Algorithms_in_C  1.0.0
Set of algorithms implemented in C.
durand_kerner_roots.c File Reference

Compute all possible approximate roots of any given polynomial using Durand Kerner algorithm More...

#include <complex.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
Include dependency graph for durand_kerner_roots.c:

Macros

#define ACCURACY   1e-10
 maximum accuracy limit
 

Functions

long double complex poly_function (double *coeffs, unsigned int degree, long double complex x)
 Evaluate the value of a polynomial with given coefficients. More...
 
const char * complex_str (long double complex x)
 create a textual form of complex number More...
 
char check_termination (long double delta)
 check for termination condition More...
 
int main (int argc, char **argv)
 

Detailed Description

Compute all possible approximate roots of any given polynomial using Durand Kerner algorithm

Author
Krishna Vedala

Test the algorithm online: https://gist.github.com/kvedala/27f1b0b6502af935f6917673ec43bcd7

Try the highly unstable Wilkinson's polynomial:

./numerical_methods/durand_kerner_roots.c 1 -210 20615 -1256850 53327946
-1672280820 40171771630 -756111184500 11310276995381 -135585182899530
1307535010540395 -10142299865511450 63030812099294896 -311333643161390640
1206647803780373360 -3599979517947607200 8037811822645051776
-12870931245150988800 13803759753640704000 -8752948036761600000
2432902008176640000

Sample implementation results to compute approximate roots of the equation \(x^4-1=0\):
Error evolution during root approximations computed every
iteration. Roots evolution - shows the initial approximation of the
roots and their convergence to a final approximation along with the iterative
approximations

Function Documentation

◆ check_termination()

char check_termination ( long double  delta)

check for termination condition

Parameters
[in]deltapoint at which to evaluate the polynomial
Returns
0 if termination not reached
1 if termination reached
84 {
85  static long double past_delta = INFINITY;
86  if (fabsl(past_delta - delta) <= ACCURACY || delta < ACCURACY)
87  return 1;
88  past_delta = delta;
89  return 0;
90 }

◆ complex_str()

const char* complex_str ( long double complex  x)

create a textual form of complex number

Parameters
[in]xpoint at which to evaluate the polynomial
Returns
pointer to converted string
67 {
68  static char msg[50];
69  double r = creal(x);
70  double c = cimag(x);
71 
72  sprintf(msg, "% 7.04g%+7.04gj", r, c);
73 
74  return msg;
75 }

◆ main()

int main ( int  argc,
char **  argv 
)

