bgfx/3rdparty/spirv-tools/source/val/function.h

401 lines
16 KiB
C
Raw Normal View History

2018-04-11 05:44:28 +03:00
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
2018-09-03 07:14:20 +03:00
#ifndef SOURCE_VAL_FUNCTION_H_
#define SOURCE_VAL_FUNCTION_H_
2018-04-11 05:44:28 +03:00
#include <functional>
#include <list>
#include <map>
#include <set>
2018-09-03 07:14:20 +03:00
#include <string>
2018-04-11 05:44:28 +03:00
#include <unordered_map>
#include <unordered_set>
2018-09-03 07:14:20 +03:00
#include <utility>
2018-04-11 05:44:28 +03:00
#include <vector>
2018-09-03 07:14:20 +03:00
#include "source/latest_version_spirv_header.h"
#include "source/val/basic_block.h"
#include "source/val/construct.h"
2018-04-11 05:44:28 +03:00
#include "spirv-tools/libspirv.h"
2018-09-03 07:14:20 +03:00
namespace spvtools {
namespace val {
2018-04-11 05:44:28 +03:00
struct bb_constr_type_pair_hash {
std::size_t operator()(
const std::pair<const BasicBlock*, ConstructType>& p) const {
auto h1 = std::hash<const BasicBlock*>{}(p.first);
auto h2 = std::hash<std::underlying_type<ConstructType>::type>{}(
static_cast<std::underlying_type<ConstructType>::type>(p.second));
return (h1 ^ h2);
}
};
enum class FunctionDecl {
kFunctionDeclUnknown, /// < Unknown function declaration
kFunctionDeclDeclaration, /// < Function declaration
kFunctionDeclDefinition /// < Function definition
};
/// This class manages all function declaration and definitions in a module. It
/// handles the state and id information while parsing a function in the SPIR-V
/// binary.
class Function {
public:
Function(uint32_t id, uint32_t result_type_id,
SpvFunctionControlMask function_control, uint32_t function_type_id);
/// Registers a function parameter in the current function
/// @return Returns SPV_SUCCESS if the call was successful
spv_result_t RegisterFunctionParameter(uint32_t id, uint32_t type_id);
/// Sets the declaration type of the current function
/// @return Returns SPV_SUCCESS if the call was successful
spv_result_t RegisterSetFunctionDeclType(FunctionDecl type);
/// Registers a block in the current function. Subsequent block instructions
/// will target this block
/// @param id The ID of the label of the block
/// @return Returns SPV_SUCCESS if the call was successful
spv_result_t RegisterBlock(uint32_t id, bool is_definition = true);
/// Registers a variable in the current block
///
2022-01-29 07:07:21 +03:00
/// @param[in] type_id The type ID of the variable
/// @param[in] id The ID of the variable
2018-04-11 05:44:28 +03:00
/// @param[in] storage The storage of the variable
/// @param[in] init_id The initializer ID of the variable
///
/// @return Returns SPV_SUCCESS if the call was successful
spv_result_t RegisterBlockVariable(uint32_t type_id, uint32_t id,
SpvStorageClass storage, uint32_t init_id);
/// Registers a loop merge construct in the function
///
/// @param[in] merge_id The merge block ID of the loop
/// @param[in] continue_id The continue block ID of the loop
///
/// @return Returns SPV_SUCCESS if the call was successful
spv_result_t RegisterLoopMerge(uint32_t merge_id, uint32_t continue_id);
/// Registers a selection merge construct in the function
/// @return Returns SPV_SUCCESS if the call was successful
spv_result_t RegisterSelectionMerge(uint32_t merge_id);
/// Registers the end of the block
///
/// @param[in] successors_list A list of ids to the block's successors
2020-07-18 06:30:31 +03:00
void RegisterBlockEnd(std::vector<uint32_t> successors_list);
2018-04-11 05:44:28 +03:00
/// Registers the end of the function. This is idempotent.
