Bochs/bochs/cpu/cpuid.cc
2017-03-15 22:14:10 +00:00

425 lines
12 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2014-2017 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#include "bochs.h"
#include "cpu.h"
#include "param_names.h"
#include "cpuid.h"
#define LOG_THIS cpu->
bx_cpuid_t::bx_cpuid_t(BX_CPU_C *_cpu): cpu(_cpu)
{
init();
}
#if BX_SUPPORT_VMX
bx_cpuid_t::bx_cpuid_t(BX_CPU_C *_cpu, Bit32u vmcs_revision):
cpu(_cpu), vmcs_map(vmcs_revision)
{
init();
}
bx_cpuid_t::bx_cpuid_t(BX_CPU_C *_cpu, Bit32u vmcs_revision, const char *filename):
cpu(_cpu), vmcs_map(vmcs_revision, filename)
{
init();
}
#endif
void bx_cpuid_t::init()
{
#if BX_SUPPORT_SMP
nthreads = SIM->get_param_num(BXPN_CPU_NTHREADS)->get();
ncores = SIM->get_param_num(BXPN_CPU_NCORES)->get();
nprocessors = SIM->get_param_num(BXPN_CPU_NPROCESSORS)->get();
#else
nthreads = 1;
ncores = 1;
nprocessors = 1;
#endif
for (unsigned n=0; n < BX_ISA_EXTENSIONS_ARRAY_SIZE; n++)
ia_extensions_bitmask[n] = 0;
// every cpu supported by Bochs support all 386 and earlier instructions
ia_extensions_bitmask[0] = (1 << BX_ISA_386);
}
#if BX_SUPPORT_APIC
BX_CPP_INLINE static Bit32u ilog2(Bit32u x)
{
Bit32u count = 0;
while(x>>=1) count++;
return count;
}
// leaf 0x0000000B //
void bx_cpuid_t::get_std_cpuid_extended_topology_leaf(Bit32u subfunction, cpuid_function_t *leaf) const
{
// CPUID function 0x0000000B - Extended Topology Leaf
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = subfunction;
leaf->edx = cpu->get_apic_id();
#if BX_SUPPORT_SMP
switch(subfunction) {
case 0:
if (nthreads > 1) {
leaf->eax = ilog2(nthreads-1)+1;
leaf->ebx = nthreads;
leaf->ecx |= (1<<8);
}
else if (ncores > 1) {
leaf->eax = ilog2(ncores-1)+1;
leaf->ebx = ncores;
leaf->ecx |= (2<<8);
}
else if (nprocessors > 1) {
leaf->eax = ilog2(nprocessors-1)+1;
leaf->ebx = nprocessors;
}
else {
leaf->eax = 1;
leaf->ebx = 1; // number of logical CPUs at this level
}
break;
case 1:
if (nthreads > 1) {
if (ncores > 1) {
leaf->eax = ilog2(ncores-1)+1;
leaf->ebx = ncores;
leaf->ecx |= (2<<8);
}
else if (nprocessors > 1) {
leaf->eax = ilog2(nprocessors-1)+1;
leaf->ebx = nprocessors;
}
}
else if (ncores > 1) {
if (nprocessors > 1) {
leaf->eax = ilog2(nprocessors-1)+1;
leaf->ebx = nprocessors;
}
}
break;
case 2:
if (nthreads > 1) {
if (nprocessors > 1) {
leaf->eax = ilog2(nprocessors-1)+1;
leaf->ebx = nprocessors;
}
}
break;
default:
break;
}
#endif
}
#endif
#if BX_CPU_LEVEL >= 6
void bx_cpuid_t::get_std_cpuid_xsave_leaf(Bit32u subfunction, cpuid_function_t *leaf) const
{
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
if (is_cpu_extension_supported(BX_ISA_XSAVE))
{
switch(subfunction) {
case 0:
// EAX - valid bits of XCR0 (lower part)