store intermediate values to a CSV file

96 {
97  double *coeffs = NULL;
98  long double complex *s0 = NULL;
99  unsigned int degree = 0;
100  unsigned int n, i;
101 
102  if (argc < 2)
103  {
104  printf(
105  "Please pass the coefficients of the polynomial as commandline "
106  "arguments.\n");
107  return 0;
108  }
109 
110  degree = argc - 1; /* detected polynomial degree */
111  coeffs = (double *)malloc(
112  degree * sizeof(double)); /* store all input coefficients */
113  s0 = (long double complex *)malloc(
114  (degree - 1) *
115  sizeof(long double complex)); /* number of roots = degree-1 */
116 
117  /* initialize random seed: */
118  srand(time(NULL));
119 
120  if (!coeffs || !s0)
121  {
122  perror("Unable to allocate memory!");
123  if (coeffs)
124  free(coeffs);
125  if (s0)
126  free(s0);
127  return EXIT_FAILURE;
128  }
129 
130 #if defined(DEBUG) || !defined(NDEBUG)
131  /**
132  * store intermediate values to a CSV file
133  */
134  FILE *log_file = fopen("durand_kerner.log.csv", "wt");
135  if (!log_file)
136  {
137  perror("Unable to create a storage log file!");
138  free(coeffs);
139  free(s0);
140  return EXIT_FAILURE;
141  }
142  fprintf(log_file, "iter#,");
143 #endif
144 
145  printf("Computing the roots for:\n\t");
146  for (n = 0; n < degree; n++)
147  {
148  coeffs[n] = strtod(argv[n + 1], NULL);
149  if (n < degree - 1 && coeffs[n] != 0)
150  printf("(%g) x^%d + ", coeffs[n], degree - n - 1);
151  else if (coeffs[n] != 0)
152  printf("(%g) x^%d = 0\n", coeffs[n], degree - n - 1);
153 
154  double tmp;
155  if (n > 0)
156  coeffs[n] /= tmp; /* numerical errors less when the first
157  coefficient is "1" */
158  else
159  {
160  tmp = coeffs[0];
161  coeffs[0] = 1;
162  }
163 
164  /* initialize root approximations with random values */
165  if (n < degree - 1)
166  {
167  s0[n] = (long double)rand() + (long double)rand() * I;
168 #if defined(DEBUG) || !defined(NDEBUG)
169  fprintf(log_file, "root_%d,", n);
170 #endif
171  }
172  }
173 
174 #if defined(DEBUG) || !defined(NDEBUG)
175  fprintf(log_file, "avg. correction");
176  fprintf(log_file, "\n0,");
177  for (n = 0; n < degree - 1; n++)
178  fprintf(log_file, "%s,", complex_str(s0[n]));
179 #endif
180 
181  double tol_condition = 1;
182  unsigned long iter = 0;
183 
184  clock_t end_time, start_time = clock();
185  while (!check_termination(tol_condition) && iter < INT_MAX)
186  {
187  long double complex delta = 0;
188  tol_condition = 0;
189  iter++;
190 
191 #if defined(DEBUG) || !defined(NDEBUG)
192  fprintf(log_file, "\n%ld,", iter);
193 #endif
194 
195  for (n = 0; n < degree - 1; n++)
196  {
197  long double complex numerator =
198  poly_function(coeffs, degree, s0[n]);
199  long double complex denominator = 1.0;
200  for (i = 0; i < degree - 1; i++)
201  if (i != n)
202  denominator *= s0[n] - s0[i];
203 
204  delta = numerator / denominator;
205 
206  if (isnan(cabsl(delta)) || isinf(cabsl(delta)))
207  {
208  printf("\n\nOverflow/underrun error - got value = %Lg",
209  cabsl(delta));
210  goto end;
211  }
212 
213  s0[n] -= delta;
214 
215  tol_condition = fmaxl(tol_condition, fabsl(cabsl(delta)));
216 
217 #if defined(DEBUG) || !defined(NDEBUG)
218  fprintf(log_file, "%s,", complex_str(s0[n]));
219 #endif
220  }
221  // tol_condition /= (degree - 1);
222 
223 #if defined(DEBUG) || !defined(NDEBUG)
224  if (iter % 500 == 0)
225  {
226  printf("Iter: %lu\t", iter);
227  for (n = 0; n < degree - 1; n++) printf("\t%s", complex_str(s0[n]));
228  printf("\t\tabsolute average change: %.4g\n", tol_condition);
229  }
230 
231  fprintf(log_file, "%.4g", tol_condition);
232 #endif
233  }
234 end:
235 
236  end_time = clock();
237 
238 #if defined(DEBUG) || !defined(NDEBUG)
239  fclose(log_file);
240 #endif
241 
242  printf("\nIterations: %lu\n", iter);
243  for (n = 0; n < degree - 1; n++) printf("\t%s\n", complex_str(s0[n]));
244  printf("absolute average change: %.4g\n", tol_condition);
245  printf("Time taken: %.4g sec\n",
246  (end_time - start_time) / (double)CLOCKS_PER_SEC);
247 
248  free(coeffs);
249  free(s0);
250 
251  return 0;
252 }
Here is the call graph for this function:

◆ poly_function()

long double complex poly_function ( double *  coeffs,
unsigned int  degree,
long double complex  x 
)

Evaluate the value of a polynomial with given coefficients.

Parameters
[in]coeffscoefficients of the polynomial
[in]degreedegree of polynomial
[in]xpoint at which to evaluate the polynomial
Returns
\(f(x)\)
52 {
53  long double complex out = 0.;
54  unsigned int n;
55 
56  for (n = 0; n < degree; n++) out += coeffs[n] * cpow(x, degree - n - 1);
57 
58  return out;
59 }
poly_function
long double complex poly_function(double *coeffs, unsigned int degree, long double complex x)
Evaluate the value of a polynomial with given coefficients.
Definition: durand_kerner_roots.c:50
complex_str
const char * complex_str(long double complex x)
create a textual form of complex number
Definition: durand_kerner_roots.c:66
check_termination
char check_termination(long double delta)
check for termination condition
Definition: durand_kerner_roots.c:83
ACCURACY
#define ACCURACY
maximum accuracy limit
Definition: durand_kerner_roots.c:41