kohonen2d: update ML documentation and add grouping

This commit is contained in:
Krishna Vedala 2020-07-02 20:02:33 -04:00
parent 797a7d4c73
commit b33bd37623
No known key found for this signature in database
GPG Key ID: BA19ACF8FC8792F7
1 changed files with 35 additions and 22 deletions

View File

@ -7,8 +7,8 @@
* This example implements a powerful unsupervised learning algorithm called as
* a self organizing map. The algorithm creates a connected network of weights
* that closely follows the given data points. This thus creates a topological
* map of the given data i.e., it maintains the relationship between varipus
* data points in a much higher dimesional space by creating an equivalent in a
* map of the given data i.e., it maintains the relationship between various
* data points in a much higher dimensional space by creating an equivalent in a
* 2-dimensional space.
* <img alt="Trained topological maps for the test cases in the program"
* src="https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/machine_learning/kohonen/2D_Kohonen_SOM.svg"
@ -27,6 +27,13 @@
#include <omp.h>
#endif
/**
* @addtogroup machine_learning Machine learning algorithms
* @{
* @addtogroup kohonen_2d Kohonen SOM topology algorithm
* @{
*/
#ifndef max
/** shorthand for maximum value */
#define max(a, b) (((a) > (b)) ? (a) : (b))
@ -37,7 +44,7 @@
#endif
/** to store info regarding 3D arrays */
struct array_3d
struct kohonen_array_3d
{
int dim1; /**< lengths of first dimension */
int dim2; /**< lengths of second dimension */
@ -51,13 +58,13 @@ struct array_3d
* X_{i,j,k} = i\times M\times N + j\times N + k
* \f]
* where \f$L\f$, \f$M\f$ and \f$N\f$ are the 3D matrix dimensions.
* \param[in] arr pointer to ::array_3d structure
* \param[in] arr pointer to ::kohonen_array_3d structure
* \param[in] x first index
* \param[in] y second index
* \param[in] z third index
* \returns pointer to (x,y,z)^th location of data
*/
double *data_3d(const struct array_3d *arr, int x, int y, int z)
double *kohonen_data_3d(const struct kohonen_array_3d *arr, int x, int y, int z)
{
int offset = (x * arr->dim2 * arr->dim3) + (y * arr->dim3) + z;
return arr->data + offset;
@ -85,7 +92,7 @@ double _random(double a, double b)
/**
* Save a given n-dimensional data martix to file.
*
* \param[in] fname filename to save in (gets overwriten without confirmation)
* \param[in] fname filename to save in (gets overwritten without confirmation)
* \param[in] X matrix to save
* \param[in] num_points rows in the matrix = number of points
* \param[in] num_features columns in the matrix = dimensions of points
@ -129,7 +136,7 @@ int save_2d_data(const char *fname, double **X, int num_points,
* \returns 0 if all ok
* \returns -1 if file creation failed
*/
int save_u_matrix(const char *fname, struct array_3d *W)
int save_u_matrix(const char *fname, struct kohonen_array_3d *W)
{
FILE *fp = fopen(fname, "wt");
if (!fp) // error with fopen
@ -164,8 +171,8 @@ int save_u_matrix(const char *fname, struct array_3d *W)
double d = 0.f;
for (k = 0; k < W->dim3; k++) // for each feature
{
double *w1 = data_3d(W, i, j, k);
double *w2 = data_3d(W, l, m, k);
double *w1 = kohonen_data_3d(W, i, j, k);
double *w2 = kohonen_data_3d(W, l, m, k);
d += (w1[0] - w2[0]) * (w1[0] - w2[0]);
// distance += w1[0] * w1[0];
}
@ -224,8 +231,9 @@ void get_min_2d(double **X, int N, double *val, int *x_idx, int *y_idx)
