f9bd2b74be
2. Fixed bug [ 989478 ] I-Cache and undefined Instruktions The L4 microkernel uses an undefined instruction to trap for a special requests into the kernel (LOCK NOP). The handler fixes this up and gives the user a special code page with syscall stubs. If you're not using the I-Cache optimization everthing works find on bochs. But if you enable the I-Cache (--enable-icache), then the undefined opcode exception is thrown only once for ever virtual address it occurs. See the demodisk of the L4KA::pistachio (http://www.l4ka.org/projects/pistachio/download.php). In this case the pingpong benchmark of this demo is of interest. Everything runs fine until the program tries to spawn a new task for its measurements. This new task shares the code of the creating program. But the new task stops executing at the undefined instruction explained above and no exception is thrown.
654 lines
23 KiB
C++
654 lines
23 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: segment_ctrl_pro.cc,v 1.28 2004-07-29 20:15:18 sshwarts Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
|
|
|
|
|
|
|
|
void BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::load_seg_reg(bx_segment_reg_t *seg, Bit16u new_value)
|
|
{
|
|
#if BX_CPU_LEVEL >= 3
|
|
if (v8086_mode()) {
|
|
/* ??? don't need to set all these fields */
|
|
seg->selector.value = new_value;
|
|
seg->selector.rpl = 3;
|
|
seg->cache.valid = 1;
|
|
seg->cache.p = 1;
|
|
seg->cache.dpl = 3;
|
|
seg->cache.segment = 1; /* regular segment */
|
|
if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]) {
|
|
seg->cache.u.segment.executable = 1; /* code segment */
|
|
#if BX_SUPPORT_ICACHE
|
|
BX_CPU_THIS_PTR iCache.fetchModeMask =
|
|
BX_CPU_THIS_PTR iCache.createFetchModeMask(BX_CPU_THIS);
|
|
#endif
|
|
invalidate_prefetch_q();
|
|
}
|
|
else
|
|
seg->cache.u.segment.executable = 0; /* data segment */
|
|
seg->cache.u.segment.c_ed = 0; /* expand up */
|
|
seg->cache.u.segment.r_w = 1; /* writeable */
|
|
seg->cache.u.segment.a = 1; /* accessed */
|
|
seg->cache.u.segment.base = new_value << 4;
|
|
seg->cache.u.segment.limit = 0xffff;
|
|
seg->cache.u.segment.limit_scaled = 0xffff;
|
|
seg->cache.u.segment.g = 0; /* byte granular */
|
|
seg->cache.u.segment.d_b = 0; /* default 16bit size */
|
|
#if BX_SUPPORT_X86_64
|
|
seg->cache.u.segment.l = 0; /* default 16bit size */
|
|
#endif
|
|
seg->cache.u.segment.avl = 0;
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if BX_CPU_LEVEL >= 2
|
|
if (protected_mode()) {
|
|
if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]) {
|
|
Bit16u index;
|
|
Bit8u ti;
|
|
Bit8u rpl;
|
|
bx_descriptor_t descriptor;
|
|
Bit32u dword1, dword2;
|
|
|
|
if ((new_value & 0xfffc) == 0) { /* null selector */
|
|
BX_ERROR(("load_seg_reg: SS: new_value == 0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
|
|
index = new_value >> 3;
|
|
ti = (new_value >> 2) & 0x01;
|
|
rpl = (new_value & 0x03);
|
|
|
|
/* examine AR byte of destination selector for legal values: */
|
|
|
|
if (ti == 0) { /* GDT */
|
|
if ((index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit) {
|
|
BX_ERROR(("load_seg_reg: GDT: %s: index(%04x*8+7) > limit(%06x)",
|
|
BX_CPU_THIS_PTR strseg(seg), (unsigned) index, (unsigned) BX_CPU_THIS_PTR gdtr.limit));
|
|
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
|
|
return;
|
|
}
|
|
access_linear(BX_CPU_THIS_PTR gdtr.base + index*8, 4, 0,
|
|
BX_READ, &dword1);
|
|
access_linear(BX_CPU_THIS_PTR gdtr.base + index*8 + 4, 4, 0,
|
|
BX_READ, &dword2);
|
|
}
|
|
else { /* LDT */
|
|
if (BX_CPU_THIS_PTR ldtr.cache.valid==0) { /* ??? */
|
|
BX_ERROR(("load_seg_reg: LDT invalid"));
|
|
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
|
|
return;
|
|
}
|
|
if ((index*8 + 7) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit) {
|
|
BX_ERROR(("load_seg_reg ss: LDT: index > limit"));
|
|
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
