bgfx/examples/common/bounds.cpp

292 lines
7.0 KiB
C++
Raw Normal View History

2013-02-22 09:07:31 +04:00
/*
2014-02-11 10:07:04 +04:00
* Copyright 2011-2014 Branimir Karadzic. All rights reserved.
2013-02-22 09:07:31 +04:00
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include <bx/rng.h>
2014-05-27 06:31:37 +04:00
#include <bx/fpumath.h>
2013-02-22 09:07:31 +04:00
#include "bounds.h"
void aabbToObb(Obb& _obb, const Aabb& _aabb)
{
memset(_obb.m_mtx, 0, sizeof(_obb.m_mtx) );
2012-12-29 05:09:34 +04:00
_obb.m_mtx[ 0] = (_aabb.m_max[0] - _aabb.m_min[0]) * 0.5f;
_obb.m_mtx[ 5] = (_aabb.m_max[1] - _aabb.m_min[1]) * 0.5f;
_obb.m_mtx[10] = (_aabb.m_max[2] - _aabb.m_min[2]) * 0.5f;
_obb.m_mtx[12] = (_aabb.m_min[0] + _aabb.m_max[0]) * 0.5f;
_obb.m_mtx[13] = (_aabb.m_min[1] + _aabb.m_max[1]) * 0.5f;
_obb.m_mtx[14] = (_aabb.m_min[2] + _aabb.m_max[2]) * 0.5f;
_obb.m_mtx[15] = 1.0f;
2013-02-22 09:07:31 +04:00
}
2014-05-20 09:08:35 +04:00
void sphereToAabb(Aabb& _aabb, const Sphere& _sphere)
{
float xx = _sphere.m_center[0];
float yy = _sphere.m_center[1];
float zz = _sphere.m_center[2];
float radius = _sphere.m_radius;
_aabb.m_min[0] = xx - radius;
_aabb.m_min[1] = yy - radius;
_aabb.m_min[2] = zz - radius;
_aabb.m_max[0] = xx + radius;
_aabb.m_max[1] = yy + radius;
_aabb.m_max[2] = zz + radius;
}
2013-02-22 09:07:31 +04:00
void aabbTransformToObb(Obb& _obb, const Aabb& _aabb, const float* _mtx)
{
aabbToObb(_obb, _aabb);
float result[16];
2014-05-27 06:31:37 +04:00
bx::mtxMul(result, _obb.m_mtx, _mtx);
2013-02-22 09:07:31 +04:00
memcpy(_obb.m_mtx, result, sizeof(result) );
}
float calcAreaAabb(Aabb& _aabb)
{
2012-12-29 05:09:34 +04:00
float ww = _aabb.m_max[0] - _aabb.m_min[0];
float hh = _aabb.m_max[1] - _aabb.m_min[1];
float dd = _aabb.m_max[2] - _aabb.m_min[2];
return 2.0f * (ww*hh + ww*dd + hh*dd);
2013-02-22 09:07:31 +04:00
}
void calcAabb(Aabb& _aabb, const void* _vertices, uint32_t _numVertices, uint32_t _stride)
{
float min[3], max[3];
uint8_t* vertex = (uint8_t*)_vertices;
float* position = (float*)vertex;
min[0] = max[0] = position[0];
min[1] = max[1] = position[1];
min[2] = max[2] = position[2];
vertex += _stride;
for (uint32_t ii = 1; ii < _numVertices; ++ii)
{
position = (float*)vertex;
vertex += _stride;
float xx = position[0];
float yy = position[1];
float zz = position[2];
2014-05-27 06:31:37 +04:00
min[0] = bx::fmin(xx, min[0]);
min[1] = bx::fmin(yy, min[1]);
min[2] = bx::fmin(zz, min[2]);
max[0] = bx::fmax(xx, max[0]);
max[1] = bx::fmax(yy, max[1]);
max[2] = bx::fmax(zz, max[2]);
2013-02-22 09:07:31 +04:00
}
_aabb.m_min[0] = min[0];
_aabb.m_min[1] = min[1];
_aabb.m_min[2] = min[2];
_aabb.m_max[0] = max[0];
_aabb.m_max[1] = max[1];
_aabb.m_max[2] = max[2];
}
void calcAabb(Aabb& _aabb, const float* _mtx, const void* _vertices, uint32_t _numVertices, uint32_t _stride)
{
float min[3], max[3];
uint8_t* vertex = (uint8_t*)_vertices;
float position[3];
2014-05-27 06:31:37 +04:00
bx::vec3MulMtx(position, (float*)vertex, _mtx);
2013-02-22 09:07:31 +04:00
min[0] = max[0] = position[0];
min[1] = max[1] = position[1];
min[2] = max[2] = position[2];
vertex += _stride;
for (uint32_t ii = 1; ii < _numVertices; ++ii)
{
2014-05-27 06:31:37 +04:00
bx::vec3MulMtx(position, (float*)vertex, _mtx);
2013-02-22 09:07:31 +04:00
vertex += _stride;
float xx = position[0];
float yy = position[1];
float zz = position[2];
2014-05-27 06:31:37 +04:00
min[0] = bx::fmin(xx, min[0]);
min[1] = bx::fmin(yy, min[1]);
min[2] = bx::fmin(zz, min[2]);
max[0] = bx::fmax(xx, max[0]);
max[1] = bx::fmax(yy, max[1]);
max[2] = bx::fmax(zz, max[2]);
2013-02-22 09:07:31 +04:00
}
_aabb.m_min[0] = min[0];
_aabb.m_min[1] = min[1];
_aabb.m_min[2] = min[2];
_aabb.m_max[0] = max[0];
_aabb.m_max[1] = max[1];
_aabb.m_max[2] = max[2];
}
2014-05-27 03:55:46 +04:00
void aabbExpand(Aabb& _aabb, float _factor)
{
_aabb.m_min[0] -= _factor;
