Bochs/bochs/cpu/cpudb/atom_n270.cc
Stanislav Shwartsman b8b63ac6ea compile CPUDB to separate library
reduce compile-time dependencies
2011-08-18 18:55:22 +00:00

612 lines
18 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2011 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#include "bochs.h"
#include "cpu.h"
#include "param_names.h"
#include "atom_n270.h"
#define LOG_THIS cpu->
#if BX_CPU_LEVEL >= 6 && BX_SUPPORT_X86_64 == 0
atom_n270_t::atom_n270_t(BX_CPU_C *cpu): bx_cpuid_t(cpu)
{
#if BX_SUPPORT_SMP
nthreads = SIM->get_param_num(BXPN_CPU_NTHREADS)->get();
ncores = SIM->get_param_num(BXPN_CPU_NCORES)->get();
nprocessors = SIM->get_param_num(BXPN_CPU_NPROCESSORS)->get();
#endif
if (BX_SUPPORT_X86_64)
BX_PANIC(("x86-64 should be disabled for Intel Atom N270 (Diamondville) configuration"));
}
void atom_n270_t::get_cpuid_leaf(Bit32u function, Bit32u subfunction, cpuid_function_t *leaf) const
{
static bx_bool cpuid_limit_winnt = SIM->get_param_bool(BXPN_CPUID_LIMIT_WINNT)->get();
if (cpuid_limit_winnt)
if (function > 2 && function < 0x80000000) function = 2;
switch(function) {
case 0x80000000:
get_ext_cpuid_leaf_0(leaf);
return;
case 0x80000001:
get_ext_cpuid_leaf_1(leaf);
return;
case 0x80000002:
case 0x80000003:
case 0x80000004:
get_ext_cpuid_brand_string_leaf(function, leaf);
return;
case 0x80000005:
get_ext_cpuid_leaf_5(leaf);
return;
case 0x80000006:
get_ext_cpuid_leaf_6(leaf);
return;
case 0x80000007:
get_ext_cpuid_leaf_7(leaf);
return;
case 0x80000008:
get_ext_cpuid_leaf_8(leaf);
return;
case 0x00000000:
get_std_cpuid_leaf_0(leaf);
return;
case 0x00000001:
get_std_cpuid_leaf_1(leaf);
return;
case 0x00000002:
get_std_cpuid_leaf_2(leaf);
return;
case 0x00000003:
get_std_cpuid_leaf_3(leaf);
return;
case 0x00000004:
get_std_cpuid_leaf_4(subfunction, leaf);
return;
case 0x00000005:
get_std_cpuid_leaf_5(leaf);
return;
case 0x00000006:
get_std_cpuid_leaf_6(leaf);
return;
case 0x00000007:
case 0x00000008:
get_reserved_leaf(leaf);
return;
case 0x00000009:
get_std_cpuid_leaf_9(leaf);
return;
case 0x0000000A:
default:
get_std_cpuid_leaf_A(leaf);
return;
}
}
Bit32u atom_n270_t::get_isa_extensions_bitmask(void) const
{
return BX_CPU_X87 |
BX_CPU_486 |
BX_CPU_PENTIUM |
BX_CPU_P6 |
BX_CPU_MMX |
BX_CPU_SYSENTER_SYSEXIT |
BX_CPU_CLFLUSH |
BX_CPU_SSE |
BX_CPU_SSE2 |
BX_CPU_SSE3 |
BX_CPU_SSSE3 |
#if BX_SUPPORT_MONITOR_MWAIT
BX_CPU_MONITOR_MWAIT |
#endif
BX_CPU_MOVBE;
}
Bit32u atom_n270_t::get_cpu_extensions_bitmask(void) const
{
return BX_CPU_DEBUG_EXTENSIONS |
BX_CPU_VME |
BX_CPU_PSE |
#if BX_PHY_ADDRESS_LONG
BX_CPU_PSE36 |
#endif
BX_CPU_PAE |
BX_CPU_PGE |
BX_CPU_MTRR |
BX_CPU_PAT |
BX_CPU_XAPIC;
}
// leaf 0x00000000 //
void atom_n270_t::get_std_cpuid_leaf_0(cpuid_function_t *leaf) const
{
static const char* vendor_string = "GenuineIntel";
// EAX: highest std function understood by CPUID
// EBX: vendor ID string
// EDX: vendor ID string
// ECX: vendor ID string
static bx_bool cpuid_limit_winnt = SIM->get_param_bool(BXPN_CPUID_LIMIT_WINNT)->get();
if (cpuid_limit_winnt)
leaf->eax = 0x2;
else
leaf->eax = 0xA;
// CPUID vendor string (e.g. GenuineIntel, AuthenticAMD, CentaurHauls, ...)
