664 lines
19 KiB
C++
664 lines
19 KiB
C++
|
/*
|
|||
|
* Copyright 2017 Stanislav Pidhorskyi. All rights reserved.
|
|||
|
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
|
|||
|
*/
|
|||
|
|
|||
|
/*
|
|||
|
* This example demonstrates:
|
|||
|
* - Usage of Perez sky model [1] to render a dynamic sky.
|
|||
|
* - Rendering a mesh with a lightmap, shading of which is driven by the same parameters as the sky.
|
|||
|
*
|
|||
|
* Typically, the sky is rendered using cubemaps or other environment maps.
|
|||
|
* This approach can provide a high-quality sky, but the downside is that the
|
|||
|
* image is static. To achieve daytime changes in sky appearance, there is a need
|
|||
|
* in a dynamic model.
|
|||
|
*
|
|||
|
* Perez "An All-Weather Model for Sky Luminance Distribution" is a simple,
|
|||
|
* but good enough model which is, in essence, a function that
|
|||
|
* interpolates a sky color. As input, it requires several turbidity
|
|||
|
* coefficients, a color at zenith and direction to the sun.
|
|||
|
* Turbidity coefficients are taken from [2], which are computed using more
|
|||
|
* complex physically based models. Color at zenith depends on daytime and can
|
|||
|
* vary depending on many factors.
|
|||
|
*
|
|||
|
* In the code below, there are two tables that contain sky and sun luminance
|
|||
|
* which were computed using code from [3]. Luminance in those tables
|
|||
|
* represents actual scale of light energy that comes from sun compared to
|
|||
|
* the sky.
|
|||
|
*
|
|||
|
* The sky is driven by luminance of the sky, while the material of the
|
|||
|
* landscape is driven by both, the luminance of the sky and the sun. The
|
|||
|
* lightening model is very simple and consists of two parts: directional
|
|||
|
* light and hemisphere light. The first is used for the sun while the second
|
|||
|
* is used for the sky. Additionally, the second part is modulated by a
|
|||
|
* lightmap to achieve ambient occlusion effect.
|
|||
|
*
|
|||
|
*
|
|||
|
* References
|
|||
|
* ==========
|
|||
|
* [1] R. Perez, R. Seals, and J. Michalsky."An All-Weather Model for Sky Luminance Distribution".
|
|||
|
* Solar Energy, Volume 50, Number 3 (March 1993), pp. 235–245.
|
|||
|
* [2] A. J. Preetham, Peter Shirley, and Brian Smits. "A Practical Analytic Model for Daylight",
|
|||
|
* Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, 1999, pp. 91–100.
|
|||
|
* [3] E. Lengyel, Game Engine Gems, Volume One. Jones & Bartlett Learning, 2010. pp. 219 - 234
|
|||
|
*
|
|||
|
*/
|
|||
|
|
|||
|
#include "common.h"
|
|||
|
#include "bgfx_utils.h"
|
|||
|
#include "imgui/imgui.h"
|
|||
|
#include "camera.h"
|
|||
|
#include "bounds.h"
|
|||
|
|
|||
|
#include <map>
|
|||
|
|
|||
|
namespace
|
|||
|
{
|
|||
|
// Represents color. Color-space depends on context.
|
|||
|
// In the code below, used to represent color in XYZ, and RGB color-space
|
|||
|
union Color
|
|||
|
{
|
|||
|
struct {
|
|||
|
float X;
|
|||
|
float Y;
|
|||
|
float Z;
|
|||
|
};
|
|||
|
struct {
|
|||
|
float r;
|
|||
|
float g;
|
|||
|
float b;
|
|||
|
};
|
|||
|
|
|||
|
float data[3];
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
// HDTV rec. 709 matrix.
|
|||
|
static float M_XYZ2RGB[] =
|
|||
|
{
|
|||
|
3.240479f, -0.969256f, 0.055648f,
|
|||
|
-1.53715f, 1.875991f, -0.204043f,
|
|||
|
-0.49853f, 0.041556f, 1.057311f
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
// Converts color repesentation from CIE XYZ to RGB color-space.
