bgfx/3rdparty/spirv-tools/source/val/validation_state.cpp

796 lines
22 KiB
C++
Raw Normal View History

2018-04-11 05:44:28 +03:00
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "val/validation_state.h"
#include <cassert>
#include "opcode.h"
#include "val/basic_block.h"
#include "val/construct.h"
#include "val/function.h"
using std::deque;
using std::make_pair;
using std::pair;
using std::string;
using std::unordered_map;
using std::vector;
namespace libspirv {
namespace {
bool IsInstructionInLayoutSection(ModuleLayoutSection layout, SpvOp op) {
// See Section 2.4
bool out = false;
// clang-format off
switch (layout) {
case kLayoutCapabilities: out = op == SpvOpCapability; break;
case kLayoutExtensions: out = op == SpvOpExtension; break;
case kLayoutExtInstImport: out = op == SpvOpExtInstImport; break;
case kLayoutMemoryModel: out = op == SpvOpMemoryModel; break;
case kLayoutEntryPoint: out = op == SpvOpEntryPoint; break;
case kLayoutExecutionMode: out = op == SpvOpExecutionMode; break;
case kLayoutDebug1:
switch (op) {
case SpvOpSourceContinued:
case SpvOpSource:
case SpvOpSourceExtension:
case SpvOpString:
out = true;
break;
default: break;
}
break;
case kLayoutDebug2:
switch (op) {
case SpvOpName:
case SpvOpMemberName:
out = true;
break;
default: break;
}
break;
case kLayoutDebug3:
// Only OpModuleProcessed is allowed here.
out = (op == SpvOpModuleProcessed);
break;
case kLayoutAnnotations:
switch (op) {
case SpvOpDecorate:
case SpvOpMemberDecorate:
case SpvOpGroupDecorate:
case SpvOpGroupMemberDecorate:
case SpvOpDecorationGroup:
case SpvOpDecorateId:
case SpvOpDecorateStringGOOGLE:
case SpvOpMemberDecorateStringGOOGLE:
out = true;
break;
default: break;
}
break;
case kLayoutTypes:
if (spvOpcodeGeneratesType(op) || spvOpcodeIsConstant(op)) {
out = true;
break;
}
switch (op) {
case SpvOpTypeForwardPointer:
case SpvOpVariable:
case SpvOpLine:
case SpvOpNoLine:
case SpvOpUndef:
out = true;
break;
default: break;
}
break;
case kLayoutFunctionDeclarations:
case kLayoutFunctionDefinitions:
// NOTE: These instructions should NOT be in these layout sections
if (spvOpcodeGeneratesType(op) || spvOpcodeIsConstant(op)) {
out = false;
break;
}
switch (op) {
case SpvOpCapability:
case SpvOpExtension:
case SpvOpExtInstImport:
case SpvOpMemoryModel:
case SpvOpEntryPoint:
case SpvOpExecutionMode:
case SpvOpSourceContinued:
case SpvOpSource:
case SpvOpSourceExtension:
case SpvOpString:
case SpvOpName:
case SpvOpMemberName:
case SpvOpModuleProcessed:
case SpvOpDecorate:
case SpvOpMemberDecorate:
case SpvOpGroupDecorate:
case SpvOpGroupMemberDecorate:
case SpvOpDecorationGroup:
case SpvOpTypeForwardPointer:
out = false;
break;
default:
out = true;
break;
}
}
// clang-format on
return out;
}
} // anonymous namespace
ValidationState_t::ValidationState_t(const spv_const_context ctx,
const spv_const_validator_options opt)
: context_(ctx),
options_(opt),
instruction_counter_(0),
unresolved_forward_ids_{},
operand_names_{},
current_layout_section_(kLayoutCapabilities),
module_functions_(),
module_capabilities_(),
module_extensions_(),
ordered_instructions_(),
all_definitions_(),
global_vars_(),
local_vars_(),
struct_nesting_depth_(),
grammar_(ctx),
addressing_model_(SpvAddressingModelLogical),
memory_model_(SpvMemoryModelSimple),
in_function_(false) {
assert(opt && "Validator options may not be Null.");
}
spv_result_t ValidationState_t::ForwardDeclareId(uint32_t id) {
unresolved_forward_ids_.insert(id);
