceCtx, _numDrawIndirect, _ptr, _offset, _stride);
}
void nvapiMultiDrawIndexedInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride)
{
s_renderD3D11->m_nvapi.nvApiD3D11MultiDrawIndexedInstancedIndirect(s_renderD3D11->m_deviceCtx, _numDrawIndirect, _ptr, _offset, _stride);
}
int WINAPI d3d11Annotation_BeginEvent(DWORD _color, LPCWSTR _name)
{
BX_UNUSED(_color);
return s_renderD3D11->m_annotation->BeginEvent(_name);
}
int WINAPI d3d11Annotation_EndEvent()
{
return s_renderD3D11->m_annotation->EndEvent();
}
void WINAPI d3d11Annotation_SetMarker(DWORD _color, LPCWSTR _name)
{
BX_UNUSED(_color);
s_renderD3D11->m_annotation->SetMarker(_name);
}
struct UavFormat
{
DXGI_FORMAT format[3];
uint32_t stride;
};
static const UavFormat s_uavFormat[] =
{ // BGFX_BUFFER_COMPUTE_TYPE_INT, BGFX_BUFFER_COMPUTE_TYPE_UINT, BGFX_BUFFER_COMPUTE_TYPE_FLOAT
{ { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, 0 }, // ignored
{ { DXGI_FORMAT_R8_SINT, DXGI_FORMAT_R8_UINT, DXGI_FORMAT_UNKNOWN }, 1 }, // BGFX_BUFFER_COMPUTE_FORMAT_8x1
{ { DXGI_FORMAT_R8G8_SINT, DXGI_FORMAT_R8G8_UINT, DXGI_FORMAT_UNKNOWN }, 2 }, // BGFX_BUFFER_COMPUTE_FORMAT_8x2
{ { DXGI_FORMAT_R8G8B8A8_SINT, DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_UNKNOWN }, 4 }, // BGFX_BUFFER_COMPUTE_FORMAT_8x4
{ { DXGI_FORMAT_R16_SINT, DXGI_FORMAT_R16_UINT, DXGI_FORMAT_R16_FLOAT }, 2 }, // BGFX_BUFFER_COMPUTE_FORMAT_16x1
{ { DXGI_FORMAT_R16G16_SINT, DXGI_FORMAT_R16G16_UINT, DXGI_FORMAT_R16G16_FLOAT }, 4 }, // BGFX_BUFFER_COMPUTE_FORMAT_16x2
{ { DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_UINT, DXGI_FORMAT_R16G16B16A16_FLOAT }, 8 }, // BGFX_BUFFER_COMPUTE_FORMAT_16x4
{ { DXGI_FORMAT_R32_SINT, DXGI_FORMAT_R32_UINT, DXGI_FORMAT_R32_FLOAT }, 4 }, // BGFX_BUFFER_COMPUTE_FORMAT_32x1
{ { DXGI_FORMAT_R32G32_SINT, DXGI_FORMAT_R32G32_UINT, DXGI_FORMAT_R32G32_FLOAT }, 8 }, // BGFX_BUFFER_COMPUTE_FORMAT_32x2
{ { DXGI_FORMAT_R32G32B32A32_SINT, DXGI_FORMAT_R32G32B32A32_UINT, DXGI_FORMAT_R32G32B32A32_FLOAT }, 16 }, // BGFX_BUFFER_COMPUTE_FORMAT_32x4
};
void BufferD3D11::create(uint32_t _size, void* _data, uint16_t _flags, uint16_t _stride, bool _vertex)
{
m_uav = NULL;
m_size = _size;
m_flags = _flags;
const bool needUav = 0 != (_flags & (BGFX_BUFFER_COMPUTE_WRITE|BGFX_BUFFER_DRAW_INDIRECT) );
const bool needSrv = 0 != (_flags & BGFX_BUFFER_COMPUTE_READ);
const bool drawIndirect = 0 != (_flags & BGFX_BUFFER_DRAW_INDIRECT);
m_dynamic = NULL == _data && !needUav;
D3D11_BUFFER_DESC desc;
desc.ByteWidth = _size;
desc.BindFlags = 0
| (_vertex ? D3D11_BIND_VERTEX_BUFFER : D3D11_BIND_INDEX_BUFFER)
| (needUav ? D3D11_BIND_UNORDERED_ACCESS : 0)
| (needSrv ? D3D11_BIND_SHADER_RESOURCE : 0)
;
desc.MiscFlags = 0
| (drawIndirect ? D3D11_RESOURCE_MISC_DRAWINDIRECT_ARGS : 0)
;
desc.StructureByteStride = 0;
DXGI_FORMAT format;
uint32_t stride;
if (drawIndirect)
{
format = DXGI_FORMAT_R32G32B32A32_UINT;
stride = 16;
}
else
{
uint32_t uavFormat = (_flags & BGFX_BUFFER_COMPUTE_FORMAT_MASK) >> BGFX_BUFFER_COMPUTE_FORMAT_SHIFT;
if (0 == uavFormat)
{
if (_vertex)
{
format = DXGI_FORMAT_R32G32B32A32_FLOAT;
stride = 16;
}
else
{
if (0 == (_flags & BGFX_BUFFER_INDEX32) )
{
format = DXGI_FORMAT_R16_UINT;
stride = 2;
}
else
{
format = DXGI_FORMAT_R32_UINT;
stride = 4;
}
}
}
else
{
const uint32_t uavType = bx::uint32_satsub( (_flags & BGFX_BUFFER_COMPUTE_TYPE_MASK ) >> BGFX_BUFFER_COMPUTE_TYPE_SHIFT, 1);
format = s_uavFormat[uavFormat].format[uavType];
stride = s_uavFormat[uavFormat].stride;
}
}
ID3D11Device* device = s_renderD3D11->m_device;
D3D11_SUBRESOURCE_DATA srd;
srd.pSysMem = _data;
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
if (needUav)
{
desc.Usage = D3D11_USAGE_DEFAULT;
desc.CPUAccessFlags = 0;
desc.StructureByteStride = _stride;
DX_CHECK(device->CreateBuffer(&desc
, NULL == _data ? NULL : &srd
, &m_ptr
) );
D3D11_UNORDERED_ACCESS_VIEW_DESC uavd;
uavd.Format = format;
uavd.ViewDimension = D3D11_UAV_DIMENSION_BUFFER;
uavd.Buffer.FirstElement = 0;
uavd.Buffer.NumElements = m_size / stride;
uavd.Buffer.Flags = 0;
DX_CHECK(device->CreateUnorderedAccessView(m_ptr
, &uavd
, &m_uav
) );
}
else if (m_dynamic)
{
#if USE_D3D11_STAGING_BUFFER
desc.Usage = D3D11_USAGE_DEFAULT;
desc.CPUAccessFlags = 0;
DX_CHECK(device->CreateBuffer(&desc
, NULL
, &m_ptr
) );
desc.BindFlags = 0;
desc.Usage = D3D11_USAGE_STAGING;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
DX_CHECK(device->CreateBuffer(&desc
, NULL
, &m_staging
) );
#else
desc.Usage = D3D11_USAGE_DYNAMIC;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
DX_CHECK(device->CreateBuffer(&desc
, NULL
, &m_ptr
) );
#endif // USE_D3D11_STAGING_BUFFER
}
else
{
desc.Usage = D3D11_USAGE_IMMUTABLE;
desc.CPUAccessFlags = 0;
DX_CHECK(device->CreateBuffer(&desc
, &srd
, &m_ptr
) );
}
if (needSrv)
{
D3D11_SHADER_RESOURCE_VIEW_DESC srvd;
srvd.Format = format;
srvd.ViewDimension = D3D11_SRV_DIMENSION_BUFFER;
srvd.Buffer.FirstElement = 0;
srvd.Buffer.NumElements = m_size / stride;
DX_CHECK(device->CreateShaderResourceView(m_ptr
, &srvd
, &m_srv
) );
}
}
void BufferD3D11::update(uint32_t _offset, uint32_t _size, void* _data, bool _discard)
{
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
BX_CHECK(m_dynamic, "Must be dynamic!");
#if USE_D3D11_STAGING_BUFFER
BX_UNUSED(_discard);
D3D11_MAPPED_SUBRESOURCE mapped;
DX_CHECK(deviceCtx->Map(m_staging, 0, D3D11_MAP_WRITE, 0, &mapped) );
bx::memCopy( (uint8_t*)mapped.pData + _offset, _data, _size);
deviceCtx->Unmap(m_staging, 0);
D3D11_BOX box;
box.left = _offset;
box.top = 0;
box.front = 0;
box.right = _offset + _size;
box.bottom = 1;
box.back = 1;
deviceCtx->CopySubresourceRegion(m_ptr
, 0
, _offset
, 0
, 0
, m_staging
, 0
, &box
);
#else
if (_discard)
{
D3D11_MAPPED_SUBRESOURCE mapped;
DX_CHECK(deviceCtx->Map(m_ptr, 0, D3D11_MAP_WRITE_DISCARD, 0, &mapped) );
bx::memCopy( (uint8_t*)mapped.pData + _offset, _data, _size);
deviceCtx->Unmap(m_ptr, 0);
}
else
{
D3D11_BUFFER_DESC desc;
desc.ByteWidth = _size;
desc.Usage = D3D11_USAGE_STAGING;
desc.BindFlags = 0;
desc.MiscFlags = 0;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
desc.StructureByteStride = 0;
D3D11_SUBRESOURCE_DATA srd;
srd.pSysMem = _data;
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
D3D11_BOX srcBox;
srcBox.left = 0;
srcBox.top = 0;
srcBox.front = 0;
srcBox.right = _size;
srcBox.bottom = 1;
srcBox.back = 1;
ID3D11Device* device = s_renderD3D11->m_device;
ID3D11Buffer* ptr;
DX_CHECK(device->CreateBuffer(&desc, &srd, &ptr) );
deviceCtx->CopySubresourceRegion(m_ptr
, 0
, _offset
, 0
, 0
, ptr
, 0
, &srcBox
);
DX_RELEASE(ptr, 0);
}
#endif // 0
}
void VertexBufferD3D11::create(uint32_t _size, void* _data, VertexDeclHandle _declHandle, uint16_t _flags)
{
m_decl = _declHandle;
uint16_t stride = isValid(_declHandle)
? s_renderD3D11->m_vertexDecls[_declHandle.idx].m_stride
: 0
;
BufferD3D11::create(_size, _data, _flags, stride, true);
}
static bool hasDepthOp(const void* _code, uint32_t _size)
{
bx::MemoryReader rd(_code, _size);
bx::Error err;
DxbcContext dxbc;
read(&rd, dxbc, &err);
struct FindDepthOp
{
FindDepthOp()
: m_found(false)
{
}
static bool find(uint32_t /*_offset*/, const DxbcInstruction& _instruction, void* _userData)
{
FindDepthOp& out = *reinterpret_cast<FindDepthOp*>(_userData);
if (_instruction.opcode == DxbcOpcode::DISCARD
|| (0 != _instruction.numOperands && DxbcOperandType::OutputDepth == _instruction.operand[0].type) )
{
out.m_found = true;
return false;
}
return true;
}
bool m_found;
} find;
parse(dxbc.shader, FindDepthOp::find, &find);
return find.m_found;
}
void ShaderD3D11::create(const Memory* _mem)
{
bx::MemoryReader reader(_mem->data, _mem->size);
uint32_t magic;