// EBX - Maximum size (in bytes) required by enabled features
// ECX - Maximum size (in bytes) required by CPU supported features
// EDX - valid bits of XCR0 (upper part)
leaf->eax = cpu->xcr0_suppmask;
leaf->ebx = 512+64;
#if BX_SUPPORT_AVX
if (cpu->xcr0.get_YMM())
leaf->ebx = XSAVE_YMM_STATE_OFFSET + XSAVE_YMM_STATE_LEN;
#endif
#if BX_SUPPORT_EVEX
if (cpu->xcr0.get_OPMASK())
leaf->ebx = XSAVE_OPMASK_STATE_OFFSET + XSAVE_OPMASK_STATE_LEN;
if (cpu->xcr0.get_ZMM_HI256())
leaf->ebx = XSAVE_ZMM_HI256_STATE_OFFSET + XSAVE_ZMM_HI256_STATE_LEN;
if (cpu->xcr0.get_HI_ZMM())
leaf->ebx = XSAVE_HI_ZMM_STATE_OFFSET + XSAVE_HI_ZMM_STATE_LEN;
#endif
#if BX_SUPPORT_PKEYS
if (cpu->xcr0.get_PKRU())
leaf->ebx = XSAVE_PKRU_STATE_OFFSET + XSAVE_PKRU_STATE_LEN;
#endif
leaf->ecx = 512+64;
#if BX_SUPPORT_AVX
if (cpu->xcr0_suppmask & BX_XCR0_YMM_MASK)
leaf->ecx = XSAVE_YMM_STATE_OFFSET + XSAVE_YMM_STATE_LEN;
#endif
#if BX_SUPPORT_EVEX
if (cpu->xcr0_suppmask & BX_XCR0_OPMASK_MASK)
leaf->ecx = XSAVE_OPMASK_STATE_OFFSET + XSAVE_OPMASK_STATE_LEN;
if (cpu->xcr0_suppmask & BX_XCR0_ZMM_HI256_MASK)
leaf->ecx = XSAVE_ZMM_HI256_STATE_OFFSET + XSAVE_ZMM_HI256_STATE_LEN;
if (cpu->xcr0_suppmask & BX_XCR0_HI_ZMM_MASK)
leaf->ecx = XSAVE_HI_ZMM_STATE_OFFSET + XSAVE_HI_ZMM_STATE_LEN;
#endif
#if BX_SUPPORT_PKEYS
if (cpu->xcr0_suppmask & BX_XCR0_PKRU_MASK)
leaf->ecx = XSAVE_PKRU_STATE_OFFSET + XSAVE_PKRU_STATE_LEN;
#endif
leaf->edx = 0;
break;
case 1:
// EAX[0] - support for the XSAVEOPT instruction
// EAX[1] - support for compaction extensions to the XSAVE feature set
// EAX[2] - support for execution of XGETBV with ECX = 1
// EAX[3] - support for XSAVES, XRSTORS, and the IA32_XSS MSR
leaf->eax = 0;
if (is_cpu_extension_supported(BX_ISA_XSAVEOPT))
leaf->eax |= 0x1;
if (is_cpu_extension_supported(BX_ISA_XSAVEC))
leaf->eax |= (1<<1) | (1<<2);
if (is_cpu_extension_supported(BX_ISA_XSAVES))
leaf->eax |= (1<<3);
// EBX[31:00] - The size (in bytes) of the XSAVE area containing all states enabled by (XCRO | IA32_XSS)
leaf->ebx = 0;
if (is_cpu_extension_supported(BX_ISA_XSAVES)) {
xcr0_t xcr0_xss = cpu->xcr0;
xcr0_xss.val32 |= cpu->msr.msr_xss;
#if BX_SUPPORT_AVX
if (xcr0_xss.get_YMM())
leaf->ebx = XSAVE_YMM_STATE_OFFSET + XSAVE_YMM_STATE_LEN;
#endif
#if BX_SUPPORT_EVEX
if (xcr0_xss.get_OPMASK())
leaf->ebx = XSAVE_OPMASK_STATE_OFFSET + XSAVE_OPMASK_STATE_LEN;
if (xcr0_xss.get_ZMM_HI256())
leaf->ebx = XSAVE_ZMM_HI256_STATE_OFFSET + XSAVE_ZMM_HI256_STATE_LEN;
if (xcr0_xss.get_HI_ZMM())
leaf->ebx = XSAVE_HI_ZMM_STATE_OFFSET + XSAVE_HI_ZMM_STATE_LEN;
#endif
#if BX_SUPPORT_PKEYS
if (xcr0_xss.get_PKRU())
leaf->ebx = XSAVE_PKRU_STATE_OFFSET + XSAVE_PKRU_STATE_LEN;
#endif
}
// ECX[31:0] - Reports the supported bits of the lower 32 bits of the IA32_XSS MSR.