return SPV_SUCCESS;
}
spv_result_t ValidationState_t::RemoveIfForwardDeclared(uint32_t id) {
unresolved_forward_ids_.erase(id);
return SPV_SUCCESS;
}
spv_result_t ValidationState_t::RegisterForwardPointer(uint32_t id) {
forward_pointer_ids_.insert(id);
return SPV_SUCCESS;
}
bool ValidationState_t::IsForwardPointer(uint32_t id) const {
return (forward_pointer_ids_.find(id) != forward_pointer_ids_.end());
}
void ValidationState_t::AssignNameToId(uint32_t id, string name) {
operand_names_[id] = name;
}
string ValidationState_t::getIdName(uint32_t id) const {
std::stringstream out;
out << id;
if (operand_names_.find(id) != end(operand_names_)) {
out << "[" << operand_names_.at(id) << "]";
}
return out.str();
}
string ValidationState_t::getIdOrName(uint32_t id) const {
std::stringstream out;
if (operand_names_.find(id) != end(operand_names_)) {
out << operand_names_.at(id);
} else {
out << id;
}
return out.str();
}
size_t ValidationState_t::unresolved_forward_id_count() const {
return unresolved_forward_ids_.size();
}
vector<uint32_t> ValidationState_t::UnresolvedForwardIds() const {
vector<uint32_t> out(begin(unresolved_forward_ids_),
end(unresolved_forward_ids_));
return out;
}
bool ValidationState_t::IsDefinedId(uint32_t id) const {
return all_definitions_.find(id) != end(all_definitions_);
}
const Instruction* ValidationState_t::FindDef(uint32_t id) const {
auto it = all_definitions_.find(id);
if (it == all_definitions_.end()) return nullptr;
return it->second;
}
Instruction* ValidationState_t::FindDef(uint32_t id) {
auto it = all_definitions_.find(id);
if (it == all_definitions_.end()) return nullptr;
return it->second;
}
// Increments the instruction count. Used for diagnostic
int ValidationState_t::increment_instruction_count() {
return instruction_counter_++;
}
ModuleLayoutSection ValidationState_t::current_layout_section() const {
return current_layout_section_;
}
void ValidationState_t::ProgressToNextLayoutSectionOrder() {
// Guard against going past the last element(kLayoutFunctionDefinitions)
if (current_layout_section_ <= kLayoutFunctionDefinitions) {
current_layout_section_ =
static_cast<ModuleLayoutSection>(current_layout_section_ + 1);
}
}
bool ValidationState_t::IsOpcodeInCurrentLayoutSection(SpvOp op) {
return IsInstructionInLayoutSection(current_layout_section_, op);
}
DiagnosticStream ValidationState_t::diag(spv_result_t error_code) const {
return libspirv::DiagnosticStream(
{0, 0, static_cast<size_t>(instruction_counter_)}, context_->consumer,
error_code);
}
deque<Function>& ValidationState_t::functions() { return module_functions_; }
Function& ValidationState_t::current_function() {
assert(in_function_body());
return module_functions_.back();
}
const Function& ValidationState_t::current_function() const {
assert(in_function_body());
return module_functions_.back();
}
const Function* ValidationState_t::function(uint32_t id) const {
const auto it = id_to_function_.find(id);
if (it == id_to_function_.end()) return nullptr;
return it->second;
}
bool ValidationState_t::in_function_body() const { return in_function_; }
bool ValidationState_t::in_block() const {
return module_functions_.empty() == false &&
module_functions_.back().current_block() != nullptr;
}
void ValidationState_t::RegisterCapability(SpvCapability cap) {
// Avoid redundant work. Otherwise the recursion could induce work
// quadrdatic in the capability dependency depth. (Ok, not much, but
// it's something.)