bx::read(&reader, magic);
switch (magic)
{
case BGFX_CHUNK_MAGIC_CSH:
case BGFX_CHUNK_MAGIC_FSH:
case BGFX_CHUNK_MAGIC_VSH:
break;
default:
BGFX_FATAL(false, Fatal::InvalidShader, "Unknown shader format %x.", magic);
break;
}
bool fragment = BGFX_CHUNK_MAGIC_FSH == magic;
uint32_t iohash;
bx::read(&reader, iohash);
uint16_t count;
bx::read(&reader, count);
m_numPredefined = 0;
m_numUniforms = count;
BX_TRACE("%s Shader consts %d"
, BGFX_CHUNK_MAGIC_FSH == magic ? "Fragment" : BGFX_CHUNK_MAGIC_VSH == magic ? "Vertex" : "Compute"
, count
);
uint8_t fragmentBit = fragment ? BGFX_UNIFORM_FRAGMENTBIT : 0;
if (0 < count)
{
for (uint32_t ii = 0; ii < count; ++ii)
{
uint8_t nameSize = 0;
bx::read(&reader, nameSize);
char name[256] = { '\0' };
bx::read(&reader, &name, nameSize);
name[nameSize] = '\0';
uint8_t type = 0;
bx::read(&reader, type);
uint8_t num = 0;
bx::read(&reader, num);
uint16_t regIndex = 0;
bx::read(&reader, regIndex);
uint16_t regCount = 0;
bx::read(&reader, regCount);
const char* kind = "invalid";
PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name);
if (PredefinedUniform::Count != predefined)
{
kind = "predefined";
m_predefined[m_numPredefined].m_loc = regIndex;
m_predefined[m_numPredefined].m_count = regCount;
m_predefined[m_numPredefined].m_type = uint8_t(predefined|fragmentBit);
m_numPredefined++;
}
else if (0 == (BGFX_UNIFORM_SAMPLERBIT & type) )
{
const UniformRegInfo* info = s_renderD3D11->m_uniformReg.find(name);
BX_WARN(NULL != info, "User defined uniform '%s' is not found, it won't be set.", name);
if (NULL != info)
{
if (NULL == m_constantBuffer)
{
m_constantBuffer = UniformBuffer::create(1024);
}
kind = "user";
m_constantBuffer->writeUniformHandle( (UniformType::Enum)(type|fragmentBit), regIndex, info->m_handle, regCount);
}
}
else
{
kind = "sampler";
}
BX_TRACE("\t%s: %s (%s), num %2d, r.index %3d, r.count %2d"
, kind
, name
, getUniformTypeName(UniformType::Enum(type&~BGFX_UNIFORM_MASK) )
, num
, regIndex
, regCount
);
BX_UNUSED(kind);
}
if (NULL != m_constantBuffer)
{
m_constantBuffer->finish();
}
}
uint32_t shaderSize;
bx::read(&reader, shaderSize);
const void* code = reader.getDataPtr();
bx::skip(&reader, shaderSize+1);
if (BGFX_CHUNK_MAGIC_FSH == magic)
{
m_hasDepthOp = hasDepthOp(code, shaderSize);
DX_CHECK(s_renderD3D11->m_device->CreatePixelShader(code, shaderSize, NULL, &m_pixelShader) );
BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create fragment shader.");
}
else if (BGFX_CHUNK_MAGIC_VSH == magic)
{
m_hash = bx::hash<bx::HashMurmur2A>(code, shaderSize);
m_code = copy(code, shaderSize);
DX_CHECK(s_renderD3D11->m_device->CreateVertexShader(code, shaderSize, NULL, &m_vertexShader) );
BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create vertex shader.");
}
else
{
DX_CHECK(s_renderD3D11->m_device->CreateComputeShader(code, shaderSize, NULL, &m_computeShader) );
BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create compute shader.");
}
uint8_t numAttrs = 0;
bx::read(&reader, numAttrs);
bx::memSet(m_attrMask, 0, sizeof(m_attrMask) );
for (uint32_t ii = 0; ii < numAttrs; ++ii)
{
uint16_t id;
bx::read(&reader, id);
Attrib::Enum attr = idToAttrib(id);
if (Attrib::Count != attr)
{
m_attrMask[attr] = UINT16_MAX;
}
}
uint16_t size;
bx::read(&reader, size);
if (0 < size)
{
D3D11_BUFFER_DESC desc;
desc.ByteWidth = (size + 0xf) & ~0xf;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.CPUAccessFlags = 0;
desc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
desc.MiscFlags = 0;
desc.StructureByteStride = 0;
DX_CHECK(s_renderD3D11->m_device->CreateBuffer(&desc, NULL, &m_buffer) );
BX_TRACE("\tCB size: %d", desc.ByteWidth);
}
}
void* DirectAccessResourceD3D11::createTexture2D(const D3D11_TEXTURE2D_DESC* _gpuDesc, const D3D11_SUBRESOURCE_DATA* _srd, ID3D11Texture2D** _gpuTexture2d)
{
ID3D11Device* device = s_renderD3D11->m_device;
DX_CHECK(setIntelDirectAccessResource(device) );
DX_CHECK(device->CreateTexture2D(_gpuDesc, _srd, _gpuTexture2d) );
D3D11_TEXTURE2D_DESC cpuDesc;
bx::memCopy(&cpuDesc, _gpuDesc, sizeof(cpuDesc) );
cpuDesc.BindFlags = 0;
cpuDesc.CPUAccessFlags = D3D11_CPU_ACCESS_READ | D3D11_CPU_ACCESS_WRITE;
cpuDesc.Usage = D3D11_USAGE_STAGING;
DX_CHECK(setIntelDirectAccessResource(s_renderD3D11->m_device) );
DX_CHECK(device->CreateTexture2D(&cpuDesc, NULL, &m_texture2d) );
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
deviceCtx->CopyResource(m_texture2d, *_gpuTexture2d);
D3D11_MAPPED_SUBRESOURCE mappedResource;
deviceCtx->Map(m_texture2d, 0, D3D11_MAP_WRITE, 0, &mappedResource);
m_descriptor = reinterpret_cast<IntelDirectAccessResourceDescriptor*>(mappedResource.pData);
return m_descriptor->ptr;
}
void* DirectAccessResourceD3D11::createTexture3D(const D3D11_TEXTURE3D_DESC* _gpuDesc, const D3D11_SUBRESOURCE_DATA* _srd, ID3D11Texture3D** _gpuTexture3d)
{
ID3D11Device* device = s_renderD3D11->m_device;
DX_CHECK(setIntelDirectAccessResource(device) );
DX_CHECK(device->CreateTexture3D(_gpuDesc, _srd, _gpuTexture3d) );
D3D11_TEXTURE3D_DESC cpuDesc;
bx::memCopy(&cpuDesc, _gpuDesc, sizeof(cpuDesc) );
cpuDesc.BindFlags = 0;
cpuDesc.CPUAccessFlags = D3D11_CPU_ACCESS_READ | D3D11_CPU_ACCESS_WRITE;
cpuDesc.Usage = D3D11_USAGE_STAGING;
DX_CHECK(setIntelDirectAccessResource(s_renderD3D11->m_device) );
DX_CHECK(device->CreateTexture3D(&cpuDesc, NULL, &m_texture3d) );
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
deviceCtx->CopyResource(m_texture3d, *_gpuTexture3d);
D3D11_MAPPED_SUBRESOURCE mappedResource;
deviceCtx->Map(m_texture3d, 0, D3D11_MAP_WRITE, 0, &mappedResource);
m_descriptor = reinterpret_cast<IntelDirectAccessResourceDescriptor*>(mappedResource.pData);
return m_descriptor->ptr;
}
void DirectAccessResourceD3D11::destroy()
{
if (NULL != m_descriptor)
{
s_renderD3D11->m_deviceCtx->Unmap(m_ptr, 0);
m_descriptor = NULL;
DX_RELEASE(m_ptr, 0);
}
}
void* TextureD3D11::create(const Memory* _mem, uint64_t _flags, uint8_t _skip)
{
void* directAccessPtr = NULL;
bimg::ImageContainer imageContainer;
if (bimg::imageParse(imageContainer, _mem->data, _mem->size) )
{
uint8_t numMips = imageContainer.m_numMips;
const uint8_t startLod = uint8_t(bx::uint32_min(_skip, numMips-1) );
numMips -= startLod;
const bimg::ImageBlockInfo& blockInfo = bimg::getBlockInfo(bimg::TextureFormat::Enum(imageContainer.m_format) );
const uint32_t textureWidth = bx::uint32_max(blockInfo.blockWidth, imageContainer.m_width >>startLod);
const uint32_t textureHeight = bx::uint32_max(blockInfo.blockHeight, imageContainer.m_height>>startLod);
const uint16_t numLayers = imageContainer.m_numLayers;
m_flags = _flags;
m_width = textureWidth;
m_height = textureHeight;
m_depth = 1 < imageContainer.m_depth
? imageContainer.m_depth
: imageContainer.m_numLayers
;
m_requestedFormat = uint8_t(imageContainer.m_format);
m_textureFormat = uint8_t(getViableTextureFormat(imageContainer) );
const bool convert = m_textureFormat != m_requestedFormat;
const uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_textureFormat) );
if (imageContainer.m_cubeMap)
{
m_type = TextureCube;
}
else if (imageContainer.m_depth > 1)
{
m_type = Texture3D;
}
else
{
m_type = Texture2D;
}
m_numMips = numMips;
const uint16_t numSides = numLayers * (imageContainer.m_cubeMap ? 6 : 1);
const uint32_t numSrd = numSides * numMips;
D3D11_SUBRESOURCE_DATA* srd = (D3D11_SUBRESOURCE_DATA*)alloca(numSrd*sizeof(D3D11_SUBRESOURCE_DATA) );
uint32_t kk = 0;
const bool compressed = bimg::isCompressed(bimg::TextureFormat::Enum(m_textureFormat) );
const bool swizzle = TextureFormat::BGRA8 == m_textureFormat && 0 != (m_flags&BGFX_TEXTURE_COMPUTE_WRITE);
BX_TRACE("Texture %3d: %s (requested: %s), layers %d, %dx%d%s%s%s."