memcpy(&(leaf->ebx), vendor_string, 4);
memcpy(&(leaf->edx), vendor_string + 4, 4);
memcpy(&(leaf->ecx), vendor_string + 8, 4);
#ifdef BX_BIG_ENDIAN
leaf->ebx = bx_bswap32(leaf->ebx);
leaf->ecx = bx_bswap32(leaf->ecx);
leaf->edx = bx_bswap32(leaf->edx);
#endif
}
// leaf 0x00000001 //
void atom_n270_t::get_std_cpuid_leaf_1(cpuid_function_t *leaf) const
{
// EAX: CPU Version Information
// [3:0] Stepping ID
// [7:4] Model: starts at 1
// [11:8] Family: 4=486, 5=Pentium, 6=PPro, ...
// [13:12] Type: 0=OEM, 1=overdrive, 2=dual cpu, 3=reserved
// [19:16] Extended Model
// [27:20] Extended Family
leaf->eax = 0x000106C2;
// EBX:
// [7:0] Brand ID
// [15:8] CLFLUSH cache line size (value*8 = cache line size in bytes)
// [23:16] Number of logical processors in one physical processor
// [31:24] Local Apic ID
#if BX_SUPPORT_SMP
unsigned n_logical_processors = ncores*nthreads;
#else
unsigned n_logical_processors = 1;
#endif
leaf->ebx = ((CACHE_LINE_SIZE / 8) << 8) |
(n_logical_processors << 16);
#if BX_SUPPORT_APIC
leaf->ebx |= ((cpu->get_apic_id() & 0xff) << 24);
#endif
// ECX: Extended Feature Flags
// * [0:0] SSE3: SSE3 Instructions
// [1:1] PCLMULQDQ Instruction support
// * [2:2] DTES64: 64-bit DS area
// * [3:3] MONITOR/MWAIT support
// * [4:4] DS-CPL: CPL qualified debug store
// [5:5] VMX: Virtual Machine Technology
// [6:6] SMX: Secure Virtual Machine Technology
// * [7:7] EST: Enhanced Intel SpeedStep Technology
// * [8:8] TM2: Thermal Monitor 2
// * [9:9] SSSE3: SSSE3 Instructions
// [10:10] CNXT-ID: L1 context ID
// [11:11] reserved
// [12:12] FMA Instructions support
// [13:13] CMPXCHG16B: CMPXCHG16B instruction support
// * [14:14] xTPR update control
// * [15:15] PDCM - Perfon and Debug Capability MSR
// [16:16] reserved
// [17:17] PCID: Process Context Identifiers
// [18:18] DCA - Direct Cache Access
// [19:19] SSE4.1 Instructions
// [20:20] SSE4.2 Instructions
// [21:21] X2APIC
// * [22:22] MOVBE instruction
// [23:23] POPCNT instruction
// [24:24] TSC Deadline
// [25:25] AES Instructions
// [26:26] XSAVE extensions support
// [27:27] OSXSAVE support
// [28:28] AVX extensions support
// [29:29] AVX F16C - Float16 conversion support
// [30:30] RDRAND instruction
// [31:31] reserved
leaf->ecx = BX_CPUID_EXT_SSE3 |
BX_CPUID_EXT_DTES64 |
#if BX_SUPPORT_MONITOR_MWAIT
BX_CPUID_EXT_MONITOR_MWAIT |
#endif
BX_CPUID_EXT_DS_CPL |
BX_CPUID_EXT_EST |
BX_CPUID_EXT_THERMAL_MONITOR2 |
BX_CPUID_EXT_SSSE3 |
BX_CPUID_EXT_xTPR |
BX_CPUID_EXT_PDCM |
BX_CPUID_EXT_MOVBE;
// EDX: Standard Feature Flags
// * [0:0] FPU on chip
// * [1:1] VME: Virtual-8086 Mode enhancements
// * [2:2] DE: Debug Extensions (I/O breakpoints)
// * [3:3] PSE: Page Size Extensions
// * [4:4] TSC: Time Stamp Counter
// * [5:5] MSR: RDMSR and WRMSR support
// * [6:6] PAE: Physical Address Extensions
// * [7:7] MCE: Machine Check Exception
// * [8:8] CXS: CMPXCHG8B instruction
// * [9:9] APIC: APIC on Chip
// [10:10] Reserved
// * [11:11] SYSENTER/SYSEXIT support
// * [12:12] MTRR: Memory Type Range Reg