if (module_capabilities_.Contains(cap)) return;
module_capabilities_.Add(cap);
spv_operand_desc desc;
if (SPV_SUCCESS ==
grammar_.lookupOperand(SPV_OPERAND_TYPE_CAPABILITY, cap, &desc)) {
CapabilitySet(desc->numCapabilities, desc->capabilities)
.ForEach([this](SpvCapability c) { RegisterCapability(c); });
}
switch (cap) {
case SpvCapabilityKernel:
features_.group_ops_reduce_and_scans = true;
break;
case SpvCapabilityInt16:
features_.declare_int16_type = true;
break;
case SpvCapabilityFloat16:
case SpvCapabilityFloat16Buffer:
features_.declare_float16_type = true;
break;
case SpvCapabilityStorageUniformBufferBlock16:
case SpvCapabilityStorageUniform16:
case SpvCapabilityStoragePushConstant16:
case SpvCapabilityStorageInputOutput16:
features_.declare_int16_type = true;
features_.declare_float16_type = true;
features_.free_fp_rounding_mode = true;
break;
case SpvCapabilityVariablePointers:
features_.variable_pointers = true;
features_.variable_pointers_storage_buffer = true;
break;
case SpvCapabilityVariablePointersStorageBuffer:
features_.variable_pointers_storage_buffer = true;
break;
default:
break;
}
}
void ValidationState_t::RegisterExtension(Extension ext) {
if (module_extensions_.Contains(ext)) return;
module_extensions_.Add(ext);
switch (ext) {
case kSPV_AMD_gpu_shader_half_float:
// SPV_AMD_gpu_shader_half_float enables float16 type.
// https://github.com/KhronosGroup/SPIRV-Tools/issues/1375
features_.declare_float16_type = true;
break;
case kSPV_AMD_shader_ballot:
// The grammar doesn't encode the fact that SPV_AMD_shader_ballot
// enables the use of group operations Reduce, InclusiveScan,
// and ExclusiveScan. Enable it manually.
// https://github.com/KhronosGroup/SPIRV-Tools/issues/991
features_.group_ops_reduce_and_scans = true;
break;
default:
break;
}
}
bool ValidationState_t::HasAnyOfCapabilities(
const CapabilitySet& capabilities) const {
return module_capabilities_.HasAnyOf(capabilities);
}
bool ValidationState_t::HasAnyOfExtensions(
const ExtensionSet& extensions) const {
return module_extensions_.HasAnyOf(extensions);
}
void ValidationState_t::set_addressing_model(SpvAddressingModel am) {
addressing_model_ = am;
}
SpvAddressingModel ValidationState_t::addressing_model() const {
return addressing_model_;
}
void ValidationState_t::set_memory_model(SpvMemoryModel mm) {
memory_model_ = mm;
}
SpvMemoryModel ValidationState_t::memory_model() const { return memory_model_; }
spv_result_t ValidationState_t::RegisterFunction(
uint32_t id, uint32_t ret_type_id, SpvFunctionControlMask function_control,
uint32_t function_type_id) {
assert(in_function_body() == false &&
"RegisterFunction can only be called when parsing the binary outside "
"of another function");
in_function_ = true;
module_functions_.emplace_back(id, ret_type_id, function_control,
function_type_id);
id_to_function_.emplace(id, &current_function());
// TODO(umar): validate function type and type_id
return SPV_SUCCESS;
}
spv_result_t ValidationState_t::RegisterFunctionEnd() {
assert(in_function_body() == true &&
"RegisterFunctionEnd can only be called when parsing the binary "
"inside of another function");
assert(in_block() == false &&
"RegisterFunctionParameter can only be called when parsing the binary "
"ouside of a block");
current_function().RegisterFunctionEnd();
in_function_ = false;
return SPV_SUCCESS;
}
void ValidationState_t::RegisterInstruction(
const spv_parsed_instruction_t& inst) {
if (in_function_body()) {
ordered_instructions_.emplace_back(&inst, &current_function(),
current_function().current_block());
} else {
ordered_instructions_.emplace_back(&inst, nullptr, nullptr);
}
uint32_t id = ordered_instructions_.back().id();
if (id) {
all_definitions_.insert(make_pair(id, &ordered_instructions_.back()));
}
// If the instruction is using an OpTypeSampledImage as an operand, it should
// be recorded. The validator will ensure that all usages of an
// OpTypeSampledImage and its definition are in the same basic block.