void RegisterFunctionEnd();
/// Returns true if the \p id block is the first block of this function
bool IsFirstBlock(uint32_t id) const;
/// Returns true if the \p merge_block_id is a BlockType of \p type
bool IsBlockType(uint32_t merge_block_id, BlockType type) const;
/// Returns a pair consisting of the BasicBlock with \p id and a bool
/// which is true if the block has been defined, and false if it is
/// declared but not defined. This function will return nullptr if the
/// \p id was not declared and not defined at the current point in the binary
std::pair<const BasicBlock*, bool> GetBlock(uint32_t id) const;
std::pair<BasicBlock*, bool> GetBlock(uint32_t id);
/// Returns the first block of the current function
const BasicBlock* first_block() const;
/// Returns the first block of the current function
BasicBlock* first_block();
/// Returns a vector of all the blocks in the function
const std::vector<BasicBlock*>& ordered_blocks() const;
/// Returns a vector of all the blocks in the function
std::vector<BasicBlock*>& ordered_blocks();
/// Returns a list of all the cfg constructs in the function
const std::list<Construct>& constructs() const;
/// Returns a list of all the cfg constructs in the function
std::list<Construct>& constructs();
/// Returns the number of blocks in the current function being parsed
size_t block_count() const;
/// Returns the id of the function
uint32_t id() const { return id_; }
/// Returns return type id of the function
uint32_t GetResultTypeId() const { return result_type_id_; }
/// Returns the number of blocks in the current function being parsed
size_t undefined_block_count() const;
const std::unordered_set<uint32_t>& undefined_blocks() const {
return undefined_blocks_;
}
/// Returns the block that is currently being parsed in the binary
BasicBlock* current_block();
/// Returns the block that is currently being parsed in the binary
const BasicBlock* current_block() const;
// For dominance calculations, we want to analyze all the
// blocks in the function, even in degenerate control flow cases
// including unreachable blocks. We therefore make an "augmented CFG"
// which is the same as the ordinary CFG but adds:
// - A pseudo-entry node.
// - A pseudo-exit node.
// - A minimal set of edges so that a forward traversal from the
// pseudo-entry node will visit all nodes.
// - A minimal set of edges so that a backward traversal from the
// pseudo-exit node will visit all nodes.
// In particular, the pseudo-entry node is the unique source of the
// augmented CFG, and the psueo-exit node is the unique sink of the
// augmented CFG.
/// Returns the pseudo exit block
BasicBlock* pseudo_entry_block() { return &pseudo_entry_block_; }
/// Returns the pseudo exit block
const BasicBlock* pseudo_entry_block() const { return &pseudo_entry_block_; }
/// Returns the pseudo exit block
BasicBlock* pseudo_exit_block() { return &pseudo_exit_block_; }
/// Returns the pseudo exit block
const BasicBlock* pseudo_exit_block() const { return &pseudo_exit_block_; }
using GetBlocksFunction =
std::function<const std::vector<BasicBlock*>*(const BasicBlock*)>;
/// Returns the block successors function for the augmented CFG.
GetBlocksFunction AugmentedCFGSuccessorsFunction() const;
/// Like AugmentedCFGSuccessorsFunction, but also includes a forward edge from
/// a loop header block to its continue target, if they are different blocks.
GetBlocksFunction
AugmentedCFGSuccessorsFunctionIncludingHeaderToContinueEdge() const;
/// Returns the block predecessors function for the augmented CFG.
GetBlocksFunction AugmentedCFGPredecessorsFunction() const;
/// Returns the control flow nesting depth of the given basic block.
/// This function only works when you have structured control flow.