|
|||
|
Color XYZToRGB(const Color& xyz)
|
|||
|
{
|
|||
|
Color rgb;
|
|||
|
rgb.r = M_XYZ2RGB[0] * xyz.X + M_XYZ2RGB[3] * xyz.Y + M_XYZ2RGB[6] * xyz.Z;
|
|||
|
rgb.g = M_XYZ2RGB[1] * xyz.X + M_XYZ2RGB[4] * xyz.Y + M_XYZ2RGB[7] * xyz.Z;
|
|||
|
rgb.b = M_XYZ2RGB[2] * xyz.X + M_XYZ2RGB[5] * xyz.Y + M_XYZ2RGB[8] * xyz.Z;
|
|||
|
return rgb;
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
// Precomputed luminance of sunlight in XYZ colorspace.
|
|||
|
// Computed using code from Game Engine Gems, Volume One, chapter 15. Implementation based on Dr. Richard Bird model.
|
|||
|
// This table is used for piecewise linear interpolation. Transitions from and to 0.0 at sunset and sunrise are highly inaccurate
|
|||
|
static std::map<float, Color> sunLuminanceXYZTable = {
|
|||
|
{ 5.0f, {{ 0.000000f, 0.000000f, 0.000000f }} },
|
|||
|
{ 7.0f, {{ 12.703322f, 12.989393f, 9.100411f }} },
|
|||
|
{ 8.0f, {{ 13.202644f, 13.597814f, 11.524929f }} },
|
|||
|
{ 9.0f, {{ 13.192974f, 13.597458f, 12.264488f }} },
|
|||
|
{ 10.0f, {{ 13.132943f, 13.535914f, 12.560032f }} },
|
|||
|
{ 11.0f, {{ 13.088722f, 13.489535f, 12.692996f }} },
|
|||
|
{ 12.0f, {{ 13.067827f, 13.467483f, 12.745179f }} },
|
|||
|
{ 13.0f, {{ 13.069653f, 13.469413f, 12.740822f }} },
|
|||
|
{ 14.0f, {{ 13.094319f, 13.495428f, 12.678066f }} },
|
|||
|
{ 15.0f, {{ 13.142133f, 13.545483f, 12.526785f }} },
|
|||
|
{ 16.0f, {{ 13.201734f, 13.606017f, 12.188001f }} },
|
|||
|
{ 17.0f, {{ 13.182774f, 13.572725f, 11.311157f }} },
|
|||
|
{ 18.0f, {{ 12.448635f, 12.672520f, 8.267771f }} },
|
|||
|
{ 20.0f, {{ 0.000000f, 0.000000f, 0.000000f }} }
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
// Precomputed luminance of sky in the zenith point in XYZ colorspace.
|
|||
|
// Computed using code from Game Engine Gems, Volume One, chapter 15. Implementation based on Dr. Richard Bird model.
|
|||
|
// This table is used for piecewise linear interpolation. Day/night transitions are highly inaccurate.
|
|||
|
// The scale of luminance change in Day/night transitions is not preserved.
|
|||
|
// Luminance at night was increased to eliminate need the of HDR render.
|
|||
|
static std::map<float, Color> skyLuminanceXYZTable = {
|
|||
|
{ 0.0f, {{ 0.308f, 0.308f, 0.411f }} },
|
|||
|
{ 1.0f, {{ 0.308f, 0.308f, 0.410f }} },
|
|||
|
{ 2.0f, {{ 0.301f, 0.301f, 0.402f }} },
|
|||
|
{ 3.0f, {{ 0.287f, 0.287f, 0.382f }} },
|
|||
|
{ 4.0f, {{ 0.258f, 0.258f, 0.344f }} },
|
|||
|
{ 5.0f, {{ 0.258f, 0.258f, 0.344f }} },
|
|||
|
{ 7.0f, {{ 0.962851f, 1.000000f, 1.747835f }} },
|
|||
|
{ 8.0f, {{ 0.967787f, 1.000000f, 1.776762f }} },
|
|||
|
{ 9.0f, {{ 0.970173f, 1.000000f, 1.788413f }} },
|
|||
|
{ 10.0f, {{ 0.971431f, 1.000000f, 1.794102f }} },
|
|||
|
{ 11.0f, {{ 0.972099f, 1.000000f, 1.797096f }} },
|
|||
|
{ 12.0f, {{ 0.972385f, 1.000000f, 1.798389f }} },
|
|||
|
{ 13.0f, {{ 0.972361f, 1.000000f, 1.798278f }} },
|
|||
|
{ 14.0f, {{ 0.972020f, 1.000000f, 1.796740f }} },
|
|||
|
{ 15.0f, {{ 0.971275f, 1.000000f, 1.793407f }} },
|
|||
|
{ 16.0f, {{ 0.969885f, 1.000000f, 1.787078f }} },
|
|||
|
{ 17.0f, {{ 0.967216f, 1.000000f, 1.773758f }} },
|
|||
|
{ 18.0f, {{ 0.961668f, 1.000000f, 1.739891f }} },
|
|||
|
{ 20.0f, {{ 0.264f, 0.264f, 0.352f }} },
|
|||
|
{ 21.0f, {{ 0.264f, 0.264f, 0.352f }} },
|
|||
|
{ 22.0f, {{ 0.290f, 0.290f, 0.386f }} },
|
|||
|
{ 23.0f, {{ 0.303f, 0.303f, 0.404f }} }
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
// Turbidity tables. Taken from:
|
|||
|
// A. J. Preetham, P. Shirley, and B. Smits. A Practical Analytic Model for Daylight. SIGGRAPH ’99
|
|||
|
// Coefficients correspond to xyY colorspace.