|
|
return;
|
|
}
|
|
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8, 4, 0,
|
|
BX_READ, &dword1);
|
|
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8 + 4, 4, 0,
|
|
BX_READ, &dword2);
|
|
}
|
|
|
|
/* selector's RPL must = CPL, else #GP(selector) */
|
|
if (rpl != CPL) {
|
|
BX_ERROR(("load_seg_reg(): rpl != CPL"));
|
|
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
|
|
return;
|
|
}
|
|
|
|
parse_descriptor(dword1, dword2, &descriptor);
|
|
|
|
if (descriptor.valid==0) {
|
|
BX_ERROR(("load_seg_reg(): valid bit cleared"));
|
|
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
|
|
return;
|
|
}
|
|
|
|
/* AR byte must indicate a writable data segment else #GP(selector) */
|
|
if ( (descriptor.segment==0) ||
|
|
descriptor.u.segment.executable ||
|
|
descriptor.u.segment.r_w==0 ) {
|
|
BX_ERROR(("load_seg_reg(): not writable data segment"));
|
|
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
|
|
}
|
|
|
|
/* DPL in the AR byte must equal CPL else #GP(selector) */
|
|
if (descriptor.dpl != CPL) {
|
|
BX_ERROR(("load_seg_reg(): dpl != CPL"));
|
|
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
|
|
}
|
|
|
|
/* segment must be marked PRESENT else #SS(selector) */
|
|
if (descriptor.p == 0) {
|
|
BX_ERROR(("load_seg_reg(): not present"));
|
|
exception(BX_SS_EXCEPTION, new_value & 0xfffc, 0);
|
|
}
|
|
|
|
/* load SS with selector, load SS cache with descriptor */
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = new_value;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = index;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = ti;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = rpl;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = descriptor;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 1;
|
|
|
|
/* now set accessed bit in descriptor */
|
|
dword2 |= 0x0100;
|
|
if (ti == 0) { /* GDT */
|
|
access_linear(BX_CPU_THIS_PTR gdtr.base + index*8 + 4, 4, 0,
|
|
BX_WRITE, &dword2);
|
|
}
|
|
else { /* LDT */
|
|
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8 + 4, 4, 0,
|
|
BX_WRITE, &dword2);
|
|
}
|
|
|
|
return;
|
|
}
|
|
else if ( (seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS]) ||
|
|
(seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES])
|
|
#if BX_CPU_LEVEL >= 3
|
|
|| (seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS]) ||
|
|
(seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS])
|
|
#endif
|
|
) {
|
|
Bit16u index;
|
|
Bit8u ti;
|
|
Bit8u rpl;
|
|
bx_descriptor_t descriptor;
|
|
Bit32u dword1, dword2;
|
|
|
|
|
|
if ((new_value & 0xfffc) == 0) { /* null selector */
|
|
seg->selector.index = 0;
|
|
seg->selector.ti = 0;
|
|
seg->selector.rpl = 0;
|
|
seg->selector.value = 0;
|
|
seg->cache.valid = 0; /* invalidate null selector */
|
|
return;
|
|
}
|
|
|
|
index = new_value >> 3;
|
|
ti = (new_value >> 2) & 0x01;
|
|
rpl = (new_value & 0x03);
|
|
|
|
/* selector index must be within descriptor limits, else #GP(selector) */
|
|
|
|
if (ti == 0) { /* GDT */
|
|
if ((index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit) {
|
|
BX_ERROR(("load_seg_reg: GDT: %s: index(%04x) > limit(%06x)",
|
|
BX_CPU_THIS_PTR strseg(seg), (unsigned) index, (unsigned) BX_CPU_THIS_PTR gdtr.limit));
|
|
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
|
|
return;
|
|
}
|
|
access_linear(BX_CPU_THIS_PTR gdtr.base + index*8, 4, 0,
|
|
BX_READ, &dword1);
|
|
access_linear(BX_CPU_THIS_PTR gdtr.base + index*8 + 4, 4, 0,
|
|
BX_READ, &dword2);
|
|
}
|
|
else { /* LDT */
|
|
if (BX_CPU_THIS_PTR ldtr.cache.valid==0) {
|
|
BX_ERROR(("load_seg_reg: LDT invalid"));
|
|
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
|
|
return;
|
|
}
|
|
if ((index*8 + 7) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit) {
|
|
BX_ERROR(("load_seg_reg ds,es: LDT: index > limit"));
|
|
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
|
|
return;
|