, getHandle()
, getName( (TextureFormat::Enum)m_textureFormat)
, getName( (TextureFormat::Enum)m_requestedFormat)
, numLayers
, textureWidth
, textureHeight
, imageContainer.m_cubeMap ? "x6" : ""
, 0 != (m_flags&BGFX_TEXTURE_RT_MASK) ? " (render target)" : ""
, swizzle ? " (swizzle BGRA8 -> RGBA8)" : ""
);
for (uint16_t side = 0; side < numSides; ++side)
{
for (uint8_t lod = 0, num = numMips; lod < num; ++lod)
{
bimg::ImageMip mip;
if (bimg::imageGetRawData(imageContainer, side, lod+startLod, _mem->data, _mem->size, mip) )
{
srd[kk].pSysMem = mip.m_data;
if (convert)
{
uint32_t srcpitch = mip.m_width*bpp/8;
uint8_t* temp = (uint8_t*)BX_ALLOC(g_allocator, mip.m_width*mip.m_height*bpp/8);
bimg::imageDecodeToBgra8(g_allocator, temp, mip.m_data, mip.m_width, mip.m_height, srcpitch, mip.m_format);
srd[kk].pSysMem = temp;
srd[kk].SysMemPitch = srcpitch;
}
else if (compressed)
{
srd[kk].SysMemPitch = (mip.m_width /blockInfo.blockWidth )*mip.m_blockSize;
srd[kk].SysMemSlicePitch = (mip.m_height/blockInfo.blockHeight)*srd[kk].SysMemPitch;
}
else
{
srd[kk].SysMemPitch = mip.m_width*mip.m_bpp/8;
}
srd[kk].SysMemSlicePitch = mip.m_height*srd[kk].SysMemPitch;
++kk;
}
}
}
const bool writeOnly = 0 != (m_flags&(BGFX_TEXTURE_RT_WRITE_ONLY|BGFX_TEXTURE_READ_BACK) );
const bool computeWrite = 0 != (m_flags&BGFX_TEXTURE_COMPUTE_WRITE);
const bool renderTarget = 0 != (m_flags&BGFX_TEXTURE_RT_MASK);
const bool srgb = 0 != (m_flags&BGFX_TEXTURE_SRGB);
const bool blit = 0 != (m_flags&BGFX_TEXTURE_BLIT_DST);
const bool readBack = 0 != (m_flags&BGFX_TEXTURE_READ_BACK);
const uint32_t msaaQuality = bx::uint32_satsub( (m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT, 1);
const DXGI_SAMPLE_DESC& msaa = s_msaa[msaaQuality];
const bool msaaSample = true
&& 1 < msaa.Count
&& 0 != (m_flags&BGFX_TEXTURE_MSAA_SAMPLE)
&& !writeOnly
;
const bool needResolve = true
&& 1 < msaa.Count
&& 0 == (m_flags&BGFX_TEXTURE_MSAA_SAMPLE)
&& !writeOnly
;
D3D11_SHADER_RESOURCE_VIEW_DESC srvd;
bx::memSet(&srvd, 0, sizeof(srvd) );
DXGI_FORMAT format = DXGI_FORMAT_UNKNOWN;
if (swizzle)
{
format = srgb ? DXGI_FORMAT_R8G8B8A8_UNORM_SRGB : DXGI_FORMAT_R8G8B8A8_UNORM;
srvd.Format = format;
}
else if (srgb)
{
format = s_textureFormat[m_textureFormat].m_fmtSrgb;
srvd.Format = format;
BX_WARN(format != DXGI_FORMAT_UNKNOWN, "sRGB not supported for texture format %d", m_textureFormat);
}
if (format == DXGI_FORMAT_UNKNOWN)
{
// not swizzled and not sRGB, or sRGB unsupported
format = s_textureFormat[m_textureFormat].m_fmt;
srvd.Format = getSrvFormat();
}
const bool directAccess = s_renderD3D11->m_directAccessSupport
&& !renderTarget
&& !readBack
&& !blit
&& !writeOnly
;
switch (m_type)
{
case Texture2D:
case TextureCube:
{
D3D11_TEXTURE2D_DESC desc = {};
desc.Width = textureWidth;
desc.Height = textureHeight;
desc.MipLevels = numMips;
desc.ArraySize = numSides;
desc.Format = format;
desc.SampleDesc = msaa;
desc.Usage = kk == 0 || blit ? D3D11_USAGE_DEFAULT : D3D11_USAGE_IMMUTABLE;
desc.BindFlags = writeOnly ? 0 : D3D11_BIND_SHADER_RESOURCE;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
if (bimg::isDepth(bimg::TextureFormat::Enum(m_textureFormat) ) )
{
desc.BindFlags |= D3D11_BIND_DEPTH_STENCIL;
desc.Usage = D3D11_USAGE_DEFAULT;
}
else if (renderTarget)
{
desc.BindFlags |= D3D11_BIND_RENDER_TARGET;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.MiscFlags |= 0
| (1 < numMips ? D3D11_RESOURCE_MISC_GENERATE_MIPS : 0)
;
}
if (computeWrite)
{
desc.BindFlags |= D3D11_BIND_UNORDERED_ACCESS;
desc.Usage = D3D11_USAGE_DEFAULT;
}
if (readBack)
{
desc.BindFlags = 0;
desc.Usage = D3D11_USAGE_STAGING;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
}
if (imageContainer.m_cubeMap)
{
desc.MiscFlags |= D3D11_RESOURCE_MISC_TEXTURECUBE;
if (1 < numLayers)
{
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBEARRAY;
srvd.TextureCubeArray.MipLevels = numMips;
srvd.TextureCubeArray.NumCubes = numLayers;
}
else
{
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBE;
srvd.TextureCube.MipLevels = numMips;
}
}
else
{
if (msaaSample)
{
if (1 < numLayers)
{
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2DMSARRAY;
srvd.Texture2DMSArray.ArraySize = numLayers;
}
else
{
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2DMS;
}
}
else
{
if (1 < numLayers)
{
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2DARRAY;
srvd.Texture2DArray.MipLevels = numMips;
srvd.Texture2DArray.ArraySize = numLayers;
}
else
{
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2D;
srvd.Texture2D.MipLevels = numMips;
}
}
}
if (needResolve)
{
DX_CHECK(s_renderD3D11->m_device->CreateTexture2D(&desc, NULL, &m_rt2d) );
desc.BindFlags &= ~(D3D11_BIND_RENDER_TARGET|D3D11_BIND_DEPTH_STENCIL);
desc.SampleDesc = s_msaa[0];
}
if (directAccess)
{
directAccessPtr = m_dar.createTexture2D(&desc, kk == 0 ? NULL : srd, &m_texture2d);
}
else
{
DX_CHECK(s_renderD3D11->m_device->CreateTexture2D(&desc, kk == 0 ? NULL : srd, &m_texture2d) );
}
}
break;
case Texture3D:
{
D3D11_TEXTURE3D_DESC desc = {};
desc.Width = textureWidth;
desc.Height = textureHeight;
desc.Depth = imageContainer.m_depth;
desc.MipLevels = imageContainer.m_numMips;
desc.Format = format;
desc.Usage = kk == 0 || blit ? D3D11_USAGE_DEFAULT : D3D11_USAGE_IMMUTABLE;
desc.BindFlags = D3D11_BIND_SHADER_RESOURCE;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
if (renderTarget)
{
desc.BindFlags |= D3D11_BIND_RENDER_TARGET;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.MiscFlags |= 0
| (1 < numMips ? D3D11_RESOURCE_MISC_GENERATE_MIPS : 0)
;
}
if (computeWrite)
{
desc.BindFlags |= D3D11_BIND_UNORDERED_ACCESS;
desc.Usage = D3D11_USAGE_DEFAULT;
}
if (readBack)
{
desc.BindFlags = 0;
desc.Usage = D3D11_USAGE_STAGING;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
}
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE3D;
srvd.Texture3D.MipLevels = numMips;
if (directAccess)
{
directAccessPtr = m_dar.createTexture3D(&desc, kk == 0 ? NULL : srd, &m_texture3d);
}
else
{
DX_CHECK(s_renderD3D11->m_device->CreateTexture3D(&desc, kk == 0 ? NULL : srd, &m_texture3d) );
}
}
break;
}
if (!writeOnly)
{
DX_CHECK(s_renderD3D11->m_device->CreateShaderResourceView(m_ptr, &srvd, &m_srv) );
}
if (computeWrite)
{
DX_CHECK(s_renderD3D11->m_device->CreateUnorderedAccessView(m_ptr, NULL, &m_uav) );
}
if (convert
&& 0 != kk)
{
kk = 0;
for (uint16_t side = 0; side < numSides; ++side)
{
for (uint32_t lod = 0, num = numMips; lod < num; ++lod)
{
BX_FREE(g_allocator, const_cast<void*>(srd[kk].pSysMem) );
++kk;
}
}
}
}
return directAccessPtr;
}
void TextureD3D11::destroy()
{
m_dar.destroy();
s_renderD3D11->m_srvUavLru.invalidateWithParent(getHandle().idx);
DX_RELEASE(m_rt, 0);
DX_RELEASE(m_srv, 0);
DX_RELEASE(m_uav, 0);
if (0 == (m_flags & BGFX_SAMPLER_INTERNAL_SHARED) )
{
DX_RELEASE(m_ptr, 0);
}
}
void TextureD3D11::overrideInternal(uintptr_t _ptr)
{
destroy();
m_flags |= BGFX_SAMPLER_INTERNAL_SHARED;
m_ptr = (ID3D11Resource*)_ptr;
s_renderD3D11->m_device->CreateShaderResourceView(m_ptr, NULL, &m_srv);
}
void TextureD3D11::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem)
{
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
D3D11_BOX box;
box.left = _rect.m_x;
box.top = _rect.m_y;
box.right = box.left + _rect.m_width;
box.bottom = box.top + _rect.m_height;
uint32_t layer = 0;
if (TextureD3D11::Texture3D == m_type)
{
box.front = _z;
box.back = box.front + _depth;
}
else
{
layer = _z * (TextureD3D11::TextureCube == m_type ? 6 : 1);
box.front = 0;
box.back = 1;
}
const uint32_t subres = _mip + ( (layer + _side) * m_numMips);
const bool depth = bimg::isDepth(bimg::TextureFormat::Enum(m_textureFormat) );
const uint32_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_textureFormat) );
const uint32_t rectpitch = _rect.m_width*bpp/8;
const uint32_t srcpitch = UINT16_MAX == _pitch ? rectpitch : _pitch;
const uint32_t slicepitch = rectpitch*_rect.m_height;
const bool convert = m_textureFormat != m_requestedFormat;
uint8_t* data = _mem->data;
