Test: Refactor trigonometric tests into a helper.

The precision test of these functions need a special helper, it can also
be used for their arc functions down the line.
This commit is contained in:
Pierre Wendling 2022-05-21 20:07:14 -04:00 committed by Sam Lantinga
parent 3b9f47b85f
commit 95f6edb9a5
1 changed files with 93 additions and 48 deletions

View File

@ -75,6 +75,37 @@ helper_dtod(const char *func_name, d_to_d_func func,
return TEST_COMPLETED;
}
/**
* \brief Runs all the cases on a given function with a signature double -> double,
* checks the first ten digits of the result (truncated).
*
* This function is used to test functions with inaccurate results such as trigonometric
* functions where angles such as PI/2 can't be accurately represented.
*
* \note Tests may fail if SDL_trunc is not functional.
*
* \param func_name, the name of the tested function.
* \param func, the function to call.
* \param cases, an array of all the cases.
* \param cases_size, the size of the cases array.
*/
static int
helper_dtod_approx(const char *func_name, d_to_d_func func,
const d_to_d *cases, const size_t cases_size)
{
Uint32 i;
for (i = 0; i < cases_size; i++) {
const double result = func(cases[i].input) * 1.0E10;
SDLTest_AssertCheck(SDL_trunc(result) == cases[i].expected,
"%s(%f), expected %f, got %f",
func_name,
cases[i].input,
cases[i].expected, result);
}
return TEST_COMPLETED;
}
/**
* \brief Runs all the cases on a given function with a signature (double, double) -> double
*
@ -1791,29 +1822,31 @@ cos_regularCases(void *args)
/**
* \brief Checks cosine precision for the first 10 decimals.
*
* This function depends on SDL_floor functioning.
*/
static int
cos_precisionTest(void *args)
{
Uint32 i;
Uint32 iterations = 20;
double angle = 0.0;
double step = 2.0 * M_PI / iterations;
const double expected[] = {
10000000000.0, 9510565162.0, 8090169943.0, 5877852522.0, 3090169943.0,
0.0, -3090169943.0, -5877852522.0, -8090169943.0, -9510565162.0,
-10000000000.0, -9510565162.0, -8090169943.0, -5877852522.0, -3090169943.0,
0.0, 3090169943.0, 5877852522.0, 8090169943.0, 9510565162.0
const d_to_d precision_cases[] = {
{ M_PI * 1.0 / 10.0, 9510565162.0 },
{ M_PI * 2.0 / 10.0, 8090169943.0 },
{ M_PI * 3.0 / 10.0, 5877852522.0 },
{ M_PI * 4.0 / 10.0, 3090169943.0 },
{ M_PI * 5.0 / 10.0, 0.0 },
{ M_PI * 6.0 / 10.0, -3090169943.0 },
{ M_PI * 7.0 / 10.0, -5877852522.0 },
{ M_PI * 8.0 / 10.0, -8090169943.0 },
{ M_PI * 9.0 / 10.0, -9510565162.0 },
{ M_PI * -1.0 / 10.0, 9510565162.0 },
{ M_PI * -2.0 / 10.0, 8090169943.0 },
{ M_PI * -3.0 / 10.0, 5877852522.0 },
{ M_PI * -4.0 / 10.0, 3090169943.0 },
{ M_PI * -5.0 / 10.0, 0.0 },
{ M_PI * -6.0 / 10.0, -3090169943.0 },
{ M_PI * -7.0 / 10.0, -5877852522.0 },
{ M_PI * -8.0 / 10.0, -8090169943.0 },
{ M_PI * -9.0 / 10.0, -9510565162.0 }
};
for (i = 0; i < iterations; i++, angle += step) {
double result = SDL_cos(angle) * 1.0E10;
SDLTest_AssertCheck(SDL_trunc(result) == expected[i],
"Cos(%f), expected %f, got %f",
angle, expected[i], result);
}
return TEST_COMPLETED;
return helper_dtod_approx("Cos", SDL_cos, precision_cases, SDL_arraysize(precision_cases));