|
}
|
|
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8, 4, 0,
|
|
BX_READ, &dword1);
|
|
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8 + 4, 4, 0,
|
|
BX_READ, &dword2);
|
|
}
|
|
|
|
parse_descriptor(dword1, dword2, &descriptor);
|
|
|
|
if (descriptor.valid==0) {
|
|
BX_ERROR(("load_seg_reg(): valid bit cleared"));
|
|
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
|
|
return;
|
|
}
|
|
|
|
/* AR byte must indicate data or readable code segment else #GP(selector) */
|
|
if ( descriptor.segment==0 ||
|
|
(descriptor.u.segment.executable==1 &&
|
|
descriptor.u.segment.r_w==0) ) {
|
|
BX_ERROR(("load_seg_reg(): not data or readable code"));
|
|
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
|
|
return;
|
|
}
|
|
|
|
/* If data or non-conforming code, then both the RPL and the CPL
|
|
* must be less than or equal to DPL in AR byte else #GP(selector) */
|
|
if ( descriptor.u.segment.executable==0 ||
|
|
descriptor.u.segment.c_ed==0 ) {
|
|
if ((rpl > descriptor.dpl) || (CPL > descriptor.dpl)) {
|
|
BX_ERROR(("load_seg_reg: RPL & CPL must be <= DPL"));
|
|
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* segment must be marked PRESENT else #NP(selector) */
|
|
if (descriptor.p == 0) {
|
|
BX_ERROR(("load_seg_reg: segment not present"));
|
|
exception(BX_NP_EXCEPTION, new_value & 0xfffc, 0);
|
|
return;
|
|
}
|
|
|
|
/* load segment register with selector */
|
|
/* load segment register-cache with descriptor */
|
|
seg->selector.value = new_value;
|
|
seg->selector.index = index;
|
|
seg->selector.ti = ti;
|
|
seg->selector.rpl = rpl;
|
|
seg->cache = descriptor;
|
|
seg->cache.valid = 1;
|
|
|
|
/* now set accessed bit in descriptor */
|
|
/* wmr: don't bother if it's already set (thus allowing */
|
|
/* GDT to be in read-only pages like real hdwe does) */
|
|
|
|
if (!(dword2 & 0x0100)) {
|
|
dword2 |= 0x0100;
|
|
if (ti == 0) { /* GDT */
|
|
access_linear(BX_CPU_THIS_PTR gdtr.base + index*8 + 4, 4, 0,
|
|
BX_WRITE, &dword2);
|
|
}
|
|
else { /* LDT */
|
|
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8 + 4, 4, 0,
|
|
BX_WRITE, &dword2);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
else {
|
|
BX_PANIC(("load_seg_reg(): invalid segment register passed!"));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* real mode */
|
|
/* seg->limit = ; ??? different behaviours depening on seg reg. */
|
|
/* something about honoring previous values */
|
|
|
|
/* ??? */
|
|
if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]) {
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = new_value;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = 0;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = 1; /* regular segment */
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = 1; /* code segment */
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = 0; /* expand up */
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = 1; /* writeable */
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = 1; /* accessed */
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = new_value << 4;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = 0xffff;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled = 0xffff;
|
|
#if BX_CPU_LEVEL >= 3
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = 0; /* byte granular */
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = 0; /* default 16bit size */
|
|
#if BX_SUPPORT_X86_64
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.l = 0; /* default 16bit size */
|
|
#endif
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = 0;
|
|
#endif
|
|
|
|
#if BX_SUPPORT_ICACHE
|
|
BX_CPU_THIS_PTR iCache.fetchModeMask =
|
|
BX_CPU_THIS_PTR iCache.createFetchModeMask(BX_CPU_THIS);
|
|
#endif
|
|
invalidate_prefetch_q();
|
|
}
|
|
else { /* SS, DS, ES, FS, GS */
|
|
seg->selector.value = new_value;
|
|
seg->cache.valid = 1;
|
|
seg->cache.p = 1; // set this???