uint8_t* temp = NULL;
if (convert)
{
temp = (uint8_t*)BX_ALLOC(g_allocator, slicepitch);
bimg::imageDecodeToBgra8(g_allocator, temp, data, _rect.m_width, _rect.m_height, srcpitch, bimg::TextureFormat::Enum(m_requestedFormat) );
data = temp;
}
deviceCtx->UpdateSubresource(
m_ptr
, subres
, depth ? NULL : &box
, data
, srcpitch
, TextureD3D11::Texture3D == m_type ? slicepitch : 0
);
if (NULL != temp)
{
BX_FREE(g_allocator, temp);
}
}
void TextureD3D11::commit(uint8_t _stage, uint32_t _flags, const float _palette[][4])
{
TextureStage& ts = s_renderD3D11->m_textureStage;
if (0 != (_flags & BGFX_SAMPLER_SAMPLE_STENCIL) )
{
ts.m_srv[_stage] = s_renderD3D11->getCachedSrv(
TextureHandle{ uint16_t(this - s_renderD3D11->m_textures) }
, 0
, false
, true
);
}
else
{
ts.m_srv[_stage] = m_srv;
}
const uint32_t flags = 0 == (BGFX_SAMPLER_INTERNAL_DEFAULT & _flags)
? _flags
: uint32_t(m_flags)
;
uint32_t index = (flags & BGFX_SAMPLER_BORDER_COLOR_MASK) >> BGFX_SAMPLER_BORDER_COLOR_SHIFT;
ts.m_sampler[_stage] = s_renderD3D11->getSamplerState(flags
, _palette[index])
;
}
void TextureD3D11::resolve() const
{
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
const bool needResolve = NULL != m_rt;
if (needResolve)
{
deviceCtx->ResolveSubresource(m_texture2d, 0, m_rt, 0, s_textureFormat[m_textureFormat].m_fmt);
}
const bool renderTarget = 0 != (m_flags&BGFX_TEXTURE_RT_MASK);
if (renderTarget
&& 1 < m_numMips)
{
deviceCtx->GenerateMips(m_srv);
}
}
TextureHandle TextureD3D11::getHandle() const
{
TextureHandle handle = { (uint16_t)(this - s_renderD3D11->m_textures) };
return handle;
}
DXGI_FORMAT TextureD3D11::getSrvFormat() const
{
if (bimg::isDepth(bimg::TextureFormat::Enum(m_textureFormat) ) )
{
return s_textureFormat[m_textureFormat].m_fmtSrv;
}
return 0 != (m_flags&BGFX_TEXTURE_SRGB)
? s_textureFormat[m_textureFormat].m_fmtSrgb
: s_textureFormat[m_textureFormat].m_fmt
;
}
void FrameBufferD3D11::create(uint8_t _num, const Attachment* _attachment)
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_rtv); ++ii)
{
m_rtv[ii] = NULL;
}
m_dsv = NULL;
m_swapChain = NULL;
m_denseIdx = UINT16_MAX;
m_numTh = _num;
m_needPresent = false;
bx::memCopy(m_attachment, _attachment, _num*sizeof(Attachment) );
postReset();
}
void FrameBufferD3D11::create(uint16_t _denseIdx, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _format, TextureFormat::Enum _depthFormat)
{
SwapChainDesc scd;
bx::memCopy(&scd, &s_renderD3D11->m_scd, sizeof(SwapChainDesc) );
scd.format = TextureFormat::Count == _format ? scd.format : s_textureFormat[_format].m_fmt;
scd.width = _width;
scd.height = _height;
scd.nwh = _nwh;
scd.ndt = NULL;
ID3D11Device* device = s_renderD3D11->m_device;
HRESULT hr = s_renderD3D11->m_dxgi.createSwapChain(device
, scd
, &m_swapChain
);
BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Failed to create swap chain.");
ID3D11Resource* ptr;
DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&ptr) );
DX_CHECK(device->CreateRenderTargetView(ptr, NULL, &m_rtv[0]) );
DX_RELEASE(ptr, 0);
DXGI_FORMAT fmtDsv = bimg::isDepth(bimg::TextureFormat::Enum(_depthFormat) )
? s_textureFormat[_depthFormat].m_fmtDsv
: DXGI_FORMAT_D24_UNORM_S8_UINT
;
D3D11_TEXTURE2D_DESC dsd;
dsd.Width = scd.width;
dsd.Height = scd.height;
dsd.MipLevels = 1;
dsd.ArraySize = 1;
dsd.Format = fmtDsv;
dsd.SampleDesc = scd.sampleDesc;
dsd.Usage = D3D11_USAGE_DEFAULT;
dsd.BindFlags = D3D11_BIND_DEPTH_STENCIL;
dsd.CPUAccessFlags = 0;
dsd.MiscFlags = 0;
ID3D11Texture2D* depthStencil;
DX_CHECK(device->CreateTexture2D(&dsd, NULL, &depthStencil) );
DX_CHECK(device->CreateDepthStencilView(depthStencil, NULL, &m_dsv) );
DX_RELEASE(depthStencil, 0);
m_srv[0] = NULL;
m_nwh = _nwh;
m_denseIdx = _denseIdx;
m_num = 1;
}
uint16_t FrameBufferD3D11::destroy()
{
preReset(true);
DX_RELEASE(m_swapChain, 0);
m_num = 0;
m_nwh = NULL;
m_numTh = 0;
m_needPresent = false;
uint16_t denseIdx = m_denseIdx;
m_denseIdx = UINT16_MAX;
return denseIdx;
}
void FrameBufferD3D11::preReset(bool _force)
{
if (0 < m_numTh
|| _force)
{
for (uint32_t ii = 0, num = m_num; ii < num; ++ii)
{
DX_RELEASE(m_srv[ii], 0);
DX_RELEASE(m_rtv[ii], 0);
}
DX_RELEASE(m_dsv, 0);
}
}
void FrameBufferD3D11::postReset()
{
m_width = 0;
m_height = 0;
if (0 < m_numTh)
{
m_num = 0;
for (uint32_t ii = 0; ii < m_numTh; ++ii)
{
TextureHandle handle = m_attachment[ii].handle;
if (isValid(handle) )
{
const TextureD3D11& texture = s_renderD3D11->m_textures[handle.idx];
if (0 == m_width)
{
switch (texture.m_type)
{
case TextureD3D11::Texture2D:
case TextureD3D11::TextureCube:
{
D3D11_TEXTURE2D_DESC desc;
texture.m_texture2d->GetDesc(&desc);
m_width = desc.Width;
m_height = desc.Height;
}
break;
case TextureD3D11::Texture3D:
{
D3D11_TEXTURE3D_DESC desc;
texture.m_texture3d->GetDesc(&desc);
m_width = desc.Width;
m_height = desc.Height;
}
break;
}
}
const uint32_t msaaQuality = bx::uint32_satsub( (texture.m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT, 1);
const DXGI_SAMPLE_DESC& msaa = s_msaa[msaaQuality];
if (bimg::isDepth(bimg::TextureFormat::Enum(texture.m_textureFormat) ) )
{
BX_CHECK(NULL == m_dsv, "Frame buffer already has depth-stencil attached.");
switch (texture.m_type)
{
default:
case TextureD3D11::Texture2D:
{
D3D11_DEPTH_STENCIL_VIEW_DESC dsvDesc;
dsvDesc.Format = s_textureFormat[texture.m_textureFormat].m_fmtDsv;
dsvDesc.ViewDimension = 1 < msaa.Count
? D3D11_DSV_DIMENSION_TEXTURE2DMS
: D3D11_DSV_DIMENSION_TEXTURE2D
;
dsvDesc.Flags = 0;
dsvDesc.Texture2D.MipSlice = m_attachment[ii].mip;
DX_CHECK(s_renderD3D11->m_device->CreateDepthStencilView(
NULL == texture.m_rt ? texture.m_ptr : texture.m_rt
, &dsvDesc
, &m_dsv
) );
}
break;
case TextureD3D11::TextureCube:
{
D3D11_DEPTH_STENCIL_VIEW_DESC dsvDesc;
dsvDesc.Format = s_textureFormat[texture.m_textureFormat].m_fmtDsv;
if (1 < msaa.Count)
{
dsvDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2DMSARRAY;
dsvDesc.Texture2DMSArray.ArraySize = 1;
dsvDesc.Texture2DMSArray.FirstArraySlice = m_attachment[ii].layer;
}
else
{
dsvDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2DARRAY;
dsvDesc.Texture2DArray.ArraySize = 1;
dsvDesc.Texture2DArray.FirstArraySlice = m_attachment[ii].layer;
dsvDesc.Texture2DArray.MipSlice = m_attachment[ii].mip;
}
dsvDesc.Flags = 0;
DX_CHECK(s_renderD3D11->m_device->CreateDepthStencilView(texture.m_ptr, &dsvDesc, &m_dsv) );
}
break;
}
}
else
{
D3D11_RENDER_TARGET_VIEW_DESC desc;
desc.Format = texture.getSrvFormat();
switch (texture.m_type)
{
default:
case TextureD3D11::Texture2D:
if (1 < msaa.Count)
{
if (1 < texture.m_depth)
{
desc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE2DMSARRAY;
desc.Texture2DMSArray.FirstArraySlice = m_attachment[ii].layer;
desc.Texture2DMSArray.ArraySize = 1;
}
else
{
desc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE2DMS;
}
}
else
{
if (1 < texture.m_depth)
{
desc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE2DARRAY;
desc.Texture2DArray.FirstArraySlice = m_attachment[ii].layer;
desc.Texture2DArray.ArraySize = 1;
desc.Texture2DArray.MipSlice = m_attachment[ii].mip;
}
else
{
desc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE2D;
desc.Texture2D.MipSlice = m_attachment[ii].mip;
}
}
DX_CHECK(s_renderD3D11->m_device->CreateRenderTargetView(
NULL == texture.m_rt ? texture.m_ptr : texture.m_rt
, &desc
, &m_rtv[m_num]
) );
break;
case TextureD3D11::TextureCube:
if (1 < msaa.Count)
{
desc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE2DMSARRAY;
desc.Texture2DMSArray.ArraySize = 1;
desc.Texture2DMSArray.FirstArraySlice = m_attachment[ii].layer;
}
else
{
desc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE2DARRAY;
desc.Texture2DArray.ArraySize = 1;
desc.Texture2DArray.FirstArraySlice = m_attachment[ii].layer;
desc.Texture2DArray.MipSlice = m_attachment[ii].mip;
}
DX_CHECK(s_renderD3D11->m_device->CreateRenderTargetView(texture.m_ptr, &desc, &m_rtv[m_num]) );
break;
case TextureD3D11::Texture3D:
desc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE3D;