}
/**
@ -1905,23 +1938,27 @@ sin_regularCases(void *args)
static int
sin_precisionTest(void *args)
{
Uint32 i;
Uint32 iterations = 20;
double angle = 0.0;
double step = 2.0 * M_PI / iterations;
const double expected[] = {
0, 3090169943, 5877852522, 8090169943, 9510565162,
10000000000, 9510565162, 8090169943, 5877852522, 3090169943,
0, -3090169943, -5877852522, -8090169943, -9510565162,
-10000000000, -9510565162, -8090169943, -5877852522, -3090169943
const d_to_d precision_cases[] = {
{ M_PI * 1.0 / 10.0, 3090169943.0 },
{ M_PI * 2.0 / 10.0, 5877852522.0 },
{ M_PI * 3.0 / 10.0, 8090169943.0 },
{ M_PI * 4.0 / 10.0, 9510565162.0 },
{ M_PI * 5.0 / 10.0, 10000000000.0 },
{ M_PI * 6.0 / 10.0, 9510565162.0 },
{ M_PI * 7.0 / 10.0, 8090169943.0 },
{ M_PI * 8.0 / 10.0, 5877852522.0 },
{ M_PI * 9.0 / 10.0, 3090169943.0 },
{ M_PI * -1.0 / 10.0, -3090169943.0 },
{ M_PI * -2.0 / 10.0, -5877852522.0 },
{ M_PI * -3.0 / 10.0, -8090169943.0 },
{ M_PI * -4.0 / 10.0, -9510565162.0 },
{ M_PI * -5.0 / 10.0, -10000000000.0 },
{ M_PI * -6.0 / 10.0, -9510565162.0 },
{ M_PI * -7.0 / 10.0, -8090169943.0 },
{ M_PI * -8.0 / 10.0, -5877852522.0 },
{ M_PI * -9.0 / 10.0, -3090169943.0 }
};
for (i = 0; i < iterations; i++, angle += step) {
double result = SDL_sin(angle) * 1.0E10;
SDLTest_AssertCheck(SDL_trunc(result) == expected[i],
"Sin(%f), expected %f, got %f",
angle, expected[i], result);
}
return TEST_COMPLETED;
return helper_dtod_approx("Sin", SDL_sin, precision_cases, SDL_arraysize(precision_cases));
}
/**
@ -2011,21 +2048,29 @@ tan_zeroCases(void *args)
static int
tan_precisionTest(void *args)
{
Uint32 i;
Uint32 iterations = 10;
double angle = 0.0;
double step = 2.0 * M_PI / iterations;
const double expected[] = {
0.0, 7265425280.0, 30776835371.0, -30776835371.0, -7265425280.0,
-0.0, 7265425280.0, 30776835371.0, -30776835371.0, -7265425280.0
const d_to_d precision_cases[] = {
{ M_PI * 1.0 / 11.0, 2936264929.0 },
{ M_PI * 2.0 / 11.0, 6426609771.0 },
{ M_PI * 3.0 / 11.0, 11540615205.0 },
{ M_PI * 4.0 / 11.0, 21896945629.0 },
{ M_PI * 5.0 / 11.0, 69551527717.0 },
{ M_PI * 6.0 / 11.0, -69551527717.0 },
{ M_PI * 7.0 / 11.0, -21896945629.0 },
{ M_PI * 8.0 / 11.0, -11540615205.0 },
{ M_PI * 9.0 / 11.0, -6426609771.0 },
{ M_PI * 10.0 / 11.0, -2936264929.0 },
{ M_PI * -1.0 / 11.0, -2936264929.0 },
{ M_PI * -2.0 / 11.0, -6426609771.0 },
{ M_PI * -3.0 / 11.0, -11540615205.0 },
{ M_PI * -4.0 / 11.0, -21896945629.0 },
{ M_PI * -5.0 / 11.0, -69551527717.0 },
{ M_PI * -6.0 / 11.0, 69551527717.0 },
{ M_PI * -7.0 / 11.0, 21896945629.0 },
{ M_PI * -8.0 / 11.0, 11540615205.0 },
{ M_PI * -9.0 / 11.0, 6426609771.0 },
{ M_PI * -10.0 / 11.0, 2936264929.0 }
};
for (i = 0; i < iterations; i++, angle += step) {
double result = SDL_tan(angle) * 1.0E10;
SDLTest_AssertCheck(SDL_trunc(result) == expected[i],
"Tan(%f), expected %f, got %f",
angle, expected[i], result);
}
return TEST_COMPLETED;
return helper_dtod_approx("Tan", SDL_tan, precision_cases, SDL_arraysize(precision_cases));
}
/* ================= Test References ================== */