|
|
seg->cache.u.segment.base = new_value << 4;
|
|
seg->cache.segment = 1; /* regular segment */
|
|
seg->cache.u.segment.a = 1; /* accessed */
|
|
/* set G, D_B, AVL bits here ??? */
|
|
}
|
|
#else /* 8086 */
|
|
|
|
seg->selector.value = new_value;
|
|
seg->cache.u.segment.base = new_value << 4;
|
|
#endif
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void
|
|
BX_CPU_C::loadSRegLMNominal(unsigned segI, unsigned selector, bx_address base,
|
|
unsigned dpl)
|
|
{
|
|
bx_segment_reg_t *seg = & BX_CPU_THIS_PTR sregs[segI];
|
|
|
|
// Load a segment register in long-mode with nominal values,
|
|
// so descriptor cache values are compatible with existing checks.
|
|
seg->cache.u.segment.base = base;
|
|
// (KPL) I doubt we need limit_scaled. If we do, it should be
|
|
// of type bx_addr and be maxed to 64bits, not 32.
|
|
seg->cache.u.segment.limit_scaled = 0xffffffff;
|
|
seg->cache.valid = 1;
|
|
seg->cache.dpl = dpl; // (KPL) Not sure if we need this.
|
|
|
|
seg->selector.value = selector;
|
|
}
|
|
#endif
|
|
|
|
|
|
#if BX_CPU_LEVEL >= 2
|
|
void BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::parse_selector(Bit16u raw_selector, bx_selector_t *selector)
|
|
{
|
|
selector->value = raw_selector;
|
|
selector->index = raw_selector >> 3;
|
|
selector->ti = (raw_selector >> 2) & 0x01;
|
|
selector->rpl = raw_selector & 0x03;
|
|
}
|
|
#endif
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::parse_descriptor(Bit32u dword1, Bit32u dword2, bx_descriptor_t *temp)
|
|
{
|
|
Bit8u AR_byte;
|
|
|
|
AR_byte = dword2 >> 8;
|
|
temp->p = (AR_byte >> 7) & 0x01;
|
|
temp->dpl = (AR_byte >> 5) & 0x03;
|
|
temp->segment = (AR_byte >> 4) & 0x01;
|
|
temp->type = (AR_byte & 0x0f);
|
|
temp->valid = 0; /* start out invalid */
|
|
|
|
|
|
if (temp->segment) { /* data/code segment descriptors */
|
|
temp->u.segment.executable = (AR_byte >> 3) & 0x01;
|
|
temp->u.segment.c_ed = (AR_byte >> 2) & 0x01;
|
|
temp->u.segment.r_w = (AR_byte >> 1) & 0x01;
|
|
temp->u.segment.a = (AR_byte >> 0) & 0x01;
|
|
|
|
temp->u.segment.limit = (dword1 & 0xffff);
|
|
temp->u.segment.base = (dword1 >> 16) |
|
|
((dword2 & 0xFF) << 16);
|
|
|
|
#if BX_CPU_LEVEL >= 3
|
|
temp->u.segment.limit |= (dword2 & 0x000F0000);
|
|
temp->u.segment.g = (dword2 & 0x00800000) > 0;
|
|
temp->u.segment.d_b = (dword2 & 0x00400000) > 0;
|
|
#if BX_SUPPORT_X86_64
|
|
temp->u.segment.l = (dword2 & 0x00200000) > 0;
|
|
#endif
|
|
temp->u.segment.avl = (dword2 & 0x00100000) > 0;
|
|
temp->u.segment.base |= (dword2 & 0xFF000000);
|
|
|
|
if (temp->u.segment.g) {
|
|
if ( (temp->u.segment.executable==0) && (temp->u.segment.c_ed) )
|
|
temp->u.segment.limit_scaled = (temp->u.segment.limit << 12);
|
|
else
|
|
temp->u.segment.limit_scaled = (temp->u.segment.limit << 12) | 0x0fff;
|
|
}
|
|
else
|
|
#endif
|
|
temp->u.segment.limit_scaled = temp->u.segment.limit;
|
|
|
|
temp->valid = 1;
|
|
}
|
|
else { // system & gate segment descriptors
|
|
switch ( temp->type ) {
|
|
case 0: // reserved
|
|
case 8: // reserved
|
|
case 10: // reserved
|
|
case 13: // reserved
|
|
temp->valid = 0;
|
|
break;
|
|
case 1: // 286 TSS (available)
|