desc.Texture3D.MipSlice = m_attachment[ii].mip;
desc.Texture3D.WSize = 1;
desc.Texture3D.FirstWSlice = m_attachment[ii].layer;
DX_CHECK(s_renderD3D11->m_device->CreateRenderTargetView(texture.m_ptr, &desc, &m_rtv[m_num]) );
break;
}
DX_CHECK(s_renderD3D11->m_device->CreateShaderResourceView(texture.m_ptr, NULL, &m_srv[m_num]) );
m_num++;
}
}
}
}
}
void FrameBufferD3D11::resolve()
{
if (0 < m_numTh)
{
for (uint32_t ii = 0; ii < m_numTh; ++ii)
{
TextureHandle handle = m_attachment[ii].handle;
if (isValid(handle) )
{
const TextureD3D11& texture = s_renderD3D11->m_textures[handle.idx];
texture.resolve();
}
}
}
}
void FrameBufferD3D11::clear(const Clear& _clear, const float _palette[][4])
{
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
if (BGFX_CLEAR_COLOR & _clear.m_flags)
{
if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags)
{
for (uint32_t ii = 0, num = m_num; ii < num; ++ii)
{
uint8_t index = _clear.m_index[ii];
if (NULL != m_rtv[ii]
&& UINT8_MAX != index)
{
deviceCtx->ClearRenderTargetView(m_rtv[ii], _palette[index]);
}
}
}
else
{
float frgba[4] =
{
_clear.m_index[0]*1.0f/255.0f,
_clear.m_index[1]*1.0f/255.0f,
_clear.m_index[2]*1.0f/255.0f,
_clear.m_index[3]*1.0f/255.0f,
};
for (uint32_t ii = 0, num = m_num; ii < num; ++ii)
{
if (NULL != m_rtv[ii])
{
deviceCtx->ClearRenderTargetView(m_rtv[ii], frgba);
}
}
}
}
if (NULL != m_dsv
&& (BGFX_CLEAR_DEPTH|BGFX_CLEAR_STENCIL) & _clear.m_flags)
{
DWORD flags = 0;
flags |= (_clear.m_flags & BGFX_CLEAR_DEPTH) ? D3D11_CLEAR_DEPTH : 0;
flags |= (_clear.m_flags & BGFX_CLEAR_STENCIL) ? D3D11_CLEAR_STENCIL : 0;
deviceCtx->ClearDepthStencilView(m_dsv, flags, _clear.m_depth, _clear.m_stencil);
}
}
void FrameBufferD3D11::set()
{
s_renderD3D11->m_deviceCtx->OMSetRenderTargets(m_num, m_rtv, m_dsv);
m_needPresent = UINT16_MAX != m_denseIdx;
s_renderD3D11->m_currentColor = m_rtv[0];
s_renderD3D11->m_currentDepthStencil = m_dsv;
}
HRESULT FrameBufferD3D11::present(uint32_t _syncInterval)
{
if (m_needPresent)
{
HRESULT hr = m_swapChain->Present(_syncInterval, 0);
hr = !isLost(hr) ? S_OK : hr;
m_needPresent = false;
return hr;
}
return S_OK;
}
void TimerQueryD3D11::postReset()
{
ID3D11Device* device = s_renderD3D11->m_device;
D3D11_QUERY_DESC qd;
qd.MiscFlags = 0;
for (uint32_t ii = 0; ii < BX_COUNTOF(m_query); ++ii)
{
Query& query = m_query[ii];
query.m_ready = false;
qd.Query = D3D11_QUERY_TIMESTAMP_DISJOINT;
DX_CHECK(device->CreateQuery(&qd, &query.m_disjoint) );
qd.Query = D3D11_QUERY_TIMESTAMP;
DX_CHECK(device->CreateQuery(&qd, &query.m_begin) );
DX_CHECK(device->CreateQuery(&qd, &query.m_end) );
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_result); ++ii)
{
Result& result = m_result[ii];
result.reset();
}
m_control.reset();
}
void TimerQueryD3D11::preReset()
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_query); ++ii)
{
Query& query = m_query[ii];
DX_RELEASE(query.m_disjoint, 0);
DX_RELEASE(query.m_begin, 0);
DX_RELEASE(query.m_end, 0);
}
}
uint32_t TimerQueryD3D11::begin(uint32_t _resultIdx)
{
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
while (0 == m_control.reserve(1) )
{
update();
}
Result& result = m_result[_resultIdx];
++result.m_pending;
const uint32_t idx = m_control.m_current;
Query& query = m_query[idx];
query.m_resultIdx = _resultIdx;
query.m_ready = false;
deviceCtx->Begin(query.m_disjoint);
deviceCtx->End(query.m_begin);
m_control.commit(1);
return idx;
}
void TimerQueryD3D11::end(uint32_t _idx)
{
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
Query& query = m_query[_idx];
query.m_ready = true;
deviceCtx->End(query.m_end);
deviceCtx->End(query.m_disjoint);
while (update() )
{
}
}
bool TimerQueryD3D11::update()
{
if (0 != m_control.available() )
{
Query& query = m_query[m_control.m_read];
if (!query.m_ready)
{
return false;
}
uint64_t timeEnd;
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
HRESULT hr = deviceCtx->GetData(query.m_end, &timeEnd, sizeof(timeEnd), D3D11_ASYNC_GETDATA_DONOTFLUSH);
if (S_OK == hr
|| isLost(hr) )
{
m_control.consume(1);
struct D3D11_QUERY_DATA_TIMESTAMP_DISJOINT
{
UINT64 Frequency;
BOOL Disjoint;
};
D3D11_QUERY_DATA_TIMESTAMP_DISJOINT disjoint;
DX_CHECK(deviceCtx->GetData(query.m_disjoint, &disjoint, sizeof(disjoint), 0) );
uint64_t timeBegin;
DX_CHECK(deviceCtx->GetData(query.m_begin, &timeBegin, sizeof(timeBegin), 0) );
Result& result = m_result[query.m_resultIdx];
--result.m_pending;
result.m_frequency = disjoint.Frequency;
result.m_begin = timeBegin;
result.m_end = timeEnd;
return true;
}
}
return false;
}
void OcclusionQueryD3D11::postReset()
{
ID3D11Device* device = s_renderD3D11->m_device;
D3D11_QUERY_DESC desc;
desc.Query = D3D11_QUERY_OCCLUSION;
desc.MiscFlags = 0;
for (uint32_t ii = 0; ii < BX_COUNTOF(m_query); ++ii)
{
Query& query = m_query[ii];
DX_CHECK(device->CreateQuery(&desc, &query.m_ptr) );
}
}
void OcclusionQueryD3D11::preReset()
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_query); ++ii)
{
Query& query = m_query[ii];
DX_RELEASE(query.m_ptr, 0);
}
}
void OcclusionQueryD3D11::begin(Frame* _render, OcclusionQueryHandle _handle)
{
while (0 == m_control.reserve(1) )
{
resolve(_render, true);
}
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
Query& query = m_query[m_control.m_current];
deviceCtx->Begin(query.m_ptr);
query.m_handle = _handle;
}
void OcclusionQueryD3D11::end()
{
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
Query& query = m_query[m_control.m_current];
deviceCtx->End(query.m_ptr);
m_control.commit(1);
}
void OcclusionQueryD3D11::resolve(Frame* _render, bool _wait)
{
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
while (0 != m_control.available() )
{
Query& query = m_query[m_control.m_read];
if (isValid(query.m_handle) )
{
uint64_t result = 0;
HRESULT hr = deviceCtx->GetData(query.m_ptr, &result, sizeof(result), _wait ? 0 : D3D11_ASYNC_GETDATA_DONOTFLUSH);
if (S_FALSE == hr)
{
break;
}
_render->m_occlusion[query.m_handle.idx] = int32_t(result);
}
m_control.consume(1);
}
}
void OcclusionQueryD3D11::invalidate(OcclusionQueryHandle _handle)
{
const uint32_t size = m_control.m_size;
for (uint32_t ii = 0, num = m_control.available(); ii < num; ++ii)
{
Query& query = m_query[(m_control.m_read + ii) % size];
if (query.m_handle.idx == _handle.idx)
{
query.m_handle.idx = bgfx::kInvalidHandle;
}
}
}
void RendererContextD3D11::submitBlit(BlitState& _bs, uint16_t _view)
{
ID3D11DeviceContext* deviceCtx = m_deviceCtx;
while (_bs.hasItem(_view) )
{
const BlitItem& blit = _bs.advance();
const TextureD3D11& src = m_textures[blit.m_src.idx];
const TextureD3D11& dst = m_textures[blit.m_dst.idx];
uint32_t srcWidth = bx::uint32_min(src.m_width, blit.m_srcX + blit.m_width) - blit.m_srcX;
uint32_t srcHeight = bx::uint32_min(src.m_height, blit.m_srcY + blit.m_height) - blit.m_srcY;
uint32_t srcDepth = bx::uint32_min(src.m_depth, blit.m_srcZ + blit.m_depth) - blit.m_srcZ;
uint32_t dstWidth = bx::uint32_min(dst.m_width, blit.m_dstX + blit.m_width) - blit.m_dstX;
uint32_t dstHeight = bx::uint32_min(dst.m_height, blit.m_dstY + blit.m_height) - blit.m_dstY;
uint32_t dstDepth = bx::uint32_min(dst.m_depth, blit.m_dstZ + blit.m_depth) - blit.m_dstZ;
uint32_t width = bx::uint32_min(srcWidth, dstWidth);
uint32_t height = bx::uint32_min(srcHeight, dstHeight);
uint32_t depth = bx::uint32_min(srcDepth, dstDepth);
if (TextureD3D11::Texture3D == src.m_type)
{
D3D11_BOX box;
box.left = blit.m_srcX;
box.top = blit.m_srcY;
box.front = blit.m_srcZ;
box.right = blit.m_srcX + width;
box.bottom = blit.m_srcY + height;;
box.back = blit.m_srcZ + bx::uint32_imax(1, depth);
deviceCtx->CopySubresourceRegion(dst.m_ptr
, blit.m_dstMip
, blit.m_dstX
, blit.m_dstY
, blit.m_dstZ
, src.m_ptr
, blit.m_srcMip
, &box
);
}
else
{
bool depthStencil = bimg::isDepth(bimg::TextureFormat::Enum(src.m_textureFormat) );
BX_CHECK(!depthStencil
|| (width == src.m_width && height == src.m_height)
, "When blitting depthstencil surface, source resolution must match destination."