for (uint16_t i = 0; i < inst.num_operands; ++i) {
const spv_parsed_operand_t& operand = inst.operands[i];
if (SPV_OPERAND_TYPE_ID == operand.type) {
const uint32_t operand_word = inst.words[operand.offset];
Instruction* operand_inst = FindDef(operand_word);
if (operand_inst && SpvOpSampledImage == operand_inst->opcode()) {
RegisterSampledImageConsumer(operand_word, inst.result_id);
}
}
}
}
std::vector<uint32_t> ValidationState_t::getSampledImageConsumers(
uint32_t sampled_image_id) const {
std::vector<uint32_t> result;
auto iter = sampled_image_consumers_.find(sampled_image_id);
if (iter != sampled_image_consumers_.end()) {
result = iter->second;
}
return result;
}
void ValidationState_t::RegisterSampledImageConsumer(uint32_t sampled_image_id,
uint32_t consumer_id) {
sampled_image_consumers_[sampled_image_id].push_back(consumer_id);
}
uint32_t ValidationState_t::getIdBound() const { return id_bound_; }
void ValidationState_t::setIdBound(const uint32_t bound) { id_bound_ = bound; }
bool ValidationState_t::RegisterUniqueTypeDeclaration(
const spv_parsed_instruction_t& inst) {
std::vector<uint32_t> key;
key.push_back(static_cast<uint32_t>(inst.opcode));
for (int index = 0; index < inst.num_operands; ++index) {
const spv_parsed_operand_t& operand = inst.operands[index];
if (operand.type == SPV_OPERAND_TYPE_RESULT_ID) continue;
const int words_begin = operand.offset;
const int words_end = words_begin + operand.num_words;
assert(words_end <= static_cast<int>(inst.num_words));
key.insert(key.end(), inst.words + words_begin, inst.words + words_end);
}
return unique_type_declarations_.insert(std::move(key)).second;
}
uint32_t ValidationState_t::GetTypeId(uint32_t id) const {
const Instruction* inst = FindDef(id);
return inst ? inst->type_id() : 0;
}
SpvOp ValidationState_t::GetIdOpcode(uint32_t id) const {
const Instruction* inst = FindDef(id);
return inst ? inst->opcode() : SpvOpNop;
}
uint32_t ValidationState_t::GetComponentType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
switch (inst->opcode()) {
case SpvOpTypeFloat:
case SpvOpTypeInt:
case SpvOpTypeBool:
return id;
case SpvOpTypeVector:
return inst->word(2);
case SpvOpTypeMatrix:
return GetComponentType(inst->word(2));
default:
break;
}
if (inst->type_id()) return GetComponentType(inst->type_id());
assert(0);
return 0;
}
uint32_t ValidationState_t::GetDimension(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
switch (inst->opcode()) {
case SpvOpTypeFloat:
case SpvOpTypeInt:
case SpvOpTypeBool:
return 1;
case SpvOpTypeVector:
case SpvOpTypeMatrix:
return inst->word(3);
default:
break;
}
if (inst->type_id()) return GetDimension(inst->type_id());
assert(0);
return 0;
}
uint32_t ValidationState_t::GetBitWidth(uint32_t id) const {
const uint32_t component_type_id = GetComponentType(id);
const Instruction* inst = FindDef(component_type_id);
assert(inst);
if (inst->opcode() == SpvOpTypeFloat || inst->opcode() == SpvOpTypeInt)
return inst->word(2);
if (inst->opcode() == SpvOpTypeBool) return 1;
assert(0);
return 0;
}
bool ValidationState_t::IsFloatScalarType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
return inst->opcode() == SpvOpTypeFloat;
}
bool ValidationState_t::IsFloatVectorType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
if (inst->opcode() == SpvOpTypeVector) {
return IsFloatScalarType(GetComponentType(id));
}
return false;
}
bool ValidationState_t::IsFloatScalarOrVectorType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
if (inst->opcode() == SpvOpTypeFloat) {
return true;
}
if (inst->opcode() == SpvOpTypeVector) {
return IsFloatScalarType(GetComponentType(id));
}
return false;
}
bool ValidationState_t::IsIntScalarType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
return inst->opcode() == SpvOpTypeInt;
}
bool ValidationState_t::IsIntVectorType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
if (inst->opcode() == SpvOpTypeVector) {
return IsIntScalarType(GetComponentType(id));
}
return false;
}
bool ValidationState_t::IsIntScalarOrVectorType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
if (inst->opcode() == SpvOpTypeInt) {
return true;
}
if (inst->opcode() == SpvOpTypeVector) {
return IsIntScalarType(GetComponentType(id));
}
return false;
}
bool ValidationState_t::IsUnsignedIntScalarType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