|
|||
|
static Color ABCDE[] =
|
|||
|
{
|
|||
|
{{ -0.2592f, -0.2608f, -1.4630f }},
|
|||
|
{{ 0.0008f, 0.0092f, 0.4275f }},
|
|||
|
{{ 0.2125f, 0.2102f, 5.3251f }},
|
|||
|
{{ -0.8989f, -1.6537f, -2.5771f }},
|
|||
|
{{ 0.0452f, 0.0529f, 0.3703f }}
|
|||
|
};
|
|||
|
static Color ABCDE_t[] =
|
|||
|
{
|
|||
|
{{ -0.0193f, -0.0167f, 0.1787f }},
|
|||
|
{{ -0.0665f, -0.0950f, -0.3554f }},
|
|||
|
{{ -0.0004f, -0.0079f, -0.0227f }},
|
|||
|
{{ -0.0641f, -0.0441f, 0.1206f }},
|
|||
|
{{ -0.0033f, -0.0109f, -0.0670f }}
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
// Performs piecewise linear interpolation of a Color parameter.
|
|||
|
class DynamicValueController
|
|||
|
{
|
|||
|
typedef Color ValueType;
|
|||
|
typedef std::map<float, ValueType> KeyMap;
|
|||
|
public:
|
|||
|
DynamicValueController() {};
|
|||
|
~DynamicValueController() {};
|
|||
|
|
|||
|
void SetMap(const KeyMap& keymap)
|
|||
|
{
|
|||
|
m_keyMap = keymap;
|
|||
|
}
|
|||
|
|
|||
|
ValueType GetValue(float time) const
|
|||
|
{
|
|||
|
typename KeyMap::const_iterator itUpper = m_keyMap.upper_bound(time + 1e-6f);
|
|||
|
typename KeyMap::const_iterator itLower = itUpper;
|
|||
|
--itLower;
|
|||
|
if (itLower == m_keyMap.end())
|
|||
|
{
|
|||
|
return itUpper->second;
|
|||
|
}
|
|||
|
if (itUpper == m_keyMap.end())
|
|||
|
{
|
|||
|
return itLower->second;
|
|||
|
}
|
|||
|
float lowerTime = itLower->first;
|
|||
|
const ValueType& lowerVal = itLower->second;
|
|||
|
float upperTime = itUpper->first;
|
|||
|
const ValueType& upperVal = itUpper->second;
|
|||
|
if (lowerTime == upperTime)
|
|||
|
{
|
|||
|
return lowerVal;
|
|||
|
}
|
|||
|
return interpolate(lowerTime, lowerVal, upperTime, upperVal, time);
|
|||
|
};
|
|||
|
|
|||
|
void Clear()
|
|||
|
{
|
|||
|
m_keyMap.clear();
|
|||
|
};
|
|||
|
|
|||
|
private:
|
|||
|
const ValueType interpolate(float lowerTime, const ValueType& lowerVal, float upperTime, const ValueType& upperVal, float time) const
|
|||
|
{
|
|||
|
float x = (time - lowerTime) / (upperTime - lowerTime);
|
|||
|
ValueType result;
|
|||
|
bx::vec3Lerp(result.data, lowerVal.data, upperVal.data, x);
|
|||
|
return result;
|
|||
|
};
|
|||
|
|
|||
|
KeyMap m_keyMap;
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
// Controls sun position according to time, month, and observer's latitude.
