Algorithms_in_C 1.0.0
Set of algorithms implemented in C.
Loading...
Searching...
No Matches
ode_midpoint_euler.c File Reference

Solve a multivariable first order ordinary differential equation (ODEs) using midpoint Euler method More...

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
Include dependency graph for ode_midpoint_euler.c:

Macros

#define order   2
 number of dependent variables in problem
 

Functions

void problem (const double *x, double *y, double *dy)
 Problem statement for a system with first-order differential equations.
 
void exact_solution (const double *x, double *y)
 Exact solution of the problem.
 
void midpoint_euler_step (double dx, double *x, double *y, double *dy)
 Compute next step approximation using the midpoint-Euler method.
 
double midpoint_euler (double dx, double x0, double x_max, double *y, char save_to_file)
 Compute approximation using the midpoint-Euler method in the given limits.
 
int main (int argc, char *argv[])
 Main Function.
 

Detailed Description

Solve a multivariable first order ordinary differential equation (ODEs) using midpoint Euler method

Authors
Krishna Vedala

The ODE being solved is:

\begin{eqnarray*} \dot{u} &=& v\\ \dot{v} &=& -\omega^2 u\\ \omega &=& 1\\ [x_0, u_0, v_0] &=& [0,1,0]\qquad\ldots\text{(initial values)} \end{eqnarray*}

The exact solution for the above problem is:

\begin{eqnarray*} u(x) &=& \cos(x)\\ v(x) &=& -\sin(x)\\ \end{eqnarray*}

The computation results are stored to a text file midpoint_euler.csv and the exact soltuion results in exact.csv for comparison. Implementation solution

To implement Van der Pol oscillator, change the problem function to:

const double mu = 2.0;
dy[0] = y[1];
dy[1] = mu * (1.f - y[0] * y[0]) * y[1] - y[0];
See also
ode_forward_euler.c, ode_semi_implicit_euler.c

Function Documentation

◆ exact_solution()

void exact_solution ( const double *  x,
double *  y 
)

Exact solution of the problem.

Used for solution comparison.

Parameters
[in]xindependent variable
[in,out]ydependent variable
68{
69 y[0] = cos(x[0]);
70 y[1] = -sin(x[0]);
71}

◆ main()

int main ( int  argc,
char *  argv[] 
)

Main Function.

145{
146 double X0 = 0.f; /* initial value of x0 */
147 double X_MAX = 10.F; /* upper limit of integration */
148 double Y0[] = {1.f, 0.f}; /* initial value Y = y(x = x_0) */
149 double step_size;
150
151 if (argc == 1)
152 {
153 printf("\nEnter the step size: ");
154 scanf("%lg", &step_size);
155 }
156 else
157 // use commandline argument as independent variable step size
158 step_size = atof(argv[1]);
159
160 // get approximate solution
161 double total_time = midpoint_euler(step_size, X0, X_MAX, Y0, 1);
162 printf("\tTime = %.6g ms\n", total_time);
163
164 /* compute exact solution for comparion */
165 FILE *fp = fopen("exact.csv", "w+");
166 if (fp == NULL)
167 {
168 perror("Error! ");
169 return -1;
170 }
171 double x = X0;
172 double *y = &(Y0[0]);
173 printf("Finding exact solution\n");
174 clock_t t1 = clock();
175
176 do
177 {
178 fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file
179 exact_solution(&x, y);
180 x += step_size;
181 } while (x <= X_MAX);
182
183 clock_t t2 = clock();
184 total_time = (t2 - t1) / CLOCKS_PER_SEC;
185 printf("\tTime = %.6g ms\n", total_time);
186 fclose(fp);
187
188 return 0;
189}
double midpoint_euler(double dx, double x0, double x_max, double *y, char save_to_file)
Compute approximation using the midpoint-Euler method in the given limits.
Definition: ode_midpoint_euler.c:106
void exact_solution(const double *x, double *y)
Exact solution of the problem.
Definition: ode_midpoint_euler.c:67
Here is the call graph for this function:

◆ midpoint_euler()

double midpoint_euler ( double  dx,
double  x0,
double  x_max,
double *  y,
char  save_to_file 
)

Compute approximation using the midpoint-Euler method in the given limits.

Parameters
[in]dxstep size
[in]x0initial value of independent variable
[in]x_maxfinal value of independent variable
[in,out]ytake \(y_n\) and compute \(y_{n+1}\)
[in]save_to_fileflag to save results to a CSV file (1) or not (0)
Returns
time taken for computation in seconds
108{
109 double dy[order];
110
111 FILE *fp = NULL;
112 if (save_to_file)
113 {
114 fp = fopen("midpoint_euler.csv", "w+");
115 if (fp == NULL)
116 {
117 perror("Error! ");
118 return -1;
119 }
120 }
121
122 /* start integration */
123 clock_t t1 = clock();
124 double x = x0;
125 do // iterate for each step of independent variable
126 {
127 if (save_to_file && fp)
128 fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file
129 midpoint_euler_step(dx, &x, y, dy); // perform integration
130 x += dx; // update step
131 } while (x <= x_max); // till upper limit of independent variable
132 /* end of integration */
133 clock_t t2 = clock();
134
135 if (save_to_file && fp)
136 fclose(fp);
137
138 return (double)(t2 - t1) / CLOCKS_PER_SEC;
139}
#define order
number of dependent variables in problem
Definition: ode_midpoint_euler.c:43
void midpoint_euler_step(double dx, double *x, double *y, double *dy)
Compute next step approximation using the midpoint-Euler method.
Definition: ode_midpoint_euler.c:83
Here is the call graph for this function:

◆ midpoint_euler_step()

void midpoint_euler_step ( double  dx,
double *  x,
double *  y,
double *  dy 
)

Compute next step approximation using the midpoint-Euler method.

\[y_{n+1} = y_n + dx\, f\left(x_n+\frac{1}{2}dx, y_n + \frac{1}{2}dx\,f\left(x_n,y_n\right)\right)\]

Parameters
[in]dxstep size
[in,out]xtake \(x_n\) and compute \(x_{n+1}\)
[in,out]ytake \(y_n\) and compute \(y_{n+1}\)
[in,out]dycompute \(y_n+\frac{1}{2}dx\,f\left(x_n,y_n\right)\)
84{
85 problem(x, y, dy);
86 double tmp_x = (*x) + 0.5 * dx;
87 double tmp_y[order];
88 int o;
89 for (o = 0; o < order; o++) tmp_y[o] = y[o] + 0.5 * dx * dy[o];
90
91 problem(&tmp_x, tmp_y, dy);
92
93 for (o = 0; o < order; o++) y[o] += dx * dy[o];
94}
void problem(const double *x, double *y, double *dy)
Problem statement for a system with first-order differential equations.
Definition: ode_midpoint_euler.c:54
Here is the call graph for this function:

◆ problem()

void problem ( const double *  x,
double *  y,
double *  dy 
)

Problem statement for a system with first-order differential equations.

Updates the system differential variables.

Note
This function can be updated to and ode of any order.
Parameters
[in]xindependent variable(s)
[in,out]ydependent variable(s)
[in,out]dyfirst-derivative of dependent variable(s)
55{
56 const double omega = 1.F; // some const for the problem
57 dy[0] = y[1]; // x dot
58 dy[1] = -omega * omega * y[0]; // y dot
59}