// * [13:13] PGE/PTE Global Bit
// * [14:14] MCA: Machine Check Architecture
// * [15:15] CMOV: Cond Mov/Cmp Instructions
// * [16:16] PAT: Page Attribute Table
// - [17:17] PSE-36: Physical Address Extensions
// [18:18] PSN: Processor Serial Number
// * [19:19] CLFLUSH: CLFLUSH Instruction support
// [20:20] Reserved
// * [21:21] DS: Debug Store
// * [22:22] ACPI: Thermal Monitor and Software Controlled Clock Facilities
// * [23:23] MMX Technology
// * [24:24] FXSR: FXSAVE/FXRSTOR (also indicates CR4.OSFXSR is available)
// * [25:25] SSE: SSE Extensions
// * [26:26] SSE2: SSE2 Extensions
// * [27:27] Self Snoop
// * [28:28] Hyper Threading Technology
// * [29:29] TM: Thermal Monitor
// [30:30] Reserved
// * [31:31] PBE: Pending Break Enable
leaf->edx = BX_CPUID_STD_X87 |
BX_CPUID_STD_VME |
BX_CPUID_STD_DEBUG_EXTENSIONS |
BX_CPUID_STD_PSE |
BX_CPUID_STD_TSC |
BX_CPUID_STD_MSR |
BX_CPUID_STD_PAE |
BX_CPUID_STD_MCE |
BX_CPUID_STD_CMPXCHG8B |
BX_CPUID_STD_SYSENTER_SYSEXIT |
BX_CPUID_STD_MTRR |
BX_CPUID_STD_GLOBAL_PAGES |
BX_CPUID_STD_MCA |
BX_CPUID_STD_CMOV |
BX_CPUID_STD_PAT |
#if BX_PHY_ADDRESS_LONG
BX_CPUID_STD_PSE36 |
#endif
BX_CPUID_STD_CLFLUSH |
BX_CPUID_STD_DEBUG_STORE |
BX_CPUID_STD_ACPI |
BX_CPUID_STD_MMX |
BX_CPUID_STD_FXSAVE_FXRSTOR |
BX_CPUID_STD_SSE |
BX_CPUID_STD_SSE2 |
BX_CPUID_STD_SELF_SNOOP |
BX_CPUID_STD_HT |
BX_CPUID_STD_THERMAL_MONITOR |
BX_CPUID_STD_PBE;
#if BX_SUPPORT_APIC
// if MSR_APICBASE APIC Global Enable bit has been cleared,
// the CPUID feature flag for the APIC is set to 0.
if (cpu->msr.apicbase & 0x800)
leaf->edx |= BX_CPUID_STD_APIC; // APIC on chip
#endif
}
// leaf 0x00000002 //
void atom_n270_t::get_std_cpuid_leaf_2(cpuid_function_t *leaf) const
{
// CPUID function 0x00000002 - Cache and TLB Descriptors
leaf->eax = 0x4FBA5901;
leaf->ebx = 0x0E3080C0;
leaf->ecx = 0x00000000;
leaf->edx = 0x00000000;
}
// leaf 0x00000003 //
void atom_n270_t::get_std_cpuid_leaf_3(cpuid_function_t *leaf) const
{
// CPUID function 0x00000003 - Processor Serial Number
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
}
// leaf 0x00000004 //
void atom_n270_t::get_std_cpuid_leaf_4(Bit32u subfunction, cpuid_function_t *leaf) const
{
// CPUID function 0x00000004 - Deterministic Cache Parameters
// EAX:
// [04-00] - Cache Type Field
// 0 = No more caches
// 1 = Data Cache
// 2 = Instruction Cache
// 3 = Unified Cache
// [07-05] - Cache Level (starts at 1)]
// [08] - Self Initializing cache level (doesn't need software initialization)
// [09] - Fully Associative cache
// [13-10] - Reserved
// [25-14] - Maximum number of addressable IDs for logical processors sharing this cache
// [31-26] - Maximum number of addressable IDs for processor cores in the physical package - 1
// EBX:
// [11-00] - L = System Coherency Line Size
// [21-12] - P = Physical Line partitions
// [31-22] - W = Ways of associativity
// ECX: Number of Sets
// EDX:
// [00] - Writeback invalidate
// [01] - Cache Inclusiveness
// [02] - Complex Cache Indexing
// [31-03] - Reserved
switch(subfunction) {
case 0:
