/** * @file * @author [sunzhenliang](https://github.com/HiSunzhenliang) * @brief A-law algorithm for encoding and decoding (16bit pcm <=> a-law). * This is the implementation of [G.711](https://en.wikipedia.org/wiki/G.711) * in C. **/ /** * Linear input code | Compressed code | Linear output code * ------------------+-----------------+------------------- * s0000000abcdx | s000abcd | s0000000abcd1 * s0000001abcdx | s001abcd | s0000001abcd1 * s000001abcdxx | s010abcd | s000001abcd10 * s00001abcdxxx | s011abcd | s00001abcd100 * s0001abcdxxxx | s100abcd | s0001abcd1000 * s001abcdxxxxx | s101abcd | s001abcd10000 * s01abcdxxxxxx | s110abcd | s01abcd100000 * s1abcdxxxxxxx | s111abcd | s1abcd1000000 * * Compressed code: (s | eee | abcd) **/ #include /// for assert #include /// for appropriate size int types #include /// for IO operations /* length of test inputs */ #define LEN ((size_t)8) /* input pcm for test */ int16_t pcm[LEN] = {1000, -1000, 1234, 3200, -1314, 0, 32767, -32768}; /* result coded alaw for test */ uint8_t r_coded[LEN] = {250, 122, 230, 156, 97, 213, 170, 42}; /* result decoded for test */ int16_t r_decoded[LEN] = {1008, -1008, 1248, 3264, -1312, 8, 32256, -32256}; /** * @brief 16bit pcm to 8bit alaw * @param out unsigned 8bit alaw array * @param in signed 16bit pcm array * @param len length of pcm array * @returns void */ void encode(uint8_t *out, int16_t *in, size_t len) { uint8_t alaw = 0; int16_t pcm = 0; int32_t sign = 0; int32_t abcd = 0; int32_t eee = 0; int32_t mask = 0; for (size_t i = 0; i < len; i++) { pcm = *in++; /* 0-7 kinds of quantization level from the table above */ eee = 7; mask = 0x4000; /* 0x4000: '0b0100 0000 0000 0000' */ /* Get sign bit */ sign = (pcm & 0x8000) >> 8; /* Turn negative pcm to positive */ /* The absolute value of a negative number may be larger than the size * of the corresponding positive number, so here needs `-pcm -1` after * taking the opposite number. */ pcm = sign ? (-pcm - 1) : pcm; /* Get eee and abcd bit */ /* Use mask to locate the first `1` bit and quantization level at the * same time */ while ((pcm & mask) == 0 && eee > 0) { eee--; mask >>= 1; } /* The location of abcd bits is related with quantization level. Check * the table above to determine how many bits to `>>` to get abcd */ abcd = (pcm >> (eee ? (eee + 3) : 4)) & 0x0f; /* Put the quantization level number at right bit location to get eee * bits */ eee <<= 4; /* Splice results */ alaw = (sign | eee | abcd); /* The standard specifies that all resulting even bits (LSB * is even) are inverted before the octet is transmitted. This is to * provide plenty of 0/1 transitions to facilitate the clock recovery * process in the PCM receivers. Thus, a silent A-law encoded PCM * channel has the 8 bit samples coded 0xD5 instead of 0x80 in the * octets. (Reference from wiki above) */ *out++ = alaw ^ 0xD5; } } /** * @brief 8bit alaw to 16bit pcm * @param out signed 16bit pcm array * @param in unsigned 8bit alaw array * @param len length of alaw array * @returns void */ void decode(int16_t *out, uint8_t *in, size_t len) { uint8_t alaw = 0; int32_t pcm = 0; int32_t sign = 0; int32_t eee = 0; for (size_t i = 0; i < len; i++) { alaw = *in++; /* Re-toggle toggled bits */ alaw ^= 0xD5; /* Get sign bit */ sign = alaw & 0x80; /* Get eee bits */ eee = (alaw & 0x70) >> 4; /* Get abcd bits and add 1/2 quantization step */ pcm = (alaw & 0x0f) << 4 | 8; /* If quantization level > 0, there need `1` bit before abcd bits */ pcm += eee ? 0x100 : 0x0; /* Left shift according quantization level */ pcm <<= eee > 1 ? (eee - 1) : 0; /* Use the right sign */ *out++ = sign ? -pcm : pcm; } } /** * @brief Self-test implementations * @param pcm signed 16bit pcm array * @param coded unsigned 8bit alaw array * @param decoded signed 16bit pcm array * @param len length of test array * @returns void */ static void test(int16_t *pcm, uint8_t *coded, int16_t *decoded, size_t len) { /* run encode */ encode(coded, pcm, len); /* check encode result */ for (size_t i = 0; i < len; i++) { assert(coded[i] == r_coded[i]); } /* run decode */ decode(decoded, coded, len); /* check decode result */ for (size_t i = 0; i < len; i++) { assert(decoded[i] == r_decoded[i]); } } /** * @brief Main function * @param argc commandline argument count (ignored) * @param argv commandline array of arguments (ignored) * @returns 0 on exit */ int main(int argc, char *argv[]) { /* output alaw encoded by encode() */ uint8_t coded[LEN]; /* output pcm decoded by decode() from coded[LEN] */ int16_t decoded[LEN]; test(pcm, coded, decoded, LEN); // run self-test implementations /* print test pcm inputs */ printf("inputs: "); for (size_t i = 0; i < LEN; i++) { printf("%d ", pcm[i]); } printf("\n"); /* print encoded alaw */ printf("encode: "); for (size_t i = 0; i < LEN; i++) { printf("%u ", coded[i]); } printf("\n"); /* print decoded pcm */ printf("decode: "); for (size_t i = 0; i < LEN; i++) { printf("%d ", decoded[i]); } printf("\n"); /* It can be seen that the encoded alaw is smaller than the input PCM, so * the purpose of compression is achieved. And the decoded PCM is almost the * same as the original input PCM, which verifies the correctness of the * decoding. The reason why it is not exactly the same is that there is * precision loss during encode / decode. */ return 0; }