|
case 3: // 286 TSS (busy)
|
|
temp->u.tss286.base = (dword1 >> 16) |
|
|
((dword2 & 0xff) << 16);
|
|
temp->u.tss286.limit = (dword1 & 0xffff);
|
|
temp->valid = 1;
|
|
break;
|
|
case 2: // LDT descriptor
|
|
temp->u.ldt.base = (dword1 >> 16) |
|
|
((dword2 & 0xFF) << 16);
|
|
#if BX_CPU_LEVEL >= 3
|
|
temp->u.ldt.base |= (dword2 & 0xff000000);
|
|
#endif
|
|
temp->u.ldt.limit = (dword1 & 0xffff);
|
|
temp->valid = 1;
|
|
break;
|
|
case 4: // 286 call gate
|
|
case 6: // 286 interrupt gate
|
|
case 7: // 286 trap gate
|
|
/* word count only used for call gate */
|
|
temp->u.gate286.word_count = dword2 & 0x1f;
|
|
temp->u.gate286.dest_selector = dword1 >> 16;
|
|
temp->u.gate286.dest_offset = dword1 & 0xffff;
|
|
temp->valid = 1;
|
|
break;
|
|
case 5: // 286/386 task gate
|
|
temp->u.taskgate.tss_selector = dword1 >> 16;
|
|
temp->valid = 1;
|
|
break;
|
|
|
|
#if BX_CPU_LEVEL >= 3
|
|
case 9: // 386 TSS (available)
|
|
case 11: // 386 TSS (busy)
|
|
temp->u.tss386.base = (dword1 >> 16) |
|
|
((dword2 & 0xff) << 16) |
|
|
(dword2 & 0xff000000);
|
|
temp->u.tss386.limit = (dword1 & 0x0000ffff) |
|
|
(dword2 & 0x000f0000);
|
|
temp->u.tss386.g = (dword2 & 0x00800000) > 0;
|
|
temp->u.tss386.avl = (dword2 & 0x00100000) > 0;
|
|
if (temp->u.tss386.g)
|
|
temp->u.tss386.limit_scaled = (temp->u.tss386.limit << 12) | 0x0fff;
|
|
else
|
|
temp->u.tss386.limit_scaled = temp->u.tss386.limit;
|
|
temp->valid = 1;
|
|
break;
|
|
|
|
case 12: // 386 call gate
|
|
case 14: // 386 interrupt gate
|
|
case 15: // 386 trap gate
|
|
// word count only used for call gate
|
|
temp->u.gate386.dword_count = dword2 & 0x1f;
|
|
temp->u.gate386.dest_selector = dword1 >> 16;
|
|
temp->u.gate386.dest_offset = (dword2 & 0xffff0000) |
|
|
(dword1 & 0x0000ffff);
|
|
temp->valid = 1;
|
|
break;
|
|
#endif
|
|
default: BX_PANIC(("parse_descriptor(): case %d unfinished",
|
|
(unsigned) temp->type));
|
|
temp->valid = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::load_ldtr(bx_selector_t *selector, bx_descriptor_t *descriptor)
|
|
{
|
|
/* check for null selector, if so invalidate LDTR */
|
|
if ( (selector->value & 0xfffc)==0 ) {
|
|
BX_CPU_THIS_PTR ldtr.selector = *selector;
|
|
BX_CPU_THIS_PTR ldtr.cache.valid = 0;
|
|
return;
|
|
}
|
|
|
|
if (!descriptor)
|
|
BX_PANIC(("load_ldtr(): descriptor == NULL!"));
|
|
|
|
BX_CPU_THIS_PTR ldtr.cache = *descriptor; /* whole structure copy */
|
|
BX_CPU_THIS_PTR ldtr.selector = *selector;
|
|
|
|
if (BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit < 7) {
|
|
BX_PANIC(("load_ldtr(): ldtr.limit < 7"));
|
|
}
|
|
|
|
BX_CPU_THIS_PTR ldtr.cache.valid = 1;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::load_cs(bx_selector_t *selector, bx_descriptor_t *descriptor,
|
|
Bit8u cpl)
|
|
{
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector = *selector;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache = *descriptor;
|
|
|
|
/* caller may request different CPL then in selector */
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = cpl;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 1; /* ??? */
|
|
// (BW) Added cpl to the selector value.
