2020-08-17 04:46:11 +03:00
|
|
|
/**
|
|
|
|
* @file
|
2020-08-17 04:52:28 +03:00
|
|
|
* @brief Functions related to 3D vector operations.
|
2020-08-17 04:46:11 +03:00
|
|
|
* @author Krishna Vedala
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#ifdef __arm__ // if compiling for ARM-Cortex processors
|
|
|
|
#define LIBQUAT_ARM
|
|
|
|
#include <arm_math.h>
|
|
|
|
#else
|
|
|
|
#include <math.h>
|
|
|
|
#endif
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
#include "geometry_datatypes.h"
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @addtogroup vec_3d 3D Vector operations
|
|
|
|
* @{
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Subtract one vector from another. @f[
|
|
|
|
* \vec{c}=\vec{a}-\vec{b}=\left(a_x-b_x\right)\hat{i}+
|
|
|
|
* \left(a_y-b_y\right)\hat{j}+\left(a_z-b_z\right)\hat{k}@f]
|
|
|
|
* @param[in] a vector to subtract from
|
|
|
|
* @param[in] b vector to subtract
|
|
|
|
* @returns resultant vector
|
|
|
|
*/
|
|
|
|
vec_3d vector_sub(const vec_3d *a, const vec_3d *b)
|
|
|
|
{
|
|
|
|
vec_3d out;
|
|
|
|
#ifdef LIBQUAT_ARM
|
|
|
|
arm_sub_f32((float *)a, (float *)b, (float *)&out);
|
|
|
|
#else
|
|
|
|
out.x = a->x - b->x;
|
|
|
|
out.y = a->y - b->y;
|
|
|
|
out.z = a->z - b->z;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Add one vector to another. @f[
|
|
|
|
* \vec{c}=\vec{a}+\vec{b}=\left(a_x+b_x\right)\hat{i}+
|
|
|
|
* \left(a_y+b_y\right)\hat{j}+\left(a_z+b_z\right)\hat{k}@f]
|
|
|
|
* @param[in] a vector to add to
|
|
|
|
* @param[in] b vector to add
|
|
|
|
* @returns resultant vector
|
|
|
|
*/
|
|
|
|
vec_3d vector_add(const vec_3d *a, const vec_3d *b)
|
|
|
|
{
|
|
|
|
vec_3d out;
|
|
|
|
#ifdef LIBQUAT_ARM
|
|
|
|
arm_add_f32((float *)a, (float *)b, (float *)&out);
|
|
|
|
#else
|
|
|
|
out.x = a->x + b->x;
|
|
|
|
out.y = a->y + b->y;
|
|
|
|
out.z = a->z + b->z;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Obtain the dot product of two 3D vectors.
|
|
|
|
* @f[
|
|
|
|
* \vec{a}\cdot\vec{b}=a_xb_x + a_yb_y + a_zb_z
|
|
|
|
* @f]
|
|
|
|
* @param[in] a first vector
|
|
|
|
* @param[in] b second vector
|
|
|
|
* @returns resulting dot product
|
|
|
|
*/
|
|
|
|
float dot_prod(const vec_3d *a, const vec_3d *b)
|
|
|
|
{
|
|
|
|
float dot;
|
|
|
|
#ifdef LIBQUAT_ARM
|
|
|
|
arm_dot_prod_f32((float *)a, (float *)b, &dot);
|
|
|
|
#else
|
|
|
|
dot = a->x * b->x;
|
|
|
|
dot += a->y * b->y;
|
|
|
|
dot += a->z * b->z;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return dot;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Compute the vector product of two 3d vectors.
|
|
|
|
* @f[\begin{align*}
|
|
|
|
* \vec{a}\times\vec{b} &= \begin{vmatrix}
|
|
|
|
* \hat{i} & \hat{j} & \hat{k}\\
|
|
|
|
* a_x & a_y & a_z\\
|
|
|
|
* b_x & b_y & b_z
|
|
|
|
* \end{vmatrix}\\
|
|
|
|
* &= \left(a_yb_z-b_ya_z\right)\hat{i} - \left(a_xb_z-b_xa_z\right)\hat{j}
|
|
|
|
* + \left(a_xb_y-b_xa_y\right)\hat{k} \end{align*}
|
|
|
|
* @f]
|
|
|
|
* @param[in] a first vector @f$\vec{a}@f$
|
|
|
|
* @param[in] b second vector @f$\vec{b}@f$
|
|
|
|
* @returns resultant vector @f$\vec{o}=\vec{a}\times\vec{b}@f$
|
|
|
|
*/
|
|
|
|
vec_3d vector_prod(const vec_3d *a, const vec_3d *b)
|
|
|
|
{
|
|
|
|
vec_3d out; // better this way to avoid copying results to input
|
|
|
|
// vectors themselves
|
|
|
|
out.x = a->y * b->z - a->z * b->y;
|
|
|
|
out.y = -a->x * b->z + a->z * b->x;
|
|
|
|
out.z = a->x * b->y - a->y * b->x;
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Print formatted vector on stdout.