);
D3D11_BOX box;
box.left = blit.m_srcX;
box.top = blit.m_srcY;
box.front = 0;
box.right = blit.m_srcX + width;
box.bottom = blit.m_srcY + height;
box.back = 1;
const uint32_t srcZ = blit.m_srcZ;
const uint32_t dstZ = blit.m_dstZ;
deviceCtx->CopySubresourceRegion(dst.m_ptr
, dstZ*dst.m_numMips+blit.m_dstMip
, blit.m_dstX
, blit.m_dstY
, 0
, src.m_ptr
, srcZ*src.m_numMips+blit.m_srcMip
, depthStencil ? NULL : &box
);
}
}
}
void RendererContextD3D11::submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter)
{
if (m_lost
|| updateResolution(_render->m_resolution) )
{
return;
}
if (_render->m_capture)
{
renderDocTriggerCapture();
}
PIX_BEGINEVENT(D3DCOLOR_FRAME, L"rendererSubmit");
ID3D11DeviceContext* deviceCtx = m_deviceCtx;
int64_t timeBegin = bx::getHPCounter();
int64_t captureElapsed = 0;
uint32_t frameQueryIdx = UINT32_MAX;
if (m_timerQuerySupport)
{
frameQueryIdx = m_gpuTimer.begin(BGFX_CONFIG_MAX_VIEWS);
}
if (0 < _render->m_iboffset)
{
TransientIndexBuffer* ib = _render->m_transientIb;
m_indexBuffers[ib->handle.idx].update(0, _render->m_iboffset, ib->data, true);
}
if (0 < _render->m_vboffset)
{
TransientVertexBuffer* vb = _render->m_transientVb;
m_vertexBuffers[vb->handle.idx].update(0, _render->m_vboffset, vb->data, true);
}
_render->sort();
RenderDraw currentState;
currentState.clear();
currentState.m_stateFlags = BGFX_STATE_NONE;
currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE);
RenderBind currentBind;
currentBind.clear();
const bool hmdEnabled = false;
static ViewState viewState;
viewState.reset(_render, hmdEnabled);
bool wireframe = !!(_render->m_debug&BGFX_DEBUG_WIREFRAME);
bool scissorEnabled = false;
setDebugWireframe(wireframe);
uint16_t programIdx = kInvalidHandle;
SortKey key;
uint16_t view = UINT16_MAX;
FrameBufferHandle fbh = { BGFX_CONFIG_MAX_FRAME_BUFFERS };
BlitState bs(_render);
const uint64_t primType = _render->m_debug&BGFX_DEBUG_WIREFRAME ? BGFX_STATE_PT_LINES : 0;
uint8_t primIndex = uint8_t(primType >> BGFX_STATE_PT_SHIFT);
PrimInfo prim = s_primInfo[primIndex];
deviceCtx->IASetPrimitiveTopology(prim.m_type);
bool wasCompute = false;
bool viewHasScissor = false;
Rect viewScissorRect;
viewScissorRect.clear();
const uint32_t maxComputeBindings = g_caps.limits.maxComputeBindings;
uint32_t statsNumPrimsSubmitted[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumPrimsRendered[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumInstances[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumDrawIndirect[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumIndices = 0;
uint32_t statsKeyType[2] = {};
Profiler<TimerQueryD3D11> profiler(
_render
, m_gpuTimer
, s_viewName
, m_timerQuerySupport
);
m_occlusionQuery.resolve(_render);
if (0 == (_render->m_debug&BGFX_DEBUG_IFH) )
{
// reset the framebuffer to be the backbuffer; depending on the swap effect,
// if we don't do this we'll only see one frame of output and then nothing
setFrameBuffer(BGFX_INVALID_HANDLE, true, false);
bool viewRestart = false;
uint8_t eye = 0;
uint8_t restartState = 0;
viewState.m_rect = _render->m_view[0].m_rect;
int32_t numItems = _render->m_numRenderItems;
for (int32_t item = 0, restartItem = numItems; item < numItems || restartItem < numItems;)
{
const uint64_t encodedKey = _render->m_sortKeys[item];
const bool isCompute = key.decode(encodedKey, _render->m_viewRemap);
statsKeyType[isCompute]++;
const bool viewChanged = 0
|| key.m_view != view
|| item == numItems
;
const uint32_t itemIdx = _render->m_sortValues[item];
const RenderItem& renderItem = _render->m_renderItem[itemIdx];
const RenderBind& renderBind = _render->m_renderItemBind[itemIdx];
++item;
if (viewChanged)
{
if (1 == restartState)
{
restartState = 2;
item = restartItem;
restartItem = numItems;
view = UINT16_MAX;
continue;
}
view = key.m_view;
programIdx = kInvalidHandle;
if (_render->m_view[view].m_fbh.idx != fbh.idx)
{
fbh = _render->m_view[view].m_fbh;
setFrameBuffer(fbh);
}
viewRestart = ( (BGFX_VIEW_STEREO == (_render->m_view[view].m_flags & BGFX_VIEW_STEREO) ) );
viewRestart &= hmdEnabled;
if (viewRestart)
{
if (0 == restartState)
{
restartState = 1;
restartItem = item - 1;
}
eye = (restartState - 1) & 1;
restartState &= 1;
}
else
{
eye = 0;
}
PIX_ENDEVENT();
if (item > 1)
{
profiler.end();
}
profiler.begin(view);
viewState.m_rect = _render->m_view[view].m_rect;
if (viewRestart)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
wchar_t* viewNameW = s_viewNameW[view];
viewNameW[3] = L' ';
viewNameW[4] = eye ? L'R' : L'L';
PIX_BEGINEVENT(0 == ( (view*2+eye)&1)
? D3DCOLOR_VIEW_L
: D3DCOLOR_VIEW_R
, viewNameW
);
}
viewState.m_rect.m_x = eye * (viewState.m_rect.m_width+1)/2;
viewState.m_rect.m_width /= 2;
}
else
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
wchar_t* viewNameW = s_viewNameW[view];
viewNameW[3] = L' ';
viewNameW[4] = L' ';
PIX_BEGINEVENT(D3DCOLOR_VIEW, viewNameW);
}
}
const Rect& scissorRect = _render->m_view[view].m_scissor;
viewHasScissor = !scissorRect.isZero();
viewScissorRect = viewHasScissor ? scissorRect : viewState.m_rect;
D3D11_VIEWPORT vp;
vp.TopLeftX = viewState.m_rect.m_x;
vp.TopLeftY = viewState.m_rect.m_y;
vp.Width = viewState.m_rect.m_width;
vp.Height = viewState.m_rect.m_height;
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;
deviceCtx->RSSetViewports(1, &vp);
Clear& clr = _render->m_view[view].m_clear;
if (BGFX_CLEAR_NONE != (clr.m_flags & BGFX_CLEAR_MASK) )
{
clearQuad(_clearQuad, viewState.m_rect, clr, _render->m_colorPalette);
prim = s_primInfo[Topology::Count]; // Force primitive type update after clear quad.
}
submitBlit(bs, view);
}
if (isCompute)
{
if (!wasCompute)
{
wasCompute = true;
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
wchar_t* viewNameW = s_viewNameW[view];
viewNameW[3] = L'C';
PIX_ENDEVENT();
PIX_BEGINEVENT(D3DCOLOR_COMPUTE, viewNameW);
}
deviceCtx->IASetVertexBuffers(0, 2, s_zero.m_buffer, s_zero.m_zero, s_zero.m_zero);
deviceCtx->IASetIndexBuffer(NULL, DXGI_FORMAT_R16_UINT, 0);
deviceCtx->VSSetShaderResources(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, s_zero.m_srv);
deviceCtx->PSSetShaderResources(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, s_zero.m_srv);
deviceCtx->VSSetSamplers(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, s_zero.m_sampler);
deviceCtx->PSSetSamplers(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, s_zero.m_sampler);
}
const RenderCompute& compute = renderItem.compute;
if (0 != eye
&& BGFX_SUBMIT_EYE_LEFT == (compute.m_submitFlags&BGFX_SUBMIT_EYE_MASK) )
{
continue;
}
bool programChanged = false;
bool constantsChanged = compute.m_uniformBegin < compute.m_uniformEnd;
rendererUpdateUniforms(this, _render->m_uniformBuffer[compute.m_uniformIdx], compute.m_uniformBegin, compute.m_uniformEnd);
if (key.m_program != programIdx)
{
programIdx = key.m_program;
ProgramD3D11& program = m_program[key.m_program];
m_currentProgram = &program;
deviceCtx->CSSetShader(program.m_vsh->m_computeShader, NULL, 0);
deviceCtx->CSSetConstantBuffers(0, 1, &program.m_vsh->m_buffer);
programChanged =
constantsChanged = true;
}
if (kInvalidHandle != programIdx)
{
ProgramD3D11& program = m_program[programIdx];
if (constantsChanged)
{
UniformBuffer* vcb = program.m_vsh->m_constantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
}
viewState.setPredefined<4>(this, view, eye, program, _render, compute);
if (constantsChanged
|| program.m_numPredefined > 0)
{
commitShaderConstants();
}
}
BX_UNUSED(programChanged);
ID3D11UnorderedAccessView* uav[BGFX_MAX_COMPUTE_BINDINGS] = {};
ID3D11ShaderResourceView* srv[BGFX_MAX_COMPUTE_BINDINGS] = {};
ID3D11SamplerState* sampler[BGFX_MAX_COMPUTE_BINDINGS] = {};
for (uint32_t ii = 0; ii < maxComputeBindings; ++ii)
{
const Binding& bind = renderBind.m_bind[ii];
if (kInvalidHandle != bind.m_idx)
{
switch (bind.m_type)
{
case Binding::Image:
case Binding::Texture:
{
TextureD3D11& texture = m_textures[bind.m_idx];
if (Access::Read != bind.m_un.m_compute.m_access)
{
uav[ii] = 0 == bind.m_un.m_compute.m_mip
? texture.m_uav
: s_renderD3D11->getCachedUav(texture.getHandle(), bind.m_un.m_compute.m_mip)
;
}
else
{
srv[ii] = s_renderD3D11->getCachedSrv(texture.getHandle(), bind.m_un.m_compute.m_mip, true);
sampler[ii] = s_renderD3D11->getSamplerState(uint32_t(texture.m_flags), NULL);
}
}
break;
case Binding::IndexBuffer:
case Binding::VertexBuffer:
{
const BufferD3D11& buffer = Binding::IndexBuffer == bind.m_type
? m_indexBuffers[bind.m_idx]
: m_vertexBuffers[bind.m_idx]
;
if (Access::Read != bind.m_un.m_compute.m_access)
{
uav[ii] = buffer.m_uav;
}
else
{
srv[ii] = buffer.m_srv;
}
}
break;
}
}
}
if (BX_ENABLED(BGFX_CONFIG_DEBUG) )
{
// Quiet validation: Resource being set to CS UnorderedAccessView slot 0 is still bound on input!
deviceCtx->CSSetShaderResources(0, maxComputeBindings, s_zero.m_srv);
}
deviceCtx->CSSetUnorderedAccessViews(0, BX_COUNTOF(uav), uav, NULL);
deviceCtx->CSSetShaderResources(0, BX_COUNTOF(srv), srv);
deviceCtx->CSSetSamplers(0, BX_COUNTOF(sampler), sampler);
if (isValid(compute.m_indirectBuffer) )
{
const VertexBufferD3D11& vb = m_vertexBuffers[compute.m_indirectBuffer.idx];
ID3D11Buffer* ptr = vb.m_ptr;
uint32_t numDrawIndirect = UINT16_MAX == compute.m_numIndirect
? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE
: compute.m_numIndirect
;
uint32_t args = compute.m_startIndirect * BGFX_CONFIG_DRAW_INDIRECT_STRIDE;
for (uint32_t ii = 0; ii < numDrawIndirect; ++ii)
{