* \param[in] R neighborhood range
* \returns minimum distance of sample and trained weights
*/
double update_weights(const double *X, struct array_3d *W, double **D,
int num_out, int num_features, double alpha, int R)
double kohonen_update_weights(const double *X, struct kohonen_array_3d *W,
double **D, int num_out, int num_features,
double alpha, int R)
{
int x, y, k;
double d_min = 0.f;
@ -243,7 +251,7 @@ double update_weights(const double *X, struct array_3d *W, double **D,
// point from the current sample
for (k = 0; k < num_features; k++)
{
double *w = data_3d(W, x, y, k);
double *w = kohonen_data_3d(W, x, y, k);
D[x][y] += (w[0] - X[k]) * (w[0] - X[k]);
}
D[x][y] = sqrt(D[x][y]);
@ -283,7 +291,7 @@ double update_weights(const double *X, struct array_3d *W, double **D,
for (k = 0; k < num_features; k++)
{
double *w = data_3d(W, x, y, k);
double *w = kohonen_data_3d(W, x, y, k);
// update weights of nodes in the neighborhood
w[0] += alpha * scale_factor * (X[k] - w[0]);
}
@ -303,7 +311,7 @@ double update_weights(const double *X, struct array_3d *W, double **D,
* \param[in] num_out number of output points
* \param[in] alpha_min terminal value of alpha
*/
void kohonen_som(double **X, struct array_3d *W, int num_samples,
void kohonen_som(double **X, struct kohonen_array_3d *W, int num_samples,
int num_features, int num_out, double alpha_min)
{
int R = num_out >> 2, iter = 0;
@ -322,8 +330,8 @@ void kohonen_som(double **X, struct array_3d *W, int num_samples,
for (int sample = 0; sample < num_samples; sample++)
{
// update weights for the current input pattern sample
dmin += update_weights(X[sample], W, D, num_out, num_features,
alpha, R);
dmin += kohonen_update_weights(X[sample], W, D, num_out,
num_features, alpha, R);
}
// every 20th iteration, reduce the neighborhood range
@ -340,6 +348,11 @@ void kohonen_som(double **X, struct array_3d *W, int num_samples,
free(D);
}
/**
* @}
* @}
*/
/** Creates a random set of points distributed in four clusters in
* 3D space with centroids at the points
* * \f$(0,5, 0.5, 0.5)\f$
@ -400,7 +413,7 @@ void test1()
double **X = (double **)malloc(N * sizeof(double *));
// cluster nodex in 'x' * cluster nodes in 'y' * 2
struct array_3d W;
struct kohonen_array_3d W;
W.dim1 = num_out;
W.dim2 = num_out;
W.dim3 = features;
@ -421,7 +434,7 @@ void test1()
// preallocate with random initial weights
for (j = 0; j < features; j++)
{
double *w = data_3d(&W, i, k, j);
double *w = kohonen_data_3d(&W, i, k, j);
w[0] = _random(-5, 5);
}
}
@ -500,7 +513,7 @@ void test2()
double **X = (double **)malloc(N * sizeof(double *));
// cluster nodex in 'x' * cluster nodes in 'y' * 2
struct array_3d W;
struct kohonen_array_3d W;
W.dim1 = num_out;
W.dim2 = num_out;
W.dim3 = features;
@ -520,7 +533,7 @@ void test2()
#endif
for (j = 0; j < features; j++)
{ // preallocate with random initial weights
double *w = data_3d(&W, i, k, j);
double *w = kohonen_data_3d(&W, i, k, j);
w[0] = _random(-5, 5);
}
}
@ -601,7 +614,7 @@ void test3()
double **X = (double **)malloc(N * sizeof(double *));
// cluster nodex in 'x' * cluster nodes in 'y' * 2
struct array_3d W;
struct kohonen_array_3d W;
W.dim1 = num_out;
W.dim2 = num_out;
W.dim3 = features;
@ -622,7 +635,7 @@ void test3()
// preallocate with random initial weights
for (j = 0; j < features; j++)
{
double *w = data_3d(&W, i, k, j);
double *w = kohonen_data_3d(&W, i, k, j);
w[0] = _random(-5, 5);
}
}