|
|
|
|
* @param[in] a vector to print
|
|
|
|
* @param[in] name name of the vector
|
|
|
|
* @returns string representation of vector
|
|
|
|
*/
|
|
|
|
const char *print_vector(const vec_3d *a, const char *name)
|
|
|
|
{
|
|
|
|
static char vec_str[100]; // static to ensure the string life extends the
|
|
|
|
// life of function
|
|
|
|
|
|
|
|
snprintf(vec_str, 99, "vec(%s) = (%.3g)i + (%.3g)j + (%.3g)k\n", name, a->x,
|
|
|
|
a->y, a->z);
|
|
|
|
return vec_str;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Compute the norm a vector.
|
|
|
|
* @f[\lVert\vec{a}\rVert = \sqrt{\vec{a}\cdot\vec{a}} @f]
|
|
|
|
* @param[in] a input vector
|
|
|
|
* @returns norm of the given vector
|
|
|
|
*/
|
|
|
|
float vector_norm(const vec_3d *a)
|
|
|
|
{
|
|
|
|
float n = dot_prod(a, a);
|
|
|
|
#ifdef LIBQUAT_ARM
|
|
|
|
arm_sqrt_f32(*n, n);
|
|
|
|
#else
|
|
|
|
n = sqrtf(n);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Obtain unit vector in the same direction as given vector.
|
|
|
|
* @f[\hat{a}=\frac{\vec{a}}{\lVert\vec{a}\rVert}@f]
|
|
|
|
* @param[in] a input vector
|
|
|
|
* @returns n unit vector in the direction of @f$\vec{a}@f$
|
|
|
|
*/
|
|
|
|
vec_3d unit_vec(const vec_3d *a)
|
|
|
|
{
|
|
|
|
vec_3d n = {0};
|
|
|
|
|
|
|
|
float norm = vector_norm(a);
|
2020-08-17 05:00:16 +03:00
|
|
|
if (fabsf(norm) < EPSILON)
|
|
|
|
{ // detect possible divide by 0
|
2020-08-17 04:46:11 +03:00
|
|
|
return n;
|
2020-08-17 05:00:16 +03:00
|
|
|
}
|
2020-08-17 04:46:11 +03:00
|
|
|
|
|
|
|
if (norm != 1.F) // perform division only if needed
|
|
|
|
{
|
|
|
|
n.x = a->x / norm;
|
|
|
|
n.y = a->y / norm;
|
|
|
|
n.z = a->z / norm;
|
|
|
|
}
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The cross product of vectors can be represented as a matrix
|
|
|
|
* multiplication operation. This function obtains the `3x3` matrix
|
|
|
|
* of the cross-product operator from the first vector.
|
|
|
|
* @f[\begin{align*}
|
|
|
|
* \left(\vec{a}\times\right)\vec{b} &= \tilde{A}_a\vec{b}\\
|
|
|
|
* \tilde{A}_a &=
|
|
|
|
* \begin{bmatrix}0&-a_z&a_y\\a_z&0&-a_x\\-a_y&a_x&0\end{bmatrix}
|
|
|
|
* \end{align*}@f]
|
|
|
|
* @param[in] a input vector
|
|
|
|
* @returns the `3x3` matrix for the cross product operator
|
|
|
|
* @f$\left(\vec{a}\times\right)@f$
|
|
|
|
*/
|
|
|
|
mat_3x3 get_cross_matrix(const vec_3d *a)
|
|
|
|
{
|
|
|
|
mat_3x3 A = {0., -a->z, a->y, a->z, 0., -a->x, -a->y, a->x, 0.};
|
|
|
|
return A;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** @} */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Testing function
|
|
|
|
* @returns `void`
|
|
|
|
*/
|
|
|
|
static void test()
|
|
|
|
{
|
|
|
|
vec_3d a = {1., 2., 3.};
|
|
|
|
vec_3d b = {1., 1., 1.};
|
|
|
|
float d;
|
|
|
|
|
|
|
|
// printf("%s", print_vector(&a, "a"));
|
|
|
|
// printf("%s", print_vector(&b, "b"));
|
|
|
|
|
|
|
|
d = vector_norm(&a);
|
|
|
|
// printf("|a| = %.4g\n", d);
|
2020-08-17 05:00:16 +03:00
|
|
|
assert(fabsf(d - 3.742f) < 0.01);
|
2020-08-17 04:46:11 +03:00
|
|
|
d = vector_norm(&b);
|
|
|
|
// printf("|b| = %.4g\n", d);
|
2020-08-17 05:00:16 +03:00
|
|
|
assert(fabsf(d - 1.732f) < 0.01);
|
2020-08-17 04:46:11 +03:00
|
|
|
|
|
|
|
d = dot_prod(&a, &b);
|
|
|
|
// printf("Dot product: %f\n", d);
|
2020-08-17 05:00:16 +03:00
|
|
|
assert(fabsf(d - 6.f) < 0.01);
|
2020-08-17 04:46:11 +03:00
|
|
|
|
|
|
|
vec_3d c = vector_prod(&a, &b);
|
|
|
|
// printf("Vector product ");
|
|
|
|
// printf("%s", print_vector(&c, "c"));
|
2020-08-17 05:00:16 +03:00
|
|
|
assert(fabsf(c.x - (-1.f)) < 0.01);
|
|
|
|
assert(fabsf(c.y - (2.f)) < 0.01);
|
|
|
|
assert(fabsf(c.z - (-1.f)) < 0.01);
|
2020-08-17 04:46:11 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Main function
|
|
|
|
*
|
|
|
|
* @return 0 on exit
|
|
|
|
*/
|
|
|
|
int main(void)
|
|
|
|
{
|
|
|
|
test();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|