mirror of
https://github.com/TheAlgorithms/C
synced 2025-01-13 13:29:28 +03:00
update ML documentation and add grouping
This commit is contained in:
parent
b33bd37623
commit
b863518ceb
@ -2,9 +2,7 @@
|
||||
* \file
|
||||
* \brief [Adaptive Linear Neuron
|
||||
* (ADALINE)](https://en.wikipedia.org/wiki/ADALINE) implementation
|
||||
*
|
||||
* \author [Krishna Vedala](https://github.com/kvedala)
|
||||
*
|
||||
* \details
|
||||
* <img
|
||||
* src="https://upload.wikimedia.org/wikipedia/commons/b/be/Adaline_flow_chart.gif"
|
||||
* width="200px">
|
||||
@ -20,6 +18,7 @@
|
||||
* computed. Computing the \f$w_j\f$ is a supervised learning algorithm wherein
|
||||
* a set of features and their corresponding outputs are given and weights are
|
||||
* computed using stochastic gradient descent method.
|
||||
* \author [Krishna Vedala](https://github.com/kvedala)
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
|
@ -1,6 +1,5 @@
|
||||
/**
|
||||
* \file
|
||||
* \author [Krishna Vedala](https://github.com/kvedala)
|
||||
* \brief [Kohonen self organizing
|
||||
* map](https://en.wikipedia.org/wiki/Self-organizing_map) (topological map)
|
||||
*
|
||||
@ -13,6 +12,7 @@
|
||||
* <img alt="Trained topological maps for the test cases in the program"
|
||||
* src="https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/machine_learning/kohonen/2D_Kohonen_SOM.svg"
|
||||
* />
|
||||
* \author [Krishna Vedala](https://github.com/kvedala)
|
||||
* \warning MSVC 2019 compiler generates code that does not execute as expected.
|
||||
* However, MinGW, Clang for GCC and Clang for MSVC compilers on windows perform
|
||||
* as expected. Any insights and suggestions should be directed to the author.
|
||||
|
@ -3,13 +3,12 @@
|
||||
* \brief [Kohonen self organizing
|
||||
* map](https://en.wikipedia.org/wiki/Self-organizing_map) (data tracing)
|
||||
*
|
||||
* \author [Krishna Vedala](https://github.com/kvedala)
|
||||
*
|
||||
* \details
|
||||
* This example implements a powerful self organizing map algorithm.
|
||||
* The algorithm creates a connected network of weights that closely
|
||||
* follows the given data points. This this creates a chain of nodes that
|
||||
* resembles the given input shape.
|
||||
* \author [Krishna Vedala](https://github.com/kvedala)
|
||||
* \see kohonen_som_topology.c
|
||||
*/
|
||||
#define _USE_MATH_DEFINES /**< required for MS Visual C */
|
||||
@ -21,6 +20,13 @@
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @addtogroup machine_learning Machine learning algorithms
|
||||
* @{
|
||||
* @addtogroup kohonen_1d Kohonen SOM trace/chain algorithm
|
||||
* @{
|
||||
*/
|
||||
|
||||
#ifndef max
|
||||
/** shorthand for maximum value */
|
||||
#define max(a, b) (((a) > (b)) ? (a) : (b))
|
||||
@ -95,7 +101,7 @@ int save_nd_data(const char *fname, double **X, int num_points,
|
||||
* \param[out] val minimum value found
|
||||
* \param[out] idx index where minimum value was found
|
||||
*/
|
||||
void get_min_1d(double const *X, int N, double *val, int *idx)
|
||||
void kohonen_get_min_1d(double const *X, int N, double *val, int *idx)
|
||||
{
|
||||
val[0] = INFINITY; // initial min value
|
||||
|
||||
@ -120,8 +126,8 @@ void get_min_1d(double const *X, int N, double *val, int *idx)
|
||||
* \param[in] alpha learning rate \f$0<\alpha\le1\f$
|
||||
* \param[in] R neighborhood range
|
||||
*/
|
||||
void update_weights(double const *x, double *const *W, double *D, int num_out,
|
||||
int num_features, double alpha, int R)
|
||||
void kohonen_update_weights(double const *x, double *const *W, double *D,
|
||||
int num_out, int num_features, double alpha, int R)
|
||||
{
|
||||
int j, k;
|
||||
|
||||
@ -138,11 +144,11 @@ void update_weights(double const *x, double *const *W, double *D, int num_out,
|
||||
D[j] += (W[j][k] - x[k]) * (W[j][k] - x[k]);
|
||||
}
|
||||
|
||||
// step 2: get closest node i.e., node with snallest Euclidian distance to
|
||||
// step 2: get closest node i.e., node with smallest Euclidian distance to
|
||||
// the current pattern
|
||||
int d_min_idx;
|
||||
double d_min;
|
||||
get_min_1d(D, num_out, &d_min, &d_min_idx);
|
||||
kohonen_get_min_1d(D, num_out, &d_min, &d_min_idx);
|
||||
|
||||
// step 3a: get the neighborhood range
|
||||
int from_node = max(0, d_min_idx - R);
|
||||
@ -177,7 +183,7 @@ void kohonen_som_tracer(double **X, double *const *W, int num_samples,
|
||||
double alpha = 1.f;
|
||||
double *D = (double *)malloc(num_out * sizeof(double));
|
||||
|
||||
// Loop alpha from 1 to slpha_min
|
||||
// Loop alpha from 1 to alpha_min
|
||||
for (; alpha > alpha_min; alpha -= 0.01, iter++)
|
||||
{
|
||||
// Loop for each sample pattern in the data set
|
||||
@ -185,7 +191,7 @@ void kohonen_som_tracer(double **X, double *const *W, int num_samples,
|
||||
{
|
||||
const double *x = X[sample];
|
||||
// update weights for the current input pattern sample
|
||||
update_weights(x, W, D, num_out, num_features, alpha, R);
|
||||
kohonen_update_weights(x, W, D, num_out, num_features, alpha, R);
|
||||
}
|
||||
|
||||
// every 10th iteration, reduce the neighborhood range
|
||||
@ -196,6 +202,11 @@ void kohonen_som_tracer(double **X, double *const *W, int num_samples,
|
||||
free(D);
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** Creates a random set of points distributed *near* the circumference
|
||||
* of a circle and trains an SOM that finds that circular pattern. The
|
||||
* generating function is
|
||||
|
Loading…
Reference in New Issue
Block a user