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value =
|
|
(0xfffc & BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value) | cpl;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (BX_CPU_THIS_PTR msr.lma) {
|
|
if (descriptor->u.segment.l) {
|
|
BX_CPU_THIS_PTR cpu_mode = BX_MODE_LONG_64;
|
|
loadSRegLMNominal(BX_SEG_REG_CS, selector->value, 0, cpl);
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR cpu_mode = BX_MODE_LONG_COMPAT;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if BX_SUPPORT_ICACHE
|
|
BX_CPU_THIS_PTR iCache.fetchModeMask =
|
|
BX_CPU_THIS_PTR iCache.createFetchModeMask(BX_CPU_THIS);
|
|
#endif
|
|
// Loading CS will invalidate the EIP fetch window.
|
|
invalidate_prefetch_q();
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::load_ss(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl)
|
|
{
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector = *selector;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = *descriptor;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = cpl;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
|
|
loadSRegLMNominal(BX_SEG_REG_SS, selector->value, 0, cpl);
|
|
return;
|
|
}
|
|
#endif
|
|
if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value & 0xfffc) == 0 )
|
|
BX_PANIC(("load_ss(): null selector passed"));
|
|
|
|
if ( !BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid ) {
|
|
BX_PANIC(("load_ss(): invalid selector/descriptor passed."));
|
|
}
|
|
}
|
|
|
|
#if BX_CPU_LEVEL >= 2
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::fetch_raw_descriptor(bx_selector_t *selector,
|
|
Bit32u *dword1, Bit32u *dword2, Bit8u exception_no)
|
|
{
|
|
if (selector->ti == 0) { /* GDT */
|
|
if ((selector->index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit) {
|
|
BX_INFO(("-----------------------------------"));
|
|
BX_INFO(("selector->index*8 + 7 = %u", (unsigned) selector->index*8 + 7));
|
|
BX_INFO(("gdtr.limit = %u", (unsigned) BX_CPU_THIS_PTR gdtr.limit));
|
|
BX_INFO(("fetch_raw_descriptor: GDT: index > limit"));
|
|
debug(BX_CPU_THIS_PTR prev_eip);
|
|
BX_INFO(("-----------------------------------"));
|
|
exception(exception_no, selector->value & 0xfffc, 0);
|
|
return;
|
|
}
|
|
access_linear(BX_CPU_THIS_PTR gdtr.base + selector->index*8, 4, 0,
|
|
BX_READ, dword1);
|
|
access_linear(BX_CPU_THIS_PTR gdtr.base + selector->index*8 + 4, 4, 0,
|
|
BX_READ, dword2);
|
|
}
|
|
else { /* LDT */
|
|
if (BX_CPU_THIS_PTR ldtr.cache.valid==0) {
|
|
BX_PANIC(("fetch_raw_descriptor: LDTR.valid=0"));
|
|
}
|
|
if ((selector->index*8 + 7) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit) {
|
|
BX_ERROR(("fetch_raw_descriptor: LDT: index (%x)%x > limit (%x)",
|
|
(selector->index*8 + 7), selector->index,
|
|
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit));
|
|
exception(exception_no, selector->value & 0xfffc, 0);
|
|
return;
|
|
}
|
|
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8, 4, 0,
|
|
BX_READ, dword1);
|
|
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8 + 4, 4, 0,
|
|
BX_READ, dword2);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
bx_bool BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::fetch_raw_descriptor2(bx_selector_t *selector,
|
|
Bit32u *dword1, Bit32u *dword2)
|
|
{
|
|
if (selector->ti == 0) { /* GDT */
|
|
if ((selector->index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit)
|
|
return(0);
|
|
access_linear(BX_CPU_THIS_PTR gdtr.base + selector->index*8, 4, 0,
|
|
BX_READ, dword1);
|
|
access_linear(BX_CPU_THIS_PTR gdtr.base + selector->index*8 + 4, 4, 0,
|
|
BX_READ, dword2);
|
|
return(1);
|
|
}
|
|
else { /* LDT */
|
|
if ((selector->index*8 + 7) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit)
|
|
return(0);
|
|
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8, 4, 0,
|
|
BX_READ, dword1);
|
|
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8 + 4, 4, 0,
|
|
BX_READ, dword2);
|
|
return(1);
|
|
}
|
|
}
|