|
|||
|
// Sun position computation based on Earth's orbital elements: https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
|
|||
|
class SunController
|
|||
|
{
|
|||
|
public:
|
|||
|
enum Month :int
|
|||
|
{
|
|||
|
January = 0,
|
|||
|
February,
|
|||
|
March,
|
|||
|
April,
|
|||
|
May,
|
|||
|
June,
|
|||
|
July,
|
|||
|
August,
|
|||
|
September,
|
|||
|
October,
|
|||
|
November,
|
|||
|
December
|
|||
|
};
|
|||
|
|
|||
|
SunController():
|
|||
|
m_latitude(50.0f),
|
|||
|
m_month(June),
|
|||
|
m_eclipticObliquity(bx::toRad(23.4f)),
|
|||
|
m_delta(0.0f)
|
|||
|
{
|
|||
|
m_northDirection[0] = 1.0;
|
|||
|
m_northDirection[1] = 0.0;
|
|||
|
m_northDirection[2] = 0.0;
|
|||
|
m_upvector[0] = 0.0f;
|
|||
|
m_upvector[1] = 1.0f;
|
|||
|
m_upvector[2] = 0.0f;
|
|||
|
}
|
|||
|
|
|||
|
void Update(float time)
|
|||
|
{
|
|||
|
CalculateSunOrbit();
|
|||
|
UpdateSunPosition(time - 12.0f);
|
|||
|
}
|
|||
|
|
|||
|
float m_northDirection[3];
|
|||
|
float m_sunDirection[4];
|
|||
|
float m_upvector[3];
|
|||
|
float m_latitude;
|
|||
|
Month m_month;
|
|||
|
|
|||
|
private:
|
|||
|
void CalculateSunOrbit()
|
|||
|
{
|
|||
|
float day = 30.0f * m_month + 15.0f;
|
|||
|
float lambda = 280.46f + 0.9856474f * day;
|
|||
|
lambda = bx::toRad(lambda);
|
|||
|
m_delta = bx::fasin(bx::fsin(m_eclipticObliquity) * bx::fsin(lambda));
|
|||
|
}
|
|||
|
|
|||
|
void UpdateSunPosition(float hour)
|
|||
|
{
|
|||
|
float latitude = bx::toRad(m_latitude);
|
|||
|
float h = hour * bx::kPi / 12.0f;
|
|||
|
float azimuth = bx::fatan2(
|
|||
|
bx::fsin(h),
|
|||
|
bx::fcos(h) * bx::fsin(latitude) - bx::ftan(m_delta) * bx::fcos(latitude)
|
|||
|
);
|
|||
|
|
|||
|
float altitude = bx::fasin(
|
|||
|
bx::fsin(latitude) * bx::fsin(m_delta) + bx::fcos(latitude) * bx::fcos(m_delta) * bx::fcos(h)
|
|||
|
);
|
|||
|
float rotation[4];
|
|||
|
bx::quatRotateAxis(rotation, m_upvector, -azimuth);
|
|||
|
float direction[3];
|
|||
|
bx::vec3MulQuat(direction, m_northDirection, rotation);
|
|||
|
float v[3];
|
|||
|
bx::vec3Cross(v, m_upvector, direction);
|
|||
|
bx::quatRotateAxis(rotation, v, altitude);
|
|||
|
bx::vec3MulQuat(m_sunDirection, direction, rotation);
|
|||
|
}
|
|||
|
|
|||
|
float m_eclipticObliquity;
|
|||
|
float m_delta;
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
// Renders a screen-space grid of triangles.
|
|||
|
// Because of performance reasons, and because sky color is smooth, sky color is computed in vertex shader.
|
|||
|
// 32x32 is a reasonable size for the grid to have smooth enough colors.