_aabb.m_min[1] -= _factor;
_aabb.m_min[2] -= _factor;
_aabb.m_max[0] += _factor;
_aabb.m_max[1] += _factor;
_aabb.m_max[2] += _factor;
}
uint32_t aabbOverlapTest(Aabb& _aabb0, Aabb& _aabb1)
{
const uint32_t ltMinX = _aabb0.m_max[0] < _aabb1.m_min[0];
const uint32_t gtMaxX = _aabb0.m_min[0] > _aabb1.m_max[0];
const uint32_t ltMinY = _aabb0.m_max[1] < _aabb1.m_min[1];
const uint32_t gtMaxY = _aabb0.m_min[1] > _aabb1.m_max[1];
const uint32_t ltMinZ = _aabb0.m_max[2] < _aabb1.m_min[2];
const uint32_t gtMaxZ = _aabb0.m_min[2] > _aabb1.m_max[2];
return 0
| (ltMinX<<0)
| (gtMaxX<<1)
| (ltMinY<<2)
| (gtMaxY<<3)
| (ltMinZ<<4)
| (gtMaxZ<<5)
;
}
2013-02-22 09:07:31 +04:00
void calcObb(Obb& _obb, const void* _vertices, uint32_t _numVertices, uint32_t _stride, uint32_t _steps)
{
Aabb aabb;
calcAabb(aabb, _vertices, _numVertices, _stride);
float minArea = calcAreaAabb(aabb);
Obb best;
aabbToObb(best, aabb);
float angleStep = float(M_PI_2/_steps);
float ax = 0.0f;
float mtx[16];
for (uint32_t ii = 0; ii < _steps; ++ii)
{
float ay = 0.0f;
for (uint32_t jj = 0; jj < _steps; ++jj)
{
float az = 0.0f;
for (uint32_t kk = 0; kk < _steps; ++kk)
{
2014-05-27 06:31:37 +04:00
bx::mtxRotateXYZ(mtx, ax, ay, az);
2013-02-22 09:07:31 +04:00
float mtxT[16];
2014-05-27 06:31:37 +04:00
bx::mtxTranspose(mtxT, mtx);
2013-02-22 09:07:31 +04:00
calcAabb(aabb, mtxT, _vertices, _numVertices, _stride);
float area = calcAreaAabb(aabb);
if (area < minArea)
{
minArea = area;
aabbTransformToObb(best, aabb, mtx);
}
az += angleStep;
}
ay += angleStep;
}
ax += angleStep;
}
memcpy(&_obb, &best, sizeof(Obb) );
}
void calcMaxBoundingSphere(Sphere& _sphere, const void* _vertices, uint32_t _numVertices, uint32_t _stride)
{
Aabb aabb;
calcAabb(aabb, _vertices, _numVertices, _stride);
float center[3];
center[0] = (aabb.m_min[0] + aabb.m_max[0]) * 0.5f;
center[1] = (aabb.m_min[1] + aabb.m_max[1]) * 0.5f;
center[2] = (aabb.m_min[2] + aabb.m_max[2]) * 0.5f;
float maxDistSq = 0.0f;
uint8_t* vertex = (uint8_t*)_vertices;
for (uint32_t ii = 0; ii < _numVertices; ++ii)
{
float* position = (float*)vertex;
vertex += _stride;
float xx = position[0] - center[0];
float yy = position[1] - center[1];
float zz = position[2] - center[2];
float distSq = xx*xx + yy*yy + zz*zz;
2014-05-27 06:31:37 +04:00
maxDistSq = bx::fmax(distSq, maxDistSq);
2013-02-22 09:07:31 +04:00
}
_sphere.m_center[0] = center[0];
_sphere.m_center[1] = center[1];
_sphere.m_center[2] = center[2];
_sphere.m_radius = sqrtf(maxDistSq);
}
void calcMinBoundingSphere(Sphere& _sphere, const void* _vertices, uint32_t _numVertices, uint32_t _stride, float _step)
{
bx::RngMwc rng;
uint8_t* vertex = (uint8_t*)_vertices;
float center[3];
float* position = (float*)&vertex[0];
center[0] = position[0];
center[1] = position[1];
center[2] = position[2];
position = (float*)&vertex[1*_stride];
center[0] += position[0];
center[1] += position[1];
center[2] += position[2];
center[0] *= 0.5f;
center[1] *= 0.5f;
center[2] *= 0.5f;
float xx = position[0] - center[0];
float yy = position[1] - center[1];
float zz = position[2] - center[2];
float maxDistSq = xx*xx + yy*yy + zz*zz;
float radiusStep = _step * 0.37f;
bool done;
do
{
done = true;
for (uint32_t ii = 0, index = rng.gen()%_numVertices; ii < _numVertices; ++ii, index = (index + 1)%_numVertices)
{
position = (float*)&vertex[index*_stride];
float xx = position[0] - center[0];
float yy = position[1] - center[1];
float zz = position[2] - center[2];
float distSq = xx*xx + yy*yy + zz*zz;
if (distSq > maxDistSq)
{
done = false;
center[0] += xx * radiusStep;
center[1] += yy * radiusStep;
center[2] += zz * radiusStep;
2014-05-27 06:31:37 +04:00
maxDistSq = bx::flerp(maxDistSq, distSq, _step);
2013-02-22 09:07:31 +04:00
break;
}
}
} while (!done);
_sphere.m_center[0] = center[0];
_sphere.m_center[1] = center[1];
_sphere.m_center[2] = center[2];
_sphere.m_radius = sqrtf(maxDistSq);
}