// IA32_XSS[n] can be set to 1 only if ECX[n] is 1
// EDX[31:0] - Reports the supported bits of the upper 32 bits of the IA32_XSS MSR.
// IA32_XSS[n+32] can be set to 1 only if EDX[n] is 1
leaf->ecx = 0; // no supported bits in MSR_XSS for now
leaf->edx = 0;
break;
#if BX_SUPPORT_AVX
case 2: // YMM leaf
if (cpu->xcr0_suppmask & BX_XCR0_YMM_MASK) {
leaf->eax = XSAVE_YMM_STATE_LEN;
leaf->ebx = XSAVE_YMM_STATE_OFFSET;
leaf->ecx = 0;
leaf->edx = 0;
}
break;
#endif
case 3: // MPX leafs (BNDREGS, BNDCFG)
case 4:
break;
#if BX_SUPPORT_EVEX
case 5: // OPMASK leaf
if (cpu->xcr0_suppmask & BX_XCR0_OPMASK_MASK) {
leaf->eax = XSAVE_OPMASK_STATE_LEN;
leaf->ebx = XSAVE_OPMASK_STATE_OFFSET;
leaf->ecx = 0;
leaf->edx = 0;
}
break;
case 6: // ZMM Hi256 leaf
if (cpu->xcr0_suppmask & BX_XCR0_ZMM_HI256_MASK) {
leaf->eax = XSAVE_ZMM_HI256_STATE_LEN;
leaf->ebx = XSAVE_ZMM_HI256_STATE_OFFSET;
leaf->ecx = 0;
leaf->edx = 0;
}
break;
case 7: // HI_ZMM leaf
if (cpu->xcr0_suppmask & BX_XCR0_HI_ZMM_MASK) {
leaf->eax = XSAVE_HI_ZMM_STATE_LEN;
leaf->ebx = XSAVE_HI_ZMM_STATE_OFFSET;
leaf->ecx = 0;
leaf->edx = 0;
}
break;
#endif
case 8: // Processor trace leaf
break;
#if BX_SUPPPORT_PKEYS
case 9: // Ptotection keys
if (cpu->xcr0_suppmask & BX_XCR0_PKRU_MASK) {
leaf->eax = XSAVE_PKRU_STATE_LEN;
leaf->ebx = XSAVE_PKRU_STATE_OFFSET;
leaf->ecx = 0;
leaf->edx = 0;
}
break;
#endif
}
}
}
#endif
void bx_cpuid_t::get_leaf_0(unsigned max_leaf, const char *vendor_string, cpuid_function_t *leaf) const
{
// EAX: highest function understood by CPUID
// EBX: vendor ID string
// EDX: vendor ID string
// ECX: vendor ID string
leaf->eax = max_leaf;
if (vendor_string == NULL) {
leaf->ebx = 0;
leaf->ecx = 0; // Reserved
leaf->edx = 0;
return;
}
// CPUID vendor string (e.g. GenuineIntel, AuthenticAMD, CentaurHauls, ...)