|
|||
|
class ProceduralSky
|
|||
|
{
|
|||
|
struct ScreenPosVertex
|
|||
|
{
|
|||
|
float m_x;
|
|||
|
float m_y;
|
|||
|
|
|||
|
static void init()
|
|||
|
{
|
|||
|
ms_decl
|
|||
|
.begin()
|
|||
|
.add(bgfx::Attrib::Position, 2, bgfx::AttribType::Float)
|
|||
|
.end();
|
|||
|
}
|
|||
|
|
|||
|
static bgfx::VertexDecl ms_decl;
|
|||
|
};
|
|||
|
|
|||
|
public:
|
|||
|
void Init(int verticalCount, int horizontalCount)
|
|||
|
{
|
|||
|
// Create vertex stream declaration.
|
|||
|
ProceduralSky::ScreenPosVertex::init();
|
|||
|
|
|||
|
m_skyProgram = loadProgram("vs_sky", "fs_sky");
|
|||
|
m_skyProgram_colorBandingFix = loadProgram("vs_sky", "fs_sky_ColorBandingFix");
|
|||
|
|
|||
|
m_preventBanding = true;
|
|||
|
|
|||
|
bx::AllocatorI* allocator = entry::getAllocator();
|
|||
|
|
|||
|
ScreenPosVertex* vertices = (ScreenPosVertex*)BX_ALLOC(allocator,
|
|||
|
verticalCount * horizontalCount * sizeof(ScreenPosVertex));
|
|||
|
|
|||
|
for (int i = 0; i < verticalCount; i++)
|
|||
|
{
|
|||
|
for (int j = 0; j < horizontalCount; j++)
|
|||
|
{
|
|||
|
ScreenPosVertex& v = vertices[i * verticalCount + j];
|
|||
|
v.m_x = float(j) / (horizontalCount - 1) * 2.0f - 1.0f;
|
|||
|
v.m_y = float(i) / (verticalCount - 1) * 2.0f - 1.0f;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
uint16_t* indices = (uint16_t*)BX_ALLOC(allocator,
|
|||
|
(verticalCount - 1) * (horizontalCount - 1) * 6 * sizeof(uint16_t));
|
|||
|
|
|||
|
int k = 0;
|
|||
|
for (int i = 0; i < verticalCount - 1; i++)
|
|||
|
{
|
|||
|
for (int j = 0; j < horizontalCount - 1; j++)
|
|||
|
{
|
|||
|
indices[k++] = (uint16_t)(j + 0 + horizontalCount * (i + 0));
|
|||
|
indices[k++] = (uint16_t)(j + 1 + horizontalCount * (i + 0));
|
|||
|
indices[k++] = (uint16_t)(j + 0 + horizontalCount * (i + 1));
|
|||
|
|
|||
|
indices[k++] = (uint16_t)(j + 1 + horizontalCount * (i + 0));
|
|||
|
indices[k++] = (uint16_t)(j + 1 + horizontalCount * (i + 1));
|
|||
|
indices[k++] = (uint16_t)(j + 0 + horizontalCount * (i + 1));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
m_vbh = bgfx::createVertexBuffer(bgfx::copy(vertices, sizeof(ScreenPosVertex) * verticalCount * horizontalCount), ScreenPosVertex::ms_decl);
|
|||
|
m_ibh = bgfx::createIndexBuffer(bgfx::copy(indices, sizeof(uint16_t) * k));
|
|||
|
|
|||
|
BX_FREE(allocator, indices);
|
|||
|
BX_FREE(allocator, vertices);
|
|||
|
}
|
|||
|
|
|||
|
void Free()
|
|||
|
{
|
|||
|
bgfx::destroy(m_ibh);
|
|||
|
bgfx::destroy(m_vbh);
|
|||
|
bgfx::destroy(m_skyProgram);
|
|||
|
bgfx::destroy(m_skyProgram_colorBandingFix);
|
|||
|
}
|
|||
|
|
|||
|
void Draw()
|
|||
|
{
|
|||
|
bgfx::setState(BGFX_STATE_RGB_WRITE | BGFX_STATE_DEPTH_TEST_EQUAL);
|
|||
|
bgfx::setIndexBuffer(m_ibh);
|
|||
|
bgfx::setVertexBuffer(0, m_vbh);
|
|||
|
bgfx::submit(0, m_preventBanding ? m_skyProgram_colorBandingFix : m_skyProgram);
|
|||
|
}
|
|||
|
|
|||
|
bool m_preventBanding;
|
|||
|
|
|||
|
private:
|
|||
|
bgfx::VertexBufferHandle m_vbh;
|
|||
|
bgfx::IndexBufferHandle m_ibh;
|
|||
|
|
|||
|
bgfx::ProgramHandle m_skyProgram;
|
|||
|
bgfx::ProgramHandle m_skyProgram_colorBandingFix;
|
|||
|
};
|
|||
|
|
|||
|
bgfx::VertexDecl ProceduralSky::ScreenPosVertex::ms_decl;
|
|||
|
|
|||
|
|
|||
|
class ExampleProceduralSky : public entry::AppI
|
|||
|
{
|
|||
|
public:
|
|||
|
ExampleProceduralSky(const char* _name, const char* _description): entry::AppI(_name, _description)
|
|||
|
{}
|
|||
|
|
|||
|
void init(int32_t _argc, const char* const* _argv, uint32_t _width, uint32_t _height) override
|
|||
|
{
|
|||
|
Args args(_argc, _argv);
|
|||
|
|
|||
|
m_width = _width;
|
|||
|
m_height = _height;
|
|||
|
m_debug = BGFX_DEBUG_NONE;
|
|||
|
m_reset = BGFX_RESET_VSYNC;
|
|||
|
|
|||
|
bgfx::init(args.m_type, args.m_pciId);
|
|||
|
bgfx::reset(m_width, m_height, m_reset);
|
|||
|
|
|||
|
// Enable m_debug text.