leaf->eax = 0x00004121;
leaf->ebx = 0x0140003F;
leaf->ecx = 0x0000003F;
leaf->edx = 0x00000001;
break;
case 1:
leaf->eax = 0x00004122;
leaf->ebx = 0x01C0003F;
leaf->ecx = 0x0000003F;
leaf->edx = 0x00000001;
break;
case 2:
leaf->eax = 0x00004143;
leaf->ebx = 0x01C0003F;
leaf->ecx = 0x000003FF;
leaf->edx = 0x00000001;
break;
default:
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
return;
}
}
// leaf 0x00000005 //
void atom_n270_t::get_std_cpuid_leaf_5(cpuid_function_t *leaf) const
{
// CPUID function 0x00000005 - MONITOR/MWAIT Leaf
#if BX_SUPPORT_MONITOR_MWAIT
// EAX - Smallest monitor-line size in bytes
// EBX - Largest monitor-line size in bytes
// ECX -
// [31:2] - reserved
// [1:1] - exit MWAIT even with EFLAGS.IF = 0
// [0:0] - MONITOR/MWAIT extensions are supported
// EDX -
// [03-00] - number of C0 sub C-states supported using MWAIT
// [07-04] - number of C1 sub C-states supported using MWAIT
// [11-08] - number of C2 sub C-states supported using MWAIT
// [15-12] - number of C3 sub C-states supported using MWAIT
// [19-16] - number of C4 sub C-states supported using MWAIT
// [31-20] - reserved (MBZ)
leaf->eax = CACHE_LINE_SIZE;
leaf->ebx = CACHE_LINE_SIZE;
leaf->ecx = 3;
leaf->edx = 0x00020220;
#else
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
#endif
}
// leaf 0x00000006 //
void atom_n270_t::get_std_cpuid_leaf_6(cpuid_function_t *leaf) const
{
// CPUID function 0x00000006 - Thermal and Power Management Leaf
leaf->eax = 0x00000001;
leaf->ebx = 0x00000002;
leaf->ecx = 0x00000001;
leaf->edx = 0x00000000;
}
// leaf 0x00000007 not supported //
// leaf 0x00000008 reserved //
// leaf 0x00000009 //
void atom_n270_t::get_std_cpuid_leaf_9(cpuid_function_t *leaf) const
{
// CPUID function 0x00000009 - Direct Cache Access Information
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
}
// leaf 0x0000000A //
void atom_n270_t::get_std_cpuid_leaf_A(cpuid_function_t *leaf) const
{
// CPUID function 0x0000000A - Architectural Performance Monitoring Leaf
leaf->eax = 0x07280203;
leaf->ebx = 0x00000000;
leaf->ecx = 0x00000000;
leaf->edx = 0x00002501;
BX_INFO(("WARNING: Architectural Performance Monitoring is not implemented"));
}
// leaf 0x80000000 //
void atom_n270_t::get_ext_cpuid_leaf_0(cpuid_function_t *leaf) const
{
// EAX: highest extended function understood by CPUID
// EBX: reserved
// EDX: reserved
// ECX: reserved
leaf->eax = 0x80000008;
leaf->ebx = 0;
leaf->edx = 0; // Reserved for Intel
leaf->ecx = 0;
}
// leaf 0x80000001 //
void atom_n270_t::get_ext_cpuid_leaf_1(cpuid_function_t *leaf) const
{
// EAX: CPU Version Information (reserved for Intel)
leaf->eax = 0;
// EBX: Brand ID (reserved for Intel)
leaf->ebx = 0;
// ECX:
// ? [0:0] LAHF/SAHF instructions support in 64-bit mode
// [1:1] CMP_Legacy: Core multi-processing legacy mode (AMD)
// [2:2] SVM: Secure Virtual Machine (AMD)
// [3:3] Extended APIC Space
// [4:4] AltMovCR8: LOCK MOV CR0 means MOV CR8
// [5:5] LZCNT: LZCNT instruction support
// [6:6] SSE4A: SSE4A Instructions support (deprecated?)
