Bochs/bochs/cpu/crc32.cc
Stanislav Shwartsman cc694377b9 Standartization of Bochs instruction handlers.
Bochs instruction emulation handlers won't refer to direct fields of instructions like MODRM.NNN or MODRM.RM anymore.
Use generic source/destination indications like SRC1, SRC2 and DST.
All handlers are modified to support new notation. In addition fetchDecode module was modified to assign sources to instructions properly.

Immediate benefits:
- Removal of several duplicated handlers (FMA3 duplicated with FMA4 is a trivial example)
- Simpler to understand fetch-decode code

Future benefits:
- Integration of disassembler into Bochs CPU module, ability to disasm bx_instruction_c instance (planned)

Huge patch. Almost all source files wre modified.
2012-08-05 13:52:40 +00:00

149 lines
4.2 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2008-2012 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_CPU_LEVEL >= 6
// 3-byte opcodes
#define CRC32_POLYNOMIAL BX_CONST64(0x11edc6f41)
// primitives for CRC32 usage
BX_CPP_INLINE Bit8u BitReflect8(Bit8u val8)
{
return ((val8 & 0x80) >> 7) |
((val8 & 0x40) >> 5) |
((val8 & 0x20) >> 3) |
((val8 & 0x10) >> 1) |
((val8 & 0x08) << 1) |
((val8 & 0x04) << 3) |
((val8 & 0x02) << 5) |
((val8 & 0x01) << 7);
}
BX_CPP_INLINE Bit16u BitReflect16(Bit16u val16)
{
return ((Bit16u)(BitReflect8(val16 & 0xff)) << 8) | BitReflect8(val16 >> 8);
}
BX_CPP_INLINE Bit32u BitReflect32(Bit32u val32)
{
return ((Bit32u)(BitReflect16(val32 & 0xffff)) << 16) | BitReflect16(val32 >> 16);
}
static Bit32u mod2_64bit(Bit64u divisor, Bit64u dividend)
{
Bit64u remainder = dividend >> 32;
for (int bitpos=31; bitpos>=0; bitpos--) {
// copy one more bit from the dividend
remainder = (remainder << 1) | ((dividend >> bitpos) & 1);
// if MSB is set, then XOR divisor and get new remainder
if (((remainder >> 32) & 1) == 1) {
remainder ^= divisor;
}
}
return (Bit32u) remainder;
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::CRC32_GdEbR(bxInstruction_c *i)
{
Bit8u op1 = BX_READ_8BIT_REGx(i->src(), i->extend8bitL());
Bit32u op2 = BX_READ_32BIT_REG(i->dst());
op2 = BitReflect32(op2);
Bit64u tmp1 = ((Bit64u) BitReflect8 (op1)) << 32;
Bit64u tmp2 = ((Bit64u) op2) << 8;
Bit64u tmp3 = tmp1 ^ tmp2;
op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3);
BX_WRITE_32BIT_REGZ(i->dst(), BitReflect32(op2));
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::CRC32_GdEwR(bxInstruction_c *i)
{
Bit32u op2 = BX_READ_32BIT_REG(i->dst());
op2 = BitReflect32(op2);
Bit16u op1 = BX_READ_16BIT_REG(i->src());
Bit64u tmp1 = ((Bit64u) BitReflect16(op1)) << 32;
Bit64u tmp2 = ((Bit64u) op2) << 16;
Bit64u tmp3 = tmp1 ^ tmp2;
op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3);
BX_WRITE_32BIT_REGZ(i->dst(), BitReflect32(op2));
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::CRC32_GdEdR(bxInstruction_c *i)
{
Bit32u op2 = BX_READ_32BIT_REG(i->dst());
op2 = BitReflect32(op2);
Bit32u op1 = BX_READ_32BIT_REG(i->src());
Bit64u tmp1 = ((Bit64u) BitReflect32(op1)) << 32;
Bit64u tmp2 = ((Bit64u) op2) << 32;
Bit64u tmp3 = tmp1 ^ tmp2;
op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3);
BX_WRITE_32BIT_REGZ(i->dst(), BitReflect32(op2));
BX_NEXT_INSTR(i);
}
#if BX_SUPPORT_X86_64
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::CRC32_GdEqR(bxInstruction_c *i)
{
Bit32u op2 = BX_READ_32BIT_REG(i->dst());
op2 = BitReflect32(op2);
Bit64u op1 = BX_READ_64BIT_REG(i->src());
Bit64u tmp1 = ((Bit64u) BitReflect32(op1 & 0xffffffff)) << 32;
Bit64u tmp2 = ((Bit64u) op2) << 32;
Bit64u tmp3 = tmp1 ^ tmp2;
op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3);
tmp1 = ((Bit64u) BitReflect32(op1 >> 32)) << 32;
tmp2 = ((Bit64u) op2) << 32;
tmp3 = tmp1 ^ tmp2;
op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3);
BX_WRITE_32BIT_REGZ(i->dst(), BitReflect32(op2));
BX_NEXT_INSTR(i);
}
#endif // BX_SUPPORT_X86_64
#endif // BX_CPU_LEVEL >= 6