|
|||
|
bgfx::setDebug(m_debug);
|
|||
|
|
|||
|
// Set view 0 clear state.
|
|||
|
bgfx::setViewClear(0
|
|||
|
, BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH
|
|||
|
, 0x000000ff
|
|||
|
, 1.0f
|
|||
|
, 0
|
|||
|
);
|
|||
|
|
|||
|
m_sunLuminanceXYZ.SetMap(sunLuminanceXYZTable);
|
|||
|
m_skyLuminanceXYZ.SetMap(skyLuminanceXYZTable);
|
|||
|
|
|||
|
m_mesh = meshLoad("meshes/test_scene.bin");
|
|||
|
|
|||
|
m_lightmapTexture = loadTexture("textures/lightmap.ktx");
|
|||
|
|
|||
|
// Imgui.
|
|||
|
imguiCreate();
|
|||
|
|
|||
|
m_timeOffset = bx::getHPCounter();
|
|||
|
m_time = 0.0f;
|
|||
|
|
|||
|
s_lightmapTexture = bgfx::createUniform("s_heightTexture", bgfx::UniformType::Int1);
|
|||
|
u_sunLuminance = bgfx::createUniform("u_sunLuminance", bgfx::UniformType::Vec4);
|
|||
|
u_skyLuminanceXYZ = bgfx::createUniform("u_skyLuminanceXYZ", bgfx::UniformType::Vec4);
|
|||
|
u_skyLuminance = bgfx::createUniform("u_skyLuminance", bgfx::UniformType::Vec4);
|
|||
|
u_sunDirection = bgfx::createUniform("u_sunDirection", bgfx::UniformType::Vec4);
|
|||
|
u_parameters = bgfx::createUniform("u_parameters", bgfx::UniformType::Vec4);
|
|||
|
u_perezCoeff = bgfx::createUniform("u_perezCoeff", bgfx::UniformType::Vec4, 5);
|
|||
|
|
|||
|
m_landscapeProgram = loadProgram("vs_sky_landscape", "fs_sky_landscape");
|
|||
|
|
|||
|
m_sky.Init(32, 32);
|
|||
|
|
|||
|
m_sun.Update(0);
|
|||
|
|
|||
|
cameraCreate();
|
|||
|
|
|||
|
const float initialPos[3] = { 5.0f, 3.0, 0.0f };
|
|||
|
cameraSetPosition(initialPos);
|
|||
|
cameraSetVerticalAngle(bx::kPi / 8.0f);
|
|||
|
cameraSetHorizontalAngle(-bx::kPi / 3.0f);
|
|||
|
|
|||
|
m_turbidity = 2.15f;
|
|||
|
}
|
|||
|
|
|||
|
virtual int shutdown() override
|
|||
|
{
|
|||
|
// Cleanup.