return inst->opcode() == SpvOpTypeInt && inst->word(3) == 0;
}
bool ValidationState_t::IsUnsignedIntVectorType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
if (inst->opcode() == SpvOpTypeVector) {
return IsUnsignedIntScalarType(GetComponentType(id));
}
return false;
}
bool ValidationState_t::IsSignedIntScalarType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
return inst->opcode() == SpvOpTypeInt && inst->word(3) == 1;
}
bool ValidationState_t::IsSignedIntVectorType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
if (inst->opcode() == SpvOpTypeVector) {
return IsSignedIntScalarType(GetComponentType(id));
}
return false;
}
bool ValidationState_t::IsBoolScalarType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
return inst->opcode() == SpvOpTypeBool;
}
bool ValidationState_t::IsBoolVectorType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
if (inst->opcode() == SpvOpTypeVector) {
return IsBoolScalarType(GetComponentType(id));
}
return false;
}
bool ValidationState_t::IsBoolScalarOrVectorType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
if (inst->opcode() == SpvOpTypeBool) {
return true;
}
if (inst->opcode() == SpvOpTypeVector) {
return IsBoolScalarType(GetComponentType(id));
}
return false;
}
bool ValidationState_t::IsFloatMatrixType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
if (inst->opcode() == SpvOpTypeMatrix) {
return IsFloatScalarType(GetComponentType(id));
}
return false;
}
bool ValidationState_t::GetMatrixTypeInfo(uint32_t id, uint32_t* num_rows,
uint32_t* num_cols,
uint32_t* column_type,
uint32_t* component_type) const {
if (!id) return false;
const Instruction* mat_inst = FindDef(id);
assert(mat_inst);
if (mat_inst->opcode() != SpvOpTypeMatrix) return false;
const uint32_t vec_type = mat_inst->word(2);
const Instruction* vec_inst = FindDef(vec_type);
assert(vec_inst);
if (vec_inst->opcode() != SpvOpTypeVector) {
assert(0);
return false;
}
*num_cols = mat_inst->word(3);
*num_rows = vec_inst->word(3);
*column_type = mat_inst->word(2);
*component_type = vec_inst->word(2);
return true;
}
bool ValidationState_t::GetStructMemberTypes(
uint32_t struct_type_id, std::vector<uint32_t>* member_types) const {
member_types->clear();
if (!struct_type_id) return false;
const Instruction* inst = FindDef(struct_type_id);
assert(inst);
if (inst->opcode() != SpvOpTypeStruct) return false;
*member_types =
std::vector<uint32_t>(inst->words().cbegin() + 2, inst->words().cend());
if (member_types->empty()) return false;
return true;
}
bool ValidationState_t::IsPointerType(uint32_t id) const {
const Instruction* inst = FindDef(id);
assert(inst);
return inst->opcode() == SpvOpTypePointer;
}
bool ValidationState_t::GetPointerTypeInfo(uint32_t id, uint32_t* data_type,
uint32_t* storage_class) const {
if (!id) return false;
const Instruction* inst = FindDef(id);
assert(inst);
if (inst->opcode() != SpvOpTypePointer) return false;
*storage_class = inst->word(2);
*data_type = inst->word(3);
return true;
}
uint32_t ValidationState_t::GetOperandTypeId(
const spv_parsed_instruction_t* inst, size_t operand_index) const {
assert(operand_index < inst->num_operands);
const spv_parsed_operand_t& operand = inst->operands[operand_index];
assert(operand.num_words == 1);
return GetTypeId(inst->words[operand.offset]);
}
bool ValidationState_t::GetConstantValUint64(uint32_t id, uint64_t* val) const {
const Instruction* inst = FindDef(id);
if (!inst) {
assert(0 && "Instruction not found");
return false;
}
if (inst->opcode() != SpvOpConstant && inst->opcode() != SpvOpSpecConstant)
return false;
if (!IsIntScalarType(inst->type_id())) return false;
if (inst->words().size() == 4) {
*val = inst->word(3);
} else {
assert(inst->words().size() == 5);
*val = inst->word(3);
*val |= uint64_t(inst->word(4)) << 32;
}
return true;
}
std::tuple<bool, bool, uint32_t> ValidationState_t::EvalInt32IfConst(
uint32_t id) {
const Instruction* const inst = FindDef(id);
assert(inst);
const uint32_t type = inst->type_id();
if (!IsIntScalarType(type) || GetBitWidth(type) != 32) {
return std::make_tuple(false, false, 0);
}
if (inst->opcode() != SpvOpConstant && inst->opcode() != SpvOpSpecConstant) {
return std::make_tuple(true, false, 0);
}
assert(inst->words().size() == 4);
return std::make_tuple(true, true, inst->word(3));
}
} // namespace libspirv