deviceCtx->DispatchIndirect(ptr, args);
args += BGFX_CONFIG_DRAW_INDIRECT_STRIDE;
}
}
else
{
deviceCtx->Dispatch(compute.m_numX, compute.m_numY, compute.m_numZ);
}
continue;
}
bool resetState = viewChanged || wasCompute;
if (wasCompute)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
wchar_t* viewNameW = s_viewNameW[view];
viewNameW[3] = L' ';
PIX_ENDEVENT();
PIX_BEGINEVENT(D3DCOLOR_DRAW, viewNameW);
}
programIdx = kInvalidHandle;
m_currentProgram = NULL;
invalidateCompute();
}
const RenderDraw& draw = renderItem.draw;
const bool hasOcclusionQuery = 0 != (draw.m_stateFlags & BGFX_STATE_INTERNAL_OCCLUSION_QUERY);
{
const bool occluded = true
&& isValid(draw.m_occlusionQuery)
&& !hasOcclusionQuery
&& !isVisible(_render, draw.m_occlusionQuery, 0 != (draw.m_submitFlags&BGFX_SUBMIT_INTERNAL_OCCLUSION_VISIBLE) )
;
if (occluded
|| _render->m_frameCache.isZeroArea(viewScissorRect, draw.m_scissor) )
{
if (resetState)
{
currentState.clear();
currentState.m_scissor = !draw.m_scissor;
currentBind.clear();
}
continue;
}
}
const uint64_t newFlags = draw.m_stateFlags;
uint64_t changedFlags = currentState.m_stateFlags ^ draw.m_stateFlags;
changedFlags |= currentState.m_rgba != draw.m_rgba ? BGFX_D3D11_BLEND_STATE_MASK : 0;
currentState.m_stateFlags = newFlags;
const uint64_t newStencil = draw.m_stencil;
uint64_t changedStencil = currentState.m_stencil ^ draw.m_stencil;
changedFlags |= 0 != changedStencil ? BGFX_D3D11_DEPTH_STENCIL_MASK : 0;
currentState.m_stencil = newStencil;
if (resetState)
{
wasCompute = false;
currentState.clear();
currentState.m_scissor = !draw.m_scissor;
changedFlags = BGFX_STATE_MASK;
changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK);
currentState.m_stateFlags = newFlags;
currentState.m_stencil = newStencil;
currentBind.clear();
setBlendState(newFlags);
setDepthStencilState(newFlags, packStencil(BGFX_STENCIL_DEFAULT, BGFX_STENCIL_DEFAULT) );
const uint64_t pt = newFlags&BGFX_STATE_PT_MASK;
primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT);
}
if (prim.m_type != s_primInfo[primIndex].m_type)
{
prim = s_primInfo[primIndex];
deviceCtx->IASetPrimitiveTopology(prim.m_type);
}
uint16_t scissor = draw.m_scissor;
if (currentState.m_scissor != scissor)
{
currentState.m_scissor = scissor;
if (UINT16_MAX == scissor)
{
scissorEnabled = viewHasScissor;
if (viewHasScissor)
{
D3D11_RECT rc;
rc.left = viewScissorRect.m_x;
rc.top = viewScissorRect.m_y;
rc.right = viewScissorRect.m_x + viewScissorRect.m_width;
rc.bottom = viewScissorRect.m_y + viewScissorRect.m_height;
deviceCtx->RSSetScissorRects(1, &rc);
}
}
else
{
Rect scissorRect;
scissorRect.setIntersect(viewScissorRect, _render->m_frameCache.m_rectCache.m_cache[scissor]);
scissorEnabled = true;
D3D11_RECT rc;
rc.left = scissorRect.m_x;
rc.top = scissorRect.m_y;
rc.right = scissorRect.m_x + scissorRect.m_width;
rc.bottom = scissorRect.m_y + scissorRect.m_height;
deviceCtx->RSSetScissorRects(1, &rc);
}
setRasterizerState(newFlags, wireframe, scissorEnabled);
}
if (BGFX_D3D11_DEPTH_STENCIL_MASK & changedFlags)
{
setDepthStencilState(newFlags, newStencil);
}
if (BGFX_D3D11_BLEND_STATE_MASK & changedFlags)
{
setBlendState(newFlags, draw.m_rgba);
currentState.m_rgba = draw.m_rgba;
}
if ( (0
| BGFX_STATE_CULL_MASK
| BGFX_STATE_ALPHA_REF_MASK
| BGFX_STATE_PT_MASK
| BGFX_STATE_POINT_SIZE_MASK
| BGFX_STATE_MSAA
| BGFX_STATE_LINEAA
| BGFX_STATE_CONSERVATIVE_RASTER
) & changedFlags)
{
if ( (0
| BGFX_STATE_CULL_MASK
| BGFX_STATE_MSAA
| BGFX_STATE_LINEAA
| BGFX_STATE_CONSERVATIVE_RASTER
) & changedFlags)
{
setRasterizerState(newFlags, wireframe, scissorEnabled);
}
if (BGFX_STATE_ALPHA_REF_MASK & changedFlags)
{
uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT;
viewState.m_alphaRef = ref/255.0f;
}
const uint64_t pt = newFlags&BGFX_STATE_PT_MASK;
primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT);
if (prim.m_type != s_primInfo[primIndex].m_type)
{
prim = s_primInfo[primIndex];
deviceCtx->IASetPrimitiveTopology(prim.m_type);
}
}
bool programChanged = false;
bool constantsChanged = draw.m_uniformBegin < draw.m_uniformEnd;
rendererUpdateUniforms(this, _render->m_uniformBuffer[draw.m_uniformIdx], draw.m_uniformBegin, draw.m_uniformEnd);
if (key.m_program != programIdx)
{
programIdx = key.m_program;
if (kInvalidHandle == programIdx)
{
m_currentProgram = NULL;
deviceCtx->VSSetShader(NULL, NULL, 0);
deviceCtx->PSSetShader(NULL, NULL, 0);
}
else
{
ProgramD3D11& program = m_program[programIdx];
m_currentProgram = &program;
const ShaderD3D11* vsh = program.m_vsh;
deviceCtx->VSSetShader(vsh->m_vertexShader, NULL, 0);
deviceCtx->VSSetConstantBuffers(0, 1, &vsh->m_buffer);
const ShaderD3D11* fsh = program.m_fsh;
if (NULL != fsh
&& (NULL != m_currentColor || fsh->m_hasDepthOp) )
{
deviceCtx->PSSetShader(fsh->m_pixelShader, NULL, 0);
deviceCtx->PSSetConstantBuffers(0, 1, &fsh->m_buffer);
}
else
{
deviceCtx->PSSetShader(NULL, NULL, 0);
}
}
programChanged =
constantsChanged = true;
}
if (kInvalidHandle != programIdx)
{
ProgramD3D11& program = m_program[programIdx];
if (constantsChanged)
{
UniformBuffer* vcb = program.m_vsh->m_constantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
if (NULL != program.m_fsh)
{
UniformBuffer* fcb = program.m_fsh->m_constantBuffer;
if (NULL != fcb)
{
commit(*fcb);
}
}
}
viewState.setPredefined<4>(this, view, eye, program, _render, draw);
if (constantsChanged
|| program.m_numPredefined > 0)
{
commitShaderConstants();
}
}
{
uint32_t changes = 0;
for (uint8_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage)
{
const Binding& bind = renderBind.m_bind[stage];
Binding& current = currentBind.m_bind[stage];
if (current.m_idx != bind.m_idx
|| current.m_type != bind.m_type
|| current.m_un.m_draw.m_textureFlags != bind.m_un.m_draw.m_textureFlags
|| programChanged)
{
if (kInvalidHandle != bind.m_idx)
{
switch (bind.m_type)
{
case Binding::Texture:
{
TextureD3D11& texture = m_textures[bind.m_idx];
texture.commit(stage, bind.m_un.m_draw.m_textureFlags, _render->m_colorPalette);
}
break;
case Binding::IndexBuffer:
case Binding::VertexBuffer:
{
const BufferD3D11& buffer = Binding::IndexBuffer == bind.m_type
? m_indexBuffers[bind.m_idx]
: m_vertexBuffers[bind.m_idx]
;
m_textureStage.m_srv[stage] = buffer.m_srv;
m_textureStage.m_sampler[stage] = NULL;
}
break;
}
}
else
{
m_textureStage.m_srv[stage] = NULL;
m_textureStage.m_sampler[stage] = NULL;
}
++changes;
}
current = bind;
}
if (0 < changes)
{
commitTextureStage();
}
}
bool vertexStreamChanged = hasVertexStreamChanged(currentState, draw);
if (programChanged
|| vertexStreamChanged)
{
currentState.m_streamMask = draw.m_streamMask;
currentState.m_instanceDataBuffer.idx = draw.m_instanceDataBuffer.idx;
currentState.m_instanceDataOffset = draw.m_instanceDataOffset;
currentState.m_instanceDataStride = draw.m_instanceDataStride;
ID3D11Buffer* buffers[BGFX_CONFIG_MAX_VERTEX_STREAMS];
uint32_t strides[BGFX_CONFIG_MAX_VERTEX_STREAMS];
uint32_t offsets[BGFX_CONFIG_MAX_VERTEX_STREAMS];
const VertexDecl* decls[BGFX_CONFIG_MAX_VERTEX_STREAMS];
uint32_t numVertices = draw.m_numVertices;
uint8_t numStreams = 0;
if (UINT8_MAX != draw.m_streamMask)
{
for (uint32_t idx = 0, streamMask = draw.m_streamMask, ntz = bx::uint32_cnttz(streamMask)
; 0 != streamMask
; streamMask >>= 1, idx += 1, ntz = bx::uint32_cnttz(streamMask), ++numStreams
)
{
streamMask >>= ntz;
idx += ntz;
currentState.m_stream[idx].m_decl = draw.m_stream[idx].m_decl;
currentState.m_stream[idx].m_handle = draw.m_stream[idx].m_handle;
currentState.m_stream[idx].m_startVertex = draw.m_stream[idx].m_startVertex;
const uint16_t handle = draw.m_stream[idx].m_handle.idx;
const VertexBufferD3D11& vb = m_vertexBuffers[handle];
const uint16_t decl = !isValid(vb.m_decl) ? draw.m_stream[idx].m_decl.idx : vb.m_decl.idx;
const VertexDecl& vertexDecl = m_vertexDecls[decl];
const uint32_t stride = vertexDecl.m_stride;
buffers[numStreams] = vb.m_ptr;
strides[numStreams] = stride;
offsets[numStreams] = draw.m_stream[idx].m_startVertex * stride;
decls[numStreams] = &vertexDecl;
numVertices = bx::uint32_min(UINT32_MAX == draw.m_numVertices
? vb.m_size/stride
: draw.m_numVertices
, numVertices
);
}
}
currentState.m_numVertices = numVertices;
if (0 < numStreams)
{
deviceCtx->IASetVertexBuffers(0, numStreams, buffers, strides, offsets);
if (isValid(draw.m_instanceDataBuffer) )
{
const VertexBufferD3D11& inst = m_vertexBuffers[draw.m_instanceDataBuffer.idx];
const uint32_t instStride = draw.m_instanceDataStride;
deviceCtx->IASetVertexBuffers(numStreams, 1, &inst.m_ptr, &instStride, &draw.m_instanceDataOffset);
setInputLayout(numStreams, decls, m_program[programIdx], uint16_t(instStride/16) );
}
else
{
deviceCtx->IASetVertexBuffers(numStreams, 1, s_zero.m_buffer, s_zero.m_zero, s_zero.m_zero);
setInputLayout(numStreams, decls, m_program[programIdx], 0);
}
}
else
{
deviceCtx->IASetVertexBuffers(0, 1, s_zero.m_buffer, s_zero.m_zero, s_zero.m_zero);
if (isValid(draw.m_instanceDataBuffer) )
{
const VertexBufferD3D11& inst = m_vertexBuffers[draw.m_instanceDataBuffer.idx];
const uint32_t instStride = draw.m_instanceDataStride;
deviceCtx->IASetVertexBuffers(0, 1, &inst.m_ptr, &instStride, &draw.m_instanceDataOffset);
setInputLayout(0, NULL, m_program[programIdx], uint16_t(instStride/16) );
}
else
{
deviceCtx->IASetInputLayout(NULL);
}
}
}
if (currentState.m_indexBuffer.idx != draw.m_indexBuffer.idx)
{
currentState.m_indexBuffer = draw.m_indexBuffer;
uint16_t handle = draw.m_indexBuffer.idx;