|
|||
|
cameraDestroy();
|
|||
|
imguiDestroy();
|
|||
|
|
|||
|
meshUnload(m_mesh);
|
|||
|
|
|||
|
m_sky.Free();
|
|||
|
|
|||
|
bgfx::destroy(s_lightmapTexture);
|
|||
|
bgfx::destroy(u_sunLuminance);
|
|||
|
bgfx::destroy(u_skyLuminanceXYZ);
|
|||
|
bgfx::destroy(u_skyLuminance);
|
|||
|
bgfx::destroy(u_sunDirection);
|
|||
|
bgfx::destroy(u_parameters);
|
|||
|
bgfx::destroy(u_perezCoeff);
|
|||
|
|
|||
|
bgfx::destroy(m_lightmapTexture);
|
|||
|
bgfx::destroy(m_landscapeProgram);
|
|||
|
|
|||
|
bgfx::frame();
|
|||
|
|
|||
|
// Shutdown bgfx.
|
|||
|
bgfx::shutdown();
|
|||
|
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
void DrawGUI()
|
|||
|
{
|
|||
|
ImGui::Begin("ProceduralSky");
|
|||
|
ImGui::SetWindowSize(ImVec2(350, 200));
|
|||
|
ImGui::SliderFloat("Time", &m_time, 0.0f, 24.0f);
|
|||
|
ImGui::SliderFloat("Latitude", &m_sun.m_latitude, -90.0f, 90.0f);
|
|||
|
ImGui::SliderFloat("Turbidity", &m_turbidity, 1.9f, 10.0f);
|
|||
|
ImGui::Checkbox("Prevent color banding", &m_sky.m_preventBanding);
|
|||
|
|
|||
|
const char* items[] = {
|
|||
|
"January",
|
|||
|
"February",
|
|||
|
"March",
|
|||
|
"April",
|
|||
|
"May",
|
|||
|
"June",
|
|||
|
"July",
|
|||
|
"August",
|
|||
|
"September",
|
|||
|
"October",
|
|||
|
"November",
|
|||
|
"December"
|
|||
|
};
|
|||
|
ImGui::Combo("Month", (int*)&m_sun.m_month, items, 12);
|
|||
|
|
|||
|
ImGui::End();
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
bool update() override
|
|||
|
{
|
|||
|
if (!entry::processEvents(m_width, m_height, m_debug, m_reset, &m_mouseState))
|
|||
|
{
|
|||
|
int64_t now = bx::getHPCounter();
|
|||
|
static int64_t last = now;
|
|||
|
const int64_t frameTime = now - last;
|
|||
|
last = now;
|
|||
|
const double freq = double(bx::getHPFrequency());
|
|||
|
const float deltaTime = float(frameTime / freq);
|
|||
|
m_time += deltaTime;
|
|||
|
m_time = bx::fmod(m_time, 24.0f);
|
|||
|
m_sun.Update(m_time);
|
|||
|
|
|||
|
imguiBeginFrame(m_mouseState.m_mx
|
|||
|
, m_mouseState.m_my
|
|||
|
, (m_mouseState.m_buttons[entry::MouseButton::Left] ? IMGUI_MBUT_LEFT : 0)
|
|||
|
| (m_mouseState.m_buttons[entry::MouseButton::Right] ? IMGUI_MBUT_RIGHT : 0)
|
|||
|
| (m_mouseState.m_buttons[entry::MouseButton::Middle] ? IMGUI_MBUT_MIDDLE : 0)
|
|||
|
, m_mouseState.m_mz
|
|||
|
, uint16_t(m_width)
|
|||
|
, uint16_t(m_height)
|
|||
|
);
|
|||
|
|
|||
|
showExampleDialog(this);
|
|||
|
|
|||
|
ImGui::SetNextWindowPos(
|
|||
|
ImVec2(m_width - m_width / 5.0f - 10.0f, 10.0f)
|
|||
|
, ImGuiSetCond_FirstUseEver
|
|||
|
);
|
|||
|
|
|||
|
DrawGUI();
|
|||
|
|
|||
|
imguiEndFrame();
|
|||
|
|
|||
|
if (!ImGui::MouseOverArea())
|
|||
|
{
|
|||
|
// Update camera.
|
|||
|
cameraUpdate(deltaTime, m_mouseState);
|
|||
|
}
|
|||
|
|
|||
|
// Set view 0 default viewport.