/// This function should only be called after the control flow constructs have
/// been identified and dominators have been computed.
int GetBlockDepth(BasicBlock* bb);
2022-01-29 07:07:21 +03:00
/// Prints a GraphViz digraph of the CFG of the current function
2018-04-11 05:44:28 +03:00
void PrintDotGraph() const;
2022-01-29 07:07:21 +03:00
/// Prints a directed graph of the CFG of the current function
2018-04-11 05:44:28 +03:00
void PrintBlocks() const;
/// Registers execution model limitation such as "Feature X is only available
/// with Execution Model Y".
void RegisterExecutionModelLimitation(SpvExecutionModel model,
const std::string& message);
/// Registers execution model limitation with an |is_compatible| functor.
void RegisterExecutionModelLimitation(
std::function<bool(SpvExecutionModel, std::string*)> is_compatible) {
execution_model_limitations_.push_back(is_compatible);
}
2019-06-07 08:02:38 +03:00
/// Registers limitation with an |is_compatible| functor.
void RegisterLimitation(std::function<bool(const ValidationState_t& _,
const Function*, std::string*)>
is_compatible) {
limitations_.push_back(is_compatible);
}
bool CheckLimitations(const ValidationState_t& _, const Function* entry_point,
std::string* reason) const;
2018-04-11 05:44:28 +03:00
/// Returns true if the given execution model passes the limitations stored in
/// execution_model_limitations_. Returns false otherwise and fills optional
/// |reason| parameter.
bool IsCompatibleWithExecutionModel(SpvExecutionModel model,
std::string* reason = nullptr) const;
// Inserts id to the set of functions called from this function.
void AddFunctionCallTarget(uint32_t call_target_id) {
function_call_targets_.insert(call_target_id);
}
// Returns a set with ids of all functions called from this function.
const std::set<uint32_t> function_call_targets() const {
return function_call_targets_;
}
2019-03-09 21:18:17 +03:00
// Returns the block containing the OpSelectionMerge or OpLoopMerge that
// references |merge_block|.
// Values of |merge_block_header_| inserted by CFGPass, so do not call before
// the first iteration of ordered instructions in
// ValidateBinaryUsingContextAndValidationState has completed.
BasicBlock* GetMergeHeader(BasicBlock* merge_block) {
return merge_block_header_[merge_block];
}
// Returns vector of the blocks containing a OpLoopMerge that references
// |continue_target|.
// Values of |continue_target_headers_| inserted by CFGPass, so do not call
// before the first iteration of ordered instructions in
// ValidateBinaryUsingContextAndValidationState has completed.
std::vector<BasicBlock*> GetContinueHeaders(BasicBlock* continue_target) {
if (continue_target_headers_.find(continue_target) ==
continue_target_headers_.end()) {
return {};
}
return continue_target_headers_[continue_target];
}
2018-04-11 05:44:28 +03:00
private:
// Computes the representation of the augmented CFG.
// Populates augmented_successors_map_ and augmented_predecessors_map_.
void ComputeAugmentedCFG();
// Adds a copy of the given Construct, and tracks it by its entry block.
// Returns a reference to the stored construct.
Construct& AddConstruct(const Construct& new_construct);
// Returns a reference to the construct corresponding to the given entry
// block.
Construct& FindConstructForEntryBlock(const BasicBlock* entry_block,
ConstructType t);
/// The result id of the OpLabel that defined this block
uint32_t id_;
/// The type of the function
uint32_t function_type_id_;
/// The type of the return value
uint32_t result_type_id_;
2022-01-29 07:07:21 +03:00
/// The control fo the function
2018-04-11 05:44:28 +03:00
SpvFunctionControlMask function_control_;
/// The type of declaration of each function
FunctionDecl declaration_type_;
// Have we finished parsing this function?
bool end_has_been_registered_;
/// The blocks in the function mapped by block ID
std::unordered_map<uint32_t, BasicBlock> blocks_;
/// A list of blocks in the order they appeared in the binary
std::vector<BasicBlock*> ordered_blocks_;
/// Blocks which are forward referenced by blocks but not defined
std::unordered_set<uint32_t> undefined_blocks_;
/// The block that is currently being parsed
BasicBlock* current_block_;
/// A pseudo entry node used in dominance analysis.