if (kInvalidHandle != handle)
{
const IndexBufferD3D11& ib = m_indexBuffers[handle];
deviceCtx->IASetIndexBuffer(ib.m_ptr
, 0 == (ib.m_flags & BGFX_BUFFER_INDEX32) ? DXGI_FORMAT_R16_UINT : DXGI_FORMAT_R32_UINT
, 0
);
}
else
{
deviceCtx->IASetIndexBuffer(NULL, DXGI_FORMAT_R16_UINT, 0);
}
}
if (0 != currentState.m_streamMask)
{
uint32_t numVertices = currentState.m_numVertices;
uint32_t numIndices = 0;
uint32_t numPrimsSubmitted = 0;
uint32_t numInstances = 0;
uint32_t numPrimsRendered = 0;
uint32_t numDrawIndirect = 0;
if (hasOcclusionQuery)
{
m_occlusionQuery.begin(_render, draw.m_occlusionQuery);
}
if (isValid(draw.m_indirectBuffer) )
{
const VertexBufferD3D11& vb = m_vertexBuffers[draw.m_indirectBuffer.idx];
ID3D11Buffer* ptr = vb.m_ptr;
if (isValid(draw.m_indexBuffer) )
{
numDrawIndirect = UINT16_MAX == draw.m_numIndirect
? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE
: draw.m_numIndirect
;
multiDrawIndexedInstancedIndirect(
numDrawIndirect
, ptr
, draw.m_startIndirect * BGFX_CONFIG_DRAW_INDIRECT_STRIDE
, BGFX_CONFIG_DRAW_INDIRECT_STRIDE
);
}
else
{
numDrawIndirect = UINT16_MAX == draw.m_numIndirect
? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE
: draw.m_numIndirect
;
multiDrawInstancedIndirect(
numDrawIndirect
, ptr
, draw.m_startIndirect * BGFX_CONFIG_DRAW_INDIRECT_STRIDE
, BGFX_CONFIG_DRAW_INDIRECT_STRIDE
);
}
}
else
{
if (isValid(draw.m_indexBuffer) )
{
if (UINT32_MAX == draw.m_numIndices)
{
const IndexBufferD3D11& ib = m_indexBuffers[draw.m_indexBuffer.idx];
const uint32_t indexSize = 0 == (ib.m_flags & BGFX_BUFFER_INDEX32) ? 2 : 4;
numIndices = ib.m_size/indexSize;
numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
if (numInstances > 1)
{
deviceCtx->DrawIndexedInstanced(numIndices
, draw.m_numInstances
, 0
, 0
, 0
);
}
else
{
deviceCtx->DrawIndexed(numIndices
, 0
, 0
);
}
}
else if (prim.m_min <= draw.m_numIndices)
{
numIndices = draw.m_numIndices;
numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
if (numInstances > 1)
{
deviceCtx->DrawIndexedInstanced(numIndices
, draw.m_numInstances
, draw.m_startIndex
, 0
, 0
);
}
else
{
deviceCtx->DrawIndexed(numIndices
, draw.m_startIndex
, 0
);
}
}
}
else
{
numPrimsSubmitted = numVertices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
if (numInstances > 1)
{
deviceCtx->DrawInstanced(numVertices
, draw.m_numInstances
, 0
, 0
);
}
else
{
deviceCtx->Draw(numVertices
, 0
);
}
}
if (hasOcclusionQuery)
{
m_occlusionQuery.end();
}
}
statsNumPrimsSubmitted[primIndex] += numPrimsSubmitted;
statsNumPrimsRendered[primIndex] += numPrimsRendered;
statsNumInstances[primIndex] += numInstances;
statsNumDrawIndirect[primIndex] += numDrawIndirect;
statsNumIndices += numIndices;
}
}
if (wasCompute)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
wchar_t* viewNameW = s_viewNameW[view];
viewNameW[3] = L'C';
PIX_ENDEVENT();
PIX_BEGINEVENT(D3DCOLOR_DRAW, viewNameW);
}
invalidateCompute();
}
submitBlit(bs, BGFX_CONFIG_MAX_VIEWS);
if (0 < _render->m_numRenderItems)
{
if (0 != (m_resolution.reset & BGFX_RESET_FLUSH_AFTER_RENDER) )
{
deviceCtx->Flush();
}
captureElapsed = -bx::getHPCounter();
capture();
captureElapsed += bx::getHPCounter();
profiler.end();
}
}
PIX_ENDEVENT();
int64_t timeEnd = bx::getHPCounter();
int64_t frameTime = timeEnd - timeBegin;
static int64_t min = frameTime;
static int64_t max = frameTime;
min = min > frameTime ? frameTime : min;
max = max < frameTime ? frameTime : max;
static uint32_t maxGpuLatency = 0;
static double maxGpuElapsed = 0.0f;
double elapsedGpuMs = 0.0;
if (UINT32_MAX != frameQueryIdx)
{
m_gpuTimer.end(frameQueryIdx);
const TimerQueryD3D11::Result& result = m_gpuTimer.m_result[BGFX_CONFIG_MAX_VIEWS];
double toGpuMs = 1000.0 / double(result.m_frequency);
elapsedGpuMs = (result.m_end - result.m_begin) * toGpuMs;
maxGpuElapsed = elapsedGpuMs > maxGpuElapsed ? elapsedGpuMs : maxGpuElapsed;
maxGpuLatency = bx::uint32_imax(maxGpuLatency, result.m_pending-1);
}
const int64_t timerFreq = bx::getHPFrequency();
Stats& perfStats = _render->m_perfStats;
perfStats.cpuTimeBegin = timeBegin;
perfStats.cpuTimeEnd = timeEnd;
perfStats.cpuTimerFreq = timerFreq;
const TimerQueryD3D11::Result& result = m_gpuTimer.m_result[BGFX_CONFIG_MAX_VIEWS];
perfStats.gpuTimeBegin = result.m_begin;
perfStats.gpuTimeEnd = result.m_end;
perfStats.gpuTimerFreq = result.m_frequency;
perfStats.numDraw = statsKeyType[0];
perfStats.numCompute = statsKeyType[1];
perfStats.maxGpuLatency = maxGpuLatency;
bx::memCopy(perfStats.numPrims, statsNumPrimsRendered, sizeof(perfStats.numPrims) );
m_nvapi.getMemoryInfo(perfStats.gpuMemoryUsed, perfStats.gpuMemoryMax);
if (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
PIX_BEGINEVENT(D3DCOLOR_FRAME, L"debugstats");
m_needPresent = true;
TextVideoMem& tvm = m_textVideoMem;
static int64_t next = timeEnd;
if (timeEnd >= next)
{
next = timeEnd + timerFreq;
double freq = double(timerFreq);
double toMs = 1000.0/freq;
tvm.clear();
uint16_t pos = 0;
tvm.printf(0, pos++, BGFX_CONFIG_DEBUG ? 0x8c : 0x8f
, " %s.%d (FL %d.%d) / " BX_COMPILER_NAME " / " BX_CPU_NAME " / " BX_ARCH_NAME " / " BX_PLATFORM_NAME " "
, getRendererName()
, m_deviceInterfaceVersion
, (m_featureLevel >> 12) & 0xf
, (m_featureLevel >> 8) & 0xf
);
const DXGI_ADAPTER_DESC& desc = m_dxgi.m_adapterDesc;
char description[BX_COUNTOF(desc.Description)];
wcstombs(description, desc.Description, BX_COUNTOF(desc.Description) );
tvm.printf(0, pos++, 0x8f, " Device: %s", description);
char dedicatedVideo[16];
bx::prettify(dedicatedVideo, BX_COUNTOF(dedicatedVideo), desc.DedicatedVideoMemory);
char dedicatedSystem[16];
bx::prettify(dedicatedSystem, BX_COUNTOF(dedicatedSystem), desc.DedicatedSystemMemory);
char sharedSystem[16];
bx::prettify(sharedSystem, BX_COUNTOF(sharedSystem), desc.SharedSystemMemory);
char processMemoryUsed[16];
bx::prettify(processMemoryUsed, BX_COUNTOF(processMemoryUsed), bx::getProcessMemoryUsed() );
tvm.printf(0, pos++, 0x8f, " Memory: %s (video), %s (system), %s (shared), %s (process) "
, dedicatedVideo
, dedicatedSystem
, sharedSystem
, processMemoryUsed
);
pos = 10;
tvm.printf(10, pos++, 0x8b, " Frame: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS "
, double(frameTime)*toMs
, double(min)*toMs
, double(max)*toMs
, freq/frameTime
);
const uint32_t msaa = (m_resolution.reset&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT;
tvm.printf(10, pos++, 0x8b, " Reset flags: [%c] vsync, [%c] MSAAx%d, [%c] MaxAnisotropy "
, !!(m_resolution.reset&BGFX_RESET_VSYNC) ? '\xfe' : ' '
, 0 != msaa ? '\xfe' : ' '
, 1<<msaa
, !!(m_resolution.reset&BGFX_RESET_MAXANISOTROPY) ? '\xfe' : ' '
);
double elapsedCpuMs = double(frameTime)*toMs;
tvm.printf(10, pos++, 0x8b, " Submitted: %5d (draw %5d, compute %4d) / CPU %7.4f [ms] %c GPU %7.4f [ms] (latency %d) "
, _render->m_numRenderItems
, statsKeyType[0]
, statsKeyType[1]
, elapsedCpuMs
, elapsedCpuMs > maxGpuElapsed ? '>' : '<'
, maxGpuElapsed
, maxGpuLatency
);
maxGpuLatency = 0;
maxGpuElapsed = 0.0;
for (uint32_t ii = 0; ii < Topology::Count; ++ii)
{
tvm.printf(10, pos++, 0x8b, " %10s: %7d (#inst: %5d), submitted: %7d, indirect %7d"
, getName(Topology::Enum(ii) )
, statsNumPrimsRendered[ii]
, statsNumInstances[ii]
, statsNumPrimsSubmitted[ii]
, statsNumDrawIndirect[ii]
);
}
if (NULL != m_renderDocDll)
{
tvm.printf(tvm.m_width-27, 0, 0x4f, " [F11 - RenderDoc capture] ");
}
tvm.printf(10, pos++, 0x8b, " Indices: %7d ", statsNumIndices);
// tvm.printf(10, pos++, 0x8b, " Uniform size: %7d, Max: %7d ", _render->m_uniformEnd, _render->m_uniformMax);
tvm.printf(10, pos++, 0x8b, " DVB size: %7d ", _render->m_vboffset);
tvm.printf(10, pos++, 0x8b, " DIB size: %7d ", _render->m_iboffset);
pos++;
tvm.printf(10, pos++, 0x8b, " Occlusion queries: %3d ", m_occlusionQuery.m_control.available() );
pos++;
tvm.printf(10, pos++, 0x8b, " State cache: ");
tvm.printf(10, pos++, 0x8b, " Blend | DepthS | Input | Raster | Sampler ");
tvm.printf(10, pos++, 0x8b, " %6d | %6d | %6d | %6d | %6d "
, m_blendStateCache.getCount()
, m_depthStencilStateCache.getCount()
, m_inputLayoutCache.getCount()
, m_rasterizerStateCache.getCount()
, m_samplerStateCache.getCount()
);
pos++;
double captureMs = double(captureElapsed)*toMs;
tvm.printf(10, pos++, 0x8b, " Capture: %7.4f [ms] ", captureMs);
uint8_t attr[2] = { 0x8c, 0x8a };
uint8_t attrIndex = _render->m_waitSubmit < _render->m_waitRender;
tvm.printf(10, pos++, attr[attrIndex&1], " Submit wait: %7.4f [ms] ", _render->m_waitSubmit*toMs);
tvm.printf(10, pos++, attr[(attrIndex+1)&1], " Render wait: %7.4f [ms] ", _render->m_waitRender*toMs);
min = frameTime;
max = frameTime;
}
blit(this, _textVideoMemBlitter, tvm);
PIX_ENDEVENT();
}
else if (_render->m_debug & BGFX_DEBUG_TEXT)
{
PIX_BEGINEVENT(D3DCOLOR_FRAME, L"debugtext");
blit(this, _textVideoMemBlitter, _render->m_textVideoMem);
PIX_ENDEVENT();
}
m_deviceCtx->OMSetRenderTargets(1, s_zero.m_rtv, NULL);
if (NULL != m_msaaRt)
{
ID3D11Texture2D* backBufferColor;
DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBufferColor) );
deviceCtx->ResolveSubresource(backBufferColor, 0, m_msaaRt, 0, m_scd.format);
DX_RELEASE(backBufferColor, 0);
}
}
} /* namespace d3d11 */ } // namespace bgfx
#else
namespace bgfx { namespace d3d11
{
RendererContextI* rendererCreate(const Init& _init)
{
BX_UNUSED(_init);
return NULL;
}
void rendererDestroy()
{
}
} /* namespace d3d11 */ } // namespace bgfx
#endif // BGFX_CONFIG_RENDERER_DIRECT3D11