TheAlgorithms-C/audio/alaw.c

217 lines
6.1 KiB
C

/**
* @file
* @author [sunzhenliang](https://github.com/HiSunzhenliang)
* @brief A-law algorithm for encoding and decoding (16bit pcm <=> a-law).
* This is the implementation of [G.711](https://en.wikipedia.org/wiki/G.711)
* in C.
**/
/**
* Linear input code | Compressed code | Linear output code
* ------------------+-----------------+-------------------
* s0000000abcdx | s000abcd | s0000000abcd1
* s0000001abcdx | s001abcd | s0000001abcd1
* s000001abcdxx | s010abcd | s000001abcd10
* s00001abcdxxx | s011abcd | s00001abcd100
* s0001abcdxxxx | s100abcd | s0001abcd1000
* s001abcdxxxxx | s101abcd | s001abcd10000
* s01abcdxxxxxx | s110abcd | s01abcd100000
* s1abcdxxxxxxx | s111abcd | s1abcd1000000
*
* Compressed code: (s | eee | abcd)
**/
#include <assert.h> /// for assert
#include <inttypes.h> /// for appropriate size int types
#include <stdio.h> /// for IO operations
/* length of test inputs */
#define LEN ((size_t)8)
/* input pcm for test */
int16_t pcm[LEN] = {1000, -1000, 1234, 3200, -1314, 0, 32767, -32768};
/* result coded alaw for test */
uint8_t r_coded[LEN] = {250, 122, 230, 156, 97, 213, 170, 42};
/* result decoded for test */
int16_t r_decoded[LEN] = {1008, -1008, 1248, 3264, -1312, 8, 32256, -32256};
/**
* @brief 16bit pcm to 8bit alaw
* @param out unsigned 8bit alaw array
* @param in signed 16bit pcm array
* @param len length of pcm array
* @returns void
*/
void encode(uint8_t *out, int16_t *in, size_t len)
{
uint8_t alaw = 0;
int16_t pcm = 0;
int32_t sign = 0;
int32_t abcd = 0;
int32_t eee = 0;
int32_t mask = 0;
for (size_t i = 0; i < len; i++)
{
pcm = *in++;
/* 0-7 kinds of quantization level from the table above */
eee = 7;
mask = 0x4000; /* 0x4000: '0b0100 0000 0000 0000' */
/* Get sign bit */
sign = (pcm & 0x8000) >> 8;
/* Turn negative pcm to positive */
/* The absolute value of a negative number may be larger than the size
* of the corresponding positive number, so here needs `-pcm -1` after
* taking the opposite number. */
pcm = sign ? (-pcm - 1) : pcm;
/* Get eee and abcd bit */
/* Use mask to locate the first `1` bit and quantization level at the
* same time */
while ((pcm & mask) == 0 && eee > 0)
{
eee--;
mask >>= 1;
}
/* The location of abcd bits is related with quantization level. Check
* the table above to determine how many bits to `>>` to get abcd */
abcd = (pcm >> (eee ? (eee + 3) : 4)) & 0x0f;
/* Put the quantization level number at right bit location to get eee
* bits */
eee <<= 4;
/* Splice results */
alaw = (sign | eee | abcd);
/* The standard specifies that all resulting even bits (LSB
* is even) are inverted before the octet is transmitted. This is to
* provide plenty of 0/1 transitions to facilitate the clock recovery
* process in the PCM receivers. Thus, a silent A-law encoded PCM
* channel has the 8 bit samples coded 0xD5 instead of 0x80 in the
* octets. (Reference from wiki above) */
*out++ = alaw ^ 0xD5;
}
}
/**
* @brief 8bit alaw to 16bit pcm
* @param out signed 16bit pcm array
* @param in unsigned 8bit alaw array
* @param len length of alaw array
* @returns void
*/
void decode(int16_t *out, uint8_t *in, size_t len)
{
uint8_t alaw = 0;
int32_t pcm = 0;
int32_t sign = 0;
int32_t eee = 0;
for (size_t i = 0; i < len; i++)
{
alaw = *in++;
/* Re-toggle toggled bits */
alaw ^= 0xD5;
/* Get sign bit */
sign = alaw & 0x80;
/* Get eee bits */
eee = (alaw & 0x70) >> 4;
/* Get abcd bits and add 1/2 quantization step */
pcm = (alaw & 0x0f) << 4 | 8;
/* If quantization level > 0, there need `1` bit before abcd bits */
pcm += eee ? 0x100 : 0x0;
/* Left shift according quantization level */
pcm <<= eee > 1 ? (eee - 1) : 0;
/* Use the right sign */
*out++ = sign ? -pcm : pcm;
}
}
/**
* @brief Self-test implementations
* @param pcm signed 16bit pcm array
* @param coded unsigned 8bit alaw array
* @param decoded signed 16bit pcm array
* @param len length of test array
* @returns void
*/
static void test(int16_t *pcm, uint8_t *coded, int16_t *decoded, size_t len)
{
/* run encode */
encode(coded, pcm, len);
/* check encode result */
for (size_t i = 0; i < len; i++)
{
assert(coded[i] == r_coded[i]);
}
/* run decode */
decode(decoded, coded, len);
/* check decode result */
for (size_t i = 0; i < len; i++)
{
assert(decoded[i] == r_decoded[i]);
}
}
/**
* @brief Main function
* @param argc commandline argument count (ignored)
* @param argv commandline array of arguments (ignored)
* @returns 0 on exit
*/
int main(int argc, char *argv[])
{
/* output alaw encoded by encode() */
uint8_t coded[LEN];
/* output pcm decoded by decode() from coded[LEN] */
int16_t decoded[LEN];
test(pcm, coded, decoded, LEN); // run self-test implementations
/* print test pcm inputs */
printf("inputs: ");
for (size_t i = 0; i < LEN; i++)
{
printf("%d ", pcm[i]);
}
printf("\n");
/* print encoded alaw */
printf("encode: ");
for (size_t i = 0; i < LEN; i++)
{
printf("%u ", coded[i]);
}
printf("\n");
/* print decoded pcm */
printf("decode: ");
for (size_t i = 0; i < LEN; i++)
{
printf("%d ", decoded[i]);
}
printf("\n");
/* It can be seen that the encoded alaw is smaller than the input PCM, so
* the purpose of compression is achieved. And the decoded PCM is almost the
* same as the original input PCM, which verifies the correctness of the
* decoding. The reason why it is not exactly the same is that there is
* precision loss during encode / decode. */
return 0;
}