|
|||
|
bgfx::setViewRect(0, 0, 0, uint16_t(m_width), uint16_t(m_height));
|
|||
|
|
|||
|
cameraGetViewMtx(m_viewMtx);
|
|||
|
bx::mtxProj(m_projMtx, 60.0f, float(m_width) / float(m_height), 0.1f, 2000.0f, bgfx::getCaps()->homogeneousDepth);
|
|||
|
|
|||
|
bgfx::setViewTransform(0, m_viewMtx, m_projMtx);
|
|||
|
|
|||
|
Color sunLuminanceXYZ = m_sunLuminanceXYZ.GetValue(m_time);
|
|||
|
Color sunLuminanceRGB = XYZToRGB(sunLuminanceXYZ);
|
|||
|
|
|||
|
Color skyLuminanceXYZ = m_skyLuminanceXYZ.GetValue(m_time);
|
|||
|
Color skyLuminanceRGB = XYZToRGB(skyLuminanceXYZ);
|
|||
|
|
|||
|
bgfx::setUniform(u_sunLuminance, sunLuminanceRGB.data);
|
|||
|
bgfx::setUniform(u_skyLuminanceXYZ, skyLuminanceXYZ.data);
|
|||
|
bgfx::setUniform(u_skyLuminance, skyLuminanceRGB.data);
|
|||
|
|
|||
|
bgfx::setUniform(u_sunDirection, m_sun.m_sunDirection);
|
|||
|
|
|||
|
float exposition[4] = { 0.02f, 3.0f, 0.1f, m_time };
|
|||
|
bgfx::setUniform(u_parameters, exposition);
|
|||
|
|
|||
|
float perezCoeff[4 * 5];
|
|||
|
ComputePerezCoeff(m_turbidity, perezCoeff);
|
|||
|
bgfx::setUniform(u_perezCoeff, perezCoeff, 5);
|
|||
|
|
|||
|
bgfx::setTexture(0, s_lightmapTexture, m_lightmapTexture);
|
|||
|
|
|||
|
meshSubmit(m_mesh, 0, m_landscapeProgram, NULL);
|
|||
|
|
|||
|
m_sky.Draw();
|
|||
|
|
|||
|
bgfx::frame();
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
void ComputePerezCoeff(float turbidity, float* perezCoeff)
|
|||
|
{
|
|||
|
for (int i = 0; i < 5; ++i)
|
|||
|
{
|
|||
|
Color tmp;
|
|||
|
bx::vec3Mul(tmp.data, ABCDE_t[i].data, turbidity);
|
|||
|
bx::vec3Add(perezCoeff + 4 * i, tmp.data, ABCDE[i].data);
|
|||
|
perezCoeff[4 * i + 3] = 0.0f;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
bgfx::ProgramHandle m_landscapeProgram;
|
|||
|
bgfx::UniformHandle s_lightmapTexture;
|
|||
|
bgfx::TextureHandle m_lightmapTexture;
|
|||
|
|
|||
|
bgfx::UniformHandle u_sunLuminance;
|
|||
|
bgfx::UniformHandle u_skyLuminanceXYZ;
|
|||
|
bgfx::UniformHandle u_skyLuminance;
|
|||
|
bgfx::UniformHandle u_sunDirection;
|
|||
|
bgfx::UniformHandle u_parameters;
|
|||
|
bgfx::UniformHandle u_perezCoeff;
|
|||
|
|
|||
|
ProceduralSky m_sky;
|
|||
|
SunController m_sun;
|
|||
|
|
|||
|
DynamicValueController m_sunLuminanceXYZ;
|
|||
|
DynamicValueController m_skyLuminanceXYZ;
|
|||
|
|
|||
|
float m_viewMtx[16];
|
|||
|
float m_projMtx[16];
|
|||
|
|
|||
|
uint32_t m_width;
|
|||
|
uint32_t m_height;
|
|||
|
uint32_t m_debug;
|
|||
|
uint32_t m_reset;
|
|||
|
|
|||
|
Mesh* m_mesh;
|
|||
|
|
|||
|
entry::MouseState m_mouseState;
|
|||
|
|
|||
|
float m_time;
|
|||
|
int64_t m_timeOffset;
|
|||
|
|
|||
|
float m_turbidity;
|
|||
|
};
|
|||
|
|
|||
|
} // namespace
|
|||
|
|
|||
|
ENTRY_IMPLEMENT_MAIN(ExampleProceduralSky, "36-sky", "Dynamic sky example.");
|