/// After the function end has been registered, the successor list of the
/// pseudo entry node is the minimal set of nodes such that all nodes in the
/// CFG can be reached by following successor lists. That is, the successors
/// will be:
/// - Any basic block without predecessors. This includes the entry
/// block to the function.
/// - A single node from each otherwise unreachable cycle in the CFG, if
/// such cycles exist.
/// The pseudo entry node does not appear in the predecessor or successor
/// list of any ordinary block.
/// It has no predecessors.
/// It has Id 0.
BasicBlock pseudo_entry_block_;
/// A pseudo exit block used in dominance analysis.
/// After the function end has been registered, the predecessor list of the
/// pseudo exit node is the minimal set of nodes such that all nodes in the
/// CFG can be reached by following predecessor lists. That is, the
/// predecessors will be:
/// - Any basic block without successors. This includes any basic block
/// ending with an OpReturn, OpReturnValue or similar instructions.
/// - A single node from each otherwise unreachable cycle in the CFG, if
/// such cycles exist.
/// The pseudo exit node does not appear in the predecessor or successor
/// list of any ordinary block.
/// It has no successors.
BasicBlock pseudo_exit_block_;
// Maps a block to its successors in the augmented CFG, if that set is
// different from its successors in the ordinary CFG.
std::unordered_map<const BasicBlock*, std::vector<BasicBlock*>>
augmented_successors_map_;
// Maps a block to its predecessors in the augmented CFG, if that set is
// different from its predecessors in the ordinary CFG.
std::unordered_map<const BasicBlock*, std::vector<BasicBlock*>>
augmented_predecessors_map_;
// Maps a structured loop header to its CFG successors and also its
// continue target if that continue target is not the loop header
// itself. This might have duplicates.
std::unordered_map<const BasicBlock*, std::vector<BasicBlock*>>
loop_header_successors_plus_continue_target_map_;
/// The constructs that are available in this function
std::list<Construct> cfg_constructs_;
/// The variable IDs of the functions
std::vector<uint32_t> variable_ids_;
/// The function parameter ids of the functions
std::vector<uint32_t> parameter_ids_;
/// Maps a construct's entry block to the construct(s).
/// Since a basic block may be the entry block of different types of
/// constructs, the type of the construct should also be specified in order to
/// get the unique construct.
std::unordered_map<std::pair<const BasicBlock*, ConstructType>, Construct*,
2018-09-03 07:14:20 +03:00
bb_constr_type_pair_hash>
2018-04-11 05:44:28 +03:00
entry_block_to_construct_;
/// This map provides the header block for a given merge block.
std::unordered_map<BasicBlock*, BasicBlock*> merge_block_header_;
2019-03-09 21:18:17 +03:00
/// This map provides the header blocks for a given continue target.
std::unordered_map<BasicBlock*, std::vector<BasicBlock*>>
continue_target_headers_;
2018-04-11 05:44:28 +03:00
/// Stores the control flow nesting depth of a given basic block
std::unordered_map<BasicBlock*, int> block_depth_;
/// Stores execution model limitations imposed by instructions used within the
/// function. The functor stored in the list return true if execution model
/// is compatible, false otherwise. If the functor returns false, it can also
/// optionally fill the string parameter with the reason for incompatibility.
std::list<std::function<bool(SpvExecutionModel, std::string*)>>
execution_model_limitations_;
2019-06-07 08:02:38 +03:00
/// Stores limitations imposed by instructions used within the function.
/// Similar to execution_model_limitations_;
std::list<std::function<bool(const ValidationState_t& _, const Function*,
std::string*)>>
limitations_;
2018-04-11 05:44:28 +03:00
/// Stores ids of all functions called from this function.
std::set<uint32_t> function_call_targets_;
};
2018-09-03 07:14:20 +03:00
} // namespace val
} // namespace spvtools
2018-04-11 05:44:28 +03:00
2018-09-03 07:14:20 +03:00
#endif // SOURCE_VAL_FUNCTION_H_