memcpy(&(leaf->ebx), vendor_string, 4);
memcpy(&(leaf->edx), vendor_string + 4, 4);
memcpy(&(leaf->ecx), vendor_string + 8, 4);
#ifdef BX_BIG_ENDIAN
leaf->ebx = bx_bswap32(leaf->ebx);
leaf->ecx = bx_bswap32(leaf->ecx);
leaf->edx = bx_bswap32(leaf->edx);
#endif
}
void bx_cpuid_t::get_ext_cpuid_brand_string_leaf(const char *brand_string, Bit32u function, cpuid_function_t *leaf) const
{
switch(function) {
case 0x80000002:
memcpy(&(leaf->eax), brand_string , 4);
memcpy(&(leaf->ebx), brand_string + 4, 4);
memcpy(&(leaf->ecx), brand_string + 8, 4);
memcpy(&(leaf->edx), brand_string + 12, 4);
break;
case 0x80000003:
memcpy(&(leaf->eax), brand_string + 16, 4);
memcpy(&(leaf->ebx), brand_string + 20, 4);
memcpy(&(leaf->ecx), brand_string + 24, 4);
memcpy(&(leaf->edx), brand_string + 28, 4);
break;
case 0x80000004:
memcpy(&(leaf->eax), brand_string + 32, 4);
memcpy(&(leaf->ebx), brand_string + 36, 4);
memcpy(&(leaf->ecx), brand_string + 40, 4);
memcpy(&(leaf->edx), brand_string + 44, 4);
break;
default:
break;
}
#ifdef BX_BIG_ENDIAN
leaf->eax = bx_bswap32(leaf->eax);
leaf->ebx = bx_bswap32(leaf->ebx);
leaf->ecx = bx_bswap32(leaf->ecx);
leaf->edx = bx_bswap32(leaf->edx);
#endif
}
// leaf 0x80000008 - return Intel defaults //
void bx_cpuid_t::get_ext_cpuid_leaf_8(cpuid_function_t *leaf) const
{
// virtual & phys address size in low 2 bytes of EAX.
// TODO: physical address width should be 32-bit when no PSE-36 is supported
Bit32u phy_addr_width = BX_PHY_ADDRESS_WIDTH;
Bit32u lin_addr_width = is_cpu_extension_supported(BX_ISA_LONG_MODE) ? BX_LIN_ADDRESS_WIDTH : 32;
leaf->eax = phy_addr_width | (lin_addr_width << 8);
leaf->ebx = 0;
leaf->ecx = 0; // Reserved, undefined for Intel
leaf->edx = 0;
}
void bx_cpuid_t::get_cpuid_hidden_level(cpuid_function_t *leaf, const char *magic_string) const
{
memcpy(&(leaf->eax), magic_string , 4);
memcpy(&(leaf->ebx), magic_string + 4, 4);
memcpy(&(leaf->ecx), magic_string + 8, 4);
memcpy(&(leaf->edx), magic_string + 12, 4);
#ifdef BX_BIG_ENDIAN
leaf->eax = bx_bswap32(leaf->eax);
leaf->ebx = bx_bswap32(leaf->ebx);
leaf->ecx = bx_bswap32(leaf->ecx);
leaf->edx = bx_bswap32(leaf->edx);
#endif
}
void bx_cpuid_t::dump_cpuid_leaf(unsigned function, unsigned subfunction) const
{
struct cpuid_function_t leaf;
get_cpuid_leaf(function, subfunction, &leaf);
BX_INFO(("CPUID[0x%08x]: %08x %08x %08x %08x", function, leaf.eax, leaf.ebx, leaf.ecx, leaf.edx));
}
void bx_cpuid_t::dump_cpuid(unsigned max_std_leaf, unsigned max_ext_leaf) const
{
for (unsigned std_leaf=0; std_leaf<=max_std_leaf; std_leaf++) {
dump_cpuid_leaf(std_leaf);
}
if (max_ext_leaf == 0) return;
for (unsigned ext_leaf=0x80000000; ext_leaf<=(0x80000000 + max_ext_leaf); ext_leaf++) {
dump_cpuid_leaf(ext_leaf);
}
}
void bx_cpuid_t::warning_messages() const
{
if (is_cpu_extension_supported(BX_ISA_3DNOW))
BX_INFO(("WARNING: 3DNow! is not implemented yet !"));
if (is_cpu_extension_supported(BX_ISA_RDRAND))
BX_INFO(("WARNING: RDRAND would not produce true random numbers !"));
if (is_cpu_extension_supported(BX_ISA_RDSEED))
BX_INFO(("WARNING: RDSEED would not produce true random numbers !"));
}