// [7:7] Misaligned SSE support
// [8:8] PREFETCHW: PREFETCHW instruction support
// [9:9] OSVW: OS visible workarounds (AMD)
// [11:10] reserved
// [12:12] SKINIT support
// [13:13] WDT: Watchdog timer support
// [31:14] reserved
leaf->ecx = BX_CPUID_EXT2_LAHF_SAHF;
// EDX:
// Many of the bits in EDX are the same as FN 0x00000001 [*] for AMD
// [10:0] Reserved for Intel
// [11:11] SYSCALL/SYSRET support
// [19:12] Reserved for Intel
// [20:20] No-Execute page protection
// [25:21] Reserved
// [26:26] 1G paging support
// [27:27] Support RDTSCP Instruction
// [28:28] Reserved
// [29:29] Long Mode
// [30:30] AMD 3DNow! Extensions
// [31:31] AMD 3DNow! Instructions
leaf->edx = 0;
}
// leaf 0x80000002 //
// leaf 0x80000003 //
// leaf 0x80000004 //
void atom_n270_t::get_ext_cpuid_brand_string_leaf(Bit32u function, cpuid_function_t *leaf) const
{
// CPUID function 0x80000002-0x80000004 - Processor Name String Identifier
static const char* brand_string = " Intel(R) Atom(TM) CPU N270 @ 1.60GHz";
switch(function) {
case 0x80000002:
memcpy(&(leaf->eax), brand_string , 4);
memcpy(&(leaf->ebx), brand_string + 4, 4);
memcpy(&(leaf->ecx), brand_string + 8, 4);
memcpy(&(leaf->edx), brand_string + 12, 4);
break;
case 0x80000003:
memcpy(&(leaf->eax), brand_string + 16, 4);
memcpy(&(leaf->ebx), brand_string + 20, 4);
memcpy(&(leaf->ecx), brand_string + 24, 4);
memcpy(&(leaf->edx), brand_string + 28, 4);
break;
case 0x80000004:
memcpy(&(leaf->eax), brand_string + 32, 4);
memcpy(&(leaf->ebx), brand_string + 36, 4);
memcpy(&(leaf->ecx), brand_string + 40, 4);
memcpy(&(leaf->edx), brand_string + 44, 4);
break;
default:
break;
}
#ifdef BX_BIG_ENDIAN
leaf->eax = bx_bswap32(leaf->eax);
leaf->ebx = bx_bswap32(leaf->ebx);
leaf->ecx = bx_bswap32(leaf->ecx);
leaf->edx = bx_bswap32(leaf->edx);
#endif
}
// leaf 0x80000005 //
void atom_n270_t::get_ext_cpuid_leaf_5(cpuid_function_t *leaf) const
{
// CPUID function 0x800000005 - L1 Cache and TLB Identifiers
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0; // reserved for Intel
leaf->edx = 0;
}
// leaf 0x80000006 //
void atom_n270_t::get_ext_cpuid_leaf_6(cpuid_function_t *leaf) const
{
// CPUID function 0x800000006 - L2 Cache and TLB Identifiers
leaf->eax = 0x00000000;
leaf->ebx = 0x00000000;
leaf->ecx = 0x02008040;
leaf->edx = 0x00000000;
}
// leaf 0x80000007 //
void atom_n270_t::get_ext_cpuid_leaf_7(cpuid_function_t *leaf) const
{
// CPUID function 0x800000007 - Advanced Power Management
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
}
// leaf 0x80000008 //
void atom_n270_t::get_ext_cpuid_leaf_8(cpuid_function_t *leaf) const
{
// virtual & phys address size in low 2 bytes.
leaf->eax = BX_PHY_ADDRESS_WIDTH | (BX_LIN_ADDRESS_WIDTH << 8); // physical address should be 32-bit, no PSE-36
leaf->ebx = 0;
leaf->ecx = 0; // Reserved, undefined
leaf->edx = 0;
}
void atom_n270_t::dump_cpuid(void) const
{
struct cpuid_function_t leaf;
unsigned n;
for (n=0; n<=0xA; n++) {
get_cpuid_leaf(n, 0x00000000, &leaf);
BX_INFO(("CPUID[0x%08x]: %08x %08x %08x %08x", n, leaf.eax, leaf.ebx, leaf.ecx, leaf.edx));
}
for (n=0x80000000; n<=0x80000008; n++) {
get_cpuid_leaf(n, 0x00000000, &leaf);
BX_INFO(("CPUID[0x%08x]: %08x %08x %08x %08x", n, leaf.eax, leaf.ebx, leaf.ecx, leaf.edx));
}
}
bx_cpuid_t *create_atom_n270_cpuid(BX_CPU_C *cpu) { return new atom_n270_t(cpu); }
#endif